
KTH
Jing Gong, Stefano Markidis
KTH Royal Institute of Technology
Sweden
https://www.pdc.kth.se

About KUNGLIGA TEKNISKA HÖGSKOLAN (KTH)
The KTH Royal Institute of Technology, established 
in 1827, is one of Europe’s top schools for science 
and engineering, graduating one-third of Sweden’s 
undergraduate and graduate engineers in the 
full range of engineering disciplines. The PDC 
Center for High Performance Computing at the 
KTH provides leading HPC services to Swedish 
academics.

EPCC
Luis Cebamanos, David Henty
University of Edinburgh
Edinburgh, Scotland
www.epcc.ed.ac.uk

About EPCC
The University of Edinburgh is one of the world’s 
leading research universities. Through its 
supercomputer centre, EPCC, it is the project 
coordinator of the CRESTA project. EPCC 
manages a collection of HPC systems including 
ARCHER, the UK’s national high-end computing 
system.

Collaborative Research into Exascale 
Systemware, Tools & Applications
cresta-project.eu

About CRESTA
CRESTA (Collaborative Research into Exascale 
Systemware, Tools & Applications) is a 
collaborative research effort funded by the 
European Union exploring how to meet the 
exaflop challenge. The project has two integrated 
strands: one focused on enabling a key set of 
co-design applications for exascale, the other 
focused on building and exploring systemware for 
exascale platforms.

Cray Inc.
Harvey Richardson, Alistair Hart 
www.cray.com

About Cray
As a global leader in supercomputing, Cray 
provides highly advanced systems and 
solutions and world-class service and support 
to government, industry and academia. Cray 
technology enables scientists and engineers to 
not only meet existing and future simulation 
and analytics challenges but achieve remarkable 
breakthroughs by accelerating performance, 
improving efficiency and extending the 
capabilities of their most demanding applications.

Auto-tuning OpenACC directives 
within the NEK5000 application to fully 
exploit GPU architectures

Applications need to be tuned to get the best performance from a High 
Performance Supercomputer. This can be a time-consuming process to do 
by hand, with potentially thousands of parameter combinations to explore. 
Auto-tuners can speed this process up significantly, but existing methods 
are not well suited to HPC applications.

To solve this problem, the CRESTA project 
designed a Domain Specific Language (DSL) 
for auto-tuning parallel applications. This 
was then used to optimise the performance 
of NekBone (a standalone benchmark for the 
Nek5000 parallel CFD code) on a Cray XC30 
system accelerated with Nvidia K20X GPUs. 
The results were impressive, giving a 200% 
speed-up that consistently outperformed the 
best hand-tuning efforts of a domain specialist.

A GPU version of NekBone was developed 
using the new OpenACC accelerator directives 
that are implemented by the Cray compilers. 
OpenACC directives accept a wide variety 
of parameters controlling exactly how the 
parallelisation is performed, and their settings 
can have a significant effect on performance. 

NekBone was restructured so that it called 
a small number of kernel functions, each of 
which could be implemented in OpenACC and 
individually auto-tuned using CRESTA’s DSL. 
We worked closely with the Cray compiler team 
during this phase. For example, we identified 
cases where kernels performed very differently 
when run in isolation compared to being run in 
the main code. The compiler team suggested 
additional directives to solve the problem in 
the short term while they updated the compiler 
based on our test cases. 

The NekBone results were very encouraging. 
Across a wide range of representative cases, 
the auto-tuning increased the performance of 
the code by around 200% compared to the 
default OpenACC settings. We also compared 
to an OpenACC version of NekBone that 
was designed and hand-tuned by an expert 
developer. For representative problem sizes, 
the auto-tuned version always performed 
within a few percent of the hand-tuned version, 
and outperformed it by over 15% for the largest 
systems. 

This work has recently been extended to the 
full Nek5000 application. Although this is 
much more of a challenge for auto-tuning, now 
working with 100,000 lines of code compared 
to 42,000 for NekBone, the results are very 
positive. For example, we see performance 
improvements from auto-tuning of around 
32% compared to the best hand-tuned 
implementation.

The results were impressive, 
giving a 200% speed-up that 
consistently outperformed 
the best hand-tuning efforts 
of a domain specialist.



OpenACC co-design with GROMACS 
The porting of Nek5000 to exploit the GPUs on 
ORNL’s Cray XK7 Titan system demonstrates 
how the OpenACC programming model exploits 
system software (compilers and runtime libraries) 
to accelerate HPC applications in a productive 
and portable manner. With the GROMACS code, 
CRESTA sought to complete the co-design loop: 
porting key kernels with OpenACC and comparing 
their performance with the pre-existing and 
highly-optimised CUDA versions. The result was 
a surprising success, driving the development of 
three significant new OpenACC features in the 
Cray Compilation Environment (CCE) that allow 
users to: manage register use, access CUDA 
functions, and optimise cache configuration. These 
new features brought the OpenACC performance 
close to that of the high-performance CUDA in 
GROMACS but also, with the latest CCE release, 
are now benefiting Cray users worldwide.

CRESTA Auto-tuning DSL 
The Auto-tuning DSL was developed to enable 
application developers to tune many aspects of 
applications that have a direct bearing on performance. 
This covers: build parameters, algorithm choice, specific 
parameters relating to application source (for example 
OpenACC directive clauses), and runtime parameters. 
The DSL can be used for global tuning configuration 
or embedded in application source. Our mockup 
auto-tuner was used for this work and it implements 
many features of the DSL and is easy to use. It uses 
exhaustive search to determine the best run from 
the set defined by the tuning parameter values. Of 
particular note for the Nek5000 tuning was the feature 
to define tuning scenarios which partition the search 
space, for example to target different algorithms or 
problem size regimes.

70

60

50

40

30

P
e

rf
o

rm
an

ce
 (

G
fl

o
p

s)

20

10

0

32 64

N = 20

N = 18

N = 16

N = 14

N = 12

N = 10

N = 8

128 256 512 1024 2048 4192 8192

nel

Graph of performance for various problem sizes

Particularly useful for the 
Nek5000 tuning was the 
feature to define tuning 
scenarios which partition 
the search space.

Single node 
performance 
against number of 
elements (nel) for 
different spectral 
orders N.


