
CRESTA White Paper
Authors:  Daniel Holmes, EPCC, The University of Edinburgh

Editors:  Erwin Laure KTH Royal Institute of Technology, Mark Parsons  
and Lorna Smith, EPCC

Collaborative Research Into Exascale Systemware, Tools and Applications (CRESTA)
ICT-2011.9.13 Exascale computing, software and simulation

OPERATing  
SySTEmS AT ThE

ExTREmE SCAlE 



FOREWORD
by Dr DAniEl HolmEs, fRoM EPCC AT THE UnIvERSITy of EDInbURgH AnD CRESTA 
TECHnICAL STAff MEMbER.

ABOUT
by ProfEssor mArk PArsons, CooRDInAToR of THE CRESTA PRojECT  
AnD ExECUTIvE DIRECToR AT EPCC, THE UnIvERSITy of EDInbURgH, UK.

As we move ever closer to the first exascale systems, understanding the current status of 
operating system development becomes increasingly important. in particular, being able to quantify 
the potential impact of the operating system on applications at scale is key. This white paper does 
just this, before evaluating and looking to drive developments in operating systems to address 
identified scaling issues. 

The current trend in operating system research and development of re-implementing existing APIs 
is likely to continue. However, this approach is incremental and driven by developments in hardware 
as well as the necessity to improve the operating system to make full use of current technologies. 
Unfortunately, improvements that enhance scalability of the operating system often reduce usability.

This method of operating system development will provide scalability for the immediate future but 
it is likely to be limited by the original design decisions of modern HPC technology. Developments 
in hardware, operating systems, programming models and programming languages are all 
interdependent, which leads to cyclical improvements rather than novel approaches. The abstractions 
that have held true for hardware for several decades are no longer adequate to describe modern 
hardware. for example, procedural languages such as C and foRTRAn, assume single-threaded, 
sequential processing and memory isolation enforced by hardware protection. operating systems now 
depend on this hardware protection mechanism to isolate the memory spaces for different processes, 
which requires an expensive context-switch when transferring control from one process to another. 
This cannot be avoided unless a disruptive technology breaks the dependency by introducing a novel 
way to protect process memory spaces.

Similarly, disruptive technologies may be needed to solve other scalability and performance issues, in 
operating systems and hardware, without sacrificing usability.

The Collaborative research into Exascale, systemware Tools and Applications (CrEsTA) project 
is focused on the software challenges of exascale computing, making it a unique project. While 
a number of projects worldwide are studying hardware aspects of the race to perform 1018 
calculations per second, no other project is focusing on the exascale software stack in the way that 
we are.

by limiting our work to a small set of representative applications we hope to develop key insights into 
the necessary changes to applications and system software required to compute at this scale.

When studying how to compute at the exascale it is very easy to slip into a comfort zone where 
incremental improvements to applications eventually develop the necessary performance. In 
CRESTA, we recognise that incremental improvements are simply not enough and we need to look at 
disruptive changes to the HPC software stack from the operating system, through tools and libraries 
to the applications themselves. from the mid-1990s to the end of the last decade, HPC systems 
have remained remarkably similar (with increases in performance being delivered largely through 
the increase in microprocessor speeds). Today, at the petascale, we are already in an era of massive 
parallelism with many systems containing several hundred thousand cores. At the exascale, HPC 
systems may have tens of millions of cores. We simply don’t know how to compute with such a high 
level of parallelism.

CRESTA is studying these issues and identifying a huge range of challenges. With the first exascale 
system expected in the early 2020s, we need to prepare now for the software challenges we face 
which, we believe, greatly outnumber the corresponding hardware challenges. It is a very exciting time 
to be involved in such a project.

CrEsTA is preparing a series of key applications for exascale, together with building and exploring 
appropriate software – systemware in CrEsTA terms – for exascale platforms. Associated with this 
is a core focus on exascale research: research aimed at guiding the HPC community through the 
many exascale challenges.

Key outcomes from this research are CRESTA’s series of white papers. Covering important exascale 
topics including new models, algorithms, techniques, applications and software components for 
exascale, the papers will describe the current state of the art and challenges, and propose solutions 
and strategies for each of these topics.

This white paper covers an area often overlooked in the race towards the exascale, namely the role of 
the operating system in exascale environments
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1 ExECUTivE SUmmARy
standard commodity operating systems have evolved to serve the needs of desktop users and 
business application servers, which have very different requirements to HPC systems and 
applications. in general, commodity operating systems are not fit for purpose, even for current 
petascale machines, without extensive customisation.

The impact of operating system activities on application performance is not fully understood and 
is hard to predict. Many HPC systems are configured or customised by a trial-and-error approach, 
dealing with particular performance problems as they occur, rather than by applying a systematic 
method.

Specialised operating systems, developed specifically for HPC machines, trade rich functionality for 
high performance. Scalability is achieved by only implementing a subset of “normal” operating system 
services, which impairs the usability of the system by application programmers.

Design decisions for specialised HPC operating systems are often influenced by, and sometimes 
compromised by, design decisions for novel HPC hardware. one example is that the bluegene/L 
hardware did not provide cache-coherency between the two processing cores in a node, which 
prevented the operating system from supporting shared memory.

The desire to make specialised systems more usable encourages the re-introduction of functionality 
that can have a negative effect on performance and scalability. Thread scheduling was not supported 
by the bluegene/P operating system but has been re-introduced in the bluegene/Q operating system. 
This increases usability for application programmers but introduces a source of unpredictable load-
imbalance that could reduce scalability, especially at extreme scale.

Specialised HPC operating systems have been continuously researched and developed for at least 20 
years, driven (at least in part) by emergent trends in hardware design. Current systems demonstrate 
that excellent operating system scalability up to petascale is achievable. Although it is possible for 
major advances to be made in operating system development via disruptive technologies, currently 
there is no consensus on the direction required.

2 inTRODUCTiOn
The majority of systems in the Top 500 list of november 2012 [1] use the linux operating system 
(os); this list includes 469 entries with os family of linux.

As shown in Table 1, the average efficiency of the Linux systems is 66.6% (varying from 27.1% to 
95.7%) whereas the average efficiency of all the non-Linux systems is 80.2% (varying from 58.9% to 
93.4%).

Linux can be classified as a full-Weight-Kernel (fWK) operating system. The variability in the 
efficiency of Linux systems reflects the wide range of customisations that are possible, from disabling 
some unneeded system services to modifications in the kernel code itself. It is reasonable to assume 
that customisations are only applied to an operating system if they improve performance (or improve 
usability without impairing performance) so the systems with very low efficiency (27%-50%) are 
likely to be standard distributions of Linux with minimal changes, or no changes at all.

All 7 of the systems with a “Mixed” oS family use Computer node Kernel (CnK), which is a Light-
Weight-Kernel (LWK) operating system that was developed by IbM specifically for blue gene 
machines. The “Unix” and “Windows” systems have similar average efficiency (79.3% and 75.5% 
respectively, see Table 1), which is higher than the average efficiency for Linux systems but lower 
than the average efficiency for CnK systems. The choice of a non-Linux oS for a Top 500 system is 
unusual and suggests that either the system designers or the system administrators have particular 
knowledge or expertise with the alternative oS, which means that the system is likely to be highly 
customised, possibly for a specific workload.

The operating systems on existing Top 500 machines are either standard (not heavily customised 
commodity products) – with low efficiency at scale – or non-standard (highly customised or designed 
specifically for that machine) – with much higher efficiency at scale. various studies (e.g. [2], [3] and 
[4]) have shown that standard commodity operating systems do not allow scalable applications to 
scale well, even up to current system sizes, e.g. up to 10,000 nodes.

Section 3 of this document discusses and quantifies possible causes of poor scalability of applications 
that are due to the operating system.

Section 4 evaluates past and current developments in operating systems, highlighting scaling issues 
and attempts to address them.

Section 5 links HPC operating system issues to other areas within CRESTA.

Section 6 presents some concluding remarks.

Table 1: Efficiency of Machines in the november 2012 Top 500 List

os family Average  
Efficiency  
(inclusive)

Average  
Efficiency  
(exclusive)

Count  
(inclusive)

Count  
(exclusive)

BsD Based 93.4% 67.4% 1 499

linux 66.6% 80.2% 469 31

mixed 83.1% 67.2% 7 493

Unix 79.3% 67.0% 20 480

Windows 75.5% 67.4% 3 497

All 67.5% 500
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2.1  Purpose

The purposes of this document are as follows:

•	 Quantify	the	potential	impact	of	the	operating	system	on	applications	at	scale

•	 Evaluate	and	drive	developments	in	operating	systems	to	address	scaling	issues	

2.2  Glossary of AcronymsC
ronym Definition

ABi APPLICATIon bInARy InTERfACE

Anl ARgonnE nATIonAL LAboRAToRy

APi APPLICATIon PRogRAMMIng InTERfACE

BG bLUEgEnE

BGl bLUEgEnE/L

BGP bLUEgEnE/P

BGQ bLUEgEnE/Q

BsD bERKELEy SofTWARE DISTRIbUTIon

CioD ConTRoL AnD I/o DAEMon

Cl CoMPUTE LIbRARy

ClE CRAy LInUx EnvIRonMEnT

CmT Co-oPERATIvE MULTI-THREADIng

Cnk CoMPUTE noDE KERnEL

Cnl CoMPUTE noDE LInUx

CPU CEnTRAL PRoCESSIng UnIT

DmA DIRECT MEMoRy ACCESS

fTQ fIxED TIME QUAnTUM

fWk fULL-WEIgHT KERnEL

GBPs gIgAbIT PER SEConD

GliBC gnU C LIbRARy

GPfs gEnERAL PARALLEL fILE SySTEM

GPGPU gEnERAL PURPoSE gPU

GPU gRAPHICS PRoCESSIng UnIT

HPC HIgH-PERfoRMAnCE CoMPUTIng

i/o InPUT/oUTPUT

ink I/o noDE KERnEL

iPC InTER-PRoCESS CoMMUnICATIon

lWk LIgHT-WEIgHT KERnEL

mPi MESSAgE-PASSIng InTERfACE

nfs nETWoRK fILE SySTEM

oPEnfoAm oPEn SoURCE fIELD oPERATIon AnD MAnIPULATIon

oPEnmP oPEn MULTI-PRoCESSIng

os oPERATIng SySTEM

PEC PoWER-EffICIEnT CoRE

PoP PARALLEL oCEAn PRogRAM

PosiX PoRTAbLE oPERATIng SySTEM InTERfACE [foR UnIx]

PTHrEADs PoSIx THREADS

QCDoC QUAnTUM CHRoMo-DynAMICS on A CHIP

Qos QCDoC oPERATIng SySTEM

sAGE SAIC’S ADAPTIvE gRID EULERIAn

siP SofTWARE ISoLATED PRoCESS

slEs SUSE LInUx EnTERPRISE SERvER

smP SyMMETRIC MULTI-PRoCESSoR

sPi SySTEM PRogRAMMIng InTERfACE

ssH SECURE SHELL

sToC SIngLE-THREAD-oPTIMIzED CoRE

TlB TRAnSLATIon LooK-ASIDE bUffER

UDP/iP USER DATAgRAM PRoToCoL/InTERnET PRoToCoL
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3  ThE CAUSES OF POOR  
OS SCAling

All operating system activities introduce some overhead to the execution time of applications. 
The noise or overhead generated by operating system activities can be amplified or absorbed by 
application activities in ways that are not fully understood and are difficult to predict.

3.1  system Calls

Some operating system activities are instigated by user applications and are necessary for their 
correct execution, e.g. system calls that control hardware resources such as a network card for 
communication between nodes. Here the overhead is a fixed cost per system call due to the context 
switch from user-code to kernel-code, which involves storing all CPU registers, trapping to the kernel, 
handling the system call, restoring the registers and waking up the user process. further overheads 
will occur when the system call causes the contents of the TLb or memory caches to be altered or 
‘polluted’ with information that is not relevant to the application.

3.2  interrupts

other operating system activities are necessary to maintain system health and responsiveness, e.g. 
hardware interrupts will be generated by devices whenever an event occurs that cannot be handled 
without the help of a CPU. Here the overhead is a regular or irregular interruption for a fixed or 
variable length of time, depending on the type of event.

Each type of event produces an overhead with a particular noise signature, e.g. a timer interrupt 
may cause 2.5% overhead by responding to events at 1000Hz that take 25 microseconds for each 
response. The measured effects of various noise signatures can be much greater at scale than 
expected. Recent investigations [5] to characterise the sensitivity of representative applications to 
noise originating in the operating system kernel have measured a 30% slow-down for Parallel ocean 
Program (PoP) [6], caused by a 2.5% noise overhead (25 microseconds at 1000Hz), and a 50% slow-
down for SAgE [7], caused by a 2.5% noise overhead (2500 microseconds at 10Hz).

This work also demonstrates that some codes are sensitive to the frequency of interruptions but 
relatively insensitive to the duration of those interruptions. It is suggested that this may be because 
the application activities ‘resonate’ with the oS kernel activities causing their effects to be ‘amplified’. 
In addition, it is possible for applications to ‘absorb’ some of the noise, such as when some of the 
interrupts can be handled when the system would otherwise have been waiting for messages from 
other application nodes.

3.3  system services

At present, the best way to deal with the effects of kernel noise in a fWK is to remove or minimise the 
sources of noise, i.e. by disabling system services that are infrequently used or unnecessary. obvious 
examples from Linux are the print spooler daemon (because there is no printer attached to the 
compute nodes) and the mailer daemon (because the compute nodes will not send or receive email 
messages). It is also common practice to restrict or regulate the demands on key operating system 
services, such as virtual memory and scheduling, while an application is executing, by modifying the 
application code or by setting process parameters. Another approach is core specialisation where one 
or more cores are reserved for operating system services.

3.3.1 Virtual memory
frequent use of virtual memory by an application is undesirable because swapping pages of data 
between physical memory and permanent storage (e.g. a hard disk) is very slow. This can be avoided 
by the application not requesting more memory than is physically present and available in the node. 
However, the overhead of translating virtual memory addresses to physical memory addresses using 
the TLb cache cannot be avoided by modifying application code (although some applications can be 
modified to make better use of TLb locality in a similar manner to optimising data-cache use).

3.3.2 scheduling
Scheduling allows multiple processes to gain “fair” access to CPU resources. In desktop or server 
computers, there are typically many more processes than physical CPU cores. Complex algorithms 
are employed to determine which processes should be allocated time on which processors, depending 
on the process priority, its current state (e.g. waiting, busy or handling an interrupt), its recent 
activity, and many other factors. frequently, a single busy process in a multi-core computer will be 
shifted between CPU cores by the scheduling algorithm to balance the load across all CPU cores. 
generally, this causes poor use of memory caches and reduces the efficiency of the application. 
This can be avoided by setting an affinity mask for each application process (and thread, if used): a 
restriction that only allows the scheduling algorithm to consider certain CPU cores (e.g. a single core) 
for that particular process (or thread). However, the overhead of only allocating short time-slices 
and re-scheduling the process between each time-slice cannot be avoided by modifying the process 
parameters or the application code.
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4  PAST AnD PRESEnT hPC 
OPERATing SySTEm 
DEvElOPmEnTS

Currently, there are three approaches to producing an operating system for large-
scale HPC machines: 

1.  Start with a standard operating system – a full-weight kernel (fWK) – and strip it down by removing 
unnecessary system activities and services.

2.  build a new minimal operating system – a light-weight kernel (LWK) – with limited functionality, 
usually for specific hardware.

3.  Start with two existing operating systems – a fWK and a LWK – and merge them by modifying both 
so that they can inter-operate.

A fourth approach, based on a micro-kernel design combined with verifiably safe code, offers a 
potentially disruptive technology.

4.1 single full-weight kernel

four of the machines in the november 2012 Top 500 list use a Microsoft Windows operating system. 
Two entries list the oS as Windows HPC 2008 (ranks 132 and 183), one lists the oS as Windows Azure 
(rank 165) and one entry includes “Linux/Windows” in the description of the machine – although 
the oS is listed as Linux (rank 17). Microsoft operating systems have a significant market share in 
some sectors and the HPC and Azure versions of Windows are therefore a natural choice for some 
supercomputer owners. However, being closed-source and proprietary software, manufacturers cannot 
enhance it to take advantage of novel hardware nor can system developers adapt it to better support 
a particular application or programming model. More customisation options are provided in the 
recently released Windows Server 2012 than were available in the previous version, Windows Server 
2008.

Linux has displaced UnIx and, subsequently, all other operating systems to become the dominant 
choice for machines in the Top 500 list. It can be deployed almost entirely unchanged or it can be 
extensively customised. It has many advantages but, from a scaling point of view, it is challenging 
to achieve performance results commensurate with light-weight kernels. of particular note is Cray 
Compute node Linux (CnL), which is part of Cray Linux Environment (CLE) – the operating system 
for the top-ranked system in the november 2012 Top 500 list (as well as 17 other entries). This offers 
the programmer a familiar Linux environment, based on SUSE Linux Enterprise Server (SLES), with a 
stripped-down, low-noise Linux kernel on the compute nodes.

zeptooS [8] is an HPC operating system research project at the Argonne national Laboratory with 
a working implementation for bg/P. It is intended to be “the small Linux for big computers” and is 
based on an optimised compute node kernel derived from a standard Linux kernel combined with a 
kernel for I/o nodes derived from the I/o node Kernel (InK) for bg/P. zeptooS enables more of the 
features of standard Linux, e.g. the SSH daemon is enabled on I/o nodes and a user can connect from 
an I/o node to compute nodes via telnet, requiring a telnet daemon in the compute node kernel. This 
increases the risk that background kernel activities will cause a noise signature that is amplified at 
scale by some applications. The telnet connection can be used to attach a debugger to one or more 
executing compute node processes. However, if the support and use of telnet in the compute node 
kernel causes amplified noise that slows the application execution by a factor of 20 or more (as in 
the PoP application example in section 3.2), then the information gathered by the debugger may be 
rendered useless

4.2 single light-weight kernel

Development of light-weight kernels at Sandia national Laboratories began in 1991 with SUnMoS. 
Previous work in this field, e.g. Amoeba, Mach and Chorus [9], referred to the oS as a micro-kernel. 
In 1994, SUnMoS [10] was enhanced by Sandia Labs and renamed Puma [11], which included the 
first implementation of the Portals communication architecture. In 1996, Intel marketed Puma as 
a product called Cougar [10]. In 1997, the Portals communication was separated from Puma and 
became an independent component. In 2002, Sandia Labs created Catamount LWK [12] by porting 
Cougar to Red Storm (a prototype of Cray’s xT series of machines). Catamount LWK has since led to 
Catamount n-Way (CnW) [13], which has support for multi-core CPUs and was licensed to Cray, and 
to openCatamount [14], which is a free open-source version released by Sandia Labs. A further LWK, 
called Kitten [15], is currently being developed at Sandia national Laboratories to aid research into 
how to better use multi-core processors and hardware virtualisation.

The LWKs from Sandia statically allocate main memory with a large page size such that the TLb 
entries are fixed addresses and the majority of them fit into the TLb cache. This reduces the 
overhead of a virtual address space by reducing the number of TLb cache misses, which would 
normally cause a ‘page-fault’, i.e. a significant but unpredictable delay in accessing the requested 
memory location. There is also no support for virtual memory, which eliminates the overhead of 
paging to and from disk. Another advantage of static allocation of main memory is that the operating 
system will not move any memory pages – each virtual address will always translate to the same 
physical address. This means hardware devices that require physical memory addresses (e.g. an 
Infiniband device requires the physical address for the input and output buffers) do not require the 
memory page to be ‘registered’ or ‘pinned’.

Until the development of Catamount n-Way in 2008, the LWKs from Sandia did not include multi-
core support; they supported only one single-threaded user-mode application process per node at 
a time. CnW introduced SMARTMAP [16], a mechanism for implementing shared-memory by using 
fixed virtual address offsets to directly access the memory of other processes. This is similar to how 
memory is shared between threads within a single process. In that case, the virtual address space for 
the process is inherited by all threads within that process so that all process memory is accessible 
by all process threads. With SMARTMAP, the physical memory location of the virtual address space 
of all processes is known by all processes. The entire system memory is accessible to all processes 
although there is a distinction in each process between the memory allocated to that process and 
memory that is allocated to other processes. The similarity to multi-threaded processes extends to 
both the advantage that direct memory access can be faster and the disadvantage that code must be 
‘thread-safe’, i.e. it must avoid race-conditions and simultaneous conflicting memory accesses. Using 
SMARTMAP is optional so that codes, or parts of codes, that are not thread-safe can still execute 
without errors.

The work on SUnMoS, Puma and Catamount by Sandia Labs influenced IbM’s design and creation 
of a light-weight kernel, Compute node Kernel (CnK), for the bluegene series of machines. The 
bluegene/L (bg/L) was a successor to the QCDoC [17] machines, for which a custom operating 
system, called QoS, was created. There are many similarities between QoS [18] and current light-
weight kernels, including CnK. The QCDoC machines and its QoS operating system were designed 
specifically to run a single physics application from the field of computational quantum field theory. 
The operating system was deliberately restricted to support for a single process with a PoSIx-like 
interface with UDP/IP network connections and nfS file-system. This model was also adopted for 
CnK on the bg/L (general availability 2004) [19] where all processes are single-threaded, supporting 
only a subset of the full PoSIx interface. The compute nodes on bg/L operate either in co-processor 
mode or in virtual mode, running either one or two single-threaded processes, respectively. The two 
cores in each bg/L node are not cache-coherent: all communication between processes is via MPI, 
which is implemented using communication facilities provided by CnK for the specific customised 
hardware networks. Multi-threading requires manual scheduling by user code.
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figure 1: overview of CnK Architecture in bg/P [20]

figure 2: overview of system call forwarding in bg/P [20]

figure 3: fusedoS architecture (left) and PEC management interface (right) [24]

The design for the bluegene/P machine (general availability 2007) [20] included a quad-core CPU 
with cache-coherency that can act as a 4-way symmetric multiprocessor (SMP) in addition to the 
virtual node mode and dual mode, which are similar to virtual and coprocessor modes from the bg/L. 
Support was added for multi-threaded processes, using a PoSIx thread library (pthreads) or via 
openMP. Although the “fork()” system call is not supported the “clone()” system call can be used to 
create a limited number of new threads, depending on the operating mode of the compute node.
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The CnK for bg/P (see figure 1) directly supports the same system calls as the CnK for bg/L 
but additionally supports a large subset of standard Linux system calls, including file I/o, sockets 
and signals, by forwarding these requests from compute nodes to I/o nodes that run a full Linux 
operating system kernel (see figure 2). Dynamic linking, whilst not supported for bg/L, is allowed for 
bg/P applications.

Some potential customers saw the restricted functionality of CnK on bg/P as too limiting because 
it was difficult to re-engineer general applications that required the rich functionality of a full-
weight kernel. Project Kittyhawk [21] at IbM Research explored the use of a micro-kernel, L4 [22], to 
support virtual machine instances capable of hosting general scalable applications. The application, 
the Linux operating system kernel and the required dependencies (system software and libraries) are 
captured in a system image. The image can be seen as a software appliance that is duplicated and 
deployed to as many compute nodes as needed to handle demand for the services provided by the 
application.

The most recent version of CnK was developed for the bg/Q machines (general availability 2012) 
[23]. The compute nodes in bg/Q contain 18 processor cores, each of which supports 4 hardware 
execution threads via Simultaneous Multi-Threading (SMT). only 17 of these cores are active – the 
18th is disabled and reserved to aid fault-tolerance (if one of the 17 cores fails, the 18th core is 
enabled and replaces the failed core). one of the active 17 cores is reserved for the CnK leaving 64 
hardware threads on 16 active cores for user-level applications per compute node. Shared-memory 
and cache-coherency is available, enabling each node to act as a 64-way SMP. As with bg/P, system 
calls that cannot be directly handled by the CnK are forwarded to I/o nodes that run a full Linux 
operating system. However, more operating system functionality has been included in the CnK 
for bg/Q. Threading (hardware thread over-subscription) is now supported in CnK by a thread 
scheduler component. There is no time-slicing or time-quantum-based pre-emption; threads of the 
same priority are scheduled using a form of Cooperative Multi-Threading (CMT) with a “round-robin” 
ordering. Higher priority threads can cause pre-emption of lower priority threads and hardware 
interrupts may result in unbalanced dispatching of threads so that there is no guarantee that all 
threads of the same priority will make equal progress. This has the potential to re-introduce some of 
the problems normally associated with full-weight kernels including load-imbalance, kernel-induced 
noise and the amplification of these overheads for large-scale applications.

4.3 multiple kernels

fusedoS [24] is a new HPC operating system currently under development by IbM with a 
prototype for bg/Q machines. It combines the two traditional approaches to HPC operating system 
development by fusing an LWK and a fWK (the architecture is shown on the left of figure 3). IbM 
has created a user-level LWK, called Compute Library (CL), which is a port of CnK that is suitable for 
execution in user-mode rather than supervisor-mode. This is fused with a standard Linux kernel that 
is slightly modified to support the interaction of CL and Linux. fusedoS distinguishes two types of 
processor: a Single-Threaded-optimised Core (SToC), which has the full capability of a modern CPU 
core, and a Power-Efficient Core (PEC), which may have restricted capability (such as a gPgPU core) 
and therefore may not be able to support a fully functional operating system. The execution model 
on PECs (shown on the right of figure 3) is similar to normal compute nodes on bg/Q using CnK: the 
application code runs with full access to the hardware and no interference from the kernel or other 
application processes until it makes a system call. All system calls from an application running on a 
PEC are forwarded to a CL running as a user-mode process in Linux on a SToC, which handles the 
system call and returns execution back to the PEC. This closely resembles the model of a system call 
on a bg/Q compute node being forwarded by the CnK to the InK on an I/o node, which handles the 
system call and returns control back to the compute node.
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The results (presented in figure 4) from the fixed Time Quantum (fTQ), or Selfish benchmark [25], 
demonstrate that application processes running on PEC processors in fusedoS are given a higher 
proportion of compute cycles than processes running on the same hardware but in a customised 
HPC-ready Linux. As expected, code running on PEC processors experiences no interference from 
kernel activities, which eliminates the possibility of kernel noise being amplified at scale.

figure 4: Performance of fTQ benchmark in different 
operating environments [24]

4.4 Disruptive Technologies

Microsoft are currently developing Singularity [26], a research operating system that may replace 
the nT kernel in future releases of the Windows product-line. The source-code for several different 
variations of this oS has been released under a shared-source license. Singularity is written pre-
dominantly in safe managed-code (using multiple .net languages [27][28]) and requires that all 
applications are also written in safe managed-code. This increases the reliability and verifiability of 
the kernel, drivers and all application binaries both at installation and at runtime. However, from the 
point of view of the HPC community, this requirement represents a major shift in both programming 
language and programming paradigm.

Using code that is verifiably safe at compile-time allows Singularity to rely on software-isolated 
processes (SIPs) rather than hardware protection for process isolation. This can reduce the cost of 
system calls and all other inter-process communication by up to 33% [29]).

Singularity is not currently intended to be an operating system for a distributed-memory HPC 
machine – although many of the design goals overlap with current goals in exascale HPC research, 
in particular fault-tolerance and efficient support for multi-core, many-core and hybrid hardware 
architectures.

Singularity can be configured as a true micro-kernel (similar to MInIx 3 [30]), a mono-lithic kernel 
(similar to the current Windows nT kernel or the Linux kernel) or as a modular kernel (where some 
trusted services are allowed to execute in the same protection domain as the core kernel). The 
configurable nature of the kernel allows deployment as either an LWK or a fWK. The micro-kernel 
design means the multiple kernel SIPs could be run on dedicated, specialised processor cores (like 
the 17th core in a bg/Q machine). This provides a potential use for spare cores in “fat nodes” [31]. 
Alternatively, each node could dynamically load and unload parts of the oS, adapting to the needs of 
each phase of an application, e.g. by transforming from an LWK to a fWK and back again. Rather than 
treating gPgPU processors as functional units of a CPU, Singularity research is exploring their use as 
first-class oS-schedulable processing units.

It should be possible to extend the IPC mechanism in Singularity (contract-based message-passing 
channels) to support distributed-memory inter-node messaging and thereby provide an efficient 
route to implement MPI. An MPI library for Singularity would need to be written entirely in a .net 
language using safe managed-code, such as the research project called McMPI [32].

5  linkS TO OThER AREAS 
WiThin CRESTA

At least one of the CrEsTA co-design applications, openfoAm [33], requires dynamic library 
linking but the "dlopen()" system call is not supported in many lWks, i.e. Catamount and Cnk 
(before BG/Q). The Cnk for BG/Q compute nodes supports dynamic linking, with some restrictions, 
by enlisting the help of the full linux kernel on the i/o nodes. This functionality may be supported 
in future lWks, in particular fusedos.

All of the CRESTA co-design applications (as well as most HPC codes that scale well on distributed-
memory systems) use the message-passing programming model and therefore require efficient inter-
process communication via a high-performance MPI library. Efficiently implementing MPI messaging 
for local messages, i.e. between processes within a shared memory node, requires an efficient 
synchronisation mechanism. However, openMP performance is reported to be poor on fusedoS [24] 
because thread synchronisation is performed by a system call, which is handled by delegation to 
a processor that is running a full-weight kernel. This performance issue may be fixed in future by 
handling the synchronisation system calls locally, i.e. without the costly delegation.

Asynchronous algorithms use non-blocking MPI communications and repeatedly call the MPI_Test 
function to discover when new messages arrive, rather than using the MPI_Wait function. This 
programming approach assumes that progress is made by MPI, as required by the MPI standard [34], 
despite there being no function call that is obviously expected to be time-consuming. Implementing 
MPI so that it makes progress in this scenario is possible even when the operating system supports 
only single-threaded processes with a form of CMT for system calls. However, this requires that, 
whenever possible, some progress is made during all MPI calls, which means that the precise timing 
of the work-load is less predictable. It is possible that this unpredictability adversely affects the 
performance of asynchronous algorithms, especially at scale – although this hypothesis is difficult to 
test.

Extending oS functionality, e.g. with a power-management API/AbI/SPI [35], must be done carefully 
to avoid it becoming a new source of kernel interference. Dynamically varying processor clock-speed 
during application execution for power-management reasons may introduce load-imbalance that 
adversely impacts application performance, especially at scale.

The IESP Roadmap calls identifies the need to develop a framework for an exascale oS. There is 
currently no consensus on which of the approaches described in section 4, if any, is the correct 
one. However, the present trend is to maintain backward compatibility for existing application codes 
by supporting well-established APIs whilst re-implementing the functionality in novel ways. Work 
towards the goals expressed in the IESP Roadmap includes the static memory maps in Catamount 
and bg CnK, which facilitate explicit management of the memory hierarchy, and the power-
management work in CRESTA, (e.g. deliverable D2.6.3), which researches strategies and mechanisms 
for power/energy management in exascale systems.
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6  COnClUSiOnS
The current trend in operating system research and development of re-implementing existing APis 
is likely to continue. However, this approach is incremental and driven by developments in hardware 
as well as the necessity to improve the operating system to make full use of current technologies. 
Unfortunately, improvements that enhance scalability of the operating system often reduce 
usability.

This method of operating system development will provide scalability for the immediate future but 
it is likely to be limited by the original design decisions of modern HPC technology. Developments 
in hardware, operating systems, programming models and programming languages are all 
interdependent, which leads to cyclical improvements rather than novel approaches. The abstractions 
that have held true for hardware for several decades are no longer adequate to describe modern 
hardware. for example, procedural languages such as C and foRTRAn assume single-threaded, 
sequential processing and memory isolation enforced by hardware protection. operating systems now 
depend on this hardware protection mechanism to isolate the memory spaces for different processes, 
which requires an expensive context-switch when transferring control from one process to another. 
This cannot be avoided unless a disruptive technology breaks the dependency by introducing a novel 
way to protect process memory spaces.

Similarly, disruptive technologies may be needed to solve other scalability and performance issues, in 
operating systems and hardware, without sacrificing usability.
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