
Strategy and Software Technology
CRESTA White Paper
Authors: Achim Basermann (DLR), Gregor Matura (DLR), Fang Chen (DLR),

Andreas Gerndt (DLR), Martin Aumüller (USTUTT), Derek Groen (UCL)

Editors: Lorna Smith, Catherine Inglis (UEDIN)

Collaborative Research Into Exascale Systemware, Tools and Applications (CRESTA)
ICT-2011.9.13 Exascale computing, software and simulation

ExASCAlE
PRE- And PoST-PRoCESSing

FoREWoRd
By DR ACHIM BASERMANN, FROM DLR, GERMAN AEROSPACE CENTER, SIMULATION AND
SOFTWARE TECHNOLOGy, GERMANy, AND “USER TOOLS” WORK PACKAGE LEADER IN CRESTA.

ABoUT
By PRofESSoR MARk PARSoNS, COORDINATOR OF THE CRESTA PROjECT
AND ExECUTIvE DIRECTOR AT EPCC, THE UNIvERSITy OF EDINBURGH, UK.

Today’s large-scale simulations deal with complex geometries and numerical data on an extreme
scale. As computation approaches the exascale, it will no longer be possible to write and store full-
sized result data sets. In-situ data analysis and scientific visualisation provide feasible solutions to
the analysis of complex large-scale simulations. To bring pre- and post-processing to the exascale
we must consider modifications to data structure and memory layout, and address latency and
error resiliency.

For pre-processing, it is crucial to have a load-balancing strategy that supports multiple simulation
phases and includes their costs in order to calculate a data distribution that leads to an optimal
performance for the full simulation. For distributed post-processing, in-situ processing is a key
concept in order to perform scalable on-the-fly data analysis and user interaction to on-going
simulations. Remote hybrid rendering (RHR) is suitable to access remote exascale simulations from
immersive projection environments over the Internet. RHR decouples local interaction from remote
rendering and thus guarantees smooth interactivity during exploration of large remote data sets.

In this white paper, we present strategies, algorithms and techniques for pre- and post-processing
in exascale scenarios. With software prototypes developed in CRESTA and integrated into CRESTA
applications, we demonstrate the effectiveness of our pre- and post-processing concepts for
extremely parallel systems.

The Collaborative Research into Exascale, Systemware Tools and Applications (CRESTA) project
is focused on the software challenges of exascale computing, making it a unique project. While
a number of projects worldwide are studying hardware aspects of the race to perform 1018
calculations per second, no other project is focusing on the exascale software stack in the way that
we are.

By limiting our work to a small set of representative applications we hope to develop key insights into
the necessary changes to applications and system software required to compute at this scale.

When studying how to compute at the exascale it is very easy to slip into a comfort zone where
incremental improvements to applications eventually develop the necessary performance. In CRESTA,
we recognise that incremental improvements are simply not enough and we need to look at disruptive
changes to the HPC software stack from the operating system, through tools and libraries to the
applications themselves. From the mid-1990s to the end of the last decade, HPC systems have
remained remarkably similar (with performance increases being delivered largely through the increase
in microprocessor speeds). Today, at the petascale, we are already in an era of massive parallelism
with many systems containing several hundred thousand cores. At the exascale, HPC systems
may have tens of millions of cores. We simply don’t know how to compute with such a high level of
parallelism.

CRESTA is studying these issues and identifying a huge range of challenges. With the first exascale
system expected in the early 2020s, we need to prepare now for the software challenges we face
which, we believe, greatly outnumber the corresponding hardware challenges. It is a very exciting time
to be involved in such a project.

CRESTA is preparing a series of key applications for exascale, together with building and exploring
appropriate software – systemware in CRESTA terms - for exascale platforms. Associated with this
is a core focus on exascale research: research aimed at guiding the HPC community through the
many exascale challenges.

Key outcomes from this research are CRESTA’s series of white papers. Covering important exascale
topics including new models, algorithms, techniques, applications and software components for
exascale, the papers will describe the challenges and current state of the art and propose solutions
and strategies for each of these topics.

Handling pre- and post- processing on exascale platforms will be a significant challenge, but one that
many applications will need to overcome. This white paper considers this challenge, investigating and
describing new techniques and software to address these challenges.

 WHiTE PAPERS
By DR LoRNA SMITH, PROjECT MANAGER FOR THE CRESTA PROjECT AND GROUP
MANAGER AT EPCC, THE UNIvERSITy OF EDINBURGH, UK.

ConTEnTS indEx oF FigURES

1 EXECUTIVE SUMMARY 1

2 INTRoDUCTIoN 2

 2.1 GLOSSARy OF ACRONyMS 2

3 EXASCALE PRE-PRoCESSING 3

 3.1 LOAD BALANCING 3

 3.1.1 Multiple Stages 4

 3.1.2 Repartitioning 4

 3.1.3 Initialisation 4

 3.2 REALISATION 4

 3.2.1 Usability 5

 3.2.2 Algorithms for Load-Balancing 8

 3.2.3 Extensions 9

4 EXASCALE PoST-PRoCESSING 10

 4.1 INTERACTIvE vISUALISATION ON ExASCALE SySTEMS 10

 4.1.1 In-Situ, Live Processing where the Simulation Happens 10

 4.1.2 Rendering 11

 4.1.3 User interaction 11

 4.1.4 Post-Processing System Architecture 11

 4.1.5 Application Study: Co-Design with HemeLB 13

 4.2 REMOTE HyBRID RENDERING IN ExASCALE SIMULATION SCENARIOS 16

 4.2.1 Motivation 16

 4.2.2 Design & Implementation 18

 4.2.3 First Experiences 22

 4.2.4 Open Challenges 23

5 CoNCLUSIoNS 24

6 REfERENCES 25

figure 1: A sample graph (without weights); [3] 5

figure 2: Array content of distributed CSR format for the sample graph using 3 processors; [3] 5

figure 3: PPStee flow chart 6

figure 4: HemeLB runtimes for data set data_02M with plain HemeLB and HemeLB 7

with PPStee using ParMETIS PTScotch and Zoltan on HECToR

figure 5: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.025mm 8

with PPStee using one of three partitioning libraries

figure 6: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.025mm 9

with PPStee using one of three partitioning libraries

figure 7: Interactive post-processing system architecture for exascale systems 12

figure 8: An In-situ monitoring with only a screen showing the network image 12

streamed to the front-end application

figure 9: An Interactive post-processing architecture with a user interacting on the front-end 13

figure 10: Time measurement for generating image with resolution 128x128 13

figure 11: Time measurement for generating image with resolution 256x256 14

figure 12: Time measurement for generating image with resolution 512x512 14

figure 13: Time measurement for generating image with resolution 1024x1024 14

figure 14: Latency (Front-end frame rates) for image display at front-end 14

figure 15: User interacting with the aneurysm data in front of a power-wall 15

figure 16: A pure remote vs. a remote hybrid rendering workflow 17

figure 17: Local context information (left), remote simulation data (middle), 17

fused image shown to the user (right)

figure 18: Typical network topology for a remote visualisation task 18

figure 19: Contribution of nodes in different colours (left) 20

and final composited image (right) of IHS pump turbine test case

figure 20: Reference image for depth buffer compression quality assessment 22

figure 21: Depth buffer compression quality – left: original image, middle: 22

with compressed depth, right: differences highlighted in red

indEx oF TABlES
Table 1: Compression ratio and quality for lossy GPU based depth compression 22

for the image in Figure 20

21

1 ExECUTivE SUmmARy
Today’s large-scale simulations deal with complex geometries and numerical data on an extreme
scale. As computation approaches the exascale, it will no longer be possible to write and store
full-sized result data sets. In-situ data analysis and scientific visualisation provide feasible
solutions to the analysis of complex large-scale simulations. To bring pre- and post-processing to
the exascale we must consider modifications to data structure and memory layout, and address
latency and error resiliency.

Load balancing is a crucial pre-processing task on extremely parallel systems. Here, our focus is on a
load balancing strategy that supports multiple simulation phases and includes their costs to calculate
a data distribution that leads to an optimal performance for the full simulation.

The software library PPStee developed in CRESTA already incorporates this idea. It was explicitly
designed to support multiple simulation phases. The user provides communication costs of a
simulation phase represented as edge weights of a graph corresponding to the simulation data. The
according computation costs of the phase are matched to vertex weights. As multiple weight sets can
be included, the partitioning of the simulation data is calculated to achieve an optimal load balance
covering the full simulation cycle. PPStee supports various partitioning tools, repartitioning and
improved initial data distributions by exploiting knowledge from previous simulation runs. PPStee
was successfully integrated into several large-scale fluid simulation codes. Here, we demonstrate the
flexibility of PPStee with the hemodynamic simulation code HemeLB.

In-situ processing has become a key concept in exascale data post-processing and visualisation.
Waiting for a simulation to finish and writing out huge amounts of simulation output is no longer a
viable solution for data analysis. Instead, visualisation and data analysis must happen when and where
a certain simulation step has been carried out, as the so-called in-situ processing.

Our in-situ processing system provides scalable distributed post-processing. This system supports
on-the-fly data analysis and user interaction to on-going simulations. Here, we demonstrate the
feasibility of our system by an online-monitoring scenario with the hemodynamic simulation code
HemeLB.

Remote hybrid rendering (RHR) is used to access remote exascale simulations from immersive
projection environments over the Internet. The display system may range from a desktop computer
to an immersive virtual environment such as a CAvE. The display system forwards user input to the
visualisation cluster, which uses highly scalable methods to render images of the post-processed
simulation data and returns them to the display system. The display system enriches these with
context information rendered locally, before they are shown. RHR decouples local interaction from
remote rendering and thus guarantees smooth interactivity during exploration of large remote data
sets.

Here, we discuss strategies, algorithms and techniques for RHR in exascale scenarios and present
performance measurements for a prototype developed in CRESTA. For performance analysis, the
prototype has been instrumented to collect timing information, compression ratios and image quality
metrics.

2 inTRodUCTion
Large-scale simulations on extremely parallel systems require highly scalable pre- and post-
processing software for load balancing as well as data analysis and visualisation.

In this white paper, we present strategies, algorithms and techniques for pre- and post-processing
in exascale scenarios. With software prototypes developed in CRESTA and integrated into CRESTA
applications, we demonstrate the effectiveness of our pre- and post-processing concepts for
extremely parallel systems.

Section 3 tackles exascale pre-processing with a focus on load balancing by suitable partitioning
(cf. detailed discussion in Section 3.1). Section 3.2 describes a software approach for achieving load
balance in large-scale multi-phase simulations and demonstrates the flexibility of this software with
the hemodynamic simulation code HemeLB.

Section 4 is devoted to exascale post-processing concepts. While Section 4.1 treats strategies for
interactive visualisation on exascale systems, Section 4.2 presents remote hybrid rendering (RHR)
methods in exascale simulation scenarios. Software approaches and a case study for hemodynamic
simulation regarding interactive visualisation are described in Sections 4.1.4 and 4.1.5, respectively.
RHR software and performance are discussed in Sections 4.2.2 and 4.2.3, respectively.

In Section 5 we draw conclusions on how we believe pre- and post-processing should be adapted to
the requirements of exascale simulation.

2.1 Glossary of AcronymsC

ronym Definition

API APPLICATION PROGRAMMING INTERFACE

CPU CENTRAL PROCESSING UNIT

CRESTA COLLABORATIvE RESEARCH INTO ExASCALE SySTEMWARE, TOOLS AND
APPLICATIONS

CSR COMPRESSED SPARSE ROW

CUDA COMPUTE UNIFIED DEvICE ARCHITECTURE

DLR DEUTSCHES ZENTRUM FÜR LUFT UND RAUMFAHRT
(GERMAN AEROSPACE CENTER)

EC EUROPEAN COMMISSION

GPU GRAPHICS PROCESSING UNIT

GPGPU GENERAL PURPOSE GRAPHICS PROCESSING UNIT

HPC HIGH PERFORMANCE COMPUTING

IHS INSTITUTE OF FLUID MECHANICS AND HyDRAULIC MACHINERy

JPEG jOINT PHOTOGRAPHIC ExPERTS GROUP

MPI MESSAGE PASSING INTERFACE

MTTf MEAN TIME TO FAILURE

oPENGL OPEN GRAPHICS LIBRARy

PSNR PEAK SIGNAL-TO-NOISE RATIO

RfB REMOTE FRAMEBUFFER

RHR REMOTE HyBRID RENDERING

SIMD SINGLE INSTRUCTION MULTIPLE DATA

UCL UNIvERSITy COLLEGE LONDON

USTUTT UNIvERSITy OF STUTTGART

VNC vIRTUAL NETWORK COMPUTING

VR vIRTUAL REALITy

43

3 ExASCAlE PRE-PRoCESSing
Traditionally, all the tasks done before the real simulation starts are called pre-processing tasks.
This includes file I/o operations to read in the necessary data, preparation of this data as well
as adjustments according to the simulation needs, e.g., mesh manipulations of any kind. Also,
partitioning and distribution of the data is a vital task of the pre-processing phase of a simulation
to gain a good load balance.

In the exascale regime, we deal with simulations that are inherently large, complex and time-
consuming. We see a shift from check pointing that becomes unaffordable to more and more
interactivity. As the arising amount of data is quite large, post-processing methods like result analysis
or visualisation have to be included into the simulation.

Thus, the challenges of pre-processing in the exascale regime are evident. The simulation data
must still be arranged and prepared. This data management must suit the needs of all parts of
the simulation core and all other computations before the simulation starts and after results are
computed. In addition to these simulation-internal needs, the data distribution must lead to an
adequate performance of the full simulation, including all its subparts.

Here, the performance is directly related to the execution costs. Beside the costs of the solver part
that obviously need the best available optimisation, the total load balance is essential. It must include
all subparts of the simulation as they may differ substantially in their costs for communication
and computation. To achieve an even better performance result, load balance might additionally
include real-time system details like information provided by a fault tolerance or system monitoring
framework.

Accordingly, our focus is on a load balancing that supports multiple simulation phases and includes
their costs to calculate a data distribution that leads to an optimal performance for the full simulation.
We illustrate some aspects of such a load balancing before we describe important details that have to
be considered for an implementation.

3.1 Load Balancing

As pointed out above, load balancing is a crucial purpose of pre-processing. yet, it is not sufficient
to optimise the data distribution only for the solver. Other simulation parts like initial mesh
manipulations, subsequent result analysis or in-situ visualisation impose further constraints. Each
of these multiple stages possesses a different distribution of load in terms of communication and
computation and needs a matching distribution of data. Thus support for multiple stages in calculating
the data distribution of the simulation is mandatory.

The increasing interactivity introduces another vital aspect that tackles load balancing. Exascale
simulations run in cycles to be able to provide intermediate potentially visual results for the
user. As the user can intervene and change significant simulation parameters that, consequently,
change the load of all stages, the pre-processing must be adapted repeatedly. This leads directly
to optimisation opportunities for the computation of the initial data partitioning. The evaluation of
the data distribution from previous simulation cycles can trigger or improve a repartitioning. Once
implemented, this utilisation of previous load statistics also allows for a better initialisation of the first
cycle in a new simulation run.

3.1.1 Multiple Stages
When calculating a data distribution for an exascale simulation, pre-processing must cover all stages
of the simulation to achieve a good load balance. Data initialisation with file I/O, mesh generation
and mesh manipulations may contribute to the simulation cycle as well as the core algorithms, a
subsequent result analysis, an in-situ visualisation of the results or a preparation of data used for
remote rendering. Each of these stages can have its own distribution pattern of the simulation data
and its own load footprint regarding costs of communication and computation.

The software library PPStee [1][2][3] already incorporates this idea. It was explicitly designed to
support multiple simulation stages. The user provides communication costs of a simulation stage
represented as edge weights of a graph corresponding to the simulation data. The according
computation costs of the stage are matched to vertex weights. As multiple weight sets can be
included, the partitioning of the simulation data is calculated to achieve an optimal load balance
covering the full simulation cycle.

3.1.2 Repartitioning
Now, if we assume that we have a simulation that runs in cycles and gets balanced according to its
various stages, we can improve the balancing as the simulation run progresses. We can evaluate the
load balance of previous cycles, mix it with expectations based on current user input and use this to
improve the partitioning of the next cycle.

In practice, all partitioning libraries supported in PPStee provide the feature to calculate a partitioning
together with the costs needed for the creation of this distribution based on an initial partitioning.
Thus PPStee is capable not only of delivering an optimal partitioning but also of deciding whether it
pays off to actually use this partitioning.

3.1.3 Initialisation
As discussed above, we can exploit a measurement of the partitioning quality of previous simulation
cycles and achieve a better load balance for the next cycle. Analogously, we can use this measurement
to improve even the first partitioning call of a simulation. Normally, this first call would calculate a
partitioning from scratch. However, if we re-use partitioning data from a previous simulation run, the
partitioning library provides a better partitioning result and even saves calculation time compared
to a zero-initialised partitioning call. This improved initialisation is, e.g., in PPStee, equivalent to a
repartitioning call and therefore implicitly included.

3.2 Realisation

In practice, the realisation of an intermediate software layer that ensures an optimal load balance and
covers the full simulation run requires consideration of some important details.

For a start, the data format that is used to exchange information on costs of communication and
computation has to be carefully chosen. This data format must be compact and be flexible enough to
support a broad spectrum of data layouts used in simulations. The former property helps to keep the
overhead of the additional pre-processing software layer small in terms of additional data processing
time and memory consumption. The latter property ensures compatibility with application scenarios
in various simulation codes so that integration of advanced pre-processing methods into existing
codes is simple.

Another important aspect is the support for a diversity of partitioning libraries that actually compute
the balanced distribution of simulation costs and data. As each of the widely used partitioning
libraries, i.e., ParMETIS [4], PTScotch [5] and Zoltan [6], implement a distinct method to achieve
a balanced partitioning, it is surely favourable to test each one on the data of a simulation to
find the most suitable candidate for the given data. Also, this support for different partitioning
libraries demands the capability to easily swap the partitioning library without any significant code
adjustments.

Beyond these simulation-related issues, pre-processing and, specifically, load balancing benefit
from additional system-relevant information, e.g. provided by system monitoring. Particularly in the
exascale regime, support for a fault tolerance framework is indispensable as the simulation has to
react in real-time to any faulty system components.

65

3.2.1 Usability
We now want to describe in more detail how to provide a software package that is both easy to use
and easy to implement. We illustrate the aspects mentioned above that apply to completely new
simulations as well as to existing simulation codes.

3.2.1.1 Data format
Firstly, the data format that is used to exchange information on costs of communication and
computation must be compact. Graph data structures are suitable. This lowers the additional burden
imposed on the memory. Such graph data structures might even be allocated already in the simulation
code and thus eliminate the need for extra space completely.

Secondly, the data format must be versatile in different ways. The internal layout of data varies a lot
among simulation codes. Additionally, each stage of a given simulation can have its own view of the
simulation data. Thus it is necessary to implement a format that is compatible with a wide range of
data layouts.

Lastly, we state the obvious fact that the format must be parallelisable. A distribution to huge
amounts of cores should both be possible and not diminish the other properties.

A good candidate for a data format that supports all desired properties is the graph format proposed
by and used in ParMETIS [4]. For a further, convenient analysis, Figure 1 shows a sample graph that is
assembled to the CSR-like format depicted in Figure 2 (CSR: Compressed Sparse Row). Here, “vtxdist”
contains the information on the global distribution of the vertices, “xadj” encodes the number of
edges, or adjacencies, for the vertices, and “adjncy” holds these neighbour data. We clearly see the
parallel structure and almost no redundant content. Solely the global vertex distribution is repeated,
but this saves some expensive collective communication operations in the course of the simulation.
Also through its compact layout, this format is widely compatible with other, more sophisticated data
structures.

Figure 1: A sample graph (without weights); [3]

Figure 3: PPStee flow chart

Figure 2: Array content of distributed CSR format for the sample graph using 3 processors; [3]

0

5

10 11 12 13 14

1

6

2

7

3

8

4

9

Initial
data

Simulation core

Post-processing

Visualisation

traditional

Remote

Rendering

Fault
tolerance

PPSteeMesh
refinement

in-situ

Post-processing

Visualisation

Screen

Processor 0: xadj 0 2 5 8 11 13
 adjncy 1 5 0 2 6 1 3 7 2 4 8 3 9
 vtxdist 0 5 10 15

Processor 1: xadj 0 3 7 11 15 18
 adjncy 0 6 10 1 5 7 11 2 6 8 12 3 7 9 13 4 8 14
 vtxdist 0 5 10 15

Processor 2: xadj 0 2 5 8 11 13
 adjncy 5 11 6 10 12 7 11 13 8 12 14 9 13
 vtxdist 0 5 10 15

PPStee relies on this data format to exchange costs and connectivity. Here, the vertices represent
computation units and carry a vertex weight that correlates to the computation cost of this unit in a
specific phase. The edges represent communication patterns and provide communication costs via
their respective edge weights.

3.2.1.2 Integration
We want to illustrate the integration of a pre-processing layer for load balancing using the example
of PPStee. Basically, the procedure of integration into an existing code consists of three steps that
require only minor code changes (cf. Figure 3. A detailed description including an example can be
found in [1]). Firstly, the simulation data is prepared which should be easily possible given the versatile
data format (cf. last section). Secondly, we submit graph data and costs of all existing phases as graph
weights to PPStee. We subsequently trigger the partitioning calculation and receive a partitioning
that we can now use to distribute simulation data accordingly.

The example shows that it is particularly easy to integrate PPStee into a simulation. Especially if
an existing code already uses a partitioning library, the position of the necessary code changes is
predefined by the position of the call to the given partitioning library. Thus only minor code changes
are required for an integration. Additionally, we note that the interference with the architecture of the
simulation or its data structures is usually low.

87

3.2.1.3 overhead
When designing software that introduces a new layer in the application, one has to pay attention to
overhead that is implicitly brought in. Regarding a pre-processing package that uses partitioning
libraries to calculate an optimal distribution of costs and data, two major sources of overhead arise.
The overhead implied by the calculation of the partitioning in one of the partitioning libraries will
be tackled in the next section in detail. On the other hand, we can investigate the overhead of the
software layer per se. e.g., an improper handling of data or too many unnecessary operations can
impose run time or memory deficiencies.

The analysis of such an overhead becomes clean and easy if we eliminate the time of the call to
the partitioning library in the measurement of the run time. For an illustration, we use HemeLB
[7] together with PPStee. The unmodified version of HemeLB already uses the partitioning library
ParMETIS to obtain an optimised distribution pattern for its simulation data. We easily integrated
PPStee into HemeLB (as described in section 3.2.1.2, and in [2]). We now trigger different partitioning
libraries and compare the run time to the run time of the unmodified version of HemeLB. Figure 4
depicts the run time results obtained on HECToR [8] for a HemeLB geometry called “data_02M” and a
number of cores between 32 and 2048.

Figure 4: HemeLB runtimes for data set data_02M with plain HemeLB and HemeLB
with PPStee using ParMETIS PTScotch and Zoltan on HECToR

Figure 5: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.025mm
with PPStee using one of three partitioning libraries

HemeLB - PPStee - data_02M - Total

Cores

32 64 128 256 512 1024 2048

250
Plain

ParMETIS
PTScotch

Zoltan

200

150

T
im

e
 [

s]

100

50

0

HemeLB - PPStee - aneurysm_0.025mm - Calculation only

Cores

128 256 512 1024 2048 4096 8192 16384

1000
ParMETIS
PTScotch

Zoltan

T
im

e
 [

s]

100

10

In the run time measurements, we observe both described overheads. The comparison of plain
HemeLB versus HemeLB using PPStee with ParMETIS shows almost no difference. Since both
versions use the same partitioning library, we conclude that the overhead of PPStee is low enough to
be insignificant for the simulation. On the other hand, the other two plotted curves show that there
are significant differences in the calculation time of the partitioning libraries. As already mentioned,
we describe these issues in the following section.

3.2.2 Algorithms for Load-Balancing
The algorithms that are used to calculate the partitioning play a key role in a software package for
load balancing and hence in pre-processing in general. However, each partitioning library implements
its own method for the computation of the partitioning. e.g., PTScotch [5] uses a divide and conquer
approach, while ParMETIS [4] is based on a parallel multilevel k-way algorithm. On the other hand,
we are confronted with a variety of simulation codes. Each code uses its own data structures and
software architecture in general. The differences are significant.

To illustrate this encounter of algorithm and simulation, we again address HemeLB with PPStee. We
have already seen how easily PPStee is integrated into an existing code. In addition, PPStee provides
a simple mechanism for the choice of the partitioning library that is used. Since PPStee uses a
versatile data format (cf. section 3.2.1.1) that is compatible with all three major partitioning libraries,
only one parameter must be changed to specify one or the other partitioning library.

Figure 5 depicts the results of run time measurements for HemeLB with PPStee using one of the
three partitioning libraries. Here, only the calculation around the simulation kernel is measured and,
thus, the results directly show the quality of the partitioning. The measurements were obtained on
ARCHER [9] with a varying number of cores between 192 and 12k. We observe an equal partitioning
quality for all three partitioning libraries up to 1,536 cores. Starting at 3,072 cores, we see differences
in the obtained quality. For example, ParMETIS produces a better partitioning for 3,072 cores than
Zoltan, but, for 12k cores, the ParMETIS partitioning loses performance compared to Zoltan. This
behaviour reflects that the partitioning quality depends on an interaction of the simulation and the
partitioning library and, additionally, on the number of cores.

The mutual dependence of simulation and partitioning algorithm becomes even more evident when we
compare the time that is needed to calculate the partitioning. This partitioning time is not significant
for a very long simulation where simulation data is partitioned only once at the beginning. However,
if the simulation is interactive and needs on-going repartitioning, e.g., after a couple of time steps,
or the simulation is rather short with a huge amount of data to be partitioned, partitioning time is
going to be an issue. We, therefore, compare the partitioning time for the same simulation runs that
were performed for Figure 5, i.e., simulation runs with HemeLB and PPStee using one of the three
partitioning libraries ParMETIS, PTScotch or Zoltan. Figure 6 depicts the measured timings.

109

We point out three observations. Firstly, ParMETIS is, at least for a simulation run of HemeLB and with
this specific data set, faster than the other two partitioning libraries. Secondly, PTScotch is slower
than Zoltan on 6,144 cores even though it was significantly faster up to 1,536 cores. Thirdly, none
of the partitioning libraries scales well or, to be more precise, all of them even show an increase in
runtime beginning at 1,536 cores. It is doubtful that this situation will change for another simulation
code or another data set.

In conclusion, it is beneficial to support a variety of partitioning libraries and, therewith, partitioning
algorithms. Together with a simple method to change the partitioning library that is used, the
integration of multiple partitioning libraries leads to a comfortable situation for the user. The user
can easily test which partitioning library best matches the given simulation and then select the most
suitable one.

3.2.3 Extensions
In addition to the simulation-related issues discussed above, there are some system-related issues
that must be considered in pre-processing. For example, the system or the system administrator of
an exascale machine might reduce the clock speed of some parts of the machine, potentially to save
energy. Or the specific system architecture and node structure of a future exascale system might lead
to a time-dependent node performance that has to be considered. Another significant point is the
permanently decreasing Mean Time To Failure (MTTF) for huge machines. As MTTF drops below the
runtime of a simulation, the usage of techniques for fault tolerance such as fault detection and post-
fault recovery is unavoidable.

It is necessary that this kind of information is available on a system through an API to system
monitoring or a fault tolerance framework that is directly connected to the hardware. However, pre-
processing has to include such information to obtain a good load balance for the simulation. Thus, a
mechanism for repartitioning is inevitably required and has to be integrated. After all, this additional
effort leads to a pre-processing that faces the growing requirements for interactivity of exascale
simulations.

Figure 6: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.025mm
with PPStee using one of three partitioning libraries.

HemeLB - PPStee - aneurysm_0.025mm - Partitioning only

Cores

128 256 512 1024 2048 4096 8192 16384

1000
ParMETIS
PTScotch

Zoltan

T
im

e
 [

s]

100

10

1

4 ExASCAlE PoST-PRoCESSing
4.1 Interactive Visualisation on Exascale Systems

While numerical simulation is developing towards exascale, it is no longer a viable solution to store all
simulation data to disk. Limited system I/O capacity hinders the simulation from intermediate result
output. Therefore, it has become a common practice for large simulations to throw away results from
intermediate time steps. To prevent simulation failure at an early stage, in-situ data analysis and
visualisation is becoming a necessity to enable domain experts to monitor whether a simulation is
running smoothly and to obtain first insight into the resulting data [10][11].

Complicated visualisation algorithms are often not necessary but time-consuming while providing
a first insight into the on-going simulation. Rather than carrying out conventional post-processing
after a simulation is finished, domain experts are eager to use their domain knowledge to steer the
visualisation to focus on regions that they consider as important and to identify critical information
that might lead to a modification of the next simulation design. Therefore, we consider user
interaction as a key component of our system.

For exascale computers, visualisation and post-processing systems and algorithms have to be
re-designed to accommodate highly parallel data processing and interactive user investigation.
During the CRESTA project, we designed and implemented a distributed, in-situ parallel post-
processing system (cf. 4.1.4). Compared to existing solutions, this system is more flexible and
powerful, permitting in-situ post-processing with the distributed simulation, supporting on-demand
data analysis, and interactive exploration with current instances of simulation data [3].

4.1.1 In-Situ, Live Processing where the Simulation Happens
In-situ (a Latin phrase for on site or in position) processing has become a key concept in exascale
data analysis and visualisation. Waiting for a simulation to finish and writing out huge amounts of
simulation output is no longer a viable solution for data analysis. Instead, visualisation and data
analysis must happen when and where a certain simulation step has been carried out, as the so-called
in-situ processing. Our in-situ processing system was an extension of previous work by virachocha
[12], which involved a distributed post-processing system. We extended this system to running
simulations, providing on-the-fly data analysis and user interaction to the on-going simulations. To
validate the feasibility of our system, we integrated our post-processing software into the HemeLB
application [7] (cf. 4.1.5 for details).

4.1.1.1 Sharing Memory with Simulation Processes
To access the simulation data in-situ and perform on-demand filtering, we need to access the main-
memory of each computing node. Since the numerical simulation is running as a parallel application,
each process holding data has to pass the current simulation data to the cohabitant viracocha
process. A solver specific data extractor utilised by the viracocha data manager is integrated into
HemeLB. To guarantee high bandwidths and low latencies we have chosen to couple both parallel
applications in the process-space (in-situ). Therefore, viracocha is executed concurrently by
threading within each solver process. viracocha is based on the master/slave paradigm where two
major types of instances exist. The viracocha slave is in charge of algorithm execution including
data access while the viracocha master is responsible for receiving filtering requests and scheduling

algorithm execution of the viracocha slaves.

4.1.1.2 feature extraction on the fly
Once the master receives a filtering request, the simulation is shortly disrupted after the actual
iteration to access data snapshots and to apply desired data conversion. Then the simulation
proceeds while the snapshot is used by the filtering operation to extract user-defined features. We
have chosen a snapshot approach where the simulation is only interrupted for a negligible time
and viracocha does not interfere further with the simulation process. Altogether, this concurrent
execution and easily extendable data exchange allow for quick integration into other simulation
codes.

1211

4.1.2 Rendering
After the feature has been extracted, we free the simulation master to proceed to the next
simulation step. Extracted features will be streamed to a rendering and user interaction front-end,
where graphical representation will be rendered, and user interactions are provided. This front-end
application can be a lightweight single desktop or an additional cluster system, depending on the
given size of the extracted features.

4.1.2.1 Smaller features, single front-end
As mentioned before, we often do not need complicated visualisation algorithms to obtain a first
insight into the running simulation. In most cases, showing the simulation mesh, extracting an
isosurface, or extracting a cut-plane of the whole data would already be sufficient for domain experts
to carry out investigations. In such cases, extracted features result in a minimal amount of data that
can fit into the memory of a single machine.

4.1.2.2 Larger features, additional hardware for rendering
In certain cases, extracted features of the simulation step are so large and complicated that a single
machine cannot handle these. In order to provide scalable solutions for rendering solutions, we place
a scalable parallel rendering system between the feature extraction and the user’s front-end. On top
of this parallel rendering technique, our developed rendering application makes heavy use of multi-
threading per process to prepare the data rendering.

4.1.3 User interaction
Interactive visualisation provides the user with the ability to interact with the provided visual
representation, browse through data and make decisions. It is one of the key features in an exascale
post-processing system.

4.1.3.1 Hardware setup
Our application allows the user to interact with the in-situ visualisation in a virtual environment.
Using a fly-stick in front of a powerwall display, the user is able to perform tasks including sending
requests to couple or decouple data filtering, choosing data mapping and rendering algorithms, and
navigating through the resulting visualisation. As alternatives, we also support a single desktop as
front-end using mouse and keyboard as input devices that send out interaction commands.

4.1.3.2 Benefit of allowing user interaction
Involving human experts in the post-processing loop allows in-depth analysis of the current
simulation step. It also enables knowledge-driven data inspections of the data. Using the knowledge
of domain experts, decisions and conclusions are made more easily, thus resulting in a more efficient
data analysis.

4.1.4 Post-Processing System Architecture
In the following, we briefly describe the system architecture of our post-processing tools. We will
elaborate on the system layout in a detailed manner with respect to the HemeLB application in the
later sections.

Figure 7 demonstrates a general post-processing system for an exascale system. To avoid moving
data around, the visualisation shares the same process as the simulation. At the same location,
simulation output will be cached and visualised. A master node will control and collect not only
simulation results, but also visualisation output, and send these back to the user front-end.

For the purpose of in-situ monitoring, the user front-end can be just a single display (see Figure 8)
that demonstrates the run-time results of the current simulation step. In this type of system, only an
image with given resolution is transmitted to the front screen and thus provides a first insight into
the running simulation. The advantage of such a set-up is the minimal amount of data moved over
the network. It results in low latency between the remote systems and the front monitor.

To inspect the data in a more detailed way, a front-end can also be a more complex system that
utilises virtual reality techniques that allow interactive user interaction with the data (see Figure 9).
Within this approach, a set of data or images needs to be collected and stored somewhere by the
scheduler, which allows for interactive exploration requests sent by the vR (virtual Reality) front-end.

Figure 7: Interactive post-processing system architecture for exascale systems

Figure 8: An In-situ monitoring with only a screen showing the network image streamed to the
front-end application

Simulation/
Vis algorithm

VR -
Visualization

FrontendResult sent to User.

Steering

D
is

p
la

y
 N

o
d

e
 1

D
is

p
la

y
 N

o
d

e
 2

D
is

p
la

y
 N

o
d

e
 3

D
is

p
la

y
 N

o
d

e
 n

Interaction
& Exploration

User

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

MPI
Process

Simulation

Network Vis Network Vis Network Vis

Simulation

Network Vis Network Vis Network Vis

Simulation

Simulation

Simulation

Simulation

Simulation

Simulation

Simulation

Network Vis Network Vis Network Vis

Scheduler
Master node

1413

The difference between the two systems is that the former only sends rendered images over
networks from the remote system to the front-end and thus minimises data movement. The latter
system requires more communication between the front-end and remote systems, but allows
in-depth and intuitive exploration of the current simulation time step. For monitoring a rapid running
simulation process the former architecture is recommended, while for in-depth analysis of the
simulation output the second is more suitable.

4.1.5 Application Study: Co-Design with HemeLB

4.1.5.1 online-monitoring for a remotely located running simulation
An online-monitoring tool was implemented in the programming language Python which is able to
monitor a large simulation that is running remotely on a cluster system without pausing or writing
out data to disk (principle cf. Figure 8). For this demonstration, a HemeLB simulation was running on
a cluster system in real time, and based on the already implemented volume mapping from HemeLB,
the online-monitoring client accessed the produced network image rendered with a resolution of
1024x1024, transferred it to the front-end and displayed it as on the monitoring window.

4.1.5.2 Post-Processing of the HemeLB Simulation
Two aspects of the the online-monitoring tool with the HemeLB simulation were benchmarked,
using 4 to 256 cores on a T-Systems cluster at Munich EIP Data Center. First, we benchmarked the
performance and time needed to perform one simulation step and generated one network image.
Then we measured how the image resolution affected the frame-rates on the front-end.

Figure 9: An Interactive post-processing architecture with a user interacting on the front-end

Figure 10: Time measurement for generating image with resolution 128x128

Figure 11: Time measurement for generating image with resolution 256x256

Figure 12: Time measurement for generating image with resolution 512x512

Figure 13: Time measurement for generating image with resolution 1024x1024

Figure 14: Latency (Front-end frame rates) for image display at front-end

Simulation

Network Vis Network Vis Network Vis

Simulation

Network Vis Network Vis Network Vis

Simulation

Simulation

Simulation

Simulation

Simulation

Simulation

Simulation

Network Vis Network Vis Network Vis

Data/Image

Scheduler
Master node

Virtual
Environment

Remote systems

Benchmarking with image
resolution 128x128 on T-Systems’s
cluster at Munich EIP Data Center

T
im

e

0.4

0.3

0.2

0.1

0
4 16 32 64 128 256

per Simualtion step

Image generation

Benchmarking with image
resolution 256x256 on T-Systems’s
cluster at Munich EIP Data Center

T
im

e
 0.8

0.6

0.4

0.2

0
8 16 32 64 128 256

per Simualtion step

Image generation

Benchmarking with image
resolution 512x512 on T-Systems’s
cluster at Munich EIP Data Center

T
im

e

30

20

10

0
4 16 32 64 128 256

per Simualtion step

Image generation

Benchmarking with image
resolution 1024x1024 on T-Systems’s

cluster at Munich EIP Data Center

T
im

e
 30

40

20

10

0
4 16 32 64 128 256

per Simualtion step

Image generation

Frame rates on the front-end, depending
on required image resolution

T
im

e

30
40
50
60

20
10
0

12
8x1

28

256x2
56

512
x5

12

10
24

x1
024

Latency to Frontend

1615

We measured the time that is needed to composite an image for the front-end with image resolution
128x128, 256x256, 512x512 and 1024x1024 pixels, respectively (cf. Figure 10, Figure 11, Figure 12,
Figure 13). For each given image resolution, we also measured the latency from remote system to
front-end in terms of frame rates, see Figure 14.

Comparing Figure 11, Figure 12, and Figure 13 to Figure 10, the time needed for generating an image
increased as the required image resolution increased. At resolution 128x128 and 256x256, the
scaling curve for image generation did not decrease dramatically. This is due to the fact that at
smaller resolutions, the image generation is quickly finished and the time needed to collect the data
as well as communication among cores remains more or less the same. While going to a higher image
resolution (Figure 13), we can observe that there is an obvious decreasing trend in the time needed
for image generation with more computational cores.

We observe that with more cores, the computation time for simulation and image generation
decreases. However, the non-linear decrease is expected due to the fact that, with increasing
number of cores, more time is needed to collect the image from each single core and compose them.
Moreover, with the increased image resolution that is required by the front-end (online-monitoring
client), the frame rates on the front-end decrease (Figure 14).

In the following figure and video (Figure 15), we demonstrate the interactive exploration tool
developed at DLR for analysing an aneurysm geometry. In front of a power-wall, the user is able to
interact with the aneurysm dataset, seed particles in the blood flow and trace the dynamics of the
blood within the aneurysm. The stereo view in front of the power-wall together with an interacting
fly-stick enables the user to naturally navigate through the dataset, allowing intuitive and in-depth
exploration of the blood simulation output.

4.2 Remote Hybrid Rendering in Exascale Simulation Scenarios

Remote hybrid rendering (RHR) is used to access remote exascale simulations from immersive
projection environments over the Internet. The display system may range from a desktop computer
to an immersive virtual environment such as a CAvE [13]. The display system forwards user input to
the visualisation cluster, which uses highly scalable methods to render images of the post-processed
simulation data and returns them to the display system. The display system enriches these with
context information rendered locally, before they are shown. RHR decouples local interaction from
remote rendering and thus guarantees smooth interactivity during exploration of large remote data
sets.

The protocol for RHR only sends viewing parameters, derived from user interaction and head
tracking, from client to server, which responds with 2.5D images, which are merged with locally
rendered content. This design enables the cooperation of lightweight renderers with display programs
that contain most of the application logic and interaction handling. This allows for easy integration of
RHR with a multitude of applications that operate on a 3-dimensional domain. The sole requirement
is that the application is able to generate colour images together with depth data describing the
distance of the visible pixels to the viewer.

4.2.1 Motivation
Output data from simulations can be large. The Institute of Fluid Mechanics and Hydraulic Machinery
(IHS) at the University of Stuttgart uses OpenFOAM [14] to simulate the flow in an entire hydro
turbine. Based on the estimated requirement for a dependable simulation of about 1 billion nodes for
the whole turbine, the size of a single time step is about 1/4 TB. Storing a full turbine rotation with
steps of one degree requires about 90 TB. Transferring that amount of data across a high-speed
link (10 GigE) for off-line processing on a user workstation would take more than one day – and
would require huge amounts of local storage and processing power. This shows that for exascale
data the traditional way of transferring the post-processed geometry data to the display system
for local rendering is not possible anymore. In comparison, streaming uncompressed HD-resolution
(1920x1080 pixels) images at 30 frames/s for a whole day would require less than 15 TB of bandwidth
– and the image the user is interested in is available immediately, not just after a lengthy preparatory
transfer. Additionally, employing image compression techniques can significantly reduce this amount
of data without incurring a visible loss. This technique of transmitting rendered images instead of
post-processed data to the display system is called remote rendering. The significantly lowered
bandwidth and processing requirements of remote rendering allow for the efficient use of remote
compute resources by a much larger user base.

Head-tracked immersive virtual environments, where the rendering is constantly updated according
to the user’s current head position, require high frame rates and low reaction latencies to achieve
a high sensation of presence and to avoid motion sickness [15]. These immersive visualisation
environments provide more intuitive ways for specifying the location of regions of interest, cutting
planes, seed points for particle traces, or reference points for isosurface extraction than desktop-
based systems. We aim to enable users to experience exascale simulations in such immersive
environments over the Internet.

To improve frame rate and reaction times, we try to decouple interaction from network latencies as
far as possible, but still without requiring the transfer of huge amounts of data to the client. Only
extracted features from simulation results are rendered either directly on the simulation host or on
a remote visualisation cluster employing scalable methods. “Context information”, however, such
as essentially static geometry e.g. turbine shapes, interaction cues for the parameters controlling
the visualisation algorithms applied on the visualisation cluster and menus are rendered locally,
at a rate independent of the remote rendering. As both remotely and locally rendered images are
composited for final display, we call this technique “remote hybrid rendering” (RHR) or “hybrid
remote rendering” [16]. This compositing usually takes pixel depth into account, but it might also
use opacity information. Figure 16 illustrates the differences between a pure remote rendering and a
remote hybrid rendering visualisation pipeline.

Figure 15: User interacting with the aneurysm data in front of a power-wall.
Please contact the authors if you wish to access this video.

1817

Figure 16: A pure remote vs. a remote hybrid rendering workflow

Figure 18: Typical network topology for a remote visualisation task

Figure 17: Local context information (left), remote simulation data (middle), fused image shown to the user (right)

render

filter

simulate

map

render

filter

simulate

map

raw data

filtered data

geometry

raw data

filtered data

geometry

images images

remote local remote local

render

displaydisplay

exascale compute
resource

visualization
cluster

display
system

Figure 17 shows a visualisation of the simulated airflow around a car and illustrates how the image
presented to the user results from local context information and remote simulation data. The remote
system is used for post-processing the results of the flow simulation and rendering the corresponding
visualisations, such as streamlines as well as a plane cutting through the flow field colourised
according to air pressure. The local system renders context information. This comprises the menu
and interaction elements, e.g. for moving the cutting plane. Also the static geometry of the car is
rendered locally. In a final step before displaying the result, locally and remotely rendered images are
composited taking into account the distance to the viewer of the geometry object contributing to the
pixel’s colour. The closer pixel of the two images is copied into the final image.

All the interactive features of the visualisation system are available even though parts of the
rendering are delegated to a remote system e.g. new seed points for streamlines can be placed by
interacting with the visualisation. Only the fact that the remote parts of the image are updated less
frequently makes this visualisation distinguishable from a purely local visualisation.

4.2.2 Design & Implementation

4.2.2.1 Requirements

4.2.2.1.1 Considerations for Exascale Systems
The environments to which we try to adapt our remote hybrid visualisation system are comprised of
the following parts:

	 •	 a	remote	exascale	compute	resource;

	 •	 possibly	a	remote	visualisation	cluster,	tightly	coupled	to	the	compute	resource;

	 •	 a	local	display	system.

In some cases, e.g. when there are GPUs inside each node of the exascale system or with CPU based
rendering, the compute system and the visualisation system might be the same resource and the
GPUs might be used for both simulation and visualisation. For all other cases, we assume a high-
bandwidth low-latency link of a quality comparable to the exascale cluster interconnect between
compute and visualisation system. The network connection between the remote visualisation cluster
and the display system will provide considerably lower bandwidth and higher latency. While it is
desirable to have a higher quality link between visualisation and display, this will not always be
possible in the case where remote hybrid rendering is used, as this connection will usually be across
the Internet.

The network infrastructure might allow for direct connections from each node of the visualisation
cluster to each node of the display system, but in the general case the network topology or firewalls
prohibit this. Hence, we design our system to cope with a point-to-point connection between the
head node of the visualisation cluster and the head node of the local display system. The protocol
should keep the number of simultaneous network connections to a minimum; the establishment of a
connection should be possible from client to server and vice versa in order to cater for all possible
circumstances.

Sort-last [17] has been selected as the method for parallelising the render process, as this allows
the renderer to be scaled with the application in a data parallel setting. This means that flat pixel
images as present in a framebuffer are the result of the rendering phase. The available data for
remote rendering is one colour value including opacity per pixel together with possibly one depth
value. Remote sort-last parallel rendering in a system with the described network topology provides
the best performance if compositing happens on the visualisation cluster, as this saves bandwidth
on the slower link between visualisation and display system. This also ensures that remote hybrid
rendering can be composed with scalable rendering methods.

However, rendering context information locally requires a final compositing step in the display
system. Depending on the context information to be shown and the rendered data, this requires
depth or opacity in addition to the colour information for each image pixel.

2019

4.2.2.1.2 Requirements for Immersive Display Systems
The display system might be a traditional desktop computer. The focus of this work, however, is to
enable access to remote exascale visualisations from within immersive projection systems. These are
distinguished from desktop systems by:

	 •	 	input	devices	which	record	their	position	and	orientation	and	input	methods	which	
exploit this additional information;

	 •	 	tracking	of	the	user’s	head	position	and	continuously	updating	the	rendered	image	
according to the changing point of view (POv);

	 •	 	3D	stereoscopic	imagery,	where	each	eye	is	presented	with	an	image	that	is	
adapted to its position;

	 •	 	multiple	display	surfaces,	which	are	used	for	enhancing	the	resolution	(e.g.	in	
powerwalls, where several screens are tiled in one plane to form a larger display
area) or to surround the viewer with images (e.g. in a CAvE, where the sides of a
cube around the viewer are used as projection surfaces).

It is sufficient to serve one display system at a time. Such a system, however, might possibly consist
of several display surfaces, each of which may be a stereographic display. Updates to different
display surfaces have to be synchronised in order to enable correct 3D stereoscopy across all
surfaces. This might incur longer latencies, when the images for all tiles are not available at the
display client at the same time, but this synchronisation is vital for immersive display environments.
With our design, where all data transfer is funnelled through the head nodes of the local and remote
systems, synchronisation between the nodes attached to a tiled display naturally happens in the
client application. On the other hand, re-projection of 2.5D images [19] according to current viewing
parameters automatically brings all tiles into a matching state, so that synchronisation becomes
unnecessary.

4.2.2.1.3 Performance Requirements
Communication overhead should be minimal. Network round trips, e.g. waiting for acknowledgement
of successful delivery of messages, have to be avoided in order to guarantee good performance. For
local area connections, TCP based protocols have proven superior, whereas in wide area networks,
UDP based protocols seem to have an advantage [18]. We expect the principal use case to be from
within local area networks or within networks providing a similar connection quality, such that we
prefer TCP to UDP.

In order to be able to balance visual accuracy with performance, the protocol has to allow
for different encodings and compression algorithms. For accommodating changing network
circumstances (bandwidth and latency variations), these have to be switchable at run-time.
Compression should not visibly decrease image quality for either line drawings or images with huge
amount of gradients, e.g. from volume rendering.

The protocol should not hinder the off-load of suitable tasks, like image compression or
decompression, to accelerators, such as GPUs. This mostly concerns the image codecs to be used.
Hence, we want to allow for the easy addition of new codecs. This also allows for using codecs
adapted to the requirements of the processing of the transmitted data on the display system,
e.g. when the 2.5D image is re-projected. Additionally, this allows the system to profit easily from
algorithmic improvements available in new video codecs, such as H.265 [20], as soon as GPGPU
solutions for real-time compression at high resolutions are available.

4.2.2.2 Protocol
The purpose of the protocol for remote hybrid rendering is to define the communication between
the visualisation cluster and the local display system. i.e., the protocol for hybrid remote rendering
connects the rendering stage to the display stage of the post-processing phase of the visualisation
pipeline. The data to be sent comprises viewing matrices, lighting configuration, desired image
resolution and current animation step from client to server, which sends colour and depth images in
response.

Integrating the remote rendering facility with the application might enable further optimisations, as
the application has more knowledge about which data is important. The application might choose to
update the significant regions more often or at lower compression level with higher image fidelity.
However, as application independence is also a goal of this system, we do not take into account
solutions that require tight coupling with the application, such as described above e.g IBRAC [21], or
as implemented in visapult [22] into account.

Based on an assessment of the requirements listed above, RHR was implemented as extensions to
the RFB protocol [23], as it allows for backward compatibility with regular vNC clients by building on
the extensible protocol implementation LibvncServer [24].

4.2.2.3 Implementation

4.2.2.3.1 Local Display Client
The client for remote hybrid rendering is implemented as a plug-in to OpenCOvER [25], the virtual
reality renderer of the visualisation system COvISE [26] and its data-parallel successor vistle [27],
which is currently being developed. It retrieves both colour image and depth data from the server
and renders these as an additional node in its scene graph. This achieves compositing of remote and
local content. During each frame, the current values of the matrices describing the positions of the
user’s head and hand are sent to the server. In addition, the results of user interactions, e.g. new seed
points for particle traces, are transmitted to the server.

While viewing the colour image generated by a RHR server is possible with any vNC viewer, taking
advantage of the compositing of local and remote data requires a specially adapted vNC client.

4.2.2.3.2 Remote Rendering Server
For the RHR server, there are two implementations: one is realised as a plug-in for OpenCOvER. As
such, it is compatible with COvISE and vistle. The other implementation is a lightweight rendering
module for vistle, which uses the CPU for interactive ray casting.

Both server implementations can make use of a cluster of rendering resources by means of sort-
last parallel rendering: a complete image is composited from renderings of all parts of decomposed
data sets. This requires 2.5D image data (colour and depth) for each partial image. The final image is
obtained by selecting the colour of each pixel from the partial image with the smallest corresponding
depth value, i.e. that is closest to the viewer. This step is executed by the IceT compositor framework
[28], a library that provides highly efficient algorithms for combining images, by exploiting MPI
(Message Passing Interface).

Figure 19: Contribution of nodes in different colours (left) and final composited image (right)
of IHS pump turbine test case.

2221

OpenCOvER uses a plug-in for this purpose, while compositing is an integral part of the vistle ray
caster. As the ray caster does not depend on GPU support, it allows scaling with the simulation even
when there are no GPUs in the compute nodes. Figure 19 shows the contributions to the final image
from individual nodes in different colours together with the final composited image.

The RHR servers provide a full implementation of a vNC server: every vNC client can connect to it
and interact with the visualisation with keyboard and mouse. For implementing this functionality, the
library LibvNCServer [24] has been used.

For remote hybrid rendering, it has been augmented with the following features:

	 •	 	transmission	of	depth	data	(z-buffer)	from	server	to	client	for	enabling	compositing	
with image contributions rendered on the client;

	 •	 reception	of	3D	viewer	and	pointer	positions	sent	by	client;

	 •	 reception	of	interaction	data	sent	by	client.

For compressing depth data the snappy entropy compressor library is used [29]. For CPUs and CUDA
capable GPUs, we implemented a method for lossy depth compression similar to Directx texture
compression, which operates orthogonal to the entropy encoding. The development of our own
algorithm for depth compression was necessary, as we did not find a high bandwidth compression
algorithm for image data with more than 8 bit precision per channel. Although vNC has mechanisms
for sending colour images, we added our own extension for sending jPEG compressed image tiles
for being able to synchronise colour and depth frames, which is necessary for correct compositing of
local and remote images.

When rendering with OpenGL, image data has to be transferred from GPU to CPU memory before
compositing. We employ two methods for copying the image data from GPU to CPU: one that relies
purely on the OpenGL API call glReadPixels, and another one that employs CUDA for the transfer
from GPU to CPU memory. Especially on gaming class hardware, resorting to CUDA provides better
performance [30].

The CPU based data-parallel ray casting render module for vistle is based on the ray tracing
framework Embree [31], which makes use of the SIMD units of CPUs to reach interactive frame rates.
The sole purpose of this render module is to provide the remote hybrid rendering service. Because of
this, a rather lightweight implementation was possible, as most of the application logic resides in the
RHR client.

4.2.2.4 Controlling RHR Behaviour
There are several ways of influencing remote hybrid rendering behaviour.

	 •	 	Data	Distribution:	The	user	can	choose	how	to	split	the	data	between	local	and	
remote systems. On the one extreme, only interaction elements such as menus
are rendered locally, while all the simulation data is kept on the remote system.
If the local system is powerful enough, a large part of the static geometry can be
rendered locally for providing lower interaction latency with these parts of the data.

	 •	 	Image	Quality:	Image	quality	can	be	traded	for	bandwidth	reduction	and	higher	
frame rates. Less precise lossy compression reduces bandwidth requirements. And
reducing the resolution of the rendered image both reduces bandwidth requirements
while simultaneously reducing the load on the image generation pipeline.

	 •	 	Composition:	For	high	image	fidelity,	it	is	possible	to	combine	the	remote	image	
with the local elements in a pose that corresponds to the viewing parameters
used during remote image generation. Another possibility is to overlay the remote
content with local imagery for the current viewing parameters. A third possibility is
to warp or re-project the remote image based on the available depth data according
to the current head position, thereby generating the lowest latency for head
movements. However, this comes at the cost of holes in the warped surface and
polygons that are shaded according to a previous viewer position.

4.2.3 first Experiences

4.2.3.1 Performance of the Prototype
In order to allow for performance measurements, the prototype has been instrumented to collect
timing information, compression ratios and image quality metrics. The implementation of the
prototype is based on LibvNCServer [24]. Colour image transfer relies solely on what is provided by
LibvNCServer. Support for depth was implemented as a vNC extension.

With LibvNCServer’s default of using jPEG compression for colour images, transmitting one Full
HD frame (1920x1080 pixels) required about 1 MB for both colour and depth images. Frame rate has
been	measured	for	Full	HD	frames	when	transmitting	from	one	system	with	a	Quadro	FX	5800	GPU	
to	another	over	a	QDR	Infiniband	network.	The	images	received	from	the	remote	server	have	been	
updated at a rate of about 20 Hz, while the local renderer updated its contents at a rate of ca. 50
Hz. This shows that the goal of decoupling local and remote update rates has been achieved. The low
frame rate of 20 Hz is not due to the required bandwidth of about 20 MB/s, but mostly due to the
slow	depth	buffer	read-back	performance	of	about	40	Hz	on	the	Quadro	FX	5800.	Latency	has	been	
measured to increase by 0.1s for a Full HD frame.

Figure 20: Reference image for depth buffer compression quality assessment.

Table 1 shows the compression ratios and qualities for the 24 bit depth image corresponding to the
colour image shown in Figure 20. The peak signal-to-noise ratio (PSNR) is relatively high compared to
codecs for colour images. The visual errors, however, resulting from wrong reconstructed depth values
differ from the errors in colour image compression: based on the depth value of a pixel, its colour value
is chosen from either the remote colour image or the local rendering. Hence, a pixel is either displayed
correctly or in a completely unrelated colour. As these artefacts can appear and disappear from frame
to frame, they might be more noticeable than the PSNR suggests. Figure 21 illustrates these artefacts.

Table 1: Compression ratio and quality for lossy GPU based depth compression for the image
in Figure 20

bits/pixel 2 3 4 6 8

24 bits
min/max

compressed size 20.8% 25.0% 29.1% 37.4% 45.8%

PSNR (dB) 67.7 69.4 77.6 86.6 97.4

Figure 21: Depth buffer compression quality – left: original image, middle:
with compressed depth, right: differences highlighted in red

2423

4.2.3.2 Lessons learned

4.2.3.2.1 Pure Remote Rendering vs. Remote Hybrid Rendering
Classic remote rendering couples a large server application on the remote system to a small display client on
the local system. With remote hybrid rendering, this situation is reversed: all the application logic can reside on
the local system, and the server application is only responsible for image generation according to updated view
points from the client. The result is a lean server, which can be easily integrated with different applications,
especially if the application already includes its own renderer. This benefits from massively parallel systems,
where the remote application is replicated across many nodes and should make RHR very well suited for in-situ
visualisation.

4.2.3.2.2 Choice of RfB as Base Protocol
When designing the system, vNC’s RFB protocol seemed to be a good choice as a base protocol for server/
client communication. During further development, however, we replaced all parts of the vNC protocol with our
own implementation, such that RFB merely served as a transport channel for our own protocol. Fortunately,
this only incurs an overhead of one byte per request. Using direct socket communication instead of introducing
LibvNCServer as another layer would have allowed for more control of TCP behaviour. However, RFB still
provides backward compatibility with regular vNC clients.

4.2.4 open Challenges
Based on the experience gained with implementing and using the current tool for remote hybrid rendering, we
see the following gaps where the software could be improved:

	 •	 	commonalities	between	the	server-side	implementations	of	RHR	(OpenCOVER	plug-in	and	
vistle CPU ray caster) should be identified to reduce code duplication and to provide a basis
for integrating RHR support into other rendering software;

	 •	 	framebuffer	read-back	using	GPGPU	methods	for	retrieving	images	compatible	with	
compositing for lower PCI Express bandwidth and lower latency should be integrated;

	 •	 	while	the	lossy	depth	compression	is	a	considerable	improvement	over	only	entropy	based	
compression, bandwidth requirements and latency could benefit from further improvements
of the compression algorithms for depth data, e.g. by exploiting inter-frame coherence.

5 ConClUSionS
The discussions presented in this white paper serve as a roadmap for designing pre- and post-
processing tools for large-scale simulation codes at exascale. for case studies we used the
hemodynamic simulation code HemeLB.

We presented the architectural challenges at exascale pre- and post-processing and sketched a
closed-loop-system for the co-design of large-scale simulations and pre- and post-processing systems
or libraries. In-situ processing and computational steering will be two major directions when working
at exascale. Copying data between a simulation cluster and a dedicated smaller scale visualisation
cluster becomes impossible. For numerical simulations at exascale the combination of techniques
such as multi-phase load balancing, in-situ processing, computational steering and multi-resolution
data structures are crucial to perform an interactive exploration of these simulations.

Regarding pre-processing for exascale simulation, multi-phase load balancing, scalable partitioning,
repartitioning and the coupling to fault tolerance frameworks is crucial. Scalable partitioning is still a
challenge today.

Interactivity is a main challenge for exascale post-processing, in particular for involving human
experts into the post-processing loop. The latter allows in-depth analysis of the current simulation
step. It also enables knowledge-driven data inspection.

Remote hybrid rendering (RHR) allows access of remote exascale simulations from immersive
projection environments over the Internet. RHR decouples local interaction from remote rendering
and thus guarantees smooth interactivity during exploration of large remote data sets. Thus effective
RHR techniques are in particular crucial for involving human experts in an adequate way into the
post-processing loop and for enabling convenient computational steering.

2625

6 REFEREnCES
[1] CRESTA Deliverable 5.1.3, Pre-processing: first prototype tools for exascale mesh

partitioning and mesh analysis, will be available at http://www.cresta-project.eu/featured-
articles/publications-deliverables/

[2] CRESTA Deliverable 5.1.4, Pre-processing: revision of system, data format and algorithms
definition for exascale systems, will be available at http://www.cresta-project.eu/featured-
articles/publications-deliverables/

[3] Chen, F; Flatken, M.; Basermann, A; Gerndt, A; Hetherington, j.; Kruger, T.; Matura, G.; Nash,
R.W., "Enabling In Situ Pre- and Post-processing for Exascale Hemodynamic Simulations
- A Co-design Study with the Sparse Geometry Lattice-Boltzmann Code HemeLB," High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, pp.
662-668, 10-16 Nov. 2012, doi: 10.1109/SC.Companion.2012.91

[4] ParMETIS, Parallel graph partitioning and fill-reducing matrix ordering, http://glaros.dtc.umn.
edu/gkhome/metis/parmetis/overview

[5] PTScotch, Software package and libraries for sequential and parallel graph partitioning,
static mapping, and sparse matrix block ordering, and sequential mesh and hypergraph
partitioning, http://www.labri.fr/perso/pelegrin/scotch/

[6] Zoltan, Data-Management Services for Parallel Applications, http://www.cs.sandia.gov/
Zoltan/Zoltan_phil.html

[7] D. Groen, j. Hetherington, H.B. Carver, R.W. Nash, M.O. Bernabeu, P.v. Coveney, Analysing
and modelling the performance of the HemeLB lattice-Boltzmann simulation environment,
journal of Computational Science 4 (5), 412-422, 2013, http://ccs.chem.ucl.ac.uk/hemelb

[8] HECToR UK National Supercomputing Service, http://www.hector.ac.uk

[9] ARCHER UK National Supercomputing Service, http://www.archer.ac.uk

[10] K. K. Ma, C. Wang, H. yu, and A. Tikhonova, “In-situ processing and visualization for
ultrascale simulations”, journal of Physics: conference series, 78(1), pp. 12-43, 2007.

[11] K.-L. Ma et al., Next-Generation visualization Technologies: Enabling Discoveries at Extreme
Scale, Davis, CA: SciDAC Review, 2009.

[12] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. Bischof, “vIRACOCHA: An Efficient
Parallelization Framework for Large-Scale CFD Post-Processing in virtual Environments”,
Proceedings of the ACM/IEEE SC2004 Conference, 2004, doi: 10.1109/SC.2004.66.

[13] C. Cruz-Neira, D. j. Sandin, and T. A. DeFanti, “Surround-screen projection-based virtual
reality: the design and implementation of the CAvE,” Proceedings of the 20th annual
conference on Computer graphics and interactive techniques, p. 142, 1993.

[14] OpenFOAM: http://www.openfoam.org/

[15] M. Usoh, K. Arthur, M. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks, “Walking >
walking-in-place > flying, in virtual environments,” SIGGRAPH '99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, jul. 1999.

[16] C. Wagner, M. Flatken, F. Chen, A. Gerndt, C. Hansen, and H. Hagen, “Interactive Hybrid
Remote Rendering for Multi-pipe Powerwall Systems,” in virtuelle und Erweiterte Realität
- 9. Workshop der GI-Fachgruppe vR/AR, C. Geiger, j. Herder, and T. vierjahn, Eds. Aachen:
Shaker verlag, 2012, pp. 155–166.

[17] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification of parallel rendering,”
Computer Graphics and Applications, IEEE, vol. 14, no. 4, pp. 23–32, 1994.

[18] B. jeong, j. Leigh, A. johnson, L. Renambot, M. Brown, R. jagodic, S. Nam, and H. Hur,
“Ultrascale Collaborative visualization Using a Display-Rich Global Cyberinfrastructure,”
Computer Graphics and Applications, IEEE, vol. 30, no. 3, pp. 71–83, 2010.

[19] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “Scalable Remote
Rendering with Depth and Motion-flow Augmented Streaming,” Computer Graphics Forum,
vol. 30, no. 2, pp. 415–424, 2011.

[20] G. j. Han, j. R. Ohm, W.-j. Han, W.-j. Han, and T. Wiegand, “Overview of the High Efficiency
video Coding (HEvC) Standard,” Circuits and Systems for video Technology, IEEE
Transactions on, no. 99, p. 1, 2012.

[21] I. yoon and U. Neumann, “IBRAC: Image-Based Rendering Acceleration and Compression,”
Computer Graphics Forum, Sep. 2000.

[22] E. W. Bethel, B. Tierney, j. Leigh, D. Gunter, and S. Lau, “Using high-speed WANs and
network data caches to enable remote and distributed visualization,” Supercomputing '00:
Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM, Nov. 2000.

[23] T. Richardson, “"The RFB Protocol,” realvnc.com, 2010. [Online]. Available: http://www.
realvnc.com/docs/rfbproto.pdf. [Accessed: 06-Sep.-2012].

[24] LibvNCServer/LibvNCClient [Online], Available: http://libvncserver.sourceforge.net,
[Accessed: 20 Feb. 2013].

[25] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Woessner, “COvISE in the CUBE: An
Environment for Analyzing Large and Complex Simulation Data,” 2nd Workshop on
Immersive Projection Technology, 1998.

[26] A. Wierse, U. Lang, and R. Rühle, “A system architecture for data-oriented visualization,”
Database Issues for Data visualization, vol. 871, no. 13, pp. 148–159, 1994.

[27] vistle GitHub repository [Online], Available https://github.com/vistle/vistle, [Accessed: 01
Mar. 2014].

[28] K. Moreland, W. Kendall, T. Peterka, and j. Huang, “An image compositing solution at scale,”
presented at the High Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011, pp. 1–10.

[29] Snappy – a fast compressor/decompressor [Online], Available: https://code.google.com/p/
snappy/, [Accessed: 23 Feb. 2013].

[30] F. Niebling, A. Kopecki, and M. U. Aumüller, “Integrated Simulation Workflows in Computer
Aided Engineering on HPC Resources”, International Conference on Parallel Computing, 2011,
Ghent.

[31] S. Woop, L. Feng, I. Wald, and C. Benthin, “Embree ray tracing kernels for CPUs and the xeon
Phi architecture.”, SIGGRAPH Talks, p. 44, 2013.

27Copyright © CRESTA Consortium Partners 2014

