

Copyright © CRESTA Consortium Partners 2011

D2.6.1	
 –	
 CRESTA	
 benchmark	
 suite	

WP2:	
 Underpinning	
 and	
 cross-­‐cutting	

technologies	

Due date: M6

Submission date: 31/03/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization UEDIN

Version: 0.4

Status Draft

Author(s): Jeremy Nowell (UEDIN)

Reviewer(s) Dan Henningson (KTH), George Mozdzynski (ECMWF)

Dissemination level

<PU/PP/RE/CO> PU - Public

	

	

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 24/01/2012 Outline for comment. Jeremy Nowell (UEDIN)

0.2 29/02/2012 Draft document for WP2 comments. Jeremy Nowell (UEDIN)

0.3 02/03/2012 Version for internal review Jeremy Nowell (UEDIN)

0.4 19/03/2012 Version addressing reviewers
comments

Jeremy Nowell (UEDIN)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 2	

3	
 MOTIVATION	
 ...	
 3	

3.1	
 WHAT	
 IS	
 A	
 BENCHMARK?	
 ..	
 3	

3.2	
 WHY	
 BENCHMARK	
 FOR	
 CRESTA?	
 ..	
 3	

3.3	
 BENCHMARK	
 SOURCES	
 ..	
 3	

3.3.1	
 Co-­‐design	
 Applications	
 ...	
 3	

3.3.2	
 Other	
 Applications	
 ..	
 4	

3.3.3	
 Low-­‐level	
 Operations	
 ..	
 4	

4	
 INPUT	
 FROM	
 CO-­‐DESIGN	
 APPLICATIONS	
 ..	
 5	

4.1	
 APPLICATION	
 QUESTIONNAIRE	
 ..	
 5	

4.2	
 QUESTIONNAIRE	
 RESULTS	
 ..	
 5	

4.3	
 IMPACT	
 OF	
 QUESTIONNAIRE	
 RESULTS	
 ON	
 BENCHMARK	
 DESIGN	
 ..	
 5	

4.3.1	
 Computational	
 Kernels	
 ...	
 5	

4.3.2	
 Low-­‐Level	
 Operations	
 ...	
 6	

5	
 EXISTING	
 BENCHMARK	
 SUITES	
 ...	
 7	

5.1	
 HIGH	
 PERFORMANCE	
 LINPACK	
 ..	
 7	

5.2	
 HPC	
 CHALLENGE	
 BENCHMARKS	
 ..	
 7	

5.3	
 INTEL	
 MPI	
 BENCHMARKS	
 ..	
 7	

5.4	
 EPCC	
 OPENMP	
 MICROBENCHMARKS	
 ...	
 7	

5.5	
 EPCC	
 HYBRID	
 OPENMP/MPI	
 MICROBENCHMARKS	
 ..	
 8	

5.6	
 NAS	
 PARALLEL	
 BENCHMARKS	
 ..	
 8	

5.7	
 MANTEVO	
 ..	
 8	

6	
 CRESTA	
 BENCHMARK	
 SUITE	
 DESIGN	
 ..	
 9	

6.1	
 JUBE:	
 JÜLICH	
 BENCHMARKING	
 ENVIRONMENT	
 ..	
 9	

7	
 PRODUCTION	
 OF	
 BENCHMARK	
 SUITE	
 ...	
 10	

7.1	
 APPLICATION	
 BENCHMARKS	
 ...	
 10	

7.1.1	
 ELMFIRE	
 ..	
 10	

7.1.2	
 GROMACS	
 ...	
 10	

7.1.3	
 HemeLB	
 ...	
 11	

7.1.4	
 IFS	
 ...	
 12	

7.1.5	
 Nek5000	
 ..	
 12	

7.1.6	
 OpenFOAM	
 ...	
 12	

7.2	
 LOW-­‐LEVEL	
 BENCHMARKS	
 ...	
 12	

7.3	
 BENCHMARK	
 INSTRUCTIONS	
 ...	
 13	

8	
 SAMPLE	
 BENCHMARK	
 RESULTS	
 ..	
 14	

9	
 FURTHER	
 WORK	
 ...	
 15	

10	
 REFERENCES	
 ..	
 16	

ANNEX	
 A.	
 APPLICATION	
 QUESTIONNAIRE	
 ..	
 17	

Index	
 of	
 Figures	

Figure 1: Architecture of JuBE. ... 9	

Copyright © CRESTA Consortium Partners 2011

Index	
 of	
 Tables	

Table 1: Summary of Application Questionnaire Results ... 5	

© CRESTA Consortium Partners 2011 Page 1 of 26

1 Executive	
 Summary	

Benchmarks are widely used in High Performance Computing (HPC). They are used to
measure system performance, either to get a general indication of the system’s
technical capabilities, or to gauge its suitability to a particular application. They are also
used to assess the performance of individual applications across a range of systems
and HPC architectures. HPC benchmarks therefore cover a wide range of
measurements, from low-level computation and communication operations, through
computational kernels up to full applications.

In the context of the CRESTA project, benchmarks are useful in two different areas.
The first of these is in the understanding the impact of changes to the system-ware on
application performance. This requires an assessment of the impact of the changes on
the area targeted by them, for example reducing communication latency. However, key
to CRESTA are the six co-design applications. Therefore it is also important to
understand the impact of system-ware changes on the application performance itself.
Secondly, benchmarks are useful to the application developers. They provide a means
to assess the impact of changes to the applications, and may also be used to inform
design changes in the quest for exascale performance; for instance algorithm choice or
the use of different programming models.

The most reliable way of assessing an application’s performance is by running the
application itself. However, when scaling applications towards exascale it may prove
infeasible to do this on a regular basis as changes are made to either system-ware or
the application. Therefore an aim of the CRESTA benchmark suite might be to isolate
the key computational kernels of the applications so that they may be run on a
standalone basis. Unfortunately this has proved infeasible in the initial six months of
the project so this remains as a possible goal for the future.

The CRESTA benchmark suite therefore integrates the six CRESTA co-design
applications using the Jülich Benchmarking Environment (JuBE), such that they are
easy to compile and run. The suite includes different input files suitable for a range of
performance measurements.

Along with the applications, the benchmark suite has been configured to run some low-
level benchmarks, namely the widely used HPC Challenge (HPCC) benchmarks and
the Intel MPI benchmarks (IMB).

The benchmark suite is available to project members from the CRESTA Subversion
source control repository, and has been run on one of the main supercomputing
platforms of the project, HECToR, which is a Cray XE6 machine.

Future work will focus on working with the co-design application developers to refine
the benchmark suite. This will include examining the input files to ensure a
representative range of test cases, developing benchmarks of the important
computational kernels from the applications, and helping them develop quantitative
assessments of the applications performance.

© CRESTA Consortium Partners 2011 Page 2 of 26

2 Introduction	

This document describes the initial release of the CRESTA benchmark suite.

Section 3 describes the motivation for the production of a benchmark suite for
CRESTA. Next in Section 4, input to the design of the suite is outlined, taking into
account the CRESTA co-design applications. A brief survey of existing benchmark
suites is then presented in Section 5. The design and production of the CRESTA
benchmark suite is discussed in Sections 6 and 7 respectively. Sample results from the
suite are shown in Section 8 before further work is discussed in Section 9.

2.1 Glossary	
 of	
 Acronyms	

DEISA Distributed European Infrastructure for Supercomputing Applications
EC European Commission
EPSRC Engineering and Physical Sciences Research Council
FFT Fast Fourier Transform
HECToR High-End Computing Terascale Resource
HPC High Performance Computing
HPCC HPC Challenge
HPL High Performance Linpack
JuBE Jülich Benchmarking Environment
MPI Message Passing Interface
OpenMP Open Multi-Processing
PRACE Partnership for Advanced Computing in Europe
WP Work Package
XML Extensible Markup Language

© CRESTA Consortium Partners 2011 Page 3 of 26

3 Motivation	

This section presents the motivation behind the production of a CRESTA benchmark
suite. It discusses the purposes of benchmarks both generally, and more specifically
from the CRESTA point of view, before describing the different sources of input into the
design of the benchmarks.

3.1 What	
 is	
 a	
 Benchmark?	

Before discussing the CRESTA benchmarks it is worth considering, briefly, what a
benchmark actually is. A benchmark has its origins in surveying, as a permanent mark
used to indicate altitude above sea level of that point. The Oxford English Dictionary
provides two further definitions [1]:

A point of reference; a criterion, touchstone.

Computing. A program or set of programs used as a standard against
which the performance of other programs (or the computer systems
running them) is compared or evaluated.

Clearly for CRESTA it is the second definition which is relevant, but in which particular
context – measuring program performance or system performance?

3.2 Why	
 Benchmark	
 for	
 CRESTA?	

The guiding principle of the CRESTA project is the co-design process. Six key scientific
applications have been chosen which have a reasonable expectation of running on
future exascale systems. The requirements of these applications are being used to
guide development throughout the rest of the project, in a cyclical process. It is
therefore very important for the project to understand the impact of any underlying
software and hardware changes on application performance. In particular, Task 2.6 of
CRESTA is concerned with performance analysis and optimisation, which are key
components in the effective utilisation of both current and future HPC systems. It is
important to be able to measure the performance of systems so that the impact of
changes may be quantified and understood. These measurements may be achieved
through the use of benchmarks of system performance.

Similarly, it is important to understand how the application design may be modified to
make best use of a particular system, for example by different algorithm choice or the
use of a different programming model. This may be done by the use of benchmarks
designed to measure program performance.

The goal of the benchmark suite is therefore to provide a set of measurements useful
for both application and system performance, placing particular emphasis on their
relevance and usefulness to the co-design applications, and the relationship of the
applications with the rest of the project.

3.3 Benchmark	
 Sources	

In order to design a CRESTA benchmark suite several sources may be considered to
provide input. These are now introduced, before being discussed in detail in the
following sections.

3.3.1 Co-­‐design	
 Applications	

As described above, the centrality of the co-design applications to the project suggests
that the most meaningful results are likely to come from the applications themselves.
Unfortunately the complexity of the applications means that it may be infeasible to
perform a full run of the application on a regular basis. This is particularly seen to be
the case when the fact that the project is concerned with application behaviour at very
large-scale is considered. Therefore a large motivation, and indeed challenge, of the
benchmark suite is to see if it possible to capture the computational kernels of the
applications in such a way that their behaviour is adequately reproduced, whilst at the

© CRESTA Consortium Partners 2011 Page 4 of 26

same time ensuring that they are easy and quick to use for measurements as required
by both application and system-ware designers.

3.3.2 Other	
 Applications	

In order to guard against any undue bias in the project towards particular features of
the CRESTA co-design applications it is important to consider whether any common
computational kernels or algorithms are not utilised by them. This may be done by
looking at other widely used HPC applications, and input may be sought from other key
stakeholders such as the PRACE project, in particular WP7 which is the application
focused work package of PRACE.

3.3.3 Low-­‐level	
 Operations	

The computational kernels of the applications, both co-design and others, will likely
perform particular low-level operations frequently. It is therefore useful to distil these
operations from the kernels into individual benchmarks to better inform the project’s
understanding of both the system and application behaviour with respect to such
operations.

© CRESTA Consortium Partners 2011 Page 5 of 26

4 Input	
 from	
 Co-­‐design	
 Applications	

4.1 Application	
 Questionnaire	

As described in Section 3.2, the six co-design applications are key to CRESTA, with
the benchmark suite aiming to capture their behaviour at large-scale. In order to
progress with the benchmark suite the input of the application developers was sought
at an early stage. To capture this input a set of questions were put to the developers,
with the goal of getting as much information as relevant. The questions are reproduced
in the Appendix A.1, and the responses in Appendix A.2. The responses show a good
level of engagement, and they are now summarised.

4.2 Questionnaire	
 Results	

Study of the questionnaire responses shows that, as already known, the applications
are large, complex, scientific codes. Consequently they tend to exhibit a complex
behaviour, which often depends implicitly on the problem or data set being analysed.

The full responses of the questionnaire, available in Appendix A.2 are summarised in
Table 1.

Table 1: Summary of Application Questionnaire Results

Application Area Programming
Language

Programming
Model

3rd-Party
Libraries

Areas of
Interest

Existing
Benchmark?

ELMFIRE Plasma
Physics

FORTRAN
77/90, C

MPI BLACS,
PESSL,
IMSL,
(NAG)

Poisson
equation

No

GROMACS Classical
Molecular
Dynamics

C,C++, x86
assembly,
CUDA

MPI, MPI &
pthreads

FFTW or
similar

Lattice
summation,
FFTs

No, but used
extensively
"as is"

HemeLB Hemo-
dynamics
using
Lattice
Boltzmann

C++ MPI (Hybrid
MPI &
OpenMP in
future)

ParMETIS Comms No, but want
to create one

IFS Weather
Prediction

C, FORTRAN
90/95

Hybrid MPI &
OpenMP

LAPACK,
BLAS

MPI
collectives,
global
comms,
FFTs,
Legendre
Transforms

Yes -
RAPS12

Nek5000 CFD FORTRAN 77,
C

MPI BLAS Collectives No, but some
test cases

OpenFOAM CFD C++ MPI No

As the table shows, the key programming languages for application development are
C, C++ and FORTRAN, with parallelisation largely provided by MPI or a hybrid model
using both MPI and OpenMP. Only IFS have an already existing benchmark suite; all of
the other applications obtain performance measurements from running the whole
application with different data sets, although HemeLB have a desire to create
benchmarks of key computational kernels. Areas of interest cover global
communications, particularly MPI collective operations, and Fast Fourier Transforms
(FFTs).

4.3 Impact	
 of	
 Questionnaire	
 Results	
 on	
 Benchmark	
 Design	

4.3.1 Computational	
 Kernels	

Due to the complexity of the applications, and as mentioned by some of the application
developers in their responses, it is very difficult to distil their behaviour into a set of key
kernels, as desired for a standalone CRESTA benchmark suite. This is particularly the
case when considering how much an application’s behaviour depends on the problem

© CRESTA Consortium Partners 2011 Page 6 of 26

being analysed. Thus it was decided that the first release of the benchmark suite
should concentrate on running the applications themselves, while providing as much
performance information as practicable. For this to be interesting to the project the
applications must be able to be run with a realistic set of data which illustrates their
behaviour at large scale. Where an existing application suite exists, for example
RAPS12 for IFS, then this will be used.

4.3.2 Low-­‐Level	
 Operations	

Alongside the applications, some low-level benchmarks will be provided for key
operations of interest, for example MPI collectives and other global communication
patterns. Where appropriate these will be taken from existing benchmark suites.

© CRESTA Consortium Partners 2011 Page 7 of 26

5 Existing	
 Benchmark	
 Suites	

Before implementing the CRESTA benchmark suite a short review of existing HPC
benchmarks was performed in order to gain awareness of the current state of the art
and avoid unnecessary duplication of existing benchmarks. This review is now
presented.

5.1 High	
 Performance	
 Linpack	

The High Performance Linpack benchmark [2], or HPL, is used to compile the Top500
list of supercomputers. It solves a dense system of linear equations: . It relies on
the presence of an MPI implementation on the machine being benchmarked. The
results give a good indication of the maximum computational performance achievable
on a computer; however the computational density is widely accepted as being
unrepresentative of applications. It was therefore decided not to include HPL in the
CRESTA benchmark suite as a standalone component.

5.2 HPC	
 Challenge	
 Benchmarks	

The HPC Challenge (HPCC) benchmark [3] is a suite of benchmarks produced by the
same authors as HPL; indeed HPL is one component of the suite. Its goal was to
produce benchmarks with more challenging memory access patterns than HPL,
providing bounds on real-world application performance by looking at different memory
access characteristics. The seven benchmarks included in HPCC are:

• HPL – the Linpack benchmark which measures the floating point rate of
execution for solving a linear system of equations, as described above.

• DGEMM – measures the floating point rate of execution of double precision real
matrix-matrix multiplication.

• STREAM – a simple synthetic benchmark program that measures sustainable
memory bandwidth and the corresponding computation rate for a simple vector
kernel.

• PTRANS (parallel matrix transpose) – exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful
test of the total communications capacity of the network.

• RandomAccess – measures the rate of integer random updates of memory.
• FFT – measures the floating point rate of the execution of a double precision

complex one-dimensional Discrete Fourier Transform (DFT).
• Communication bandwidth and latency – a set of tests to measure latency and

bandwidth of a number of simultaneous communication patterns; based on
b_eff (effective bandwidth benchmark).

Due to the number of different operations included in the HPCC suite, and its
widespread usage in the HPC community, it was decided to include it in the CRESTA
benchmarks.

5.3 Intel	
 MPI	
 Benchmarks	

The Intel MPI benchmarks [4] provide a comprehensive set of measurements of MPI
operations. They cover both MPI1 and MPI2 (including one-sided communication and
MPI I/O). With respect to CRESTA they are useful in providing benchmarks of the
collective operations, which the applications survey showed to be important, and
therefore will be included in the CRESTA suite.

5.4 EPCC	
 OpenMP	
 Microbenchmarks	

The EPCC OpenMP benchmarks [5] measure the overheads of OpenMP constructs,
including synchronisation, loop scheduling and array operations in the OpenMP
runtime library. They compare the parallel execution time of the operation with a serial
version as a reference. They are available in both C and FORTRAN. As shown by the

© CRESTA Consortium Partners 2011 Page 8 of 26

application survey no application uses OpenMP as the sole parallelisation method,
therefore these benchmarks will not be included in the CRESTA benchmark suite.

5.5 EPCC	
 Hybrid	
 OpenMP/MPI	
 Microbenchmarks	

The EPCC OpenMP/MPI microbenchmarks [6] are designed to give low-level
performance measurements for a mixed mode OpenMP and MPI programming model.
They cover both point-to-point and collective communication patterns. They are
available in both C and FORTRAN. The current trend in HPC towards many multi-core
nodes, together with the fact that some of the CRESTA co-design applications already
use a hybrid OpenMP/MPI programming model means that this suite is more relevant
and will be included in the CRESTA benchmarks.

5.6 NAS	
 Parallel	
 Benchmarks	

The NAS Parallel Benchmarks [7] are produced by the NASA Advanced
Supercomputing Division (NAS). The benchmarks are motivated by Computational
Fluid Dynamics (CFD) programs, and are aimed at measuring and evaluating the
performance of computer systems rather than the codes themselves. The original
benchmarks consisted of several computational kernels and three so-called pseudo
applications. These have been enhanced through the addition of benchmarks for
unstructured computation, parallel I/O, and data movement. As such they may be
considered as something that the CRESTA benchmark suite might work towards, but
are unlikely to be useful in themselves as they are not representative of the CRESTA
co-design applications.

5.7 Mantevo	

Mantevo [8] is a project at Sandia National Laboratories. It aims to provide open-source
software packages for the analysis, prediction and improvement of high performance
computing applications, and has several goals:

• Predict performance of real applications in new situations.
• Aid computer systems design decisions.
• Foster communication between applications, libraries and computer systems

developers.
• Guide application and library developers in algorithm and software design

choices for new systems.
• Provide open source software to promote informed algorithm, application and

architecture decisions in the HPC community.

It fulfils these goals by writing several so-called “miniapplications” which are designed
to be small, self-contained programs that reproduce the behaviour of key scientific
applications. By limiting the size of these applications it is possible to experiment with
different design choices, library usage and programming models. The miniapplications
include:

• HPCCG: Intended to be the "best approximation to an unstructured implicit finite
element or finite volume application in 800 semi-colons or fewer."

• pHPCCG: A parametrized version of HPCCG that supports use of different
scalar and integer data types, as well as different sparse matrix data structures.

• phdMesh: Parallel heterogeneous dynamic mesh application. Exhibits the
performance characteristics of the contact search operations in an explicit finite
element application.

• MD: A light-weight molecular dynamics application containing the performance
impacting code from LAMMPS.

Further discussion with the CRESTA co-design applications is required to see if any of
these might be useful for further study in themselves; however the Mantevo project
demonstrates a method of working which the CRESTA benchmark suite should aim
towards; developing small, standalone kernels.

© CRESTA Consortium Partners 2011 Page 9 of 26

6 CRESTA	
 Benchmark	
 Suite	
 Design	

The benchmark suite will initially contain the six CRESTA co-design applications, along
with relevant low-level benchmarks. The simplest solution would be to package these
together with instructions for running them. However it was decided that a more useful
approach would be to try and use some kind of framework as a wrapper. The natural
candidate for this would appear to be JuBE, the Jülich Benchmarking Environment [9],
from the Jülich Supercomputing Centre of Forschungszentrum Jülich (FZJ), Germany.
JuBE was used for both the DEISA Benchmark Suite [10] and the PRACE Benchmarks
[11],[12]; therefore there is existing expertise on its usage amongst some of the project
partners.

6.1 JuBE:	
 Jülich	
 Benchmarking	
 Environment	

The JuBE benchmarking environment provides a script-based framework for creating
benchmark suites, utilising Perl and XML. Once configured it allows the compilation,
execution and analysis of benchmark results. It may be easily configured for multiple
platforms. The architecture is shown in Figure 1. Note that the analysis GUI has not yet
been implemented.

Figure 1: Architecture of JuBE.

Each benchmark application is configured using several XML files:

• bench.xml – the top-level configuration that contains details of the benchmark
runs for and individual benchmark and platform combination.

• platform.xml – contains details of each compute platform the benchmark has
been configured for. This includes details such as compiler settings, batch
system details and third-party library locations.

• compile.xml – how the benchmark should be compiled.
• prepare.xml – how to setup the benchmark input files for each benchmark run.

This is typically done by substitution of parameters into a template file.
• execute.xml – how to run the benchmark, typically by submission to a batch

system. In this case it uses a template of a batch script for the platform.
• verify.xml – how to verify that a particular benchmark has been successfully

executed.
• analyse.xml – how to obtain measurement data from the benchmark output.

This utilises the patterns.xml file.

© CRESTA Consortium Partners 2011 Page 10 of 26

7 Production	
 of	
 Benchmark	
 Suite	

This section describes the production of the benchmark suite, particularly its
component parts such as the co-design applications. It briefly describes the work
necessary to port each application to one of the main computational platforms of the
project, EPCC’s Cray XE6, HECToR [13]. Although the benchmark suite has not yet
been tested on any of the other CRESTA platforms this will be done shortly. It should
not be too much work as the main CRESTA machines are very similar Cray variants.

7.1 Application	
 Benchmarks	

In this first release of the benchmark suite the application benchmarks consist of the
JuBE configuration files for each of the six CRESTA co-design applications, along with
input files required to run different simulations. The input files should cover a range of
cases; a verification case, a realistic case, and a challenging case. The realistic case
and challenging case should be able to be used for measuring the current performance
of the application, and therefore provide a means of assessing the applications
scalability.

When measuring scalability two different methods can be used, strong scaling and
weak scaling. In strong scaling measurements the problem size is kept fixed but the
number of processors is increased. Good strong scaling is often seen as the hardest to
achieve, as usually the communication overhead increases as the number of
processors. In weak scaling measurements the amount of work assigned to each
processor stays constant and the problem size is increased. Within CRESTA the
emphasis will be on increasing the strong scaling of the co-design applications,
therefore this should be measurable using the CRESTA benchmarks.

7.1.1 ELMFIRE	

ELMFIRE is a first principle plasma turbulence simulation code with full-function
gyrokinetics. At present the ELMFIRE code achieves scalability of up to 2,048
processors.

7.1.1.1 Porting	
 Details	
 and	
 Changes	
 Required	

ELMFIRE had already been ported to CSC’s Cray machine Louhi [14], a Cray XT4/5.
Thus, it was very simple to port to HECToR, with the work being performed by the
developers. All that was required was a new Makefile for HECToR, which is in fact
identical to the Louhi Makefile. This gives a good level of confidence that the code will
run on the other CRESTA platforms.

7.1.1.2 Benchmark	
 Description	

Several input files were provided by the ELMFIRE developers for running benchmarks,
representing a typical simulation that is run currently. The simulations represent a
torus/tokamak that has a major radius of 55cm and a minor radius of 8cm. The largest
version of this simulation uses a grid of size 120x150x8 to simulate a plasma
containing approximately 470 million ions and electrons for a time period of 300ns in
30ns steps. (Real simulations would run for many more steps). Other input files are
also available with scaled down versions of the simulation.

The ELMFIRE output provides timings for the simulation, broken down by the various
stages.

7.1.2 GROMACS	

GROMACS is a major open source software package for biomolecular simulation,
developed by an international collaboration steered from KTH, Sweden.

7.1.2.1 Porting	
 Details	
 and	
 Changes	
 Required	

No changes were required to port the code to HECToR.

© CRESTA Consortium Partners 2011 Page 11 of 26

7.1.2.2 Benchmark	
 Description	

The GROMACS developers provided three different benchmarks, each representing a
different system. These are now described.

7.1.2.2.1 Ion	
 Channel	
 System	

The ion channel system is the membrane protein GluCl, which is a pentameric chloride
channel embedded in a lipid bilayer. This system contains roughly 150,000 atoms, and
represents a challenging parallelisation case due to its small size, and useful for
measuring the strong scaling of GROMACS. However, it is one of the most desired
target sizes for biomolecular simulations due to the importance of these proteins in
pharmaceutical applications.

It is particularly challenging due to the highly inhomogeneous and anisotropic
environment in the membrane, which poses hard challenges for load balancing by
domain decomposition.

The baseline simulation is performed with standard PME lattice summation for
electrostatics, and cut-offs at 1.0 nm.

The default simulation uses 2.5fs time steps and constrained bonds; there is also a
simulation with vsites and 5fs time steps.

7.1.2.2.2 Methanol	

This benchmark is a system of 1.28 million methanol molecules in a cubic box, 7.7M
atoms, using Particle Mesh Ewald (PME) calculations. It is useful for assessing the
weak scaling of GROMACS.

This system is intended to run at a PP(Particle-Particle):PME process ratio of 3:1; this
has been tested with Gromacs version 4.5 on x86 systems, on other systems or with
newer Gromacs versions this might differ. At the end of the md.log file the balance will
be shown and a note is printed when the PP/PME imbalance is large.

The PP/PME balance can be tuned by scaling rlist,rcoulomb,rvdw and fourier_spacing
in grompp.mdp by the same amount.

7.1.2.2.3 Vesicles	

This benchmark consists of a two lipid vesicles tethered by a small chemical linker, and
is used to study fusion. The system size is quite large, roughly 2 million atoms, and it is
very slow to simulate on normal workstations.

It uses a 4fs time step, virtual sites, and PME lattice summation.

This system, like the ion channel system, is highly inhomogeneous and anisotropic, but
due to its size it will scale better. It has been run successfully over thousands of cores
on the Cray XE6 at KTH.

Since it contains a lot of water, it is a relatively tough test for load balancing in
particular (the vesicle part is slower to calculate).

7.1.3 HemeLB	

HemeLB is a high performance lattice Boltzmann code for simulating fluid flow in
sparse geometries, such as those found in the vasculature.

7.1.3.1 Porting	
 Details	
 and	
 Changes	
 Required	

Due to licensing issues HemeLB has not, at the time of writing, been integrated into the
CRESTA benchmark suite, however it is hoped to rectify this situation shortly. The
code has been ported to HECToR successfully and run by the HemeLB developers.

7.1.3.2 Benchmark	
 Description	

A relatively simple benchmark simulating flow within a cylinder has been setup and run.
A benchmark for a sparse geometry will also be setup.

© CRESTA Consortium Partners 2011 Page 12 of 26

7.1.4 IFS	

The Integrated Forecast System (IFS) is an integrated set of applications written by
ECMWF for Numerical Weather Prediction. RAPS12 is IFS provided as a benchmark
suite for measuring its performance on different systems.

7.1.4.1 Porting	
 Details	
 and	
 Changes	
 Required	

Minor changes were required to get the code built and running on HECToR using the
Cray compilers. These may be seen in detail in the benchmark configuration files.
RAPS12 is licensed code, therefore is not available with the benchmark suite, but must
be obtained separately from ECMWF. The suite contains the configuration files
required for compiling and running it once downloaded.

7.1.4.2 Benchmark	
 Description	

RAPS12 is provided with several model datasets at different resolutions. The simplest
of these may be used for verification tests, whilst the others are more challenging.
RAPS12 provides extensive profiling information using its own timer package as part of
each run.

7.1.5 Nek5000	

Nek5000 is a highly scalable open-source simulation code for the simulation of
incompressible flows in moderately complex geometries. The discretisation is based on
the spectral-element method (SEM), which combines the high-order accuracy of
spectral methods with the geometric flexibility of finite-element methods.

7.1.5.1 Porting	
 Details	
 and	
 Changes	
 Required	

No changes were required for compiling Nek5000 on HECToR.

7.1.5.2 Benchmark	
 Description	

Since the spectral element method is employed in the Nek5000, the execution time of
Nek5000 mainly depends on tensor products for multi-dimensional problems. Nek5000
is implemented using matrix-matrix products for the tensor products required for the
high-order spectral methods. As a result the operations reduce from to

 for -dimensional problems.

One of the examples included in Nek5000 is a timing benchmark for exploring the
efficiency of the matrix-matrix products on a particular system.

7.1.6 OpenFOAM	

OpenFOAM is an open-source package for computational fluid dynamics using the
Finite Volume Method. It comes with a wide-range of solvers for different physical
systems.

7.1.6.1 Porting	
 Details	
 and	
 Changes	
 Required	

Minor changes were required to compile OpenFOAM on HECToR. These were
necessary to use the correct compilers and settings.

7.1.6.2 Benchmark	
 Description	

The benchmarks chosen for OpenFOAM were taken from the examples included with
OpenFOAM. For small test cases the commonly used lid-driven cavity flow and dam
break examples were used. After discussions with local experts it was decided to use
3D versions of these examples as developed and described in [15]. For the challenging
case it was decided to use a simulation of flow round a motorbike, using a mesh
containing 32 million cells.

7.2 Low-­‐Level	
 Benchmarks	

For the moment the HPC Challenge and the Intel MPI Benchmarks are included in the
CRESTA benchmarks, as these were the easiest to integrate. No modifications were
made to either package; they were included as is.

© CRESTA Consortium Partners 2011 Page 13 of 26

7.3 Benchmark	
 Instructions	

An overview of running a benchmark is described here. For full details see the
README file included in the benchmark description.

First, obtain the benchmark suite from the CRESTA SVN repository1, available at the
following location:
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp2/benchmarks

Note that if either of the licensed codes, HemeLB or IFS RAPS12, is required then
these must be obtained separately and installed in the src directory of the benchmark
suite.

Next it is simply a case of compiling and running the benchmarks by means of simple
perl commands. For example to run OpenFOAM:
bash-2.05a$ cd DEISA_BENCH/applications/OpenFOAM

bash-2.05a$ perl ../../bench/jube bench-Cray-XE6-HECToR.xml

Once a run is complete the results may be verified and analysed as follows:
bash-2.05a$ cd DEISA_BENCH/applications/OpenFOAM

bash-2.05a$ perl ../../bench/jube -update -result <ID>

Where ID is the reference number assigned by JuBE to a particular run.

1 Note that this is only open to registered CRESTA members. Contact the author for
access to the SVN.

© CRESTA Consortium Partners 2011 Page 14 of 26

8 Sample	
 Benchmark	
 Results	

This section contains some sample benchmark results obtained on HECToR. Note that
this is not intended to be a comprehensive collection of results, rather an indication of
what is achievable with the benchmark suite.

Figure 2 shows the results obtained with the HemeLB benchmark of a simple cylinder,
containing over 15 million lattice sites, for different numbers of cores. The results are
measured in terms of a velocity, which is defined as site updates per second per core.
Perfect strong scalability would be indicated by a flat line. This demonstrates how the
benchmark suite may be used for measuring the applications scaling.

Figure 2: Performance of HemeLB benchmark on HECToR. Velocity is defined as site updates per

core per second.

© CRESTA Consortium Partners 2011 Page 15 of 26

9 Further	
 Work	

There are several options for further work on the CRESTA benchmark suite. Clearly
these must be decided in collaboration with the rest of the project, in order to be as
useful as possible.

The suite will be kept up to date with the latest versions of the applications as decided
by the application developers within WP6. Also the benchmark files themselves will be
regularly assessed to ensure they are still relevant. This will be particularly the case for
the “challenging” benchmarks to make sure that the limits of scalability of the
applications are being explored properly. The benchmark suite can be used for scaling
and efficiency studies of the applications. They provide an opportunity to develop a set
of criteria for assessing the development of the application performance, and these will
be developed in collaboration with WP6 if felt to be appropriate.

The suite will be ported to different architectures available for use within the project. As
already discussed the main platforms are all Cray machines, however if possible
access to other machines will be obtained in order to provide information on application
performance across architectures.

The suite will be extended with the addition of new benchmarks. These could cover
particular algorithms under consideration by the applications or being studied by the
system-ware developers. As discussed in D3.1 [16], it is likely that application
developers will want to study different programming models and parallelisation
techniques, therefore the benchmark suite could be extended to study particular
algorithms or operations in different programming models.

The feasibility of extracting the computational kernels from the applications will be
pursued. The report [17] from WP5 of EPSRC’s Architecture Comparison Exercise
(ACE) [18] illustrates some of the difficulties associated with trying to relate application
performance to algorithm benchmarks. This area of work will require further
discussions with WP6 to decide on the best way forward.

© CRESTA Consortium Partners 2011 Page 16 of 26

10 References	

[1] Oxford English Dictionary. Second edition, 1989; online version September

2011. http://www.oed.com/view/Entry/17612; accessed 12 December 2011.

[2] High Performance Linpack, http://www.netlib.org/benchmark/hpl/

[3] HPC Challenge Benchmark, http://icl.cs.utk.edu/hpcc/.

[4] Intel MPI Benchmarks, http://software.intel.com/en-us/articles/intel-mpi-
benchmarks/.

[5] EPCC OpenMP Microbenchmarks,
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/open
mp_index.html

[6] EPCC OpenMP/MPI Microbenchmarks, http://www.epcc.ed.ac.uk/software-
products/openmpmpi-microbenchmarks

[7] NAS Parallel Benchmarks, http://www.nas.nasa.gov/publications/npb.html

[8] Mantevo, https://software.sandia.gov/mantevo/

[9] JuBE: Jülich Benchmarking Environment, http://www2.fz-juelich.de/jsc/jube/

[10] “Initial Report on the DEISA Benchmark Suite”, DEISA2 Deliverable DEISA2-
D7-2.1, http://www.deisa.eu/publications/fp7-deliverables/PM06/DEISA2-D7-
2.1.pdf

[11] “Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark”, PRACE Deliverable D6.3.1, http://www.prace-
project.eu/IMG/pdf/D6-3-1.pdf

[12] “Final Benchmark Suite”, PRACE Deliverable D6.3.2, http://www.prace-
project.eu/IMG/pdf/D6-3-2-extended.pdf

[13] HECToR, http://www.hector.ac.uk/

[14] Louhi,
http://www.csc.fi/english/research/Computing_services/computing/servers/lou
hi

[15] Gavin J. Pringle, “Porting OpenFOAM to HECToR – A dCSE Project”,
HECToR CSE Report,
http://www.hector.ac.uk/cse/distributedcse/reports/openfoam/

[16] “State of the art and gap analysis”, CRESTA Deliverable D3.1

[17] Architecture Comparison Exercise 2, WP5, “An HPC Roadmap:
Understanding the Performance of Applications across a Range of
Architectures”,
http://www.epsrc.ac.uk/SiteCollectionDocuments/other/ACE2WP5HPCRoadm
ap.pdf

[18] Architecture Comparison Exercise,
http://www.epsrc.ac.uk/ourportfolio/themes/researchinfrastructure/subthemes/
einfrastructure/hpc/Strategy/Pages/ace.aspx

© CRESTA Consortium Partners 2011 Page 17 of 26

Annex	
 A. Application	
 Questionnaire	

A.1 Questions	

This section details the questions that were put to application developers in order to get
their input to the benchmark suite.

Q1. Your name?

Q2. Your application?

Q3. What are the key algorithms which determine the scaling of your application?
Please provide as much detail as possible, for example:

- the programming model,
- the language,
- the impact on scaling of the algorithm,
- the effect of different problem sizes,
- the communication patterns utilised.

Q4. Please indicate which, if any, third-party libraries you utilise in these algorithms.

Q5a. Do you already have a benchmark framework which tests these algorithms?
Please explain if this benchmark runs the complete application or whether it is possible
to just run these key computational algorithms.

Q5b. If so, would you be able to provide us with the benchmarks? Are there any
licence restrictions on the re-use of this code?

Q6. Do you use, or know of, any third-party benchmarks which provide a good
indication of your application's performance?

Q7. If you do not have an existing benchmark, would you be able to provide us with the
computational kernel of your code and instructions on how it is used, such that we
could turn this into a representative benchmark?

Q8. Looking towards the future, do you see the algorithms your application uses
changing significantly? Which other algorithms would you like to see included in the
benchmark suite in order to help your design process?

Q9. Do you have any other comments or information that may be useful in us
producing the benchmark suite?

© CRESTA Consortium Partners 2011 Page 18 of 26

	

A.2 Responses	

This section details the response from the application developers, the answers
numbered according to the questions listed in Section A.1.

A.2.1 Elmfire	

A2. Elmfire, simulating the time propagation of extended charged particles (a few grid
units) in the background of a magnetic and an electric field. The magnetic field is static
and the electric field is periodically updated by solving Poisson's equation for the
electrostatic potential on a grid from the positions of the charged particles.

Åbo is not the code owner of Elmfire. We are presently working with the code owners
VTT and Aalto University to create a document that describes the computational
aspects of Elmfire from a modern parallel programming point of view. This will enable
us to focus on algorithmic choices rather than physics requirements.

A3. The particles are owned by the processes, likewise the electric potential grid.
Therefore there is an all-to-all communication before solving the Poisson equation
where the source term is gathered. Likewise, the solution of Poisson's equation is done
collectively and iteratively. We believe Elmfire today is bound by its communication
patterns.

A4. PETSc. Elmfire can also use PESSL as it was originally built on an IBM
supercomputer.

A5a. The formulation and the solving of the Poisson equation is tightly integrated into
the code today. Possibly this part could be extracted and used as a benchmark
program?

A5b. There are no particular licence restrictions except that Elmfire may be used only
within the CRESTA framework and duration.

A8. We would be happy to redesign central parts of Elmfire, e.g. towards a complete
domain decomposition with the passing of particles between processes.

© CRESTA Consortium Partners 2011 Page 19 of 26

	

A.2.2 Gromacs	

A2. Gromacs. Classical molecular dynamics.

A3.

- the programming model,

The computational bottleneck is the calculation of fairly simple interactions between
particles in spatial proximity, but since these particles move in space we need fairly
advanced logic to track them. This either ends up as a list-of-neighbours (verlet
neighbourlist) or more advanced algorithms where we reduce the algorithm to
interactions in "subtiles" where all-vs-all particles interact (which provides better
memory access patterns).

Historically we have used a pure MPI model. Over the last year we have experimented
with mixed MPI-openMP, but based on this we are likely headed to mixing MPI with
pure pthreads. OpenMP is hard to control on a level low enough.

- the language,

 C/C++/x86 SIMD assembly intrinsics/Cuda

- the impact on scaling of the algorithm,

Weak scaling in Gromacs is perfect for the basic algorithm when using simple cutoffs,
but we have some remaining bottlenecks for handling e.g. initial I/O for the entire
system. Our real scaling challenges today have to do with electrostatics where we
need lattice summation algorithms and FFTs, and strong scaling.

- the effect of different problem sizes,

The limit we care most about is that we can go down to roughly 250 atoms per core
today, which is the bottleneck for our strong scaling. We would like to push this further.

- the communication patterns utilised.

Pulsed or asynchronous communications with next neighbours. We use "neutral
territory" domain decomposition that is pretty much the state-of-the-art today.

Lattice summation is run on a separate set of nodes (roughly 20%) to improve FFT
parallelization. This involves some all-to-all communication over subcommunicators by
definition (we use a 2D pencil decomposition of the FFT grid), and one area we are
exploring is multigrid solvers to avoid this.

A4. FFTW or some other FFT library, but the actual FFT isn't the bottleneck for the
parallel version; the FFTs are typically quite short, so it's more the communication
patterns limiting us.

A5a. We have a bunch of test systems we can share, and we can easily create larger
ones. It is by far the easiest to run the entire application.

A5b. Yes. No restrictions whatsoever (LGPL).

A6. Gromacs is a pretty widely used application, and there are several people that
have done benchmarks, see e.g.

http://www.cse.scitech.ac.uk/cbg/benchmarks/Report_II.pdf

© CRESTA Consortium Partners 2011 Page 20 of 26

In general, as you can see in these benchmarks, both the blessing and curse or
Gromacs is that we achieve very high performance on a given number of nodes, which
then by definition (Amdahl's law) hurts our relative scaling. Still, for applications all the
users care about is of course absolute performance!

A7. See above. One caveat is that we want to optimize for real simulations, and then it
is important to include effects of load balancing and separate lattice summation code
paths. It's better to use the full application to reflect this.

A8. Yes. We are currently getting rid of the verlet-style neighborlists and introducing
more streaming-friendly kernels. This is particularly important for GPUs, and we see
combined CPU-GPU parallelization as critical for the future, including the new Cray
XK6 nodes.

A9. Decide now whether you want a benchmark suite that primarily tries to make the
project look good, or whether we also need some tougher internal benchmarks that
deliberately aim to expose the bottlenecks to increase absolute performance (which
might lead to different choices compared to a goal of just increasing relative scaling).

© CRESTA Consortium Partners 2011 Page 21 of 26

	

A.2.3 HemeLB	

A2. HemeLB (Hemodynamics with Lattice Boltzmann)

A3. HemeLB is written in C++ and currently is flat MPI, but we will be implementing a
hybrid MPI/OpenMP version in the early part of CRESTA. It contains several parts: 1,
the core LBM; 2, the renderer; 3, the steering; 4, IO; and 5, inlet/outlet boundary
conditions.

1) As it is a lattice-Boltzmann code; this implies several things:

- the simulation domain is made up of regularly spaced sites
- the state of a site at time is a function only of that site and its neighbours at

time

The communication patterns are therefore between neighbouring domains only.
HemeLB however does not operate on a simple rectangular domain: since for blood
flow applications only a small fraction (5–10%) of the space spanned by the vessels is
typically occupied by fluid, we only create sites within the fluid. This is therefore not a
simple Cartesian pattern as often used by LB implementations.

2) The renderer has a more complex communication pattern. At the moment we use a
binary tree pattern of non-blocking send/recv calls to composite the final image over a
number of timesteps O(log(p)). This leverages a coalesced communication system we
have implemented within the code.

3) The steering component effectively has to broadcast its data to all MPI tasks. To
avoid the poor scaling of collectives, we use the same machinery used by the renderer
but in reverse to pass the steered parameters to the tasks that require it.

4) For writing snapshots, we use MPIO. Each MPI task writes a record for each fluid
site it holds to a buffer which is then sent to file through MPIO in a fairly simple way
(MPI_File_write_all)

5) The inlet/outlet BCs are sent asynchronously from the master task to all the workers
that need an individual in/outlet's data.

We note that we hope to refine points 2 and 3 through our work in WP5.

A4. We use ParMETIS during the initial domain decomposition only.

A5a. We currently do not have robust benchmarks, but are actively engaged with
development of whole-application performance measurement benchmarks. We hope to
develop key-algorithm benchmarks ourselves in the near future, covering both the
scientific kernel and the visualisation and steering components, which are also
expensive in terms of both communication and computation.

A6. No

A7. As stated in Q5a above, we are currently engaged with development of
benchmarks ourselves. We do not wish to pass this objective over in its entirety to
CRESTA collaborators, but would expect to be involved in integration of our work into a
CRESTA benchmark suite as part of our contribution to CRESTA as a co-design
application.

© CRESTA Consortium Partners 2011 Page 22 of 26

A8. We do not see the algorithms themselves changing, but the implementations will
change at least somewhat during the hybridisation process.

One of the largest limitations on LB performance is currently the memory bandwidth
between cores and RAM. We would like to see benchmarks that stress this component
of architectures and coping technologies such as prefetching etc. Depending on
implementation, LB codes either read a contiguous part of an array and write to a non-
contiguous, scattered part or vice-versa; we would like to see benchmarks that have
comparable characteristics.

Q9. As stated above, we would expect to be actively involved in integration of our
benchmarks into the suite, at both the development and review levels. We plan for our
whole-application level performance measurement capabilities to be complete in the
first quarter of 2011, a time scale that should be compatible with the CRESTA
deliverable. James Hetherington would hope, at the beginning of 2012, to identify and
meet a developer within the benchmark team, and work closely with this individual to
develop this part of the benchmark.

© CRESTA Consortium Partners 2011 Page 23 of 26

	

A.2.4 IFS	

A2. Integrated Forecasting System (IFS).

The IFS is a Spectral Numerical Weather Prediction (NWP) model. It has over 1 million
lines of code.

A3. A spectral model by definition involves global communication, using MPI collective
calls where possible, such as MPI_allgatherv.

At the present operational resolution of IFS (T1279), MPI communications account for
about 10 percent of the total wall clock time.

 Some key algorithms used in IFS are:

- Legendre Transform (LT)
- Fast Fourier Transform (FFT)
- Semi-Lagrangian Scheme (SL)

- the programming model,

Hybrid MPI/OpenMP

- the language,

Fortran 90/95, C

- the impact on scaling of the algorithm,

LT: cost, uses DGEMM

FFT: cost

SL: non-local MPI communication

where is the spectral truncation

- the effect of different problem sizes,

Halving the grid spacing in the model, typically results in about a 16 times increase in
model cost (3 spatial dimensions + time step)

- the communication patterns utilised.

Global (per MPI communicator group), and local communications

A4. LAPACK and BLAS

A5a. We have a benchmark framework which runs the complete application with an
extensive set (some 2000) of timers which are grouped into:

- OpenMP parallel regions
- MPI communication
- Serial (i.e. non-OpenMP)

 Timers are summarised at the end of a run per MPI task and over all tasks.

A5b. The benchmark code (the latest version is called RAPS12) is available to
CRESTA partners, although a licence agreement is required to be signed.

A6. No.

© CRESTA Consortium Partners 2011 Page 24 of 26

A7. Not applicable.

A8. Not at this point in time.

A9. ECMWF are currently porting the latest IFS model benchmark called RAPS12 to
HECTOR, with resolutions up to T2047 which is expected to be the next ECMWF
operational resolution in 2015. A T3999 sized model case is also being prepared,
although for practical reasons, this would necessitate the Fast Legendre Transform
development to be available in 2012.

© CRESTA Consortium Partners 2011 Page 25 of 26

	

A.2.5 Nek5000	

A2. NEK5000 is computational fluid dynamics solver based on the spectral element
method (SEM). This numerical scheme combines the geometric flexibility of finite
elements with the minimal numerical dispersion and dissipation of spectral methods. In
the SEM, the solution within each of the individual elements is represented as a tensor-
product of Nth-order Lagrange polynomials based on the Gauss-Lobatto-Legendre
nodal points. Typical applications for NEK5000 include the large-scale parallel
simulation of turbulent flows in moderately complex geometries.

Summary: http://www.mcs.anl.gov/~fischer/nek5000/fischer_nek5000_dec2010.pdf

A3.

- the programming model, the language,

The code is written in Fortran77/C and employs the MPI standard for parallelism. So far
no OpenMP/threading implemented. Array allocation is static (compile-time).

- the impact on scaling of the algorithm,

The principal computational bottleneck arises in simulating unsteady incompressible
and low-Mach number flows. In these cases, the elliptic problem governs the pressure,
which must be computed implicitly at each time-step. For large unstructured problems,
the resultant discrete Poisson problem is most efficiently solved using multilevel
iterative methods embedded within a Krylov subspace projection scheme such as
conjugate gradients or GMRES. The multigrid/GMRES/CG solvers require the use of
parallel collective operations limiting the scalability of the code when an elliptic solver is
in use.

- the effect of different problem sizes

NEK 5000 showed excellent scaling up to 280,000 processes
(http://nek5000.mcs.anl.gov/index.php/Scaling). If a linear solver is in use (elliptic
problem), then the code scaling is affected by the scaling of the collective operations
(, where is the number of processes).

A3. MPI, BLAS.

A5a. Nek5000 is distributed with automated build/test suite and with an example suite.
Such input-files can be used as test cases for a benchmark activity. However, for
CRESTA we suggest a larger problem (turbulent pipe flow) as the main scaling
example, and the jet in crossflow as the benchmark for adaptivity.

A5b. The benchmarks are included in the Nek5000 distribution. The additional
suggested cases will be delivered separately.

Nek5000 is an open-source code, released under GPL.

A6. Nek5000 has been included in a IBM Bluegene benchmark some years ago.

A7. Yes.

A8. In the CRESTA project, three different strategies will be studied:

© CRESTA Consortium Partners 2011 Page 26 of 26

i) we intend to extend Nek5000 to support p-type (i.e., variable approximation order)
adaptivity. The spectral element method used in Nek5000 readily admits variation in
approximation order since all operators are evaluated in matrix-free form and the order
can be changed with no pre-processing overhead. The proposed p-refinement strategy
will have no impact on the mesh topology, which implies significant simplifications
concerning the Nek5000 multilevel preconditioners.

ii) alternative discretisation in one or two directions based on modal decomposition
using Fourier series.

iii) In particular for the Fourier decomposition, a hybrid parallelisation using OpenMP
and MPI might be beneficial. So far, no threading is being used in Nek5000.

