
 
Copyright © CRESTA Consortium Partners 2011 

 

D3.1%–%State%of%the%art%and%gap%
analysis%

WP3:%Development%environment%

Due date: M5 

Submission date: 29/02/2012 

Project start date: 01/10/2011 

Project duration: 36 months 

Deliverable lead 
organization KTH 

Version: 1.0 

Status Final 

Author(s): 

Xavier Aguilar (KTH), Jens Doleschal (TUD), Alan Gray (UEDIN), 
Alistair Hart (CRAY UK), David Henty (UEDIN), Tobias Hilbrich 
(TUD), David Lecomber (ASL), Stefano Markidis (KTH), Harvey 
Richardson (CRAY UK), Michael Schliephake (KTH)  

Reviewer(s) James Hetherington (UCL), Jeremy Nowell (UEDIN) 

 

Dissemination level 

<PU/PP/RE/CO> PU – Public  

Project Acronym CRESTA 

Project Title Collaborative Research Into Exascale Systemware, Tools and 
Applications 

Project Number 287703 

Instrument Collaborative project 

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation 



 
Copyright © CRESTA Consortium Partners 2011 

 

!

Version!History!
Version Date Comments, Changes, Status Authors, contributors, 

reviewers 

0.1 24/01/2012 First version of the deliverable 

Xavier Aguilar (KTH), 
Jens Doleschal (TUD), 
Alan Gray (UEDIN), 
Alistair Hart (CRAY UK), 
David Henty (UEDIN), 
Tobias Hilbrich (TUD), 
David Lecomber (ASL), 
Stefano Markidis (KTH), 
Harvey Richardson 
(CRAY UK), Michael 
Schliephake (KTH) 

0.2 30/01/2012 - First draft of executive 
summary, introduction, and 
conclusion sections. 

- Updated chapter 3. Added new 
sections and subsections. 
Added references. 

- Updated section 4.3. Included 
the references. 

- Reorganised chapter 5. 
Completed subsection 5.2.5. 
Included additional references. 

- Reorganised chapter 6. 

- Fixed reference style. 

 

Xavier Aguilar (KTH), 
Jens Doleschal (TUD), 
Alan Gray (UEDIN), 
Alistair Hart (CRAY UK), 
David Henty (UEDIN), 
Tobias Hilbrich (TUD), 
David Lecomber (ASL), 
Stefano Markidis (KTH), 
Harvey Richardson 
(CRAY UK), Michael 
Schliephake (KTH) 

1.0 10/2/2012 - Corrections made to document 
based on author feedback.  

Xavi Aguilar (KTH), Jens 
Doleschal (TUD), Alan 
Gray (UEDIN), Alistair 
Hart (CRAY UK), David 
Henty (UEDIN), Tobias 
Hilbrich (TUD), David 
Lecomber (ASL), Stefano 
Markidis (KTH), Harvey 
Richardson (CRAY UK), 
Michael Schliephake 
(KTH) 



 
Copyright © CRESTA Consortium Partners 2011 

 

2.0  - Corrections made to document 
based on reviewer feedback.  

Xavi Aguilar (KTH), Jens 
Doleschal (TUD), Alan 
Gray (UEDIN), Alistair 
Hart (CRAY UK), David 
Henty (UEDIN), Tobias 
Hilbrich (TUD), David 
Lecomber (ASL), Stefano 
Markidis (KTH), Harvey 
Richardson (CRAY UK), 
Michael Schliephake 
(KTH) 

3.0  - Final corrections made to 
document based on author and 
reviewer feedback.  

Xavi Aguilar (KTH), Jens 
Doleschal (TUD), Alan 
Gray (UEDIN), Alistair 
Hart (CRAY UK), David 
Henty (UEDIN), Tobias 
Hilbrich (TUD), David 
Lecomber (ASL), Stefano 
Markidis (KTH), Harvey 
Richardson (CRAY UK), 
Michael Schliephake 
(KTH) 



 
Copyright © CRESTA Consortium Partners 2011 

 

Table!of!Contents!
1! EXECUTIVE)SUMMARY)...................................................................................................................)1!
2! INTRODUCTION).............................................................................................................................)3!

2.1! PURPOSE*...........................................................................................................................................*3!
2.2! GLOSSARY*OF*ACRONYMS*.....................................................................................................................*4!

3! PROGRAMMING)MODELS)..............................................................................................................)5!
3.1! TRADITIONAL*PROGRAMMING*METHODS*.................................................................................................*5!

3.1.1! Basic)Languages)......................................................................................................................)5!
3.1.2! Parallelisation)Methods)..........................................................................................................)8!

3.2! CURRENT*PROGRAMMING*MODEL*USAGE*.............................................................................................*10!
3.2.1! PRACE)Survey)........................................................................................................................)10!
3.2.2! CRESTA)CoCDesign)Applications)............................................................................................)12!

3.3! SUITABILITY*FOR*FUTURE*ARCHITECTURES*..............................................................................................*12!
3.3.1! Increasing)Numbers)of)Cores)................................................................................................)12!
3.3.2! Vector)Hardware)...................................................................................................................)13!
3.3.3! Accelerated)Hardware)..........................................................................................................)13!
3.3.4! Node)Level)Computational)Performance)..............................................................................)14!

3.4! NOVEL*PROGRAMMING*METHODS*.......................................................................................................*14!
3.4.1! Partitioned)Global)Address)Space)(PGAS))Languages)...........................................................)14!
3.4.2! GPU)Programming)Models)...................................................................................................)16!

4! COMPILATION)AND)RUNTIME)ENVIRONMENTS)...........................................................................)20!
4.1! COMPILERS*FOR*EXASCALE*COMPUTING*................................................................................................*20!
4.2! AUTOTUNING*...................................................................................................................................*23!

4.2.1! Novel)Autotuning)Tools).........................................................................................................)23!
4.2.2! Autotuning)in)CRESTA)...........................................................................................................)24!

4.3! RUNTIME*SYSTEMS*............................................................................................................................*24!
4.3.1! Novel)Runtime)Systems).........................................................................................................)25!
4.3.2! Suitability)for)Future)Architectures).......................................................................................)28!
4.3.3! EnergyCAware)Approaches)....................................................................................................)28!

5! PERFORMANCE)ANALYSIS)TOOLS).................................................................................................)30!
5.1! PERFORMANCE*MONITORING*..............................................................................................................*30!

5.1.1! Workload)Monitoring)...........................................................................................................)30!
5.1.2! Application)Monitoring).........................................................................................................)30!

5.2! SUITABILITY*FOR*FUTURE*ARCHITECTURES*..............................................................................................*33!
5.2.1! Scalability)on)Exascale)Computing)Platforms).......................................................................)33!
5.2.2! Resilience)and)FaultCtolerance)..............................................................................................)34!

5.3! RECENT*PERFORMANCE*ANALYSIS*TOOLS*AND*FUTURE*RESEARCH*..............................................................*34!
6! DEBUGGERS)AND)CORRECTNESS)CHECKING)TOOLS)......................................................................)37!

6.1! TRADITIONAL*DEBUGGERS*AND*CORRECTNESS*CHECKING*TOOLS*................................................................*37!
6.1.1! Parallel)Debugging)Tools)......................................................................................................)37!
6.1.2! Correctness)Checking)Tools)...................................................................................................)37!
6.1.3! Hardware)Platform)Support)..................................................................................................)37!

6.2! CURRENT*DEBUGGER*AND*CORRECTNESS*CHECKING*TOOL*USAGE*IN*CRESTA*..............................................*38!
6.2.1! Perception)of)Debugging)......................................................................................................)38!
6.2.2! Existing)Bug)Scenarios)..........................................................................................................)39!
6.2.3! Desired)Software)Directions)..................................................................................................)39!

6.3! SUITABILITY*FOR*FUTURE*ARCHITECTURES*..............................................................................................*39!
6.3.1! Scalability)on)Exascale)Computing)Platforms).......................................................................)39!
6.3.2! Usability)on)Exascale)Computing)Platforms)..........................................................................)40!
6.3.3! Support)for)New)Programming)Models)................................................................................)40!

7! GAP)ANALYSIS)AND)CONCLUSIONS)..............................................................................................)41!



 
Copyright © CRESTA Consortium Partners 2011 

 

7.1! PROGRAMMING*MODELS*...................................................................................................................*41!
7.2! COMPILATION,*AUTOTUNING*AND*RUNTIME*SYSTEMS*.............................................................................*42!
7.3! PERFORMANCE*ANALYSIS*TOOLS*..........................................................................................................*43!
7.4! DEBUGGERS*AND*CORRECTNESS*CHECKING*TOOLS*...................................................................................*43!

8! REFERENCES)................................................................................................................................)47!
ANNEXES)...........................................................................................................................................)51!

Index!of!Figures!
Figure 1: Application base languages. Reproduced from [7]. ....................................... 11*
Figure 2: Application parallelisation methods. Reproduced from [7]. ........................... 11*
Figure 3: Distribution of total utilisation, in terms of number of cores used per 
application.  Reproduced from [7]. ................................................................................ 12*
Figure 4: Overview of the performance measurement system Score-P. ...................... 35*
Figure 5: Color-coded visualisation of 200,244 processes over runtime of 850s  of the 
application S3D [68] with Vampir [63]. .......................................................................... 36*

!!



 

© CRESTA Consortium Partners 2011  Page 1 of 55 

  

1 Executive!Summary!
Development environments provide the tools to ease the implementation of scientific 
algorithms in computer codes, enable applications to run efficiently on parallel 
supercomputers, allow fast and non-invasive performance monitoring and analysis, and 
permit prompt detection of code errors. This document presents the state of the art for 
scientific programming development environments, discusses requirements for 
exascale computing, and outlines the future work of the CRESTA development 
environment work-package to enable the CRESTA co-design applications to achieve 
exascale performance. 

Traditional programming languages (Fortran, C, C++) and parallelisation methods are 
reviewed. A PRACE survey among 55 applications shows that majority of applications 
running on European supercomputers are written in Fortran, C and C++. Fortran 
(Fortran 90/95, Fortran 77) is the most popular. MPI is the most common method to 
achieve parallelism, while a few applications use a hybrid solution with MPI and 
OpenMP. Emerging programming models, such as the PGAS languages/libraries 
(UPC, Co-array Fortran, Chapel, OpenSHMEM), are introduced also. It is very likely 
that application developers will prefer an incremental approach to a full rewrite in a new 
language. The programming of GPUs with CUDA, OpenCL, and compiler directives, 
such as OpenACC, is described. Accelerator directives provide a mechanism for 
bridging the gap between applications written for the CPU and those ported explicitly to 
the GPU. The main challenge still remains to deliver an acceptable level of 
performance using this high-level approach. The current OpenACC directives are 
unlikely to provide the full functionality to exploit a heterogeneous node. An important 
task during the CRESTA project is to ensure that the nascent standards, e.g. as part of 
OpenMP, evolve in the most productive way for HPC users of heterogeneous 
architectures. 

The state of the art of compilers, automatic tuning tools, and runtime systems is 
presented. New compiler optimisation technique, targeting exascale computers, are 
discussed, and different autotuning frameworks, such as Active Harmony and CHiLL, 
and runtime systems, such as StarPU, StarSS, ForestGOMP, Charm++, and HPX, are 
discussed. It is shown in this deliverable that there has been very promising work in the 
area of compilers, autotuning and runtime systems. The challenge for the CRESTA 
project is to extend these techniques to large-scale distributed memory applications 
such as those in the CRESTA benchmark suite. This study needs to be started on the 
current generation of petascale machines to identify the most successful approaches 
that may prove to work on exascale computer platforms. With current automatic tuning 
tools and runtime systems, there is no single approach that meets all the different 
challenges. We propose to define a consistent approach that can target mark-up of 
choices at all the development stages (algorithm choice, source, compilation and 
launch). This will be done by developing a domain-specific language (DSL) that 
enables the expression of knowledge, hints and decisions for an efficient execution of 
an application on exascale supercomputers. Its development will be informed by both 
the CRESTA co-design applications and open source autotuning projects. If the DSL 
we develop is general enough then it can be used to wrap specific autotuners without 
excessive effort. Other runtime services are directed towards the support of dynamic 
load balancing of application runs on exascale systems as well as using hybrid 
parallelisation techniques for dynamic adaption of the program to heterogeneous 
systems. 

Existing techniques to monitor and analyse application performance on current 
petascale computer systems are presented. The Vampir and Score-P performance 
monitoring and analysis tools have been proven to scale on current petascale 
supercomputers. However, to raise performance monitoring and analysis tools from 
petaflop to exaflop scale requires us to develop new methods for monitoring and 
analysis of information or to combine existing methods to gain a better insight into the 
system and application by the lowest possible intrusion. To reach exascale 



 

© CRESTA Consortium Partners 2011  Page 2 of 55 

  

performance, the goal is to develop scalable strategies to selectively monitor systems 
and applications and to use analysis techniques to identify outliers and provide 
sufficient insights into application and system behaviour. Data mining and reduction 
techniques will be necessary in exascale computing in order to perform on-the-fly 
information reduction that will be a requirement for a scalable, automated online 
performance analysis.  

The current state of parallel debuggers and correctness checking tools is presented. 
The Allinea DDT debugger proved to be scalable on the current petascale computing 
systems. A survey among CRESTA application experts was completed to understand 
the current usage of debuggers and error checking tools. This includes information on 
common implementation errors that application developers make and desirable new 
features in debugger environments. The survey points out that scalability of debuggers 
on exascale supercomputers is an important priority for application developers. 
However, methods to present program state of an exascale application such that 
developers can understand and pinpoint bugs will also be crucial. Additional main 
points are the debugger support for new programming models, such as PGAS 
languages, and the integration of debuggers and correctness checking tools in a 
unique framework. TU Dresden will work with Allinea to enable the MUST MPI checker 
to work within the Allinea DDT debugger platform, while also extending MUST’s 
scalability in order to cope with more than just smaller scale test cases. 



 

© CRESTA Consortium Partners 2011  Page 3 of 55 

  

2 Introduction!
As we look forward to the exascale era it is clear that we must face new challenges, not 
least for the software stack required to support exascale applications. Each component 
of the development environment (programming models, compilers, runtime systems, 
performance monitoring and analysis tools and debuggers) needs to fully and efficiently 
exploit future exascale computing platforms, characterised by two main features: 

• Extreme parallelism of the order of hundreds of millions of compute 
units. 

• Heterogeneous computer architecture, where the compute units are a 
mix of CPUs and accelerators. 

Programming languages, parallelisation methods, compilers, autotuning software, 
performance monitoring and analysis tools, and debuggers should fully exploit 
concurrency available in future exascale supercomputers. All these tools are expected 
to run efficiently, and scale reasonably while increasing the number of compute units. 
In addition, the development tools should support heterogeneous architectures. 

The challenges of developing software for future exascale computers have been 
analysed previously by the IESP, ESSI and PRACE initiatives. This deliverable starts 
from the results presented in their roadmap, white papers and reports, and specifically 
focuses on the development environment for the CRESTA co-vehicle applications. 

This document is organised as follows. Section 3 examines the traditional programming 
models and parallelisation methods, presenting their current usage in PRACE network 
and CRESTA co-design vehicle applications. The different levels of hardware 
parallelism in the current and future computer architecture are then examined. Novel 
programming models and the programming of GPGPUs with CUDA, OpenCL and 
compiler directives are discussed. Section 4 presents the challenges of developing 
compilers to produce an optimised executable code for exascale supercomputers, 
addresses automatic tuning tools, and discusses the state of the art of current runtime 
systems. Section 5 presents the performance monitoring and analysis tools available 
and the new developments in the field. Section 6 presents the state of the art of 
debuggers and correctness checking tools, their support for programming models and 
hardware. The usage of debuggers and correctness checking tools in the CRESTA 
project is analysed. Section 7 concludes the deliverable, analysing the gaps to be filled 
towards the implementation of development environments for exascale computing and 
summarising the main results. 

2.1 Purpose!
The purposes of this deliverable are as follows: 

• Present the current status and emerging trends in programming models 
and parallelisation methods. Emphasis is given to how programming 
models need to adapt to massive parallelism on different hardware 
levels and on heterogeneous platforms. 

• Present the state of the art and new developments in compiler 
optimisation techniques and automatic tuning tools.   

• Present the state of the art of the runtime systems. 
• Present the state of the art in performance monitoring and analysis tools 

and the challenges of monitoring and analysing the performance of 
applications running on exascale computer platforms. 

• Discuss the current debugger and correctness checking tool 
performance on petascale computing platform and indicate the new 
directions in developing scalable debuggers on exascale 
supercomputers. 

• Present the development environment current limitations and gaps that 
may affect successful implementation for exascale computing platforms. 



 

© CRESTA Consortium Partners 2011  Page 4 of 55 

  

• Provide directions and guidance for the future work in the CRESTA 
development environment work package. 

!
2.2 !Glossary!of!Acronyms!
Cronym Definition 
AGAS Active Global Address Space 
API Application Programming Interface 
ARB Architecture Review Board 
BLAS Basic Linear Algebra Subprograms 
CAF Co-Array Fortran 
CUDA Compute Unified Device Architecture 
DRAM Dynamic Random-Access Memory 
DSL Domain Specific-Language 
DSM Distributed Shared Memory 
DSP Digital Signal Processor 
EC European Commission 
EESI European Exascale Software Initiative 
FFT Fast Fourier Transform 
FIFO First In, First Out 
FLOP FLoating point OPerations 
FPGA Field-Programmable Gate Array 
GPU Graphics Processing Unit 
GPGPU General Purpose Graphics Processing Unit 
HPC  High Performance Computing 
IESP International Exascale Software Project 
MPI Message Passage Interface 
NUMA Non-Uniform Memory Access 
OO Object Oriented 
OpenCL Open Computing Language 
OpenMP Open Multi-Processing 
ORNL Oak Ridge National Laboratory 
PGAS Partitioned Global Address Space 
PRACE PaRtnership for Advanced Computing in Europe 
RDMA Remote Direct Memory Access 
SM Stream Multiprocessors 
SPMD Single Program Multiple Data 
UPC Unified Parallel C 
WP Work Package 
 



 

© CRESTA Consortium Partners 2011  Page 5 of 55 

  

3 Programming!Models!
3.1 Traditional!Programming!Methods!
3.1.1 Basic%Languages%
Many hundreds of programming languages and (to a lesser extent) communications 
models have been developed during the last decades, but it is fair to say that High 
Performance Computing is dominated by an extremely small subset of well-established 
programming models (as we demonstrate in Section 3.2). In terms of languages, 
almost all applications seen on typical HPC systems today are written in Fortran, C or 
C++, sometimes mixing these. Here we review these languages. 

3.1.1.1 Fortran*
With its development starting in 1953, Fortran was one of the first high-level 
programming languages and has been in constant use for nearly sixty years.  

The language was developed with a view to efficiency and hence the structure of 
programs is relatively constrained, making it easier for the compiler to produce efficient 
code. In established compiler suites, there is a long history of performance optimisation 
for Fortran, which adds to the performance advantages.  

There was an early decision (dating back to FORTRAN66) to standardise the language 
using internationally recognised standards bodies, ANSI (for FORTRANs 66 and 77 
and for Fortran 90) and ISO/IEC (for Fortrans 95, 2003 and 2008). This made the 
language attractive to HPC users looking for portability of applications between 
compiler and hardware vendors. 

Early support for double precision and complex intrinsic numeric data types (added in 
FORTRAN II in 1958) also cemented the language’s appeal for scientific computing. 
Good support for multidimensional arrays and enhancements like modules enhanced 
the appeal of Fortran for many scientific applications. The maintenance of backward 
compatibility between Fortran versions has also facilitated application longevity. 

A number of compilers now advertise full compliance with the Fortran 2003 standard. 
Although none yet have full support for the Fortran 2008 standard, the Cray 
Compilation Environment (version 8.0, released December 2011), for instance, has 
partial support including for submodules and co-arrays [1]. 

The main strength of Fortran is that the language is deliberately restrictive to the 
programmer, which gives the compiler better scope to either produce highly optimised 
code or to carry out strict runtime checks of code correctness (e.g. bounds checking). 

The main disadvantages of Fortran are that the language is traditionally poor at 
interacting with the Operating System, does not handle string manipulations well and 
that it is difficult to manipulate unformatted data files. These problems have been at 
least partially addressed in Fortran 2003, but the usual solution has been to mix in 
some C routines. Despite the language changes in Fortran90 onwards, Fortran is often 
viewed as an old-fashioned programming language and most universities no longer 
teach it as standard. 

3.1.1.2 C*
The C programming language was originally developed between 1969 and 1973 to 
help realise the Unix operating system. 

The language was not formally standardised until 1989 (by ANSI, then adopted by ISO 
in 1990 and known interchangeably as C89 or C90), but prior to this the book by 
Kernighan and Ritchie [2] widely acted as a de facto definition of the language. Since 
then, a C99 standard has been released. As with Fortran, backward compatibility was 
largely maintained during these revisions. 

Historically, performance of C applications was hampered by the extensive use of 
pointers to reference data arrays. This makes it difficult for the compiler to guarantee 



 

© CRESTA Consortium Partners 2011  Page 6 of 55 

  

independence of data operations, which is needed when optimising (and also when 
parallelising) compiled code. Many compiler vendors have introduced ways to indicate 
independence (e.g. through pragmas), but this is not guaranteed to be portable. C99 
has improved this somewhat, e.g. by introducing the restrict qualifier to indicate 
independence.  

C has two particular strengths in HPC. On systems running a Unix or Linux-based 
operating system, the programmer has good access to the underlying OS, including 
environment variables and command line arguments. This is particularly useful when 
profiling a code and understanding the relationship between application performance 
and the system state (memory usage etc.). The other strength is the ability to handle 
raw data files produced, for instance, by third party applications on different computing 
architectures.  

C also has good string handling properties. Sociologically, it is often viewed as being a 
more modern programming language than Fortran, although, given its age, this is 
perhaps more because C++ and Java are based on C, rather than C itself being 
modern. Again, C is only taught in a minority of universities now. 

In C, the user has far more control over memory management and this can make it 
harder for the compiler to produce highly optimised code or to verify code correctness. 
With modern compilers, however, a lot of these problems have been overcome and for 
many scientific codes the performance difference between Fortran and C is negligible. 
In addition, modern Fortran versions also now have improved interfacing abilities with 
the OS. 

3.1.1.3 C++*
C++ was developed between 1979 and 1983 by Bjarne Stroustrup. Starting as an 
extension to C, the language was not standardised until 1998 (by ISO), with a technical 
corrigendum in 2003 and a new standard known as C++11 in 2011. C++ has only 
recently been used in HPC, largely because the complexity of the language and the 
shortage of highly optimising compilers.  

Fortran and C are largely procedural languages, with the program organised as a set of 
distinct subprograms that are explicitly called in the code. This leads to a calltree-based 
structure for an application profile. 

C++ can be used in this way (being a superset of C), but it also offers great scope for 
the programmer to use a variety of software engineering methods to produce well-
organised, understandable, maintainable and extensible code. These methods include: 
object oriented (OO) programming methods and data-hiding, where data is packaged 
into objects that also include methods for accessing and modifying the information; 
template metaprogramming and const correctness. 

The classic problem with using C++ in HPC is that the more high-level features are 
used in the code, the harder it becomes for the compiler to produce optimised code. 
The encapsulation of methods in objects makes it hard to predict the independence of 
statements in the code and the packaging of data often leads to poor layouts of data in 
memory that lead to poor cache utilisation in repeated operations such as loop 
iterations. 

These problems can be reduced by C++ programming techniques such as templating, 
but the large amount of knowledge needed to start using these is often a barrier to 
uptake. 

The advantage of C++ is that, correctly used, it can abstract the user from the 
underlying architecture and choice of communications model(s). This must be balanced 
against the careful programming needed to allow efficient code execution and the 
possible lack of compiler portability that comes from using such advanced 
programming techniques. C++ is also seen as being a modern language, with many 
universities teaching it in the view that this provides a useful employment skill for 
undergraduates. 



 

© CRESTA Consortium Partners 2011  Page 7 of 55 

  

3.1.1.4 Fortran/C/C++*interoperability*
Given the complementary strengths of Fortran and C, there is a long tradition of mixed 
language compilation. Different parts of the application may be written in either Fortran 
or C, as appropriate, and separately compiled to object files that are then linked into a 
single executable. 

In Fortran, data objects may be passed to subprograms simply by reference that 
matches the mechanism used by C when a pointer is passed. Arrays of data can 
therefore be presented in the two languages as contiguous chunks of memory. Given 
that Fortran and C array elements have different orderings in memory (in Fortran, the 
leftmost index has unit stride in memory, whereas in C it is the rightmost), care must be 
taken to access data in a consistent manner in the two languages. 

Prior to the Fortran 2003 standard, however, it was difficult to mix Fortran and C in a 
completely portable fashion. Clearly the same levels of precision (i.e. number of bytes 
per data item) must be used, but this cannot be guaranteed. For instance, whilst it is 
almost universally true that INTEGER in Fortran and int in C both use 4 bytes, this is 
not specified in any language standard. Neither was there any way to check for any 
incompatibility when cross-calling between languages, either within the program or 
through compile-time type checking. There is also no guarantee of runtime errors, 
although most mismatches rapidly lead to floating point exceptions or similarly 
trappable errors. 

Linking of the two languages was also complicated by compiler-dependent additions of 
trailing underscores to, or even capitalisation of, subprogram names in object files. 
Whilst some compilers offer options to control this, some investigation usually involving 
trial-and-error or running the Unix nm command (often filtered using grep) on the object 
files was required. This exercise would then be repeated each time the Fortran or C 
compiler was changed or a new computer architecture was available. 

Fortran 2003 represented a milestone in compatibility, providing a standardised 
mechanism for interoperating with C. This is done through an intrinsic module named 
iso_c_binding that contains information about the type parameter values for intrinsic 
types. There are also mechanisms for ensuring the compatibility of memory address 
pointers and of global and passed data. Finally, there is also a consistent way to call 
Fortran procedures from C and vice versa with Fortran INTERFACEs offering compile-
time type-checking for passed arguments. 

Whilst this was not formally standardised until Fortran 2003, many Fortran95 compilers 
have supported this interoperability for a number of years. Nonetheless, many 
applications use the “traditional” non-portable linking, partly due to inertia and partly 
because of the perceived (but necessary) complexity of the iso_c_binding module. 

C++ is a much more complicated language than either C or Fortran, so interoperability 
can be more difficult. If the object oriented programming techniques are sparingly used, 
C++ is directly compatible with C and, by extension, with Fortran. If, however, the more 
advanced features of C++ are exploited, interoperability is harder to arrange. Currently, 
most applications do not attempt to mix C++ with C or Fortran as part of the user code. 
Libraries written in either C or Fortran are called from within C++ codes, but this is 
usually achieved by passing pointers to contiguous memory segments that hold the 
relevant data. As such, this mandates the user to abandon, at least temporarily, the OO 
principles of data hiding and encapsulation.  

With no type-checking of passed data, care must also be taken that the same levels of 
precision are used in both Fortran and C. Care must be taken to arrange that passed 
arrays of data are accessed by the two languages in a consistent manner. 

3.1.1.5 Python*
Python and, to a much lesser extent, other scripting languages are being increasingly 
used in HPC applications. In contrast to the previous languages, python is not typically 
used to directly develop key kernels in HPC applications. More usually, it is used either 
as a wrapper to control job launch parameters or as a runtime framework to tie together 



 

© CRESTA Consortium Partners 2011  Page 8 of 55 

  

kernels written in compiled languages. The latter is made possible through the 
integration of, for instance, MPI in python. 

The motivation for this is that python has a reputation (largely justified) for providing a 
way to rapidly and flexibly develop large amounts of code, building on a wide range of 
existing libraries (known as modules). Given the oft-cited rule of thumb that 80% of the 
runtime of a typical scientific application is spent in 20% of the code, python is a 
suitable choice for coding the remaining, non-performance-critical 80% of the 
application. 

Although there is undoubtedly a small performance sacrifice in doing this, the main 
disadvantage to using python in this way is the current lack of efficient parallel runtime 
support. As an example, the startup time of the application can become enormous 
when scaling to large numbers of MPI ranks as each python process separately 
attempts to load the same module files. These problems are surmountable, but as only 
a minority of python users (and developers) are using it in an HPC environment, it is 
not yet clear how this will be achieved. 

3.1.2 Parallelisation%Methods%
Here we introduce the most common methods of achieving parallelism in HPC 
applications. 

3.1.2.1 OpenMP*
The OpenMP API [3] is arguably the simplest model for adapting a serial application to 
allow it to utilise multiple compute cores in parallel, with the key restriction that these 
cores must operate on the same memory address space: it can be used to parallelise 
code within multi-core workstations or single nodes of larger system. To be effective for 
large-scale problems it must be combined with other “distributed-memory” 
parallelisation techniques. 

Before the emergence of the OpenMP standard, there were several hardware vendors 
offering shared-memory systems but each provided a different compiler with different 
sets of directives to allow use of multiple threads or vector units, making it hard to write 
portable code. The OpenMP forum, consisting of major vendors plus academic 
organisations, released the first OpenMP standard (supporting Fortran only) in October 
1997, followed by a revision supporting C/C++ in 1998. Further revisions since then 
have improved, clarified and expanded the standard.  

The model is based on the concept of “threads”, which are like processes, except that 
they can share memory with each other (as well as having private memory).  While 
serial applications only follow a single thread of execution (and hence only utilise a 
single core), OpenMP allows the use of multiple threads, with the idea that the work in 
the application can be distributed onto multiple cores.  OpenMP provides a set of 
extensions to Fortran, C and C++, consisting of compiler directives, runtime library 
routines and environment variables. 

The parallel region is the basic parallel construct in OpenMP, which defines the section 
of the program that is to be executed in parallel. The program begins execution on a 
single thread (the master thread), and when the first parallel region is encountered, the 
master thread creates a team of threads. Every thread executes the statements inside 
the parallel region. At the end of the parallel region, the master thread waits for the 
other threads to finish, and continues executing the next statements. OpenMP has 
directives that indicate that work should be divided up between threads. Since loops 
are the main source of parallelism in many applications, OpenMP has extensive 
support for parallelising loops. A Fortran example is as follows: 

!$OMP=PARALLEL=
!$OMP=DO==
do=i=1,n=
==b(i)===(a(i)Fa(iF1))*0.5==



 

© CRESTA Consortium Partners 2011  Page 9 of 55 

  

end=do=
!$OMP=END=DO==
!$OMP=END=PARALLEL=

Without the directives inserted, the loop would just execute on a single core. The 
combination of the “parallel” and “do” directives instruct the compiler to split the loop 
into multiple sub-loops, to be executed by multiple threads in parallel. The number of 
threads to be used can be controlled through an environment variable or runtime 
routine, and there are a number of options to control which loop iterations are executed 
by which threads. It is up to the programmer to ensure that the iterations of a parallel 
loop are independent. Only loops where the iteration count can be computed before the 
execution of the loop begins can be parallelised in this way. 

Recent versions of OpenMP also support the concept of tasks, which provide a 
mechanism for parallel execution of code regions where loop-based decompositions 
are not suitable. The concept of "tasks" was added to the OpenMP standard when version 3.0 
was released in 2009. OpenMP tasks allow the parallelisation of certain types of algorithms that 
are not amenable to straightforward use of loop directives (for example the traversal of linked 
lists or trees, with operations on each element). The task construct defines a section of code to 
be packaged up for execution. Multiple tasks can then be executed in parallel by the multiple 
threads in a parallel region. A new "task wait" directive provides a mechanism to instruct the 
program to wait until all tasks have been completed. 

The concept of threads is wider than OpenMP, and it is possible to incorporate 
threaded programming into sequential programs using lower level APIs such as POSIX 
threads (pthreads) (on UNIX platforms) but such APIs are typically involve more 
complex programming, are not fully cross-platform and cross-language (in particular 
use within Fortran is not straightforward). OpenMP is a portable higher-level 
abstraction (which, depending on the implementation, may utilise such lower-level APIs 
internally). 

The OpenMP approach can be attractive as a way to add incremental parallelism to an 
application without significant changes. 

3.1.2.2 Message*Passing*Interface*
It is usually only practical to use OpenMP to parallelise within a single node of a 
system. To utilise multiple nodes, each with its distinct memory address space, a 
distributed–memory parallelisation technique is required. Such methods must include 
mechanisms for data to be transferred between nodes: i.e. for messages to be passed. 
The effective message-passing standard is the Message Passing Interface (MPI) [4]. 

In the 1980s and early 1990s there emerged several message-passing systems with 
differing syntax but similar goals. MPI was the first effort to produce a message-
passing interface standard across the whole parallel processing community. Sixty 
people representing forty different organisations collectively formed the “MPI Forum” in 
1992. A two-year process of proposals, meetings and review resulted in a document 
specifying a standard Message Passing Interface (MPI). 

The message-passing model is based on the notion of processes. One can think of a 
process as an instance of a running program, together with the program’s data. 
Parallelism is achieved by having many processes co-operate on the same task. Each 
process has access only to its own data – i.e. all variables are private. Most message 
passing programs use the Single-Program-Multiple-Data (SPMD) model, where all 
processes run the same program and each process has a separate copy of the data. 
To make this useful, each process has a unique identifier and processes can follow 
different control paths through the program, depending on their identifier (called the 
“rank”).   

Processes communicate with each other by sending and receiving messages through 
library calls from the conventional sequential language such as Fortran, C or C++. In 
the simplest case one process would call the MPI_Send routine to send data while 



 

© CRESTA Consortium Partners 2011  Page 10 of 55 

 

another calls MPI_Recv to receive data. These calls must correspond, leading to the 
description of MPI as a “double-sided” communication model. The MPI library functions 
take as arguments, pointers or references to the data structures as well as other 
information such as the amount of data and the destination/source rank. There are 
variants to these library calls to give more control and flexibility to tune performance 
and manage more complex patterns. There also exists a range of functionality for other 
operations, such as the initialisation/finalisation of parallel executions, synchronisation, 
and “collective communications” involving groups of processes (e.g. one process 
broadcasting data to all others). 

MPI is very powerful and flexible: it gives the programmer intricate control to develop a 
complex parallel program spanning many nodes, and this is why it has become the 
most popular technique on large-scale supercomputers. This is at the expense of 
complexity: since it is up to the user to fully manage the distinct memory spaces and 
task decompositions, MPI programs can become very involved. Also moving an 
existing application to MPI often requires significant code changes (in comparison to 
adding OpenMP). 

3.1.2.3 Hybrid*Programming*and*Interoperability*of*OpenMP*and*MPI*
Modern systems are comprised of multiple nodes, each with multiple cores and shared 
resources such as memory. OpenMP programs are usually restricted to a single such 
node, while MPI programs can span multiple nodes. The simplest way to utilise all 
cores using MPI is to run with the same number of MPI processes as cores, i.e. treat 
each core, and associated memory, as a separate “partition” of each node, and not to 
differentiate between intra- and inter-node communications at the program level 
(although a well-written MPI library might well do so behind the scenes).  Alternatively, 
one can run with a “hybrid” program containing a combination of MPI and OpenMP. In 
this case there would be less MPI processes than physical cores, and each MPI 
process would consist of multiple threads, to ensure utilisation of all cores. A typical 
configuration is one MPI rank per node or CPU. 

Performance can benefit from this approach in a number of ways [5]. By using fewer 
MPI ranks per node, the memory requirements of the application can be reduced, 
allowing larger local sub-problems in the parallel-decomposed problem and making the 
performance less reliant on the memory bandwidth. The increased local problem size 
can increase the efficiency of the local computation. It can also allow further strong 
scaling of applications that had reached the limits of their parallel decomposition. Using 
fewer MPI ranks per node also reduces network traffic, which may have particular 
benefits in collective operations (depending on how the MPI library is written). 

The advantages are system and implementation dependent, but are expected to 
become increasingly important as the number of cores per node increases (as is the 
trend; see CRESTA Deliverable D2.1.1 “Architectural developments towards Exascale” 
for further discussion). 

3.2 Current!Programming!Model!Usage!
3.2.1 PRACE%Survey%
The Partnership for Advanced Computing in Europe (PRACE) project is tasked with 
implementing a pan-European High Performance Computing service and the 
necessary infrastructure [6]. A PRACE deliverable was published in February 2011 that 
contained the results of surveys designed to gather information on the active HPC 
systems in Europe, usage profiles and details of the applications using these systems 
[7]. 



 

© CRESTA Consortium Partners 2011  Page 11 of 55 

 

 
Figure 1: Application base languages. Reproduced from [7]. 

Each of the major European HPC service providers was surveyed on applications 
accounting for greater than 5% of system utilisation. Information was gathered relating 
to a total of 57 distinct applications. Figure 1 shows base language utilisation (noting 
that the total number is higher than 57 since some applications use more than one 
base language). In can be seen that Fortran, C and C++ account for the vast majority 
of total usage, with Fortran (Fortran 90/95, Fortran 77) being the most popular, followed 
by C (C90 + C99) and then by C++. The only other reported language is Python, used 
in a few applications. 

 

 
 

Figure 2: Application parallelisation methods. Reproduced from [7]. 

Figure 2 shows the breakdown by parallelisation method. It can be seen that the vast 
majority of applications used MPI: some of these in combination with OpenMP. Sole 
OpenMP usage was small (which is not surprising since the systems involved are 
typically used for relatively large parallel jobs, and OpenMP is suitable for intra-node 
parallelisation only). The only other reported parallelisation method was that one 
application used Posix threads (combined with MPI). 

A comparison with 2008 PRACE survey shows that there has been an increase in the 
proportion of the applications using C or C++ compared to those using Fortran. The 
proportion of applications using hybrid MPI and shared memory has increased also 
compared to the 2008 PRACE survey. The longevity of parallel HPC simulation codes 
makes it unlikely that there will be major shifts in these patterns over the next five to ten 
years. 



 

© CRESTA Consortium Partners 2011  Page 12 of 55 

 

 

Therefore, the results of this survey indicate that the vast majority of applications use 
the traditional programming methods and models described in the preceding section.  

3.2.2 CRESTA%CoDDesign%Applications%
In this section, we briefly summarise the languages and parallelisation methods used in 
the CRESTA co-design applications. As for the PRACE applications, all use the 
“traditional” programming models already described. Further details on this may be 
found in the report accompanying CRESTA Deliverable D2.6.1 “CRESTA benchmark 
suite”. 

3.2.2.1 GROMACS*
GROMACS is written in C and C++, with optional inline x86 assembly code and/or 
CUDA. Parallelism is a hybrid of MPI and OpenMP. 

3.2.2.2 ELMFIRE*
ELMFIRE is mainly written using Fortran90, with some C used for auxiliary functions. 
The code is single-threaded, with pure MPI parallelism. 

3.2.2.3 HemeLB*
HemeLB is written in C++ with parallelism via MPI. A hybrid version, mixing OpenMP 
with MPI, is expected in the early part of the CRESTA project. 

3.2.2.4 IFS*
IFS combines Fortran (Fortran90 and Fortran95) with C. The parallelism is 
implemented using a hybrid of MPI and OpenMP. 

3.2.2.5 OpenFOAM*
OpenFOAM is implemented using C++ with parallelism via MPI only, although some 
work has been done on hydridising certain solvers using OpenMP. 

3.2.2.6 Nek5000*
Nek5000 is written using FORTRAN77 and C. Parallelism is via MPI only. 

3.3 Suitability!for!Future!Architectures!
3.3.1 Increasing%Numbers%of%Cores%
The PRACE survey discussed in Section 3.2.1 contained another interesting finding. 

 
Figure 3: Distribution of total utilisation, in terms of number of cores used per application.  

Reproduced from [7]. 

Figure 3 shows a profile of application sizes, in terms of numbers of cores used; 84% 
of the applications use less than 8192 cores.  The peak performance of today’s 



 

© CRESTA Consortium Partners 2011  Page 13 of 55 

 

processors is of the order of 10 GFlops/core. Therefore, in order to scale to an exaflop 
using today’s CPUs, applications would have to scale to at least 100 million cores.  
This highlights the problems we face going forward: even if it were possible to build 
exascale systems with standard CPU technology, there is an enormous gap in terms of 
how well applications can scale today and how well they would have to scale to utilise 
an exaflop.  

3.3.2 Vector%Hardware%
To maximise performance on current and future computing systems, applications must 
fully exploit each microprocessor in the system, whether it is using a desktop PC or the 
largest of supercomputers. This means exploiting the parallelism within the chip not just 
at the "core" level (i.e. running across all cores in parallel) but also, crucially, at the 
"vector" level (taking advantage of the fact that each "core" can simultaneously process 
vectors containing multiple data elements). The latest CPUs from Intel and AMD can 
typically process (double precision data type) vectors of length 4 concurrently. This will 
increase with future products; the upcoming Intel MIC architecture will debut with vector 
length of 8. Current Graphics Processing Units (see following section) already process 
larger vectors (albeit described with different terminology): the latest NVIDIA GPUs 
operate on "warps" of size 32. Therefore, it is increasingly important that applications 
are able to actually exploit such vector-level parallelism. Traditional languages such as 
C and Fortran do not have any mechanisms for exposing this vector-level parallelism; 
instead there is reliance on compiler auto-vectorisation. However, without extra 
information and assurances from the programmer compilers often find this a difficult 
task unless code is written in a very specific way. 

3.3.3 Accelerated%Hardware%
Some early HPC architectures treated special-purpose hardware as an attached 
resource (for example the AMT DAP) that could be used for parts of an application that 
could be mapped to the specialist hardware.  Increasing miniaturisation has resulted in 
a family of small integrated products (FPGAs, DSPs and GPUs) that can be integrated 
on the processor board or attached via a PCI expansion card.  One of the most 
promising is the Graphics Processing Unit (GPU, sometimes also called a General 
Purpose GPU, or GPGPU) which is an attractive proposition as a target to offload 
computationally demanding sections of an application running on a standard CPU. 

GPUs were originally designed to display computer graphics, but they have developed 
into extremely powerful chips capable of handling demanding, more general-purpose 
calculations.  The GPU architecture is somewhat different to that of the more familiar 
CPU. Much more space on the silicon is devoted to computation: each GPU possesses 
hundreds of cores of a much simpler design than a full-featured CPU. Also, GPUs use 
“Graphics Memory”, which is much faster at loading data than the traditional memory 
used by CPUs; memory performance being a very important aspect for many scientific 
applications. These differences offer great opportunities for boosting the performance 
of scientific applications, but at a cost in terms of software development effort; GPUs 
cannot be programmed with traditional computing languages, and delicate tuning is 
needed to fully exploit GPUs. This is because the simple GPU cores lack the CPU’s 
considerable logic devoted to managing out-of-order execution. As a consequence, 
code must be tailored to fit a narrow hardware performance window, or suffer a very 
long execution time. This is true of many other accelerators as well, including Intel’s 
MIC family. 

A particular challenge (at least with current GPUs) is caused by accelerators having 
their own memory space, so the programmer must manage the memory transfers to 
and from the accelerator; a task that is not supported in traditional programming 
languages. In future products, there will probably be closer integration between CPU 
and GPU hardware, perhaps alleviating this issue, although it is an open question as to 
whether cache-coherency will be achievable for the CPU and GPU. 



 

© CRESTA Consortium Partners 2011  Page 14 of 55 

 

3.3.4 Node%Level%Computational%Performance%
The increasing performance of future systems is likely to come largely from increased 
performance at the node level, rather than dramatic increases in the number of nodes. 
In the short term we will see increasing number of CPU cores per node, possibly 
combined with accelerators consisting of high numbers of simpler, GPU-like cores. In 
the longer term we may well see closer integration, or a blurring of the distinction 
between CPUs and accelerators, but nevertheless each node will likely contain small 
numbers of sophisticated CPU cores plus high numbers on simplistic number-
crunching cores. The memory per node will increase, but not at the speed of the 
computational increase, i.e. the memory per core will decrease. Further information on 
these trends can be found in CRESTA Deliverable D2.1.1 “Architectural developments 
towards Exascale”. 

The commonly-used method of using a separate message-passing task per core, and 
subsequently partitioning the memory, is unlikely to be appropriate or feasible on very 
high numbers of simple cores due to memory, computational and/or communication 
overheads. A more natural way to abstract the hardware is to use a hybrid model with 
small numbers of message-passing tasks on each node comprising larger numbers of 
some sort of lightweight threads. 

3.4 Novel!Programming!Methods!
3.4.1 Partitioned%Global%Address%Space%(PGAS)%Languages%
PGAS languages differ from the “traditional” models described above by introducing 
the concept of a global memory space that is partitioned between the participating 
processes (like ranks in MPI), with each process able to access both local and remote 
memory. Access to local memory is via standard sequential program mechanisms, and 
access to remote memory is directly supported by the new features of the language 
and is usually done in a “single-sided” manner (unlike the double-sided, matched 
send/receive API of, for instance, MPI). This not only enables (in principle) more 
productive parallel programming, it also allows the compiler to perform type checking 
and to optimise communications, since the compiler is aware of both the computation 
and communication requirements of the source. There are no penalties for local 
memory access. The single-sided programming model is more natural than the 
message-passing alternative for some algorithms, and it is also a good match for 
modern networks that support Remote Direct Memory Access (RDMA), potentially 
offering performance advantages over message-passing techniques. 

3.4.1.1 CoNArray*Fortran*
Fortran Co-Arrays are an example of a PGAS model and a relatively new mechanism 
for performing communications in parallel Fortran applications. The Co-Array Fortran 
model [8] was introduced in its current form in 1998 as a simple extension to the 
Fortran 95 language, and a subset of core features was formally integrated into the 
Fortran 2008 standard (where the spelling was changed to “coarray”). The expectation 
is that additional features will be published in a Technical Specification in due course. 
At this time, there is limited availability of Fortran implementations that support 
coarrays, although since they are now part of the standard the situation is expected to 
improve.  

Co-array Fortran programs follow a Single Program, Multiple Data (SPMD) model: like 
MPI, a single program is replicated a fixed number of times. Each replication is referred 
to as an “image”, and images are executed asynchronously. The execution path may 
differ from image to image: each image has a unique identifier that can be used in 
control statements. A new, co-dimension syntax is used in addition to the standard 
array dimension syntax. For example, 

real=::=x(10)[*]=

declares a co-array that has a (standard) dimension of size 10 on each image. The 
square brackets define the codimension, with * allowing the number of images to be 



 

© CRESTA Consortium Partners 2011  Page 15 of 55 

 

specified when the job is launched. There is a separate copy of x on each image which 
can be locally accessed in the normal way (e.g. x(4) refers to the 4th element of the 
local x array). The co-dimension syntax allows remote memory accesses, e.g. x(4)[j] 
will access the fourth element of x on the jth  image, which will be a remote access for 
all images except image j. There are a number of additional features, e.g. regarding 
synchronisation of images and the retrieving of information about images. 

3.4.1.2 Unified*Parallel*C*
Unified Parallel C (UPC) [9] is analogous to Co-array Fortran in the sense that it 
extends the C programming language to provide support for explicit parallelism and the 
ability to access remote, as well as local, memory.  However, there are differences in 
the way that this is done. Furthermore UPC is not part of the C standard, but instead an 
extension to the language. Both commercial and open source compilers are available.  

Similarly to CAF, UPC is a PGAS model and programs operate in Single Program, 
Multiple Data (SPMD) fashion: multiple processes execute the same program, but the 
execution paths can differ. Whereas CAF uses the term image to refer to one process, 
UPC uses the term thread (noting this has a different meaning to, e.g. OpenMP 
threads).  To allow threads to access both local and remote memory, UPC provides at 
the program level the concept of two memory spaces: private and shared. Objects 
declared in private memory space use regular C declarations, e.g.  

int=x;=//=private=variable=

and are only accessible by a single thread. Objects declared in shared memory space 
using the “shared” identifier, e.g. 

shared=int=y;=//=shared=variable=

are accessible by all threads. The shared memory space is used to communicate 
information between threads. All threads can directly access shared data, even if it 
resides in a remote location. UPC creates a logical partitioning of the shared memory 
space, and shared objects have affinity to a specific thread. Shared arrays can be 
declared with the affinity distributed between threads (and additional syntax allows 
control over the specific decomposition). This affinity corresponds to physical locality: 
better performance will be realised when a thread accesses data to which it has affinity 
(i.e. it resides on the local node) compared to when it accesses data which has affinity 
with another thread (which resides on a node on which that thread is running). It is up 
to the programmer to always keep data locality and affinity in mind when designing 
programs that perform well. 

Computation on shared distributed arrays can be shared among a set of threads. UPC 
has built-in mechanisms for explicitly distributing and sharing work, such as a forall 
loop, similar to a standard for loop in C but with the loop iterations distributed. There 
are a number of additional features, e.g. regarding synchronisation. 

3.4.1.3 OpenSHMEM*
Whilst it is not exactly a PGAS language, there is increasing interest in the SHMEM 
communications model, which can be called from any of the traditional programming 
models via library API calls.  SHMEM provides a SPMD execution model (like CAF and 
MPI), with a single-sided model of communications. The recently formed OpenSHMEM 
standards group [10] is currently finalising version 1.0 of an OpenSHMEM standard, 
unifying a number of vendor-specific variants. 

3.4.1.4 Interoperability*
On many HPC systems there is considerable advantage in using PGAS languages. 
Given that CAF and UPC are extensions to existing, interoperable languages it is 
reasonable to expect some degree of interoperability between the parallel 
programming models, especially as (on a given platform) they probably share a 
common underlying software stack. Interoperability would allow users to incrementally 



 

© CRESTA Consortium Partners 2011  Page 16 of 55 

 

port their application, assessing performance and productivity advantages as they do 
this. Having to completely rewrite an application in a relatively untested (at least from 
most users’ point of view) programming model is a significant barrier to widespread 
adoption. 

The main problem with such interoperability is that each of the languages and 
parallelisation models is standardised in isolation, and no standard formalises this 
interaction with other programming models.  

In most (if not all) implementations, CAF interoperates with MPI. The image number 
corresponds directly with the MPI rank. This makes it simple to replace MPI send 
operations with CAF puts. This allows incremental porting of a Fortran MPI code, taking 
advantage of the PGAS features where appropriate. In practice, however, the 
interoperability can be complicated by the use of MPI features like subcommunicators 
and datatypes.  

The same statements hold for the interoperability of SHMEM with MPI and with CAF. 

It is possible for there to be some degree of interoperability between UPC and MPI 
and/or SHMEM, but this is not well explored at present. 

3.4.1.5 Other*PGAS*Languages*
Co-Array Fortran and UPC can be regarded as PGAS extensions to the traditional 
Fortran and C languages respectively. There also exist other, more radical, PGAS 
languages that are currently less mature and popular. Three of these emerged from the 
DARPA-led High Productivity Computing Systems programme: X10, Fortress and 
Chapel. X10 [11] is a parallel object-oriented language originally developed by IBM. 
The syntax is very close to Java and C++, but the language provides parallel 
programming concepts such as “places” which provide an abstraction of some subset 
of the hardware and “activities” that execute efficiently on that subset. Fortress [12], 
originally created by Sun Microsystems, also provides a global-view of the parallel 
program, and it uses the terminology of a “location” to refer to a specific memory space 
and the threads operating on that memory space. The Fortress syntax, though, is quite 
different to X10: it is an evolution of Fortran that aims to closely resemble mathematical 
operations, and hence be a productive tool for scientists. If developers can program 
using high-level mathematical concepts then underlying parallel implementation can be 
handled implicitly.  

Chapel [13] aims to improve the programmability of parallel computers by allowing a 
higher level of algorithmic expression and by improving the separation of this from the 
details of how data is distributed across the system. A particular feature of Chapel is 
“multi-resolution”: users initially write very abstract code and then incrementally add 
more detail until they are as close to the machine as their (performance) needs require.  

Whilst Chapel has an imperative block structure (as in Fortran, C and C++), it currently 
lacks interoperability with other programming models, as do the rest of these novel 
languages, which is a considerable barrier to widespread uptake and exploitation.  

3.4.2 GPU%Programming%Models%
Systems in which the traditional CPUs are augmented by Graphics Processing Units 
(GPUs) are becoming more common. The GPU acts as an “accelerator” to the CPU: 
most lines of application source code are executed on the CPU (using the standard 
serial computing model of computation) and key computational kernels are executed 
on the GPU (using the stream computing model of computation), taking advantage of 
the large number of cores and high graphics memory bandwidth on offer, with the aim 
that the code as a whole performs better than if the CPU was used alone.  

In the November 2011 edition of the Top 500 Supercomputer rankings [14], 37 of the 
500 systems were of this nature. Of these, 35 contained GPUs manufactured by 
NVIDIA while the remaining 2 contained GPUs manufactured by AMD. 



 

© CRESTA Consortium Partners 2011  Page 17 of 55 

 

3.4.2.1 NVIDIA*CUDA*
Compute Unified Device Architecture (CUDA) [15] is the proprietary interface to the 
NVIDIA architecture, and consists of extensions to C/C++ that allow interfacing to the 
GPU hardware. An analogous Fortran version of CUDA (“CUDA Fortran”) is available 
as a commercial third-party product from the Portland Group compiler vendor [16]. 

GPUs operate under the “stream computing” model of computation, where the data set 
is decomposed into a stream of elements. A single computational function (or kernel) 
operates on each element: multiple cores can process multiple elements in parallel. 
This model is obviously only suitable for data-parallel problems. The NVIDIA GPU is 
partitioned into Streaming Multiprocessors (SMs), with multiple “CUDA cores” per SM, 
which operate in a vector fashion. There are less scheduling units than cores on each 
SM and threads are scheduled in “warps” of size 32. Threads within a warp always 
execute the same instruction in lock-step (on different data elements). In CUDA, this 
hardware is abstracted as “Grid” of “Thread Blocks”. The multiple blocks in a grid map 
onto the multiple SMs. Each block in a grid contains multiple “threads”, mapping onto 
the cores in an SM. CUDA extends C with the required new syntax for specifying 
grid/thread block decompositions, defining and launching kernels, and managing data 
transfers between the separate CPU and GPU memory spaces. 

We illustrate by way of simple example. Consider the following sequential vector 
addition loop: 

for=(i=0;i<N;i++){=
==c[i]===a[i]=+=b[i];=
}=

To run this on the GPU using CUDA, we first need to use CUDA API calls to allocate 
memory on the GPU, and copy the a and b arrays to the GPU memory. Then we 
launch a kernel on the GPU: 

vectorAdd<<<N/256,=256>>>(a,=b,=c);=

and finally, again using API calls, copy the c array back to the CPU and free GPU 
memory. The <<<…>>> notation is used to define the decomposition of loop iterations 
over the parallel threads. Here, we have specified a 1D decomposition (where 2D and 
3D decompositions are also possible), with 256 threads per block, and N/256 blocks. 
The vectorAdd kernel is defined as a function with the __global__ qualifier: 

__global__=void=vectorAdd(float=*a_gpu,=float=*b_gpu,=float=
*c_gpu)=
{=
==int=i===blockIdx.x=*=blockDim.x=+=threadIdx.x;=
==c_gpu[i]===a_gpu[i]=+=b_gpu[i];=
}=

where the internal variables threadIdx.x and blockId.x are unique thread/block 
identifiers, and blockDim.x is the number of threads per block. The kernel is therefore 
executed by each of the N threads, with each thread responsible for a single element of 
the vector. 

As this example demonstrates, CUDA is very powerful in providing functionality to 
flexibly utilise the GPU hardware, but has the serious caveat that the resulting code is 
much more complex than the equivalent CPU code. 

3.4.2.2 OpenCL*
Open Compute Language (OpenCL) [17] is a cross-platform API that can be used to 
program not just GPU-accelerated systems, but also other heterogeneous and/or 
multicore architectures. When used to program GPU accelerated systems, the model is 



 

© CRESTA Consortium Partners 2011  Page 18 of 55 

 

very similar to that of CUDA. There are similar abstractions and basic functionality, with 
differing terminology, e.g. a “Thread” in CUDA is expressed as a “Work Item” in 
OpenCL. The key advantage of OpenCL over CUDA is that it is portable to other 
systems, such as those utilising AMD GPUs, although adaptations still may be required 
for performance. At this point in time CUDA remains more mature and well 
documented for use on NVIDIA systems. OpenCL addresses the hardware at a slightly 
lower level, resulting in more work for the programmer. For example, OpenCL does not 
add any new language syntax so the launching of each kernel involves a series of 
library calls; in CUDA this is hidden from the user by use of the <<<…>>> syntax (see 
the previous section). 

3.4.2.3 Accelerator*Directives*
Directive-based programming of GPUs and other accelerating co-processors is a 
relatively new, high-level programming model that provides an alternative to rewriting 
applications in GPU-specific languages (such as CUDA or OpenCL). As has been 
discussed above, the vast majority of large-scale, parallel scientific codes are written in 
the traditional HPC languages Fortran, C and C++. Many of the algorithms used are, or 
can be made to be, extremely suitable for running on the vector-like architectures of 
GPUs. Rather than rewriting, a better approach (from a developer productivity 
viewpoint) is to provide a mechanism for compilers to generate executables that can 
run on the GPU from the original source code.  

Most accelerators have a radically different architecture to a typical CPU. In particular, 
they have a narrow performance range, and kernels with the wrong loop structure or 
pattern of memory access will run with extremely low efficiency. It is unlikely, then, that 
any compiler would be able to automatically generate efficient executables for the 
accelerator without guidance from the application developer. Accelerator directives 
provide a mechanism for the developer to add such guidance for the compiler, by 
means of non-executable statements (specially-constructed comments) in the code. A 
non-accelerating compiler that targets a CPU would ignore these, but an accelerating 
compiler can interpret these as prescriptive or suggestive information that control the 
creation of kernels that will execute on the accelerator. 

Directive-based programming models are not new and OpenMP provides a good 
example that such models can be successful, both in terms of allowing the compiler to 
generate efficient code and in being widely adopted by the user communities. 

The first widely available accelerator directive programming models were vendor-
specific, from PGI [18] and CAPS [19]. Whilst these both have some use, widespread 
uptake requires vendors to feel that the programming model(s) have some permanency 
via an external standardisation process. There are currently two such efforts on-going. 

The first is via the established OpenMP Architecture Review Board (ARB) standards 
committee [3]. A subcommittee was established to develop an extension to the existing 
OpenMP 3.0 standard that would target a wide class of possible accelerators. This 
would include GPUs, but also address other accelerators e.g. digital signal processors 
(DSPs). The work of this committee is on going, with a draft standard being discussed 
in weekly or biweekly conference calls. The basis for this draft standard was the PGI 
directive model, but almost all large-scale compiler vendors are represented. 

More recently, it was recognised that while the OpenMP specification evolved, there 
was a need for a minimal, interim standard to serve early adopters of the directive-
programming model. This would provide a published document describing the model 
(as opposed to the fluid draft OpenMP proposal) and would allow portability of code 
between multiple compiler vendors. 

To this end, the OpenACC standard [20] launched in November 2011, with support 
from NVIDIA (as GPU hardware manufacturer) and compiler developers Cray, PGI and 
CAPS. 

For most simple examples, the differences between all these programming models are 
largely semantic. By way of example, we focus on using OpenACC directives to 



 

© CRESTA Consortium Partners 2011  Page 19 of 55 

 

accelerate a two-dimensional stencil calculation followed by calculation of a residual 
(ignoring the fact that really only one loopnest is required for this simplistic example): 

!$acc=data=copyin(b)=copyout(a)=
!$acc=parallel=loop=
DO=i===2,NF1=
==DO=j===2,MF1=
====a(i,j)===b(i+1,j)=+=b(iF1,j)=+=b(i,j+1)=+=b(i,jF1)=
==ENDDO=
ENDDO=
!$acc=end=parallel=loop=
residual===0=
!$acc=parallel=loop=reduction(+:residual)=
DO=i===2,NF1=
==DO=j===2,MF1=
====residual===residual=+=a(i,j)=
==ENDDO=
ENDDO=
!$acc=end=parallel=loop=
!$acc=end=data=

Each loopnest is compiled as a kernel on the accelerator. The compiler chooses a 
default loop schedule (division of loop iterations across the computational cores of the 
accelerator). Optional clauses on the directives can be used to influence this choice. As 
in traditional OpenMP, reduction variables are identified using an appropriate clause. 

Given the separate memory spaces of the CPU and GPU, good performance can only 
be gained by minimising data transfers. The enclosing data region instructs the 
compiler to minimise data traffic by only moving the data arrays before or after the two 
kernels (rather than for each one), and movements are tuned to match the read-only 
and write-only use of the arrays in the loopnests. If a variable (scalar or array) is not 
mentioned in a data region, data movement occurs at the boundaries of the parallel 
loop region. 

With this level of control, the compiler has the potential to deliver code that performs 
well on the GPU as well as on the CPU. The developers of the Cray compiler, for 
instance, expect accelerator directive-generated code to typically deliver 90% or more 
of the performance of an equivalent code hand-written in CUDA. 

Being based on the original source code, interoperability of the generated kernels with 
the host, CPU code is assured. More importantly, there is increasing work to support 
interoperability of the directive-based model with more established GPU-targeted 
programming models like CUDA. 

 



 

© CRESTA Consortium Partners 2011  Page 20 of 55 

 

4 Compilation!and!Runtime!Environments!
4.1 Compilers!for!Exascale!Computing!
The fundamental job of a serial compiler is to take the programmer's high-level, 
generic, human-readable source-code description of some algorithm or operation and 
translate it into low-level machine code that is specific to a particular CPU architecture. 
In order to be as general-purpose as possible, modern compilers defer the 
architecture-specific aspects to a very late stage, performing code transformations 
using some architecture-neutral intermediate representation of the source code. 
Compilers also deal with multiple high-level languages by converting all of them to the 
same intermediate representation. 

Modern compilers are all generally good at improving code performance through 
“classical” optimisation techniques such as removal of redundant code, storing 
temporary values in registers rather than memory, function inlining, loop unrolling etc. 
However, the ever increasing gap between the rate at which CPUs can issue 
instructions and the speed of DRAM means that the limiting factor in many codes is the 
way in which data is read from and written to memory, rather than the rate at which 
floating-point instructions are issued. This means that the most important optimisations 
concern how user data is laid out in memory and how it is accessed within loops. 

Most compilers can already address some of these issues. For nested loops, the loop 
ordering may be changed so that memory access is done efficiently (e.g. to match 
Fortran row-major array storage order). Loops may be split into many separate chunks 
(a technique called “tiling”) to improve data re-use and make better use of the CPU's 
caches. Prefetching may be inserted to load data from memory well before it is 
required to try and hide memory latencies. However, all these classical techniques 
suffer from three major limitations.  

Firstly, the executable is generated based purely on the information in the source code. 
In reality the optimal set of loop transformations depends critically on the dimensions of 
the arrays being processed and the extents of the loops being executed. In many 
cases these are not known at compile time and will depend on the data set. Since a 
single application is typically run against multiple data sets this implies that separate 
executables may be required for different runs of the same code. It is possible to 
generate a single executable containing multiple versions of a routine and choose the 
most appropriate one at runtime based on the specific input parameters. However, this 
technique cannot cope with the huge number of possible options for real codes. 

Secondly, the compiler is optimising against some theoretical model of the CPU 
architecture, e.g. it may assume that a certain amount of cache is available per core 
and tile the loops to fit this size. This may have been effective in the past with simple 
memory architectures, but modern multicore processors are becoming so complicated 
that it is almost impossible to make accurate predictions about achieved performance 
from simple theoretical models. 

Thirdly, all the optimisations performed are local, i.e. confined to the operations 
performed in a particular function, set of loops or basic code block. Since memory 
access patterns have such a large impact on performance, global choices such as the 
order in which array dimensions are defined can also be extremely important. Although 
a compiler can perhaps change the order of loop execution over the various 
dimensions of an array, it cannot change the order in which these dimensions are 
declared. In many cases the loop order may be fixed due to the requirements of the 
algorithm. In such cases the only way to improve memory access patterns is to change 
the array declarations, but currently this can only be done by the programmer as it has 
global consequences for the correctness of the entire program. These layout issues are 
becoming even more relevant as the optimal loop ordering for GPU accelerators (to 
enable the memory coalescing that is essential to achieving good performance) is often 
the opposite of that required for cache-based microprocessors (to enable stride-1 
access). 



 

© CRESTA Consortium Partners 2011  Page 21 of 55 

 

A possible solution to the first two problems is to change the way in which the compiler 
chooses its optimisation strategy. Rather than trying to predict the performance of 
various optimisations based solely on the source code, an empirical method is adopted 
where an executable is generated and the performance measured by running it on the 
target CPU with a real data set. Code optimisation then becomes a classical discrete 
optimisation problem, searching for the optimal value of some objective function (e.g. 
minimum runtime) against a set of integer variables (e.g. the size of each loop tile, the 
unrolling factor of each loop etc.). Note that this approach can easily be applied to any 
other experimentally measurable metric, e.g. minimum energy consumption or 
minimum memory footprint. 

This approach has been investigated in a previous study - crucial to its feasibility is that 
it “requires a compiler to be able to generate different codes rapidly during the search 
by adjusting parameter values, without costly compiler reanalysis. It also demands that 
the compiler have a clean interface to a separate parameter search engine" [24]. The 
CHiLL framework is used which represents loops from real codes in a symbolic form 
that is amenable to various transformations. These transformations are specified in a 
separate script and might include swapping the order of some loops, tiling them with a 
specified tile size and unrolling others by some given length. Given this script, CHiLL 
can perform source-to-source translation of a program that is then compiled with a 
standard compiler (where any inbuilt compiler options for loop transformation are 
disabled). 

This must then be coupled with some efficient optimisation framework as exhaustive 
parameter searches are prohibitively expensive. In [24] this is done by the Active 
Harmony system that couples an efficient simplex-based optimisation algorithm with 
the ability to execute many trial runs in parallel on multi-CPU systems. Encouraging 
results have been obtained for common HPC kernels. However, it does not appear that 
this process is entirely automated. Although the system automatically optimises the 
variables that parameterise a CHiLL script, it appears that the script itself must be 
supplied by the programmer. For example, although the optimal tile size might be found 
automatically, it is up to the programmer to decide which loop(s) should be tiled. 

Although it produces efficient code, there is a large overhead to this approach due to 
the need to execute the code in question many times. In [44] an alternative approach is 
taken which initially performs an equivalent empirical optimisation on a training suite of 
selected test codes. The results of these runs are all fed into a machine learning 
system. When compiling a user code (as opposed to one from the training suite), the 
code is compared to the results from the training suite and the best optimisation 
approach is chosen based on the similarity between the user and training codes. The 
role of the machine learning system is to perform this matching based on certain code 
characteristics. The choice of these characteristics is crucial to the success of this 
approach: both static and dynamic features were used, the latter including data from 
hardware performance counters collected during actual runs of the unoptimised code. 

For thread-based programming models this approach can be extended to optimisation 
of parallel codes [44]. In directive-based models such as OpenMP (shared-memory) 
and the new OpenACC API (GPU accelerators), the parallelisation statements include 
various integer parameters specifying the way that the loop should be split up amongst 
threads. Examples include the scheduling type and chunk size for OpenMP or the 
vector length in OpenACC. These parallel parameters can be optimised in an 
analogous way to the serial ones discussed above. Sophisticated techniques also exist 
to predict the general scaling behaviour from runs on a restricted range of threads 
using adaptive neural networks. 

This approach relies on the parallelisation already having been done by the user. In 
[45] this is extended so that the compiler automatically identifies potential parallelism in 
the code in addition to optimising its implementation. This is extremely hard to do from 
a simple static analysis, so the approach here is to actively involve the user. If the 
compiler discovers that parallelisation might be possible, but cannot be certain, it 
prompts the user for input rather than simply reverting to a serial implementation. The 



 

© CRESTA Consortium Partners 2011  Page 22 of 55 

 

user often has additional information (e.g. knowledge of the input data set or the range 
of possible values of certain variables) that can allow for parallelism in the specific 
cases of interest to the user even if it is not possible in general. 

To move from applying these techniques to small kernels up to full-scale applications 
requires additional tools. In [46], standard profilers are used to identify performance 
critical regions, and these code sections are separated out into stand-alone functions 
by the “outlining” tool ROSE. This outlining procedure could in principle be done 
manually, but might become too laborious in practice if the performance profile is very 
flat across the application. Overall performance improvements of more than a factor of 
two are achieved for the SMG2000 benchmark application. Although SMG2000 is a 
reasonable sizeable piece of code (with over 50K source lines), it spends more than 
half its time in a single nest of four loops containing a single line of code. This makes it 
absolutely ideal for optimisation, and it is therefore not clear how well this approach will 
scale to larger, more complicated applications. 

The most elegant way to attack the global problem of optimising the data layouts is for 
the application to employ abstract data types, where the user only specifies the data 
operations and the details of their implementation (e.g. the layout of data in memory) is 
opaque. If a code is written in this way then the optimisation techniques described 
above could be used on the small sections of code that implement the operations. This 
strict distinction between form and function is, however, not very common in most real 
HPC codes where large arrays are declared explicitly in the computation routines and 
accessed directly. In this case, special tools are needed to transform data layouts. 
FTRANS [47] is an example, which does source-to-source translation, requiring the 
user to annotate all array declarations in the original code. Although FTRANS can 
transform array declarations, loop transformations require an additional tool. 

All this work has been done for shared-memory parallel models, whereas any exascale 
machine will have to have a distributed memory architecture to scale beyond a few 
hundreds of cores. The problem for distributed memory is much harder. For example, 
message-passing MPI calls simply appear as generic external functions to a serial 
compiler and there is little that can be done to optimise them: the compiler has no idea 
at all what they do. Although a user could in principle annotate the MPI calls to give 
additional information to the compiler (e.g. specifying when the data required for a send 
operation is ready and when it can safely be overwritten), or be prompted for this 
information by the compiler, this approach does not appear to have been investigated 
in practice. 

PGAS languages should be easier to address as communications are part of the 
syntax and so the compiler has much more information to work with. However, it is still 
a very hard problem and may require additional information (again via directives or 
direct user interaction) to be useful in practice. Such directives could state that a 
particular array is not accessed remotely within a certain section of code, or is only 
read remotely and not written. Although this might be obvious to the programmer, it 
may be difficult or impossible to ascertain purely from the source code. As compilers 
always aim to produce correct code, they have to make pessimistic assumptions 
whenever there is any doubt. A directive of this type is already implemented in the Cray 
compiler for Fortran coarrays [48], stating that a parallel operation does not need to 
complete immediately but can be delayed until the next synchronisation point. Although 
it might appear at first sight that this directive is not needed, a strict interpretation of the 
language standard means that the compiler cannot make what would seem to be 
obvious assumptions in the absence of this additional information. 

In summary, there has been quite a substantial amount of promising work in the area of 
compilers for serial and small-scale parallel kernels. The challenge is in extending 
these techniques to large-scale distributed memory applications such as those in the 
CRESTA benchmark suite. This study needs to be done on the current generation of 
petascale machines in order to select the approaches that may prove successful at the 
exascale. 



 

© CRESTA Consortium Partners 2011  Page 23 of 55 

 

!
4.2 Autotuning!
In the context of this project, autotuning is the process by which an application may be 
optimised for a target platform by making automated optimal choices of how the 
application is built and deployed. Tuning choices can be made that target algorithms, 
source, compilation and application launch. The complexity of today’s software stacks 
and hardware architecture means that the inherent system complexity is outstripping 
the capability and feasibility of the individual programmer to make the optimum 
choices. Automated tuning for a particular architecture makes it much more practical to 
obtain portable performance across a range of target architectures. Furthermore some 
applications have lifecycles beyond a generation of hardware architecture and hence 
the ability to retune an application for a new hardware target would be advantageous 
even if initial deployment was for one particular architecture. This is a very challenging 
problem, as we will see, and typically autotuning has been limited to domain-specific 
libraries, serial optimisations or specific parallel application patterns. We want to 
approach the problem of whole application autotuning where the application is likely to 
be a parallel and possibly hybrid implementation running on an exascale platform.    

Before looking at existing autotuning projects we should consider the areas that are 
amenable to tuning.  These can be divided in various ways but we can look at different 
aspects in turn.  The first consideration centres on choices made by the application 
writer: 

• Choices in algorithm made by developers 
• Algorithm implementation and optimisation choices 
• Scientific Library choices (API to use and library to use) 

For each set of choices made we have a version of source that should be compiled and 
run optimally on the target architecture. Ignoring any parallel aspects for now we can 
use compiler autotuning to optimise the code generation and library autotuning to 
optimise standard libraries in use by the application. Note in particular that the optimum 
tuning choice may depend on the problem size and target machine attributes. The build 
itself is amenable to optimisation with choice of compiler and compiler options. 

Moving into the parallel domain we add decomposition choices, stencil operations, 
consideration of choices in how to perform communication patterns etc. At runtime 
there are launch choices and possibly decomposition choices for a hybrid (for example 
MPI/OpenMP application). 

4.2.1 Novel%Autotuning%Tools%
The most successful attempts at autotuning have been for domain-specific numerical 
scientific libraries.  Notable examples are ATLAS [20] (BLAS), FFT [22] (FFTs) and 
SPIRAL [24] (DSP Algorithms). For library implementations the autotuning boils down 
to making an optimum choice from a set of kernels for a set of problem sizes. The 
library is built using experience from running many experiments to distil what is learned 
into making the correct choice for a given problem size presented to the library. 

Library autotuning is also used to develop commercial products. For example the Cray 
LibSci product includes autotuned implementations of dense and sparse matrix 
operations and FFTs. 

Public domain autotuning implementations are available, for example a combination of 
the Active Harmony framework and the CHILL compiler transformation framework can 
target compiler-based application tuning [24]. Another interesting project is the 
Collective Tuning project [25] which facilitates a machine learning approach to compiler 
optimisation using a database of program features with known performance 
characteristics. 



 

© CRESTA Consortium Partners 2011  Page 24 of 55 

 

Specialised hardware (DSPs and GPUs) have spawned an interest in autotuning, not 
least because various runtime parameters related to kernel launch and memory access 
choices are crucial in obtaining best performance. Some researchers are performing 
rudimentary exhaustive search to find the best parameters and require better 
techniques. The OpenMPC [26] project is an example targeting GPU optimisation. 

Other approaches are very high level, for example the PetaBricks [27] approach of 
incorporating algorithm choice into the language. It is also possible to use domain-
specific abstractions which limit the tuning to the crucial aspects of a given problem 
domain – for example OP2 [27] can usefully use autotuning for the GPU backend. 

4.2.2 Autotuning%in%CRESTA%
Given all this activity there is no one approach that covers all aspects of application 
tuning, there is no consistent way to mark up choices and expose those to an 
autotuning framework and autotuning is not something in the mind of the average HPC 
application developer. 

Our goal is to define such a consistent approach that can target mark-up of choices at 
all the stages mentioned (algorithm choice, source, compilation and launch) and 
hopefully in a way that is not too onerous far the application developer. (This means 
that we need to be able to interoperate with any automated build or metaprogramming 
tools to the extent that proves possible.) In particular we want to pay attention to 
important parallel tuning aspects (stencils, communication patterns etc.). We would 
also support definition of independent tuning spaces, plugin tuners for specific aspects 
and feedback mechanisms required for those tuning frameworks that can optimise 
based on execution metrics (for example performance counter metrics) beyond the 
primary optimisation metric. The ideal situation of the future would be one where the 
application developer thinks of exposing such choices as part of application 
development.  If the DSL we develop is general enough then it can be used to wrap 
specific autotuners without excessive effort. 

We expect to spend some time studying the status of various autotuning projects to 
determine how useful they are to the HPC community in general and to the CRESTA 
application set in particular.  This will also inform the development of the DSL (which 
will be more general than the currently available tools and should also allow us to do 
some integration at a later stage in the project). 

4.3 Runtime!Systems!
The goal of runtime systems is to execute applications having certain features 
efficiently on a specific system eliminating the complexity of managing low-level or 
system-dependent operations such as task scheduling and resource management. 
Runtime systems are expected to play an important role in exploiting exascale 
architectures successfully for two main reasons. In the first place, exascale-computing 
platforms will likely be a heterogeneous mix of CPU and accelerators. Therefore, 
runtime systems are expected to assist programming libraries and compilers to exploit 
a heterogeneous computing platform. Secondly, exascale systems will demonstrate 
high variability in performance and availability of the components. The runtime systems 
will have the important role of scheduling tasks and redistributing data as well as 
adapting dynamically to a changing system status or a varying application 
performance. In the following subsections, some runtime systems aiming at tackling 
these challenges are presented. This overview shows a common denominator in using 
threads heavily. Furthermore, all systems provide some service to transfer data 
between the processing elements. All runtime systems provide beyond the varied use 
of threads different means to address specific aspects of their application field. These 
are for example implementations for the data transfer between nodes or a software 
layer providing virtually shared memory spanning over heterogeneous processors with 
local memories. 



 

© CRESTA Consortium Partners 2011  Page 25 of 55 

 

In addition, using runtime systems to decrease power and energy consumption while 
still retaining performance will be essential in exascale supercomputers. Two energy-
aware approaches are described. 

4.3.1 Novel%Runtime%Systems%

4.3.1.1 StarPU*
StarPU is directed towards computers with heterogeneous multicore designs and 
special hardware such as coprocessors and accelerators [29]. The programming model 
defines tasks called here “codelet”. They can encapsulate existing functions. 
Furthermore, codelets can have multiple implementations for different processors. A 
scheduler tries to run the codelets as efficient as possible. Also a data management 
library is part of StarPU. It provides transparently the needed memory for a codelet on 
the scheduled resource. 

The specification of the computational tasks of StarPU’s programming model requires 
their implementations possibly for several processing elements as well as a definition 
of the input and output data. Data will be moved between different memories of the 
heterogeneous computer system based on this definition if needed. Tasks are 
submitted asynchronously and their termination is given to notice by callbacks. 

StarPU implements a software shared memory system for the heterogeneous 
processing elements. This memory system transports required data to processing 
elements in time before the start of the execution of the codelets. It is possible to have 
multiple copies of certain data in the memories of different processing elements. 
Another important task of the shared memory implementation is the bookkeeping of the 
memory status. For this StarPU applies a basic cache-coherence protocol, the MSI 
protocol (Modified-Shared-Invalid). 

Furthermore, StarPU provides filters that support the subdivision of data for block- and 
tile-based algorithms. These filters make it possible to reduce the data movements 
between processing elements according to the schedules during the runtime of a 
program. The data transfer of the StarPU runtime system is implemented 
asynchronously, and matches in that way the widely available features of modern 
accelerator devices. 

Tasks are submitted with push operations from the application to the scheduler. It is 
possible to describe the expected performance with additional programming effort. The 
scheduler pops tasks to the processing elements using different scheduling algorithms. 
These algorithms can range from a simple FIFO queue to sophisticated algorithms 
considering resource usage policies and cost-models can make scheduling decisions. 

StarPU uses a history-based performance prediction model. It traces the execution 
time of tasks and uses it in subsequent schedule computations. For this purpose it is 
assumed that tasks possess similar characteristic features and complexity if they are 
called again with the same parameters in a given application. 

4.3.1.2 StarSs*
StarSs is a programming environment for parallel applications based on task-level 
parallelism that is managed on the node-level [30]. Tasks are realised as functions and 
managed by the runtime system. The task specification is done by compiler pragmas. 

Functions that are annotated with compiler pragmas form tasks that are managed by 
the runtime system. The annotations specify input and output parameters and variables 
that are used for data reductions. 

By these means the following features of the runtime system are obtained: data 
dependency control, data dependency reduction, and workload distribution. 

Data are produced in tasks and travel from task to task during the program execution. 
StarSs analyses the input and output parameters of the annotated tasks with respect to 
the dependencies ‘read-after-write’, ‘write-after-write’, and ‘write-after-read’. The 
dependency analysis allows the calculation of a possible parallel execution order as a 



 

© CRESTA Consortium Partners 2011  Page 26 of 55 

 

graph that respects the required serial executions coming from the data dependencies. 
The task execution is managed accordingly to this graph by a multithreaded runtime 
system that takes the next executable tasks and starts them. 

The outcome of the dependency analysis is also used to use register renaming. 
Register renaming is a technique used in compiler construction to remove data 
dependencies at the cost of larger amounts of memory. Its application allows the 
removal of read-after-write and write-after-write dependencies. 

The scheduling algorithm takes several measures to ensure good performance with 
respect to the workload distribution. It tries to run tasks that are dependent on each 
other in the same thread. 

The main thread runs the application, creates tasks and assigns them to the queues of 
worker threads. It is possible to use work stealing between processors. 

4.3.1.3 ForestGOMP*
ForestGOMP is a runtime system consisting of a multi-level thread scheduler and a 
NUMA-aware memory manager [31]. It aims at dynamic load distribution under 
consideration of the application structure and the hardware topology. The 
implementation of ForestGOMP showed an improvement to applications with nested, 
massive parallelism. 

ForestGOMP is an extension of GNU’s OpenMP implementation on top of a flexible 
scheduling framework called “BubbleSched”. This framework in turn is implemented on 
top of a thread library called “Marcel”. The library Marcel again uses a library named 
“hwloc” to handle the hardware topology and implements MAMI (Marcel Memory 
Interface). This is a NUMA-aware memory manager. 

The library hwloc was first developed at first as part of the scheduling framework. It has 
been recently externalised and can now be used as a standalone component to 
manage the hardware affinity of threads on current multicore systems. 

Hwloc is used in ForestGOMP to provide a description of the hardware during the 
runtime to BubbleSched. BubbleSched builds an analogously structured hierarchical 
set of queues. The hierarchy levels in the queue set correspond to the levels found in 
the hardware: machine (node), NUMA nodes, and cores. The scheduler places every 
thread into a certain queue according to a scheduling policy or specifications of where 
it should run. So-called “bubbles” are used as a grouping mechanism expressing 
certain affinities. BubbleSched is responsible for the execution of hierarchical 
organised bubbles on the hardware used. 

MAMI, the NUMA-aware memory interface, gets a description of the available memory 
hierarchy during the runtime, from the hwloc library. The interface supports memory 
binding and interleaving. Additionally, it provides possibilities to migrate data. Such a 
move can be executed synchronously upon request of an application or by application 
of a next-touch strategy. Furthermore, it provides some information about the costs of 
reading, writing and migrating data to the application. 

The functionality of memory allocation with a next-touch strategy complements the first-
touch strategy that is typically well supported by operating systems already. The next-
touch strategy allows the marking of a memory page or region to have affinity with a 
certain NUMA node during the next use. It is important to be able to do this because a 
node not using the data most intensive could allocate the memory due to the first-touch 
strategy. 

ForestGOMP is able to place data and execute threads on preferred NUMA nodes 
based on these building blocks. The scheduling policy is implemented within a memory 
bubble scheduler. This scheduler makes an initial distribution of data and threads as 
well as executes work stealing if cores become available for other work. 

The distribution of data and threads is based on so-called memory hints. They are 
provided by MAMI through the BubbleSched statistics interface and contain information 
about the data and their usage intensity by threads. MAMI calculates the data location 



 

© CRESTA Consortium Partners 2011  Page 27 of 55 

 

and summarises the information about bubbles that allows BubbleSched to make 
reasonable scheduling decisions. 

It is possible to implement different work-stealing algorithms for each different bubble 
scheduler. A scheduling algorithm used within a NUMA node respects the memory 
hierarchy and cache structure by using only the local cores of the node. Another 
stealing algorithm is directed to perform the stealing from remote nodes and to migrate 
the assigned memory. This again is done under consideration of the hardware topology 
provided by hwloc and the amount of data used by a thread to optimise the costs of 
migration. 

4.3.1.4 Charm++*
Charm++ is a parallel programming system focusing on the enhancement of 
programming productivity, as well as on the requirement to maintain scalability [32]. 
The application NAMD, for biomedical computation, is a well-known example that has 
been implemented using it. Charm++ uses overdecomposition, processor virtualisation 
and migratable objects to provide load-balancing and dynamic resource management. 

Charm++ programs consist of C++ objects that are grouped into collections and use 
asynchronous method invocations for communication. These objects, so-called chares, 
can be migrated to other processors by the runtime system. The base mechanism of 
program execution works in the way that the scheduler invokes methods of objects that 
are selected from the queue of the processor where the runtime system resides. Other 
possible execution styles are ‘threaded’ and ‘sync’. Threaded methods can block and 
return the control to the scheduler during the execution while sync methods block the 
caller until their termination. Messages are also delivered to the correct destination 
objects after migrations. 

The migration of objects as well as of threads provides a dynamic load-balancing 
capability. The runtime system instruments the communication and workload for the 
purposes of dynamic monitoring. Different schedulers can distribute the work based on 
this performance monitoring as well as on information about the topology of the 
interconnect network. 

Charm++ programs typically have a much higher number of chares than processors. 
Furthermore, the normal method invocation is done asynchronously. Both features can 
be used to hide communication latencies and to overlap communication and 
computation. Additionally, the runtime system allows the addition or removal of 
processors dynamically during the runtime. 

Additional tools are available beyond the basic Charm++ runtime system. Amongst 
them is Adaptive MPI (AMPI) that is an implementation of the MPI standard on top of 
the Charm++ runtime system. It makes it possible to provide automatic load balancing 
to MPI applications. This is done in that way that AMPI introduces virtual processors 
that are implemented as user-level threads bound to Charm++ objects. Such threads 
can be assigned to a physical processor and migrated if necessary for load-balancing 
reasons. Message passing is implemented as communication between Charm++ 
objects and handled by the runtime system. Furthermore, it is possible to shrink or to 
expand the number of MPI processes utilised by Charm++. 

4.3.1.5 HighNPerformance*ParalleX*(HPX)*
ParalleX [33] provides a runtime system addressing numerical simulations showing 
scalability problems when using classical technologies such as MPI. Examples are 
numerical simulations of relativistic phenomena in astronomy. They use algorithms 
based on adaptive mesh refinement methods that apply computational resources in 
such a way that comparatively more calculations are done in parts of the domain where 
changes are happening faster than elsewhere. ParalleX tries to provide an efficient 
runtime system for such algorithms and has been developed with consideration of 
recently introduced technologies that are expected to be essential ingredients in 
exascale computing, such as multi-core processors and accelerators.  



 

© CRESTA Consortium Partners 2011  Page 28 of 55 

 

ParalleX fosters the use of multithreaded processes with flexible synchronisation 
mechanisms. Its current implementation provides a means to use the concepts of an 
Active Global Address Space (AGAS), parcel transport and management, threads and 
thread management, and parallel processes. 

The active global address space is used for the global unique naming of entities that 
can be moved between different localities and must be placed in the local address 
space. Localities could be arbitrary system partitions. The current implementation 
manages nodes as localities and uses a centralised server-client architecture to 
manage the identities of the global objects. Scalability problems of this service are 
avoided by caching. 

The parcel transport and management provides active messages that can be sent to 
destinations in the global address space. The messages define an action to perform 
and its arguments plus a continuation – a list of local control objects that must be 
notified at the end of the action. The distributed control flow can therefore be adapted 
dynamically to the resources. 

Threads also own a global unique name and can be managed from other localities. 
They serve as destinations for parcels that assign work to them. A user level scheduler, 
which implements cooperative multithreading to avoid the overhead of context 
switches, controls the thread execution. 

Local control objects provide a variety of options to synchronise parallel activities. The 
options comprise, amongst others, mutexes and semaphores. Local control objects are 
also used to realise dataflows. Local control objects can be used to connect the outputs 
and inputs of subsequent calculations. It therefore becomes possible to avoid global 
barriers; calculations can start as soon as all prerequisites are fulfilled.  

4.3.2 Suitability%for%Future%Architectures%
Future architectures will be characterised by more complex hardware than before. 
Another expectation is that more diversified hardware will be used. These trends put up 
the requirement that software needs to address more system specific aspects to gain 
performance. More complicated machine models have to be considered where 
previously simpler and more general assumptions were sufficient. It becomes more 
important to provide abstract interfaces to programmers that allow users to implement 
algorithms without too much need for hardware specific formulations. Furthermore, 
automated support for dynamic adaptation between hardware and software should be 
provided wherever possible. 

The given analysis of the state of the art shows that there are many ongoing activities 
focusing on this issue. They provide valuable approaches and knowledge for future 
solutions. A general and comprehensive solution has not been developed so far. One 
reason is that many factors influence the execution of programs and partly conflicting 
measures must be optimised with respect to application and programmer efficiency. 

4.3.3 EnergyDAware%Approaches%
As we move towards the exascale era, the energy-aware execution of applications is 
becoming a key consideration in HPC. The increasing size of machines and 
infrastructures are getting to a point where they will become unsustainable from an 
energy consumption point of view. Furthermore, this increase in power consumption 
leads to an increase in temperature, reducing the reliability of the system components. 
Therefore, runtime systems will be responsible not only for the efficient execution of 
applications from an execution time point of view but from their energy aspect as well. 

There are two main approaches for power-aware techniques in HPC, Dynamic Voltage 
and Frequency Scaling (DVFS) and Dynamic Concurrency Throttling (DCT). On one 
hand, DVFS tries to adapt the CPU voltage and frequency in order to reduce power 
consumption while maintaining performance. On the other hand, DCT controls the 
number of threads being executed in multi-threaded codes to save energy and improve 
performance at the same time. For instance, if a code runs with four threads as fast as 



 

© CRESTA Consortium Partners 2011  Page 29 of 55 

 

with eight, the number of threads is reduced to four, saving then the energy of four 
cores. 

DVFS is used by several state-of-the-art algorithms for power management control in 
order to reduce CPU frequency under waiting phases of the application [34][34][35][36]. 
For example, detecting critical CPU paths in an MPI program and slowing-down the 
CPU frequency under the non-critical ones. In that way, the computing phases are 
extended under MPI latency times, reducing the power consumed but without losing 
any performance. Other solutions use, for example, intra-node bottlenecks like memory 
latency to reduce the CPU frequency. 

DCT algorithms [37][38], for instance, exploit performance limitations due to data-
synchronisation and off-chip bus bandwidth to reduce the number of threads at 
runtime. All these techniques used in DVFS and DCT are based in heuristics and 
prediction models trained with benchmarks or with profiles from previous runs of the 
application. 

These power-aware control techniques have only been implemented in some 
experimental runtimes for research purposes using programming models such as MPI, 
OpenMP or a hybrid MPI/OpenMP [39] but not in real production systems. 
Furthermore, they are far away from exascale. At most, they have been tested with 
applications running up to a hundred nodes. 

Moreover, for some years GPUs have become an important trend in HPC in order to 
accelerate scientific applications. HPC is moving towards hybrid architectures 
composed of processors and accelerators such as GPUs. However, this option has 
been seen as a “non-green” solution due to the high energy consumption of 
accelerators. In fact, GPUs were firstly designed for desktops for which power 
consumption is not a problem.  Several studies show that although the power 
consumption of GPUs is larger, the obtained acceleration results in a reduction of the 
overall power used by the application [39][40][41]. In [42] and [43] the authors show 
how the overall improvement in performance-per-watt using GPUs for four applications 
(NAMD, VMD, QMCPACK and MILC) is considerable. This performance-per-watt is 
calculated as Power/Poweraccelerated*Speedup. However, this power saving is only 
achieved with speedups higher than 3x. If applications are accelerated but do not 
achieve a speedup of 3x, there is no power saving. 

 



 

© CRESTA Consortium Partners 2011  Page 30 of 55 

 

5 Performance!Analysis!Tools!
HPC exascale systems will be composed of millions of homogeneous, or maybe even 
heterogeneous, processing elements. Running applications efficiently in such highly 
parallel and complex systems requires orchestrating different levels of concurrency 
(threads, message passing, I/O, etc.).  

On one hand, it will be necessary to discover performance bottlenecks originating from 
the increase of complexity of each level of concurrency and to correct them in the 
application source codes. On the other hand, performance problems that originate from 
the use of shared hardware (network, file system, etc.) will not only affect a single 
application, it will disturb multiple applications running at the same time within the 
infrastructure. Observing this class of performance issues is fundamental since a 
minority of processes or processing elements can disturb the whole system. 
Therefore, performance monitoring of applications and the whole system will change 
from being a beneficial option to a necessity in such complex machines. 

5.1 Performance!Monitoring!
5.1.1 Workload%Monitoring%
Workload analysis could help HPC managers to decide how to schedule or acquire 
resources in order to mitigate the contention between applications and hardware. For 
example, which parts of the infrastructure require an upgrade or what kind of new 
architecture increases system performance. The collected data could also help in the 
detection of contention between different applications. Thus, jobs with different 
complementary requirements could be scheduled together in order to increase the 
productivity of the HPC infrastructure. Furthermore, as auto-tuning of applications and 
libraries grows in importance, this system-wide approach could provide insights and 
feedback for performance decisions. 

Approaches towards whole system workload performance monitoring already exist. 
However, there are not too many scalable tools available; Perfminer [49] is a system 
for the transparent collection, storage, and presentation of thread-level hardware 
performance data across an entire cluster. NERSC uses the Integrated Monitoring 
Network (IPM) [50] in order to collect 310,000 job profiles over the past 6 years. All 
these IPM performance profiles contain rich data sets to be explored on how machines 
are used and how different kinds of applications behave. 

In addition, such a global lightweight profiling system could highlight applications 
running with performance problems easier. In addition, such global lightweight profiling 
will make the detection of poor performance applications possible. Afterwards, these 
applications could be further analysed for improvement with more specialised 
performance tools such as Vampir [63]. 

In brief, at exascale, performance will not only be dependent on the application under 
survey, but rather on the overall workload of applications. Monitoring of whole 
machines will become a necessity, but will introduce new challenges. Gathering and 
storing data from millions of processing elements at the same time will not be easily 
achievable. Furthermore, analysing all this data for visualisation will require scalable 
solutions. Automatic and online data mining methods and online analysis will be 
needed for this task 

5.1.2 Application%Monitoring%%
Running parallel applications efficiently on today’s and future complex, highly parallel 
systems, with millions of concurrent processing elements, becomes more and more a 
challenge. Performance problems often only occur from a certain level of parallelism 
and due to the amount of concurrent processing elements (e.g. processes, threads) 
performance analysis – which should be part of the development cycle of an 
application – will be only possible by using appropriate and highly scalable 
performance analysis tools. 



 

© CRESTA Consortium Partners 2011  Page 31 of 55 

 

In the HPC community there are many established or experimental tools that assist 
programmers with performance analysis and optimisation of parallel target applications. 
Well-known examples are HPCToolKit [62], Jumpshot [67] Paraver [71], Periscope [63] 
Scalasca [66], TAU [65] and Vampir [64]. They focus on different aspects and provide 
complementary specialised features, but at the same time, there are many similarities 
and overlapping functionality. For instance, all tools have to cover the following parts of 
a performance analysis: 

• Information generation 
• Application monitoring 
• Information processing and analysis 

In the next sections each area is studied in detail and common advantages and 
drawbacks for exascale performance analysis are presented. 

5.1.2.1 Information*Generation**
An important key point for a successful performance analysis is the information 
generation technique, to reduce intrusiveness of the monitoring technique and provide 
data to detect performance bottlenecks. Information can be generated by 
instrumentation, i.e. insert pieces of code into the application source code or binary. Or 
by using a sampling approach, i.e., observing the state of the application frequently. 

The most prominent methods of instrumentation are: 

• Compiler instrumentation inserts user-defined code snippets at the very 
beginning and end of each function; 

• Source-to-source instrumentation transforms the original application and inserts 
code snippets at points/regions of interest; 

• Library instrumentation intercepts public functions of an external shared library 
by using a dlopen interception mechanism;  

• Binary instrumentation modifies the executable either at runtime or before 
program execution to insert code snippets at function entries and exits; and 

• Manual instrumentation.  

A big challenge for exascale performance analysis is the use of a suitable information 
generation mechanism, which may likely be a combination of mechanisms. This 
includes the choice between instrumentation and/or sampling, the selection of the right 
source code locations, the selection of the right time frame/duration, and the selection 
of the right processing elements. This will lead to the highest possible insight into the 
application and the overall system with the lowest possible intrusion. I.e., the 
performance analysis tools must be able to record only phases, events, and processing 
elements of interest with the best-suited information granularity. 

An advantage of sampling is the ability to dynamically change the sampling frequency 
during measurement. However, it is challenging to define the optimal sampling 
frequency at a given time for a given processing element without any application 
knowledge. If the sampling frequency is too coarse-grained the number of samples and 
their total size will be easier to handle, but the root cause of a performance problem 
might not be detectable. In contrast, if the sampling frequency is too fine-grained, it will 
be possible to detect the cause of a performance problem, but this increases the 
intrusion significantly. Also, steering the sampling frequency of millions of concurrent 
monitoring processes during a performance measurement in order to reduce the 
measurement impact is challenging. Recently, some research has been focused on 
how to solve these challenges. In [52] coarse-grain sampling is combined with 
instrumentation information to obtain detailed performance information on iterative 
applications through a mechanism called folding. The folding gathers the metrics 
scattered all over the execution and creates synthetic regions that finely report the 
progression of the metrics. 



 

© CRESTA Consortium Partners 2011  Page 32 of 55 

 

Instrumentation as an information generation mechanism often results in detailed 
information, especially when tiny and often-used functions are instrumented, e.g., 
constructors and static class methods. However, for millions of processing elements 
this technique results in huge data amounts.  

As a result, for plausible performance measurement on exascale systems, the 
performance measurement system should only record phases, events, and processing 
elements of interest. In [51][54][60] the authors use clustering techniques in order to 
detect application structure and application phases. In that way, performance tools can 
collect information only from relevant sections avoiding redundant data. In addition, 
combination of other techniques such as coarse-grained sampling and selective fine-
granular instrumentation will become essential to overcome issues in intrusion, size 
and loss of information. 

5.1.2.2 Monitoring*
Basically, there are two main approaches to monitor the performance behaviour of 
parallel applications: profiling and tracing. 

Event tracing is a well-established method for the performance analysis of highly 
parallel applications that records the measured information, i.e. each event, in detail. In 
particular, with tracing it is possible to identify outliers from the regular behaviour. Thus, 
it allows capturing the dynamic interaction between thousands of concurrent 
processing elements. As a result, tracing will produce an enormous amount of data that 
is challenging to handle. Tracing at an exascale level requires solutions to overcome 
this limitation. 

In contrast to tracing, profiling aggregates the measurement information and generates 
statistics for the whole application run or for phases of interest. Flat profiles provide 
statistical information in a list style with various metrics such as inclusive runtime and 
number of invocations. For a more detailed analysis, in particular to analyse 
performance in the context of caller-callee relationships, call-path and call-graph 
profiles are scalable techniques to provide more insight into highly complex and parallel 
applications. Profiling, with its nature of summarisation, offers an opportunity to be 
extremely scalable, since information reduction is done over time. Afterwards, only the 
scalable reduction of all concurrent processing elements is needed, e.g. by using 
hierarchical reduction operations. Nevertheless, profiles may lack crucial information 
about message runtimes and bandwidth, since message matching is usually infeasible 
during profiling. Therefore, analysis of communication based performance issues is 
usually only possible by interpreting the aggregated time spent in the communication 
routines. One solution to overcome this issue is to use a piggybacking technique [61], 
which either modifies the messages by adding extra information or by using extra 
communication messages to exchange the message matching information. 

5.1.2.3 Information*Processing*and*Analysis*
Nowadays, performance analysis techniques can be distinguished into online and 
offline techniques. Further, a classification into automatic and manual performance 
analysis exists. The former may detect performance bottlenecks and inefficiencies via a 
pattern analysis while the latter requires users to identify performance bottlenecks by 
interpreting the monitored information manually. 

All performance analysis methods have advantages and disadvantages. The most 
important advantage of online performance analysis is that it processes and transfers 
only parts of the overall information. User interaction and tuning may influence this. 
However, online performance analysis techniques have to consider latency and 
bandwidth of the network, as well as the timing of the information processing, since 
users may expect real-time interaction during such an online performance analysis.  
In contrast, offline performance analysis techniques have to handle the amount of 
information of the whole measurement run and usually store this information in entire 
on the parallel file system. At an exascale level, creating one file per measured location 
(e.g., process or thread) results in disaster for current file systems. Current file systems 
can create only a few thousands files per second [69]. The bandwidth and capacity of 



 

© CRESTA Consortium Partners 2011  Page 33 of 55 

 

the entire memory hierarchy – including the file system – are also limiting factors for 
offline performance analysis, as long as no information reduction is done. Data mining 
and compression techniques, such as the data reduction on the Complete Call Graph 
(CCG) data structure [72] will become a necessity at exascale in order to perform on-
the-fly information reduction. Moreover, data mining is useful for analysing the final 
reduced data as well. With data collected from millions of threads/processes, it will 
become difficult for a human to gain insight of the performance behaviour of their 
applications. Nowadays, several performance frameworks include data mining tools. 
For instance, PerfExplorer [56] allows parallel performance discovery and data mining 
through different runs or experiments of an application applying clustering, principal 
components (PCA) or regression. 

Automated performance analysis processes the measured information either at runtime 
or in a post-processing step to provide a compressed data representation that only 
holds information about occurrences and causes of performance inefficiencies. Tools 
such as Periscope [63], Scalasca [66] or PerfExpert [57] offer automatic performance 
analysis. Furthermore, the use of data mining techniques has emerged as a solution for 
online automatic bottleneck detection. For instance, clustering different code regions 
can expose dissimilarities, communication bottlenecks or load imbalance [55]. 

In contrast, visual performance analysis highlights the original information and guides 
the user to the root cause of a performance bottleneck. This technique has to hold all 
information of a phase or of the whole measurement run available, which usually 
results in huge memory requirements for the analysis.  

A combination of visual performance analysis and an online approach can reduce the 
amount of data to be transferred at a time. However, before such visualisation, the 
information of an entire time interval needs to be transferred and processed. For 
millions of concurrent processing elements this will become challenging. Also, 
visualisation of millions of different processing elements on a screen with a limited 
resolution is challenging. Exascale performance analysis will require solutions to 
reduce the amount of data that tools display. One such option is to only display 
“interesting” locations that behave differently, which requires an automatic approach for 
pre-processing. 

5.2 Suitability!for!Future!Architectures!
5.2.1 Scalability%on%Exascale%Computing%Platforms%
The main factors affecting scalability in the area of exascale performance analysis are 
performance and memory consumption. If the time taken to process the monitored 
information increases linearly (or even worse) with the amount of data, scalability will 
be limited. Also if the time taken to process the data increases linearly (or worse) with 
the number of analysis processes this indicates non-scalable processing techniques. If 
the memory consumption of the performance analysis increases linearly (or worse) with 
the amount of monitored information, this also indicates limited scalability. At small 
scale, memory consumption is often disregarded, but it becomes critical at large scale. 
The amount of memory that is available per core, which may be constant or even 
decreasing towards exascale, is a key concern, especially for long running 
applications, since fast analysis access is only possible when the monitored 
information will be held in the main memory. 

The goal should be to use performance analysis techniques that require only constant 
space and time per monitored processing element or per interval. In recent years, 
several performance tools have made a lot of effort to solve these scalability issues. 
Tools such as Periscope [63] started to investigate the use of several distributed 
communication agents for online performance analysis. Each agent searches for 
bottlenecks in a subset of the application processes. TAUmon [58] and TAUoverMRNet 
(ToM) [59] investigate different distributed infrastructures such as MRNet [52] for online 
scalable performance monitoring. All these solutions are leading to a new trend in 
performance tools design, the allocation of additional resources for processing and 
analysing the performance data while the application is still running. 



 

© CRESTA Consortium Partners 2011  Page 34 of 55 

 

5.2.2 %Resilience%and%FaultDtolerance%
Since failures are expected to be common, due to the large number of components, the 
implementation of performance tools needs to be resilient and tolerant to faults. Fault 
tolerance may be needed from all levels of the stack – hardware, system software, and 
applications. 

In the context of exascale computing, and in the performance analysis of millions of 
concurrent processing elements, the root cause of a performance problem may only 
occur at a single location. In addition, the possibility that one single thread of execution 
exits unexpectedly, due to a hardware defect, increases with the number of parallel 
elements. Therefore, performance analysis tools must be able to handle these 
situations without interruption of the on-going measurement and they must be able to 
process and analyse fragmented performance information.  

One milestone for a successful exascale performance analysis is the investigation and 
development of resilient measurement and analysis techniques, which offer a degree of 
fault-tolerance. In this context it is reasonable to distinguish between  

• Critical missing events and locations, 
• Non-critical missing events and locations for exascale performance analysis. 

For an automatic, replay-based performance analysis approach, events and locations 
are critical. A single piece of missing information may cause such an analysis to fail. 
Also, fragmented data with loss of the root cause of a performance problem can be 
classified as critical. All analysis tests will not be able to provide any insight for such 
data. 

For a manual and offline performance analysis, missing events and locations are less 
critical, as long as they do not include the root cause of a performance problem. It is 
clear, that communication mapping will fail if a corresponding send or receive event is 
missing, but the analysis will still be possible. The absence of communication events 
results in a fragmented view of the detailed communication scheme and to incomplete 
communication statistics.  

As long as the core performance problem is detectable, a fragmented view of the 
overall situation of an application will be one path to be able to analyse exascale 
applications. This is also one reason for using a coupled selective measurement model 
of instrumentation/sampling and profiling/tracing. 

5.3 Recent!Performance!Analysis!Tools!and!Future!Research!
Score-P [70] is a newly designed joint performance measurement runtime 
infrastructure for petascale performance monitoring for the tools Periscope, Scalasca, 
TAU, and Vampir developed by  

• the Scalasca groups from Forschungszentrum Jülich, Germany and the 
German Research School for Simulation Sciences, Aachen, Germany, 

• the Vampir group at Technische Universität Dresden, Germany, 
• the Periscope group at Technische Universität München, Germany,   
• the TAU group at University of Oregon, Eugene, USA, 
• Computing Center at RWTH Aachen, Germany, and 
• GNS mbH, Braunschweig, Germany. 



 

© CRESTA Consortium Partners 2011  Page 35 of 55 

 

 
Figure 4: Overview of the performance measurement system Score-P. 

In contrast to its predecessor measurement systems, VampirTrace and Scalasca, 
Score-P is the keystone for the monitoring techniques tracing and profiling with 
interfaces to various analysis tools, see Figure 4. It uses a flexible and efficient memory 
management system and a highly scalable tree-based unification operation at the very 
end of each measurement run. And is therefore ready for further improvements 
towards exascale performance analysis and will be the primary and reference 
measurement infrastructure within this project. At the moment, Score-P supports 
instrumentation of parallel MPI, OpenMP or hybrid combinations of these both. 
Extensions for Pthreads, PGAS and CUDA are planned in the near future. By default, 
Score-P runs in profiling mode but can also run in tracing mode. 

One of the supported analysis tools of Score-P is Vampir, which is  an interactive event 
trace visualisation software, which allows to analyse parallel applications with 
thousands of concurrent processing elements with various graphical representations in 
a post-mortem fashion. The scalability of Vampir is shown in Figure 5. This figure 
shows the visualised, colour-coded representation of 200,244 concurrent processes 
over a time of approximately 850s of the application S3D [68] running on the Jaguar 
partition, a Cray XT5, located at the ORNL Leadership Computing Facility. 



 

© CRESTA Consortium Partners 2011  Page 36 of 55 

 

 
Figure 5: Color-coded visualisation of 200,244 processes over runtime of 850s  

of the application S3D [68] with Vampir [63]. 

 

Today, common performance monitoring and analysis tools will fail if a process or 
thread exits unexpectedly. Further, approaches fix the number of observed processes 
or threads at execution time. Thus, they do not support dynamic process creation and 
finalisation. Solutions for these limitations have to be developed in the future. 

Also, performance analysis of an application and of the entire computing system is 
limited. At the moment it is possible to observe several performance metrics of the file 
system, the network, or of a hardware node, as long as there are interfaces that can be 
used by the monitoring system to make this information available in conjunction to the 
application behaviour. However, measuring all this information is no acceptable 
strategy to record full system behaviour, since resources for recording additional 
hardware information are limited. Therefore, it is advisable to record only hardware 
information, which provides an additional benefit for the performance analysis of a 
certain performance bottleneck. Unfortunately, common hardware information, 
especially information of shared hardware like network and file system, is often 
influenced by various factors and typically not only by one application. It is therefore 
laborious to determine the right set of information sources for a single application. 
Typically, a minority of applications can disturb the rest of the system and applications. 

Another area that we have limited insight into is the performance of the network.  
Bottlenecks in the network hardware have serious implications for application 
performance and may be easier to detect given a network-centric view. Some networks 
support performance counters that can give insights into network behaviour so we 
intend to investigate if we could use such information (should it be available to 
monitoring frameworks) and present it in a way that provides benefit to the application 
developer. 

Besides existing and often-used parallel programming models such as MPI and 
OpenMP, PGAS languages offer an opportunity to exchange data between distributed 
nodes within a global address space. 

The question if PGAS, are suited to scale applications to exascale demands has to be 
researched in the near future. Therefore, performance tools must be able to record and 
analyse the communication and synchronisation behaviour. This can be done either by 
instrumentation of PGAS language calls/syntax (if possible) or by sampling the 
application. Depending on the vendor implementation these techniques have to be 
researched 



 

© CRESTA Consortium Partners 2011  Page 37 of 55 

 

6 Debuggers!and!Correctness!Checking!Tools!
This section outlines the current state of the art for the process of debugging (the 
science of removing bugs from software) HPC applications.  This contains the results 
and analysis of surveying some of the application developers within WP4, WP5, and 
WP6 in order to assess current perceptions of gaps and to understand requirements. 
The survey form is presented in Annex A.1. Further, we consider the suitability of 
current debuggers and error checking tools for future exascale computer systems. 

6.1 Traditional!Debuggers!and!Correctness!Checking!Tools!
In the following we illustrate the state of the art for debugging in HPC. We first 
introduce approaches for parallel debuggers and approaches for runtime correctness 
checking afterwards. Finally, we illustrate different challenging aspects for these tools. 

6.1.1 Parallel%Debugging%Tools%
Currently, parallel debugging tools are developed by Allinea (Allinea DDT), and Rogue 
Wave Software (Totalview) and there are also at least two other less well used open 
source platforms - the Eclipse PTP project and the PERCS debugger (IBM). At this 
point, Allinea DDT is the most popular application in European HPC centres but 
Totalview is also used by at least two sites in CRESTA. 

6.1.2 Correctness%Checking%Tools%
Debuggers are frequently seen as observational tools - enabling the user to look into a 
program - but increasingly additional capabilities are built in. For example, memory 
debugging is a feature where the debugger understands more about the correctness of 
state and usage - rather than the traditional purely observational role. The two main 
commercial debuggers currently have memory debugging capabilities that include 
support for detection of beyond-bound memory accesses (read/write), or of memory 
leaks and common errors such as double de-allocations. 

Besides these debugger extensions, runtime correctness tools exist that are 
specialised to certain paradigms. Examples of such are Helgrind [73] or the Intel 
Thread Checker [74] for OpenMP/Pthread paradigms and ISP [75], Umpire [76], MPI-
Check [77], Marmot [78], and MUST [79] for MPI applications. These tools have built-in 
knowledge of a paradigm’s semantics in order to check for wide ranges of paradigm-
related usage errors. We collectively refer to these tools as correctness checkers. 
Correctness checks can include the detection of data-races for threading paradigms 
and communication errors such as type matching errors, detection of lost messages, 
and the detection of deadlocks for message passing applications. 

6.1.3 Hardware%Platform%Support%
In terms of platform support, debuggers presently support the typical mainstream HPC 
application developer platforms: from GPU workstations through to Petascale 
machines. Language support is provided for C, C++, Fortran in its major versions, 
along with Co-array Fortran and UPC. Accelerator support is found for NVIDIA CUDA 
and some of the languages for the CUDA architecture - but support is dependent on 
efforts of compiler authors, and on corresponding debugger efforts to support bespoke 
formats. 

Correctness checkers are usually portable across wide ranges of machines, unless 
they are bound to a certain software/hardware stack, like Intel Thread Checker. 
However, some tools may have limitations with more specialised HPC systems. These 
tools also usually support the C, C++, and Fortran languages. 

 



 

© CRESTA Consortium Partners 2011  Page 38 of 55 

 

6.2 Current! Debugger! and! Correctness! Checking! Tool! Usage! in!
CRESTA!

Debugging of HPC software is an activity undertaken to remove a detected fault in an 
application. The presence of such faults can be detected at any point during software 
development, and often during deployment as a result of exposure to production 
environments that differ from the standard development environment - for example 
availability of larger machines, machines with different MPI implementations, different 
compilers or even different compiler flags. 

Within the CRESTA applications groups, the largest job size on which a bug had ever 
occurred varied from under 100 processes through to many thousand (<10,000) 
processes. Application limits of scalability varied from under 100 cores through to 
100,000 cores or more. 

The currently practised methods of debugging noted by the applications showed variety 
- with commercial tools, open source tools, and ad-hoc printf tracing debugging all 
used. The majority of the centres have at least one commercial debugger licence 
available - and of those sites in CRESTA that did have such a tool, it was identified as 
being used regularly. It is worth noting that some users varied their own method, using 
different types of tools rather than just one. 

Tools such as MPI checkers and thread checkers - for example Marmot and Intel 
Thread Checker were used by some sites, but not universally. Other open source tools 
from outside of the HPC specific domain are also often used - such as Valgrind, used 
for comprehensive memory debugging and its complementary Helgrind, for thread 
issues. 

Although multiple techniques for resolving bugs were used, when asked how the 
largest job-size bug was fixed, every respondent had fixed it by using a debugger on 
the job at a smaller scale (usually), or the full scale (rarely). This shows that whilst print 
statements are effective at small scale, for success with a more challenging scale, the 
real debugger was used - and, even then, usually after simplification of the bug to a 
smaller scale. The existing MPI checking tools were not used - and this may be due to 
limitations of supported scale with these tools to date.  

In recent times, the number of professionally organised development teams in HPC 
has increased and the discipline of software engineering is becoming more prevalent. It 
is worth observing the role of debugging within the development process: use of 
version control, unit tests, and continuous integration is becoming more commonplace. 
Within this environment, identifying the origins of software defects can be a much 
simplified process. Some sites used daily automated testing, with modest scale (eg. up 
to 10% of the expected job size) to ensure MPI capabilities were tested - others 
manually launched test-suites as and when required. 

6.2.1 Perception%of%Debugging%
Opinion was split as to whether debuggers currently were sufficient, or insufficient - 
although they identified that if tools were more integrated then they would likely use 
them more. Users did feel they have the time to explore new tools that would help their 
debugging. 

The iterative nature of the debugging process is a challenge. In particular, having to re-
run an application to narrow down causes is time consuming. Reverse debugging was 
seen as useful but needed to be scalable. 

When asked what the current challenges of debugging at scale were, scalability of 
debugger performance was cited by the majority of users. The complexity of the 
debugger itself – i.e. understanding what the debugger was displaying and also 
interacting with it was a majority opinion. However, all respondents agreed, or strongly 
agreed, that the data set complexity at scale was a challenge. 



 

© CRESTA Consortium Partners 2011  Page 39 of 55 

 

6.2.2 Existing%Bug%Scenarios%
When surveyed for typical kinds of bugs, a great deal of variety of experience was 
exposed. Problems with usage of the standard MPI library itself were common in some 
applications, although very rare in others. Reflecting the current architecture of typical 
HPC applications, where hybrid OpenMP/MPI is not the norm, OpenMP race issues 
occurred only occasionally. 

The type of MPI errors noted included mismatched processes in MPI Communicators 
and MPI Collectives, or mismatched data types in MPI data transfer - for example 
custom MPI datatypes or mixing MPI_INT and MPI_INTEGER. A few of these errors can 
be detected at small scale by tools such as Marmot. The release of its successor 
MUST was too recent, and with that none of the developers applied this tool yet. 

Existing typical (not HPC specific) bugs were also still prevalent - with developers 
experiencing memory leaks, memory overruns, use of uninitialised variables, or 
mismatches between software versions and the layout of datatypes between versions, 
all of which could lead to segmentation faults or incorrect results. 

Some users had rarely or never experienced issues reaching higher scale, others 
occasionally. New environments - such as compilers, MPI libraries, driver versions (for 
accelerators) or machine configurations - had greater impact - with this cited as 
frequently an issue by multiple respondents. However, frequently a new environment 
will coincide with a new larger scale. 

Unexplained differences between two versions of the same code, or two different 
machines running the same code happened frequently for some users. Given the vast 
scale of datasets - and, for example, different partitionings encountered in runs of 
different sizes - narrowing down such problems and identifying the first point of 
divergence is a significant challenge. 

Another common problem was that incorrect data of one process “infected” the data of 
another process. Discovering the infection source of a variable/memory location on a 
process was identified as a hard task, as the data had come from a different process.  

6.2.3 Desired%Software%Directions%%
Presently the overwhelming majority of HPC software is either MPI, OpenMP, GPU 
hybrid or a mixture of only two of the three - and uses C, C++ or Fortran. 

As many-core becomes more pronounced, developers within CRESTA anticipated far 
less MPI-only code - with hybrid MPI becoming required instead. Some intended to 
consider PGAS languages as an alternative to MPI - without hybrids - for the expected 
simpler code-base and simpler support for overlapped communication and 
computation. 

In terms of specific languages and models, the X10 and Chapel languages were not 
requested - but UPC, Co-array Fortran, StarSS, in addition to the current mainstay of 
C/C++/Fortran and MPI/OpenMP and CUDA or other accelerator solutions (OpenACC, 
OpenCL) featured. 

Reliance on standard components featured prominently - with common component 
libraries such as BLAS, Boost, HDF5, Parmetis, NetCDF, PETSc and the C++ standard 
template library being part of many projects. 

6.3 Suitability!for!Future!Architectures!
6.3.1 Scalability%on%Exascale%Computing%Platforms%%
In terms of scalability, currently only Allinea DDT is proven to Petascale - with the 
current production release being used at over 100,000 cores regularly at some national 
science sites in the USA, and modest 8,000-32,000 core sessions available in Europe. 
During acceptance testing at one site, Allinea DDT has reached full machine 
debugging for the largest available system at the time of 220,000 cores. 



 

© CRESTA Consortium Partners 2011  Page 40 of 55 

 

Currently common operations such as stepping every process at 220,000 cores took 
typically 100ms, with setting breakpoints in every process taking only 50ms or less. Job 
launch was shown to be no more than 10% higher when running with a debugger than 
running without, and application performance is unaffected. With performance at this 
scale, and a logarithmic tree network architecture, extending out by a factor of 10 
would not be a challenge. 

While debuggers can scale to 100,000 or more cores, correctness checkers suffer 
more from scale. Thread checking tools may impose extremely high overheads even 
for checking a few cores. MPI checking tools usually need to perform non-local 
analyses, such as message matching or MPI collective verification. These tasks are 
commonly run on a centralised instance and are a scalability bottleneck. With that, MPI 
correctness checkers currently scale up to about 1,000 cores, depending on the 
application. 

6.3.2 Usability%on%Exascale%Computing%Platforms%
Usability of the interface in a debugger at scale is a primary concern - also identified as 
an issue by the CRESTA applications. To this extent, Allinea’s interface has a number 
of features that improve the complexity at scale. In particular they aim at making 
differences between processes simple. For example: 

• Parallel stack views - scalable methods of examining the current 
location of processes 

• Cross-process data comparison - with graphical display of variable 
variance over processes 

Automatic correctness checking tools suffer less from this as they usually directly 
pinpoint to an error and can thus just present one instance of a detected error. 
However, in order to pinpoint an errors root-cause, it may be helpful to provide a good 
aggregation of error reports. With that tool users may understand regularities and 
patterns in correctness checking outputs more easily. 

6.3.3 Support%for%New%Programming%Models%
The main parallel debuggers have focused strongly on the models that are most 
popular: MPI and OpenMP. However, hybrid programming is supported by the 
commercial parallel debuggers - and Intel MIC is on the roadmap of both products. 
Given the focus on MPI or single-level parallelism, some of the techniques for 
simplification of data - such as comparing data across processes in a single one-
dimensional MPI distribution (processes 0 to N) are not able to achieve the same for 
hybrid models where data is split between N processes each with M threads. 

Task based parallel models are also less well supported - often runtime systems do not 
support querying the task queue and hence debuggers are powerless to display more 
information than the currently executing threads. Some work is presently being 
undertaken at HLRS in conjunction with Barcelona Supercomputing Centre on 
debugging the task-parallel StarSS. However, this is not integrated into a mainstream 
debugger yet. Other languages such as Intel’s Cilk or OpenCL are also not covered. 

Correctness checkers are extremely specific to the paradigm for which they were 
originally designed. As a result, only support for MPI, OpenMP, and basic support for 
mixes of the two paradigms are available. No approach for OpenCL, CUDA, any PGAS 
languages, StarSS, or Cilk is known to us, besides basic compiler based error 
detection capabilities [80]. 



 

© CRESTA Consortium Partners 2011  Page 41 of 55 

 

7 Gap!Analysis!and!Conclusions!
The previous chapters of this document examined the state of the art and the new 
challenges in implementing development environments for current and future 
computing platforms. In the following sections, we analyse the needs and gaps to be 
filled towards the development of software tools for exascale computing. This chapter 
provides the directions for the future work in the CRESTA WP3. Different sections 
focus on the WP3 subtask topics: programming models, compilation and run-time 
environments, performance and debugging tools. 

7.1 Programming!Models!
It is clear from the PRACE statistics (discussed above) that the vast majority of HPC 
applications are written using “traditional” HPC programming models, as defined in 
Section 3.1. The reasons for this are beyond the remit of this report, but include: 

• The time required for a complete rewrite, especially if current performance is 
satisfactory. 

• Lack of expertise, or access to expertise, in new languages 
• Unproven performance for new programming models 
• Limited vendor support restricting portability and risking obsolescence. 
• Lack of supporting tools (particularly debuggers and performance analysis 

tools) limiting productivity in the new programming model. 

Given this, it is important to establish to what extent the choice of programming model 
is and, more importantly, will become the limit to good scaling of an application, and 
whether this can be avoided through, for instance, new algorithms or replacing user 
code with third-party libraries (this is addressed in CRESTA Deliverable D4.1.1 
“Overview of major limiting factors in existing algorithms and libraries”). 

If the programming model truly is the obstacle, this may be attributable to features 
missing from that programming model (e.g. the current lack of CAF collectives in the 
Fortran standard). Representation on, and participation in, the relevant standards 
committees is therefore very important for major projects like CRESTA. 

If, however, a new programming model is needed to reach the exascale, developers 
will tend to prefer an incremental approach to a full rewrite in a new language, which 
will favour moves to programming models that interoperate well with the current 
communications model (which, as we have seen, is probably MPI). Moving from pure 
MPI to a hybrid MPI/OpenMP code is generally seen as being relatively straightforward 
and there is an increasing number of tools to help developers do this. Both models of 
parallelism are open standards and widely supported, both individually and when used 
together. Standardising interoperability of programming and parallelisation models is 
difficult, as each tends to be developed in isolation. Clear statements from vendors as 
to the interoperability that users can expect from their platforms are very desirable in 
the first instance. Moving forward, it would be useful if the various standards 
committees could develop some form of “memoranda of understanding” that describe 
the expected interoperability, and the form that this takes. These might provide a guide 
for compiler and library developers in an attempt to maintain interoperability wherever 
possible. Given the limitations to MPI interoperability (e.g. regarding the use of 
subcommunicators or derived datatypes), there may also be a need for additional tools 
to help users when introducing, for instance, PGAS features into their existing code. 
These might take the form of libraries that convert a given MPI call into a set of 
operations in the new programming model. It is unreasonable to expect such tools to 
be specified in any of the ratified standards, so these will probably be developed by 
interested user groups. 

C++ has some particular needs. It is clear from the PRACE usage analysis that it 
already has a significant presence in HPC and in the CRESTA co-design applications 
in particular. There is, however, a tension between the productivity gains of using the 
high-level features of C++ and the need for good performance. This gap can be 



 

© CRESTA Consortium Partners 2011  Page 42 of 55 

 

bridged partially through the continued development of highly optimising compilers (and 
associated programming environments and tools) and runtime systems for C++. This is 
in part driven by the availability of representative C++ benchmark codes that can be 
used by the developers of these systems and the CRESTA benchmark suite will be a 
very valuable addition here, and should be widely publicised. In the meantime (at 
least), there is also a simultaneous need for documentation describing "best practice", 
Not only does this help guide users (in, for instance, the use of templating to improve 
cache usage), it will also provide a focus for compiler and runtime development. 

We may also see C++ being used in a similar fashion to python in HPC, dealing with 
system management, I/O and configuration, but calling lower-level Fortran and/or C for 
the performance-critical kernels. Again, there is a need for documentation on "best 
practice" and "use cases", in parallel with a drive to easier and more efficient 
interoperability between these programming models. 

Users of new programming models will also need help. Profiling and debugging tools 
are now supporting, or moving to support, PGAS languages and we expect this to 
improve greatly through the work of CRESTA, despite the difficulties in instrumenting 
codes using these lightweight communication models. 

Novel programming models, such as Chapel, suffer from all the above limitations, 
perceived or otherwise, and have so far had a very limited uptake. It is an important 
task to understand and quantify the disruptive benefits of moving wholesale to such a 
framework. Also key is, where possible, to improve the interoperability with the 
traditional models. It is perhaps significant that many application developers have been 
willing to port to new programming models such as CUDA despite all of the same 
problems, largely because of the advertised performance gains of using GPUs and 
because they can start porting one kernel at a time. 

Accelerator directives provide a mechanism for bridging the gap between applications 
written for the CPU and those ported explicitly to the GPU, offering interoperability both 
with the traditional CPU languages and de facto GPU standards like CUDA. They are 
likely to become increasingly popular as the distinction between the two is eroded (e.g. 
the slow PCIe link between the distinct memory spaces of CPU and GPU). The 
challenges, however, are to deliver an acceptable level of performance using this high-
level approach, as well as to provide the support profiling and debugging tools. Moving 
forward, the current OpenACC directives, for instance, are unlikely to provide the full 
functionality required for an application to fully utilise a heterogeneous node, and there 
is an important task during the CRESTA project to ensure that the nascent standards, 
e.g. as part of OpenMP, evolve in the most productive way for HPC users of 
heterogeneous architectures as we approach the exascale. 

7.2 Compilation,!Autotuning!and!Runtime!Systems!
Concerning compiler tuning, there has been promising work in the area of compilers for 
serial and small-scale parallel kernels. The challenge is in extending these techniques 
to large-scale distributed memory applications such as those in the CRESTA 
benchmark suite. This study needs to be done on the current generation of petascale 
machines in order to select the approaches that may prove successful at the exascale. 

Concerning autotuning in general, there is no one approach that covers all aspects of 
application tuning, there is no consistent way to mark up choices and expose those to 
an autotuning framework and autotuning is not something in the mind of the average 
HPC application developer.    

Our goal is to define such a consistent approach that can target mark-up of choices at 
all the stages mentioned (algorithm choice, source, compilation and launch) and 
hopefully in a way that is not too onerous far the application developer. In particular we 
want to pay attention to important parallel tuning aspects (stencils, communication 
patterns etc.). We would also support definition of independent tuning spaces, plugin 
tuners for specific aspects and feedback mechanisms required for those tuning 
frameworks that can optimise based on execution metrics (for example performance 



 

© CRESTA Consortium Partners 2011  Page 43 of 55 

 

counter metrics) beyond the primary optimisation metric. The ideal situation of the 
future would be one where the application developer thinks of exposing such choices 
as part of application development. The development of the DSL will be informed by 
the co-design applications and availability and capability of open source autotuners.  
We expect to do some limited integration with one of these autotuners by the end of the 
project. 

The analysis of the state of the art of runtime systems shows that there are many 
ongoing activities in this field. A general and satisfactory solution could not be 
developed so far due to the many factors influencing the execution of programs and the 
partly conflicting measures for optimisation and programmer productivity. However, 
there is a common set of challenges the development of exascale runtime systems 
faces. The deeper memory hierarchies and the relative reduced availability of certain 
resources per core, like memory size or communication bandwidth, are the most 
important challenges. Runtime systems need to use a much higher degree of 
parallelism as well as to adapt programs better to the system on that they are running. 
The dynamic adaption of the runtime system software becomes more important 
because of the gap between the computational capability and hardware. 

7.3 Performance!Analysis!Tools!
To elevate performance monitoring and analysis tools from petaflop to exaflop scale 
and therefore be able to monitor highly parallel applications in combination with the 
whole machine and its entire infrastructure (network, memory hierarchy) requires us 
either to develop new methods for monitoring and analysis of information or to combine 
existing methods to reduce the drawback of each single method for a better insight into 
the system and application by lowest possible intrusion. This means, that we should 
monitor not everything but rather to develop scalable strategies to selectively monitor 
systems and applications and to use analysis strategies that helps to identify outliers 
and provide sufficient insights into applications and systems behavior. 

It is important to bridge the gap between coarse-grained profiling, which is to be used 
where sufficient, and fine grained event trace information, where necessary. 
Furthermore, data mining and reduction techniques will become a necessity in 
exascale in order to perform the on-the-fly information reduction that will be a 
requirement to deliver scalable, automated online performance analysis. 

These strategies will lead to the highest possible insight into the application and the 
overall system with the lowest possible intrusion. I.e., the performance analysis tools 
must be able to record only phases, events, and processing elements of interest with 
the best-suited information granularity. 

7.4 Debuggers!and!Correctness!Checking!Tools!
Current software debugging practice and requirements gathered from the application 
developers showed a number of areas that were either needed already, or would 
become more vital as scale of applications increases. 

• Automatic identification of anomalous values is becoming important: the 
volume of data is increasing as applications grow and is already 
unmanageable.  Identifying earlier that a value is invalid would be 
helpful even at current application scale.  Identification of the source-
process of defect values is a capability that would be highly useful and is 
not available in any existing debugger. 

• Identifying anomalous application activity is also important - current 
approaches, for example, viewing of the merged stacks of processes 
are helpful but need to be extended.  Identifying, for example, the path 
of execution that led to a particular issue would be helpful. 

• MPI usage errors remain important - and having MPI correctness 
checkers that can reach higher scales than 100-1,000 cores is crucial. 
Some MPI usage errors should be detected instantly by debuggers, 



 

© CRESTA Consortium Partners 2011  Page 44 of 55 

 

such as misused MPI parameters. Further, debuggers should provide 
more information about MPI types such as communicators where 
possible. 

In terms of the directions of applications within CRESTA, many users were considering 
other established compilers or models - for example PGAS languages, or hybrid 
solutions - and emerging compilers and models (for example StarSS). Whilst the 
PGAS/hybrid solutions have support, emerging models are less well supported. The 
IESP roadmap expects evolution in the programming models - from 2012 through to 
2015 before stability. 

• As there is uncertainty in programming models beyond 2013, and 
debugging support is at risk and uncertain. 

The trend in systems and applications towards hybrid architectures has implications for 
the type of errors likely to be encountered - and there are presently a number of gaps: 

• Thread checkers - whilst such tools do exist, their slow-down increases 
as the number of cores per node increases; Overheads will become 
more noticeable as a result; 

• Tools for GPU error detection - at this point there is no established 
framework for detecting errors automatically - for example, the 
premature use of returned data from the GPU or incorrect behaviour 
within a GPU kernel; 

• There are currently no tools to automatically identify errors within UPC 
or Co-array Fortran codes - nor any static code checking tools. 

Extending correctness checkers for these paradigms is very desirable, but will also be 
challenging as up-to today all correctness checkers where specialised to one 
paradigm, while they still lacked many desirable extensions in scalability and richness 
of checks. 

Each of these tools (either postulated or already existing) on its own is not sufficient to 
give the required level of information to fully fix a bug. By integrating such tools within a 
debugger, the developer of the tools will have access to a complete environment in 
which the context of an application can be understood. Whilst a tool can prove there is 
a problem, the user must deduce how the problem occurs. 

• Tool integration is lacking for many correctness checkers - some 
previous work with Allinea and HLRS enabled the use of Allinea DDT 
and the Marmot plugin for application MPI correctness checking, which 
also worked with the Intel MPI checker. However, the framework was 
applicable for small scale and it requires rework to support higher 
degrees of concurrency. 

Deep large software stacks will require separation of concerns - and debugging 
appropriate to the development layer. By this we mean the ability to support debugging 
at the level being used by the application developer. The application developer will trust 
the libraries and layers on which his application is built. Assertions and verification of 
the lower levels becomes more important in this scenario - and libraries or 
programming will need to open up access to, and work with, debuggers such that the 
trust can be maintained - and that internal verification will pick up misuse. 

As users move their code through to more hybrid architectures we should examine 
how we can support migration efforts. 

As we have identified an increasing degree of professionalism in software 
development, with automation in testing or universal usage of version control, we 
should identify how debuggers can fit in to the workflow of developers. Specifically: 

• Test case integration; 
• Version control and identifying potentially significant recent changes; 

and 



 

© CRESTA Consortium Partners 2011  Page 45 of 55 

 

• Automation of fault finding - being able to iteratively run through a 
sequence of tests until the fault is found. 

• The IESP identifies that there is overlap in the concerns of performance 
and debugging - with low performance often being recognised as a bug, 
and one that can result from external factors.  Fault tolerance is 
expected to be a major challenge for exascale. Hardware failure is likely 
to occur more frequently - and will be responsible for software failure - or 
failure of software performance. 

• There is a lack of integration of performance and debugging, but also of 
hardware information in debugging session. 

• Resilience of the debugger to node failure is currently not provided - and 
the current MPI implementations and debugging APIs do not handle 
failure. 

• Existing performance tools provide a good view of resource usage within 
a code but users could benefit from seeing the performance in the 
context of a running application to understand a performance issue - 
although debugging can impact application performance and research 
into whether the two objectives can coincide is required. 

We make the following recommendations, which are a subset of the identified gaps: 

• Tools Integration in Scalable Framework: Tool integration should be 
developed.  Allinea’s tools represent a scalable portable platform that 
will be enhanced to reach exascale and this platform can be opened as 
a way to provide a lower barrier to entry for other tools developers, 
removing the hard problems of scalability and portability and allowing 
them to concentrate on their strengths. Allinea will work with TU 
Dresden to analyze ways to enable the MUST (successor of Marmot 
and Umpire) MPI checker to work within the debugger to demonstrate 
this platform. 
 

• Support for New Programming Models: As other elements of 
CRESTA will investigate programming models, the impact of 
debuggability is important - and an alternative model will be identified 
and debugging support for this will be considered with a view to 
discovering how such models will be debugged. There is currently a gap 
in correctness checking support for PGAS - e.g., UPC and Co-array 
Fortran - OpenCL, CUDA, and the Intel-MIC languages. Any newly 
developed model or compiler needs to consider its debugging strategy. 
This may involve: 

• Use of an API to enable debugger/runtime interaction; 
• Correctness checkers must intercept any use of the 

paradigm/model as some form of an event.   
• Specific library hooks to query consistency of internal data types; 
• Specific library code or support for representing the opaque data 

at a higher level. 
 

• MPI Correctness: While an interesting paradigm/model for an extension 
of existing correctness checkers should be identified, MPI remains a 
primary interest for application developers. As a result, we will extend 
scalability of MUST to cope with more than 1,000 processes. This 
involves extensions for runtime message matching and deadlock 
detection. We will try to extend towards at least one additional 
programming model, the decision of the model is highly dependent on 
the application developers interest and the availability of a 
instrumentation/measurement framework for the model. 
 

• Clustered Anomaly Detection: Debugging is both deductive and 
iterative, and yet iteration is not a process that we humans do well. At 



 

© CRESTA Consortium Partners 2011  Page 46 of 55 

 

current scale, and as we reach higher scales, we can automatically 
identify anomalies that happen - differences with previous successful 
runs, and with processes that are successful within the current task. 
This could cover both data changes, and process activity. Automated 
methods for asserting data integrity should be investigated that would 
allow, for example, a developer to efficiently detect incorrect values. 
This could involve developing both standard libraries for data 
verification, and model specific libraries. 

 
• Application/Library Model Awareness: Better integration of layered 

models and the debugger should be investigated - with, for example, 
awareness of MPI communicators and the internals of request object or 
integration with runtime of task based parallel frameworks to visualise 
internal task lists. 

 

• Fault Tolerance: We will closely investigate fault tolerance problems 
during the CRESTA timeframe to support WP2. Further, we will try to 
evaluate mechanisms from WP2 on a prototype/experiment level. 
However, no product-level actions for fault tolerance or debugger 
resilience in the debugging context is expected to be undertaken during 
CRESTA. 

 



 

© CRESTA Consortium Partners 2011  Page 47 of 55 

 

8 References!
[1] I.D. Chivers and J. Sleightholme, “Fortran Resources”, 

http://www.fortranplus.co.uk/resources/fortran_resources.pdf (accessed January 
2012) 

[2] B.W. Kernighan and D.M. Ritchie, “The C Programming Language” (1st ed., 
February 1978), Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110163-3. 

[3] OpenMP web site, http://www.openmp.org (accessed December 2011; “Using 
OpenMP: Portable Shared Memory Parallel Programming” Chapman, Jost and Van 
der Pas, MIT Press, ISBN: 0262533022 

[4] Message Passing Interface Forum, http://www.mpi-forum.org (accessed December 
2011) 

[5] J. Levesque and G. Wagenbreth, “High Performance Computing: Programming and 
Applications”, Chapman & Hall (2010), ISBN: 978-1-4200-7705-6. 

[6] PRACE project home page, http://www.prace-project.eu (accessed December 
2011) 

[7] PRACE-1IP Deliverable 7.4.1: Applications and user requirements for Tier-0 
systems, Mark Bull (EPCC), Xu Guo (EPCC), Ioannis Liabotis (GRNET), 
http://www.prace-ri.eu/PRACE-1IP-Public-Deliverables 

[8] Co-array Fortran web page, http://www.co-array.org/ (accessed December 2011) 
[9] UPC Language Specification (Version 1.2), 

http://upc.gwu.edu/docs/upc_specs_1.2.pdf 
[10] OpenSHMEM Project, http://www.openshmem.org (accessed January 2012). 
[11] X10 Language home page, http://x10-lang.org (accessed December 2011) 
[12] Project Fortress home page, http://projectfortress.java.net/ (accessed 

December 2011) 
[13] The Chapel Programming Language, http://chapel.cray.com (accessed January 

2012) 
[14] Top 500 Supercomputer Rankings web site http://www.top500.org 
[15] NVIDIA CUDA C Programming Guide, version 3.2 (2010), available from: 

http://developer.nvidia.com/cuda-toolkit-32-downloads 
[16] PGI CUDA Fortran home page 

http://www.pgroup.com/resources/cudafortran.htm (accessed December 2011) 
[17] OpenCL home page, http://www.khronos.org/opencl (accessed December 

2011) 
[18] Portland Group PGI Accelerator compilers, 

http://www.pgroup.com/resources/accel.htm (accessed January 2012) 
[19] CAPS Entreprise http://www.caps-entreprise.com/hmpp.html (accessed 

January 2012) 
[20] OpenACC standard, http://www.openacc-standard.org (accessed January 

2012) 
[21] R.C. Whaley, R. Clint and A. Petitet, “Minimising development and maintenance 

costs in supporting persistently optimised BLAS”, Software Practice and 
Experience (2005)  

[22] F. Mateo and S. G. Johnson, “The design and implementation of FFTW3”, 
Proceedings of the IEEE special issue on Program Generation, Optimization, and 
Platform Adaptation (2005) 

[23] M. Pischelet et al., “SPIRAL: Code Generation for DSP Transforms”, 
Proceedings of the IEEE special issue on Program Generation, Optimization, and 
Platform Adaptation (2005) 

[24] A. Tiwari et al., “A scalable autotuning framework for compiler optimization”, 
Proceedings of the 24th International Parallel and Distributed Proecessing 
Symposium (2009) 

[25] Collective Tuning Project http://ctuning.org/wiki/index.php/Main_Page 
(accessed January 2012) 

[26] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP Programming and 
Tuning for GPUs.”, SC10 Proceedings (2010). 



 

© CRESTA Consortium Partners 2011  Page 48 of 55 

 

[27] J. Ansel et al. “An Efficient Evolutionary Algorithm for Solving Bottom Up 
Problems”, Annual Conference on Genetic and Evolutionary Computation (2011) 

[28] OP2 website,   http://people.maths.ox.ac.uk/gilesm/op2/  (accessed January 
2012) 

[29] C. Augonnet, S. Thibaul, R. Namyst, “StarPU: a Runtime System for Scheduling 
Tasks over Accelerator-Based Multicore Machines”, (2010) 

[30] StarSS homepage, http://www.bsc.es/computer-sciences/programming-models 
(accessed January 2012) 

[31] F. Broquedis, N. Furmento B. Goglin, P.A. Wacrenier and Raymond Namys, 
“ForestGOMP: An Efficient OpenMP Environment for NUMA Architecture”, 
International Journal of Parallel Programming (2010) 

[32] L.V. Kale, E. Bohm, C.L. Mendes, T. Wilmarth and G. Zheng, “Programming 
petascale applications with Charm++ and AMPI”, Petascale Computing: Algorithms 
and Applications (2008) 

[33] A.Tabbal, M. Anderson, M. Brodowicz, H. Kaise and T. L. Sterling, “Preliminary 
design examination of the ParalleX system from a software and hardware 
perspective”, SIGMETRICS Performance Evaluation Review (2011) 

[34] N. Kappiah, Vi. W. Freeh, and D. K. Lowenthal, “Just In Time Dynamic Voltage 
Scaling: Exploiting Inter-Node Slack to Save Energy in MPI Programs”, 
Proceedings of the 2005 ACM/IEEE conference on Supercomputing (SC '05) 
(2005) 

[35] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent frequency 
and voltage scaling of communication phases in MPI programs”, Supercomputing 
(2006) 

[36] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski, and M. 
Schulz. “Bounding energy consumption in large-scale MPI programs”, 
Supercomputing (2007) 

[37] M. Curtis-Maury, J. Dzierwa, C.D. Antonopoulos, and D.S. Nikolopoulos. 2006. 
“Online power-performance adaptation of multithreaded programs using hardware 
event-based prediction”, Proceedings of the 20th annual international conference 
on Supercomputing (ICS '06) (2006) 

[38] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven threading: 
power-efficient and high-performance execution of multi-threaded workloads on 
CMPs”, Proceedings of the 13th international conference on Architectural support 
for programming languages and operating systems (2008) 

[39] Dong Li, B.R. de Supinski, M. Schulz, K. Cameron and D.S. Nikolopoulos, 
"Hybrid MPI/OpenMP power-aware computing", Parallel & Distributed Processing 
(IPDPS) (2010) 

[40] S. Huang, S. Xiao, W. Feng, "On the energy efficiency of graphics processing 
units for scientific computing," Parallel & Distributed Processing, 2009. IPDPS 2009 
(2009) 

[41] M. Rofouei, T. Stathopoulos, S.Ryffel, W. Kaiser and M. Sarrafzadeh “Energy-
aware high performance computing with graphic processing units”, Proceedings of 
the 2008 conference on Power aware computing and systems (2008) 

[42] J. Enos, C. Steffen, J.Fullop, M.Showerman, S.Guochun, K. Esler, V. 
Kindratenko, J.E. Stone and J.C. Phillips, "Quantifying the impact of GPUs on 
performance and energy efficiency in HPC clusters," Green Computing Conference 
2010 (2010) 

[43] T. Udagawa and M. Sekijima, "The Power Efficiency of GPUs in Multi Nodes 
Environment with Molecular Dynamics" Parallel Processing Workshops (ICPPW) 
(2011) 

 
[44] Z. Wang, Z. and M. O'Boyle “Mapping Parallelism to Multi-cores: A Machine 

Learning Based Approach”, 14th ACM SIGPLAN Symposium on Principles and 
Practice of Parallel Programming (2009) 

[45] G. Tournavatis et al. “Towards a Holistic Approach to Auto-Parallelization: 
Integrating Profile-Driven Parallelism Detection and Machine-Learning Based 



 

© CRESTA Consortium Partners 2011  Page 49 of 55 

 

Mapping”, Proceedings of the 2009 ACM SIGPLAN conference on Programming 
language design and implementation (2009) 

[46] A. Tiwari et al., “Auto-tuning full applications: a case study”. International 
Journal of High Performance Computing Applications (2011) 

[47] FTRANS User Guide by S. Booth,  
ftp://ftp.epcc.ed.ac.uk/pub/personal/spb/ftrans/ (accessed January 2012) 

[48] Cray Fortran Reference Manual S-3901-74. Section 4.7 PGAS Directive. 
http://docs.cray.com/books/S-3901-74/  (accessed January 2012) 

[49] P. Mucci, D. Ahlin, J. Danielsson, P. Ekman and L. Malinowski, “PerfMiner: 
Cluster-Wide Collection, Storage and Presentation of Application Level Hardware 
Performance Data”, Euro-Par 2005 Parallel Processing (2005) 

[50] K. Fuerlinger, N.J. Wright, D.Skinner, "Effective Performance Measurement at 
Petascale Using IPM", Parallel and Distributed Systems (ICPADS) (2010) 

[51] J. Gonzalez, J. Gimenez and J. Labarta, "Automatic detection of parallel 
applications computation phases", Parallel & Distributed Processing 2009 IPDPS 
2009 (2009) 

[52] H. Servat, G. Llort, J. Giménez and J. Labarta, “Detailed Performance Analysis 
Using Coarse Grain Sampling”, EURO-PAR 2009  - PARALLEL PROCESSING 
WORKSHOPS (2010) 

[53] P. C. Roth, D. C. Arnold, and B. P. Miller. “MRNet: A Software-Based 
Multicast/Reduction Network for Scalable Tools”, SC 2003, (2003) 

[54] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically 
characterizing large scale program behavior”, Proceedings of the 10th international 
conference on Architectural support for programming languages and operating 
systems (ASPLOS-X) (2002) 

[55] X. Liu, J. Zhan, K. Zhan, W. Shi, L. Yuan, D. Meng, L. Wang, “Automatic 
performance debugging of SPMD-style parallel programs”, Journal of Parallel and 
Distributed Computing (2011) 

[56] K. A. Huck and A. D. Malony, “PerfExplorer: A Performance Data Mining 
Framework For Large-Scale Parallel Computing”, Proceedings of the 2005 
ACM/IEEE conference on Supercomputing (SC '05) (2005) 

[57] M. Burtscher, B.D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and J. Browne, 
“PerfExpert: An Easy-to-Use Performance Diagnosis Tool for HPC Applications”, 
Proceedings of the 2010 ACM/IEEE International Conference for High Performance 
Computing, Networking, Storage and Analysis (SC '10) (2010) 

[58] A. Nataraj, M.Sottile, A. Morris, A. Malony, S. Shende, “TAUoverSupermon: 
Low-Overhead Online Parallel Performance Monitoring”, Euro-Par 2007 Parallel 
Processing (2007) 

[59] A. Nataray, A.D. Malony, A. Morris, D.C. Arnold and B.P.Miller, “A framework 
for scalable, parallel performance monitoring”, Concurrency and Computation: 
Practice and Experience (2010) 

[60] G. Llort, J. Gonzalez, H. Servat, J. Gimenez and J. Labarta, "On-line detection 
of large-scale parallel application's structure", Parallel & Distributed Processing 
(IPDPS), 2010 IEEE International Symposium (2010) 

[61] M. Schulz, G. Bronevetsky and B. R. Supinski, “On the Performance of 
Transparent MPI Piggyback Messages“, Proceedings of the 15th European 
PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine 
and Message Passing (2008) 

[62] L. Adhianto et al., “HPCtoolkit: tools for performance analysis of optimized 
parallel programs“, Concurrency and Computation: Practice and Experience (2010) 

[63] S. Benedict, V. Petkov and M. Gerndt, “Periscope:An online-based distributed 
performance analysis tool, Tools for High Performance Computing 2009 (2010)  

[64] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M.S 
Müller and W.E Nagel, “The Vampir Performance Analysis Tool Set“, Tools for High 
Performance Computing 2007 (2008) 

[65] S. Shende and A.D. Malony, “The TAU Parallel Performance System“, 
International Journal of High Performance Computing Applications (2006) 



 

© CRESTA Consortium Partners 2011  Page 50 of 55 

 

[66] M. Geimer, F. Wolf, B.J Wylie, E. Ábrahám, D. Becker and B. Mohr, “The 
Scalasca Performance Toolset Architecture”, Concurrency and Computation: 
Practice and Experience (2010) 

[67] C.E.  Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E.  Lusk and 
W. Gropp, “From Trace Generation to Visualization: A Performance Framework for 
Distributed Parallel Systems“, Proc. of SC2000: High Performance Networking and 
Computing (2000) 

[68] J.H Chen et al.,“Terascale direct numerical simulations of turbulent combustion 
using S3D“, Computational Science & Discovery (2009) 

[69] S. R. Alam, H. N. El-Harake, K.R Howard, N. Stringfellow and F. Verzelloni, 
“Parallel I/O and the Metadata Wall“, Parallel Data Storage Workshop (PDSW’11) 
(2011) 

[70] A. Knüpfer et al., “Score-P – A Joint Performance Measurement Run-Time 
Infrastructure for Periscope, Scalasca, TAU, and Vampir“, Tools for High 
Performance Computing, Proceedings of 5th International Workshop on Parallel 
Tools for High Performance Computing 2011, (to be published) 

[71] J. Labarta, J. Gimenez, E. Martínez, P. González, S. Harald, G. Llort and X. 
Aguilar: “Scalability of Tracing and Visualization Tools”, Proceedings of the 
International Conference ParCo 2005 (2005)  

[72] A. Knüpfer and W. E Nagel, “Compressible memory data structures for event-
based trace analysis”, Future Generation Computer Systems (2006), ISSN: 0167-
739X 

[73] A. Müehlenfeld and F. Wotawa, “Fault detection in multi-threaded C++ server 
applications”, Proceedings of the 12th ACM SIGPLAN symposium on Principles 
and practice of parallel programming (PPoPP '07)(2007) 

[74] Intel Corporation, “Intel Thread Checker”, http://www.intel.com/ 
support/performancetools/threadchecker (accessed February 2012) 

[75] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby, "ISP: A Tool 
for Model Checking MPI Programs",  Proc. PPOPP (2008) 

[76] J. S. Vetter and B. R. de Supinski, "Dynamic Software Testing of MPI 
Applications with Umpire," Supercomputing, (2000) 

[77] G. R. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou, "MPI-
CHECK: a tool for checking Fortran 90 MPI programs", Concurrency and 
Computation: Practice and Experience (2003) 

[78] B. Krammer and M. S. Müller, "MPI Application Development with MARMOT", 
in Proc. PARCO (2005) 

[79] T. Hilbrich, M. Schulz, B. R. de Supinski, and M. S. Müller, "MUST: A Scalable 
Approach to Runtime Error Detection in MPI Programs", Proc. Tools for High 
Performance Computing, Proceedings of the 2nd International Workshop on 
Parallel Tools for High Performance Computing (2009) 

[80] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Xu, E. Kleiman, and O. 
Weiss. “Evaluating error detection capabilities of UPC run-time systems”, 
Proceedings of the Third Conference on Partitioned Global Address Space 
Programing Models (PGAS '09) (2009) 

 

 

 

 



 

© CRESTA Consortium Partners 2011  Page 51 of 55 

 

Annexes!
A.1 Survey!Form!
The following form has been completed by WP4, WP5 and WP6 partners to identify 
first the common practices among the co-design application experts, and second the 
priority in the development of environment tools. 
 

What main tools/functions do you currently use to debug your applications? 

  
Never Occasionally Mostly Always 

 
Allinea DDT 

          

Command line tools 
such as GDB, DBX or 

IDB           

Printf/write statements 
inserted in code           

Totalview 
          

Valgrind 
          

 

Do you use or have you used any automatic correctness tools? 

•   Helgrind - thread checking within the valgrind framework 

•   Intel Thread Checker 

•   Intel Message Checker (Now within the Intel Trace Analyzer) 

•   ISP (University of Utah) 

•   Marmot (HLRS/TU Dresden) 

•   MPI-Check (University of Iowa) 

•   MUST (TU Dresden) 

•   UMPIRE (LLNL) 

•   Other:   
 

Did you use any other automatic correctness tools that is not specialized for 

OpenMP/Pthreads or MPI? If so, which one?   

 

Did your experience with any non MPI/OpenMP/Pthread paradigm yield the wish for 
automatic correctness checks? If so, what types of checks would you like for which 

paradigm?   

 

  
Strongly 
Disagree Disagree No opinion Agree Strongly 

Agree  



 

© CRESTA Consortium Partners 2011  Page 52 of 55 

 

  
Strongly 
Disagree Disagree No opinion Agree Strongly 

Agree  

Debuggers 
currently do 

everything I need             

I don't have time to 
learn how to use 

tools             

I don't have time to 
discover new tools             

If tools worked 
together, I would 

use them more             

 

What kind of software errors do you experience 

  
Never Rarely Occasionally Frequently 

 
Reaching new scale 

          

New environment (eg. 
compiler change or 

different MPI)           

Accelerator specific 
problems           

MPI race conditions 
(random message 

orderings)           

MPI deadlock 
          

MPI data transfer 
bugs - eg. incorrect 

halo exchanges           

OpenMP/multi-
threading data races           

Unexplained 
difference in output 

between two 
versions/runs of same 

code 
          

 



 

© CRESTA Consortium Partners 2011  Page 53 of 55 

 

Describe the most frequent cause/type of software bug that you 
have?

  

 

Techniques used to debugIf you wish to, outline some of the ways that you use to 
debug that you feel are not currently done for you by 
debuggers

  

 

About your software development 
Please give an overview of how your primary application is structured and the 
technologies it uses, and how it is developed - or will be developed over the next few 
years 

 

Currently used parallel structure 

•   MPI 

•   MPI + GPU 

•   MPI + GPU + OpenMP/multithreaded 

•   MPI + OpenMP/multithreaded 

•   OpenMP 

•   PGAS - Coarray Fortran, UPC, .. 

•   Other:   
 

Anticipated future application structure 

•   MPI 

•   MPI + GPU/MIC 

•   MPI + GPU/MIC + OpenMP/multithreaded 

•   MPI + OpenMP/multithreaded 

•   OpenMP 

•   PGAS - Coarray Fortran, UPC, .. 



 

© CRESTA Consortium Partners 2011  Page 54 of 55 

 

•   Other:   
 

Language supportWhat languages/models will be important to your application in the 
next 1-2 years? 

  
Not 

important Unknown Important Very 
Important  

MPI 
          

C and C++ 
          

UPC 
          

F90 and derivatives 
          

Coarray Fortran 
          

StarSS 
          

MPC 
          

Python 
          

Cilk 
          

OpenMP 
          

OpenACC (GPU 
accelerator standard)           

OpenCL 
          

Hadoop/Map reduce 
          

Intel's offload 
pragmas for MIC           

X10 
          

Chapel 
          

 

Other languages: If there are languages that were not mentioned above, please 

suggest others that could be important to your project   

 



 

© CRESTA Consortium Partners 2011  Page 55 of 55 

 

Would you consider extending your code to make debugging it easier? If given a 
framework for enhancing the debugger's understanding of your models, would you 

develop plugins/settings/code to use it?   

 

Which basic libraries are important to you? If you use packages - such as the C++ STL, 
PETSC, NETCDF, or others - which ones would you like the debugger to "understand" 

- allowing you easy access to predefined data types   

 

 

!


