

Copyright © CRESTA Consortium Partners 2011

D4.1.1	
 –	
 Overview	
 of	
 major	
 limiting	

factors	
 of	
 existing	
 algorithms	
 and	

libraries	

WP4:	
 Algorithms	
 and	
 libraries	

Due date: 6

Submission date: 31/03/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization

High Performance Computing Centre Stuttgart (HLRS)

University of Stuttgart

Version: 1.0

Status Final

Author(s):

Stephen P Booth (UEDIN),

Dmitry Khabi (HLRS),

Gregor Matura (DLR)

Cristoph Niethammer (HLRS)

Harvey Richardson (CRAY UK)

Reviewer(s) Alan Gray (UEDIN), Tobias Hilbrich (TUD)

Dissemination level

<PU/PP/RE/CO> PU – Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 30.01.2012 First version of the deliverable Dmitry Khabi (HLRS)

0.2 20.02.2012 Added section about FFT Stephen P Booth
(UEDIN)

0.3 23.02.2012 Added Introduction Dmitry Khabi (HLRS)

0.4 01.03.2012 Comments and some changes Harvey Richardson
(CRAY UK)

0.5 07.03.2012 Added short description of Jacobi, CG,
Multigrid, H-Matrix and svn repository

Dmitry Khabi (HLRS)

0.6 09.03.2012 Added section Conclusions, collective
operations and future work

Harvey Richardson
(CRAY UK),

Cristoph Niethammer
(HLRS),

Dmitry Khabi (HLRS)

0.7 15.03.2012 Changes due to review Dmitry Khabi (HLRS)

0.8 26.03.2012 Changes due to review Harvey Richardson
(CRAY UK)

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 PURPOSE	
 ..	
 3	

2.2	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 3	

3	
 SIMULATION	
 PROBLEMS	
 AND	
 ALGORITHMS	
 FOR	
 THEIR	
 SOLUTION	
 ..	
 4	

3.1	
 OVERVIEW	
 OF	
 THE	
 ALGORITHMS	
 ...	
 4	

3.1.1	
 Jacobi	
 ..	
 5	

3.1.2	
 Conjugate	
 Gradient	
 ..	
 5	

3.1.3	
 Multigrid	
 ...	
 5	

3.1.4	
 HIERARCHICAL	
 MATRIX	
 ...	
 6	

3.1.5	
 FFT	
 ..	
 6	

4	
 CRESTA	
 SVN	
 REPOSITORY	
 WP4/TASK1_EXTERNAL_LIBRARIES	
 ...	
 7	

5	
 EXTERNAL	
 LIBRARIES	
 AND	
 THEIR	
 APPLYING	
 ...	
 8	

5.1	
 ITERATIVE	
 METHODS	
 ..	
 8	

5.1.1	
 Test	
 environment	
 for	
 external	
 libraries	
 ..	
 8	

5.1.2	
 Statistics	
 of	
 PETsC	
 Library	
 ...	
 11	

5.2	
 ALGEBRAIC	
 MULTIGRID	
 ...	
 17	

5.3	
 FFT	
 ...	
 18	

5.3.1	
 Theory	
 ...	
 18	

5.3.2	
 Statistics	
 ...	
 19	

5.3.3	
 Model	
 ..	
 20	

5.4	
 TRILINOS	
 ..	
 21	

5.4.1	
 Overview	
 ...	
 21	

5.4.2	
 Short	
 package	
 description	
 ..	
 21	

5.4.3	
 Trilinos	
 within	
 CRESTA	
 ..	
 22	

5.4.4	
 other	
 WPs	
 ...	
 22	

5.5	
 COLLECTIVE	
 OPERATIONS	
 ..	
 22	

6	
 CONCLUSIONS	
 AND	
 FUTURE	
 WORK	
 ...	
 23	

7	
 PLATFORMS	
 ...	
 24	

7.1	
 HLRS-­‐PLATFORMS	
 ...	
 24	

7.1.1	
 CrayXE6	
 ...	
 24	

7.1.2	
 NEC	
 Nehalem	
 Cluster	
 ..	
 25	

8	
 MATRIX	
 COLLECTION	
 ...	
 26	

8.1	
 BONE	
 MATRIX	
 ...	
 26	

8.1.1	
 Project	
 ...	
 26	

8.1.2	
 Short	
 description	
 and	
 geometry	
 ...	
 26	

8.1.3	
 Properties	
 of	
 the	
 matrix	
 ..	
 26	

8.2	
 AIRCRAFT	
 GRIDS	
 ..	
 28	

8.2.1	
 Project	
 ...	
 28	

8.2.2	
 Short	
 description	
 and	
 geometry	
 ...	
 28	

8.2.3	
 Properties	
 of	
 the	
 matrix	
 ..	
 28	

9	
 REFERENCES	
 ..	
 29	

Index	
 of	
 Figures	

Figure 1 - The first 6 iterations of Jacobi method (Poisson's equation) 5	

Figure 2 - The first 6 iterations of CG method (Poisson's equation) 5	

Figure 3 - The first 3 iterations of algebraic Multigrid method (Poisson's equation) 5	

Copyright © CRESTA Consortium Partners 2011

Figure 4 - Example of H-Matrix ... 6	

Figure 5 - CRESTA svn repository for the analyse and tests of external libraries 7	

Figure 6 - Distribution of the system of linear equations, part 1 9	

Figure 7 - Distribution of the system of linear equations, part 2 9	

Figure 8 - Dependency of the residual on the number of CG iteration (double, single,
bone matrix) .. 11	

Figure 9 - Run-time of 1000 iterations of CG method on Cray XE6 (double, i64, bone
matrix) ... 12	

Figure 10 - Average performance of one process during CG iterations on Cray XE6 .. 12	

Figure 11 - CrayPat Diagram of the computation on 320 processes (exclude mpi calls
profiling) .. 13	

Figure 12 - CrayPat Diagram of the computation on 320 processes (include mpi calls
profiling) .. 13	

Figure 13 - CrayPat Diagrams of the computation on 4800 and 9600 processes
(include mpi calls profiling) ... 13	

Figure 14 - Run-time of 1000 iterations of CG method on Cray XE6 (double, i64, small
bone matrix) .. 14	

Figure 15 - Run-time of 1000 iterations of CG method on Cray XE6 (double / single, i64
/ i32, bone matrix) ... 15	

Figure 16 - CrayPat Diagrams of the computation on 7680 and 8000 processes 16	

Figure 17 - Convergence of CG method with Jacobi and AMG pre conditioner (small
bone matrix) .. 17	

Figure 18 - Performance of 3D FFTs on a Cray XE6 ... 19	

Figure 19 - Cray XE6 (Hermit) .. 24	

Figure 20 - NEC Nehalem Cluster .. 25	

Figure 21 - Description of the bone matrix project .. 26	

Figure 22 - Model of cortical bone of size 1 cm3with color figure of displacement. 26	

Figure 23 - Description of the aircraft grid matrix project .. 28	

Figure 24 - Calculations of viscous flow around a delta wing 28	

Index	
 of	
 Tables	

Table 1 - Requirement of the Co-design applications .. 3	

Table 2 - The configurations file for the solver of the system of linear equations 8	

Table 3 - Quantitative properties of the bone matrix .. 27	

© CRESTA Consortium Partners 2011 Page 1 of 29

1 Executive	
 Summary	

In this deliverable, we give an overview of the main external libraries that are of
importance for the CRESTA Co-design applications. This document presents the state
of the art for the use of external libraries in Co-design applications, and presents new
methods for their use. The problems faced today and in the future are described. A list
and associated brief explanation are provided for algorithms that are currently being
used or are under development. Some of the implementations have already been
tested on most modern platforms. For this purpose, Cray XE6 and NEC Nehalem
platforms have been utilised. The deliverable shows how the algorithms can be
described mathematically to study their suitability for future exascale systems.
Statistics have been collected for the verification of such models, which can be
expanded at any time, depending on the requirements of future models. Finally there is
a description of the CRESTA SVN repository for WP4, which should unite the software
that we are going to use and develop in the CRESTA project.

© CRESTA Consortium Partners 2011 Page 2 of 29

2 Introduction	

Our small but detailed survey of the European HPC user communities1 has shown that
many of the applications tend to use their own implementations of parallel computation
in preference to using any external libraries. For this there are a number of reasons:
additional difficulties in linking external libraries, specific features of the problems to be
solved, some difficulties in the control of the external solvers, the need to reformat data
for export/import to an external library, and so on. But the requirements for the
algorithms will be dramatically increased on going to the new scales of simulated tasks
(increasing of the computational area, the amount and complexity of processors and
their interconnectivity, limitation on power consumption). There’s a lot of doubt that
those solutions that more or less fit today will be able to give satisfactory results even
in the near future. This was also confirmed by the European HPC user communities.
So it is not advisable to develop in parallel the same methods on different systems, and
so disperse the limited resources.

The only exceptions to this trend for our Co-design applications are ELMFIRE that uses
PETsC (the software library for domain decomposition and solving system of linear
equations) and HemeLB that uses ParMetis (used for domain decomposition and graph
partitioning). This is one of the main reasons for our choice of the PETsC library for our
initial tests. The application HemeLB is a Lattice Boltzmann code so it does not use
any FFT libraries or linear system solver libraries. The library ParMetis is used by
HemeLB during the initialization phase in order to optimize the domain decomposition.
Also based on the experience of using this library in the pre-processing phase, it
seems that ParMetis will not be the weak link in this exascale computation.

To identify the external libraries for NEK5000 we need to work more closely with its
users within CRESTA. This is due to the specific assembly of its matrices for the
systems of linear equations. The first contacts and specific arrangements towards this
goal have been agreed upon at the CRESTA collaboration meetings in Edinburgh and
Cologne.

The Spectral Transformations used within the IFS and GROMACS systems requires
global communication. And this seems to be a weak link for exascale computing.
Therefore, we consider a model for the FFT computation, with an emphasis on global
communications. New developments in the field of global communications should be
especially tested in this area. To do this, we have also developed some tests for FFTs.
The integration of these tests into the test environment of WP4 is in progress.

The application OpenFOAM is very complex in terms of the Software Engineering and
uses innumerable C++ classes. Their definition is also hidden with the help of
templates. We have identified the classes that we will use to connect an external solver
for the systems of linear equations. Currently, work is underway to release the matrix
data suitable for this purpose.

The table below highlights whether the Co-design application requires a new approach
towards HPC computation.

1 A recent survey carried out across the CRESTA co-design applications.

© CRESTA Consortium Partners 2011 Page 3 of 29

Application Requirement for a new approach

HemeLB NO

ELMFIRE YES (iterative methods, Multigrid)

IFS YES (FFT)

GROMACS YES (FFT)

OpenFOAM YES (iterative methods, Multigrid)

NEK5000 YES (iterative methods, Multigrid)
Table 1 - Requirement of the Co-design applications

All CRESTA Co-design applications use libraries such as BLAS and LAPACK. This is
unsurprising as this has become standard in HPC. With their help, local calculations
are made for standard tasks, e.g.: scaling of vectors, dense matrix multiplication,
solving small systems of linear equations. There are a large number of high-
performance implementations that are partially developed by processor vendors. In this
first task for WP4 we didn’t examine these libraries, as they are not the factor that
prevents applications from being highly effective. On the contrary, their use is one of
the essential factors for their success. It is of coursed necessary to consider this. But
first we need to study other factors which limit the effectiveness of the applications.
Initial progress has been made towards this and this document presents this progress.

2.1 Purpose	

The purpose of this deliverable and our future work is as follows:

• Overview of the most important algorithms for the solving of large systems of
linear equations.

• Create a suitable benchmark system to test the existing external libraries and to
support the development of new algorithms.

• Analyse the most prominent libraries for their suitability to solve large systems
of linear equations.

• Deliver statistical data in order to develop and evaluate new models (including
the model for FFTs presented in this deliverable) for exascale computation.

• Select the best algorithms and their implementation for the MPI collective
operations that occur in the CRESTA Co-design applications.

• Creating an external solver for a system of linear equations, and the
mechanism of its connection to a variety of CRESTA’s Co-design applications
for effective distribution of tasks on exascale systems.

2.2 Glossary	
 of	
 Acronyms	

cronym Definition
AMG Algebraic Multigrid
CG Conjugate Gradient Method
CrayPat Cray Performance Analysis Tools
CRS or CSR Compressed Row Storage format
DFT Discrete Fourier Transform
FE Finite-Element
FFT Fast Fourier Transforms
H-MATRIX Hierarchical Matrix
LU LU decomposition
MVM Matrix Vector Multiplication
PETsC Portable, Extensible Toolkit for Scientific Computation
SVN Subversion

© CRESTA Consortium Partners 2011 Page 4 of 29

3 Simulation	
 Problems	
 and	
 Algorithms	
 for	
 their	
 Solution	

Solving the issues of biomolecular systems, fusion energy, the virtual physiological
human, numerical weather prediction and engineering plays an increasing role in
modern life. In order to meet the growing demands on these process simulations, the
computational program may need to use new approaches. When scientists or
engineers simulate a continuous event, for example the flow of a fluid through a pipe,
they impose a grid over the area of interest and compute the relevant parameters in the
nodes of the grid. This often leads – alongside the definition of the parameters on the
boundary grid nodes – to a large system of linear equations . The matrix
describes the relationships between the parameters (e.g. the velocity of the flow in the
grid point), the vector is the unknown parameter and the vector is the given input
(e.g. the velocity of the flow at the beginning and end of the pipe). One of the current
bottlenecks in the scientific computation is the solving of these very large systems of
linear equations. This relates to square matrices of size 108 x 108 and higher.

In the next sections we introduce some important algorithms for HPC computation.
Some of them are widely used and others just beginning to be utilised by HPC
applications. Detailed descriptions of the algorithms can be found in many books and
on the Internet. We also provide some references to, in our opinion, the most
informative and modern resources. Following this, we describe our testing and software
development for parallel computing.

3.1 Overview	
 of	
 the	
 Algorithms	

For many centuries, scientists developed new methods for solving the simple
equation fast and reliably. Carl Friedrich Gauss developed the Gaussian
elimination technique around the 1800’s. This method has been used effective until
today. Its advantages include the techniques guarantee to solve the problem. It makes
this algorithm with some modifications (e.g. pivoting) one of the most frequently used
sequential computations for solving systems of linear equations of small order (with the
number of equitation less than 104). Unfortunately (or fortunately for computer
scientists), its degree of complexity () and inability to be parallelized makes it
impractical for solving large systems of linear equations. Even if we could determine
how to parallelize the algorithm with one hundred percent efficiency, it is unlikely that it
will be helpful for us. In order to solve the system with 108 of linear equations, we need
to perform 103x8≡ 1024 operations. One exascale computer will compute 1018 operations
in a second. We would still require more than 12 days to compute the solution with
such a computer.

The next step in the development of algorithms for solving systems of linear equations
is the use of iterative methods. One of the simplest and oldest of these algorithms is
the Jacobi method. Unlike Gaussian elimination, the Jacobi method computes an
approximate solution. Unfortunately the Jacobi method typically converges very slowly.
But some of its beneficial properties make it attractive for use in modern algorithms: the
Multigrid method (so-called Jacobi relaxation step (1)). The most prominent iterative
method for solving sparse systems of linear equations is the Conjugate Gradient
Method. It was developed around the 1950’s by Cornelius Lanczos and Walter Arnoldi.
There are many different modifications of the algorithm (Bi-CG, GMRES...), so that
almost any system of linear equations, if at all possible, can be approximately solved.
One of the main advantages of this method is that it simple to parallelize, which greatly
reduces the duration of a single iteration. Unfortunately, with the number of iterations
required to solve the system of linear equations, it is often an insurmountable problem.
Hence Krylov space methods are typically used in conjunction with a preconditioner.
The new theory of hierarchical matrices (2) promises to be one of the most interesting
ways of finding an effective preconditioner.

© CRESTA Consortium Partners 2011 Page 5 of 29

3.1.1 Jacobi	

Figure 1 - The first 6 iterations of the Jacobi method (Poisson's equation)

Figure 1 shows the approximate solutions to Poisson's equation after the first six
iterations calculated by the Jacobi method. The finer the mesh the more iterations
needed to achieve a sufficient accuracy of the solution (pictured below in the Figure 3
for the Multigrid method). But the high error frequencies are attenuated within a few
iterations.

3.1.2 Conjugate	
 Gradient	

Figure 2 - The first 6 iterations of the CG method (Poisson's equation)

The CG method converges faster than the Jacobi method. The reduction of the error
works from the edge to the centre (see Figure 2).

3.1.3 Multigrid	

Figure 3 - The first 3 iterations of the algebraic Multigrid method (Poisson's equation)

This method converges very quickly. The error reduction is independent of the mesh
size. The error is reduced by one order per iteration. The method is much more
complicated than Jacobi and CG. For more details about the Multigrid method see one
of the most prominent books in this area: (1).

© CRESTA Consortium Partners 2011 Page 6 of 29

Many more details and source code for these methods can be found in various books
and on the Internet. One of the latest detailed overviews was done in lectures in the
University Stuttgart, see (3). The images were also made with the help of various
source codes, which can be found in these University of Stuttgart lectures.

3.1.4 Hierarchical	
 Matrix	

The main idea in the "H-Matrix"(2) theory lies in the fact that the matrix can be
expressed in approximate form. An approximation is acceptable as a discretization of
differential equations by itself leads to some errors: it is called discretization error. For
the approximation, the matrix is divided into many blocks of various sizes. Some of
these blocks can then be represented as low-rank matrices of rank k. A low-rank matrix
has many fewer elements than the exact matrix (if k much less as number of rows).
One of the major challenges is to divide the matrix, so that the blocks are large enough,
and the parameter k (rank of the block matrix) is small. In this case, it is possible to
construct a good preconditioner (like LU) with almost linear complexity. On the other
hand there is a problem of data distribution and load balancing. There are several
libraries for solving these systems of linear equations using H-Matrix on shared
memory systems (H-Libpro is the one of the best implementation of it (4)). Currently,
work is underway to develop a library that uses MPI. In the CRESTA project, we also
want to try to apply this new theory to solve systems of linear equations.

 Dense block matrix

 Low-rank block matrix

Figure 4 - Example of the H-Matrix

3.1.5 FFTs	

Fast Fourier Transforms are the generic name for a class of algorithms used for
computing Fourier transforms (technically Fourier transforms are continuous functions
and FFTs actually calculate the discrete approximation to the Fourier transforms).

The Discrete Fourier Transform can be defined as follows:

This is defined for all

Though a naïve implementation of the DFT would require O(N2) operations the FFT
algorithm is a very efficient recursive algorithm with complexity O(N log(N)). Many
computational problems contain particular calculations that are significantly easier to
compute using either real or spectral space data representations. This can be a very
large saving, for example replacing an expensive iterative solver with a local
calculation. Unfortunately many applications contain a mixture of calculations with
different optimal data representations but the highly efficient nature of the FFT
algorithms make it feasible to change data representations many times during the
execution of the application.

© CRESTA Consortium Partners 2011 Page 7 of 29

4 CRESTA	
 SVN	
 repository	
 WP4/task1_external_libraries	

In order to test the existing libraries for solving the systems of linear equations of the
CRESTA Co-design applications we require a lot of different modules and data sets,
here some of them:

• External Libraries (PETsC, Hypre, Trilinos, …)

• Data for the tests

• Programs to generate the test data

• Modules to read and distribute the data

• Benchmarks

• Environment settings for different platforms

These modules will be needed throughout the project to develop our own system, for
solving systems of linear equations. For these reasons we have created the CRESTA
SVN repositoryWP4/task1 in which we manage the above-mentioned modules. During
the project "CRESTA" we will develop this further. This is, among other things, the
basis for the work of the “linear solver” co-design team, which brings together teams
from WP4, WP5, WP6 and WP2. More information for this is located in CRESTA’s
BSCW under the directory "Co-design teams". Figure 5 illustrates the structure of the
repository. In addition we have provided support for semi-automatic compilation and
integration of different modules on HLRS platforms. The flexibility of this test system
allows this support to be extended to other platforms and external libraries that are
used in the project.

CRESTA
	
 svn	
 repository

wp4

task1_external_libraries

hpcdkhab@eslogin003:~/wp4/task1_external_libraries/benchmark/hlrs/make
hpcdkhab@eslogin003:~/wp4/task1_external_libraries/benchmark/hlrs/qsub	
 …	
 	

petsc_benchmark_hlrs_crayxe6_gnu_craypat_double_i64	
 	
 	
 	
 	
 	
 	
 /ws/matrix_data/	

petsc_get_solution::	
 solve	
 the	
 system	
 average	
 cycles:	
 10526488;	
 solve	
 the	
 system	
 average	
 time:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4.577407E-­‐03	
 sec.;

Makefile_env
ORGANISATION=_hlrs
PLATFORM=_crayxe6
COMPILER=_gnu
PROFILER=_craypat
FP_PRECISION=_double
INDX_FORMAT=_i64
...

Makefile_compiler_hlrs
#CRAYXE6	
 GNU
F90_hlrs_crayxe6_gnu_double_i64=CC
…
#CRAYE6	
 GNU	
 DEBUG
F90_hlrs_crayxe6_gnu_debug_double_i64=CC
…
#CRAYXE6	
 CRAY
F90_hlrs_crayxe6_cray_double_i64=ftn
...
#NECNEHALEM	
 GNU
...

external_libraries benchmark matrix_data matrix_interface

PETsC hlrs/
petsc_benchmark

hlrs/
debug_matrix

hlrs/
...

docs

task_1_statistic Hypre

Figure 5 - CRESTA SVN repository for the analyse and tests of external libraries

In the directory "wp4/task1_external_libraries/docs/task1_statistic" are the statistics
that we have collected during initial testing. Some of the data was used in this
document. This data will also be used in the next task of WP4 for the development of a
"Prediction model for limiting factors for hardware and algorithm libraries”.

© CRESTA Consortium Partners 2011 Page 8 of 29

5 External	
 Libraries	
 and	
 their	
 Application	

5.1 Iterative	
 Methods	

5.1.1 Test	
 environment	
 for	
 external	
 libraries	

As a representative library of iterative methods we have selected the library PETsC (5).
PETsC is written in C ++ and Fortran and uses MPI for all message-passing
communication. The core part of the library deals with solving systems of linear
equations. It provides a highly scalable implementation of the CG-method with some
simple preconditioners. We analysed benchmark results on the examples for matrix
size of 108x108 to determine at first the most important challenges of an exascale
computation. For some tests, we’ve used matrix size of 105x105, which was assembled
for the same simulation problem but for a smaller domain. Generating matrices of
different sizes based on the simulation problems of the Co-design applications was not
possible within this timescale, as the assembly of the matrix is hard bound to the code
of the applications. One of our next tasks is to solve this problem (one possibility is to
use the I/O server architecture, see below).

CG embodies all the important sub-operations used in iterative methods. The library
can be compiled for single-, double- and long-double-precision computation. The
configuration of the solver can be made directly in the code or by using a configuration
file. We used the later for our experiments. In the following table we present the
chosen parameters for solving the system of linear equations.

-ksp_type cg # Conjugate Gradient Method

-pc_typeJacobi # preconditioner

-ksp_rtol 1.e-12 # residual norm relative to the norm of the right hand (b)

-ksp_atol 1.e-52 # absolute size of the residual norm

-ksp_divtol 100000 # divergence

-ksp_max_it 1000 # maximum number of iterations

-ksp_converged_reason # gets the reason the KSP iteration was stopped
Table 2 - The configurations file for the solver of the system of linear equations

The KSP is the object for access to the Krylov subspace methods. In the configuration
above it was set to CG. The Jacobi preconditioner was selected for our benchmark
program. For the system of linear equations we used it was the only possible candidate
implemented in this library. One of the features of the matrix that we used was it was
not a block matrix. This is due to the fact that during its assembly, some of the degrees
of freedom have been reduced (~ 10%). The Jacobi preconditioner has a minimal
impact on the number of iterations and its computation requires only a few
milliseconds. The PETsC library supports the use of additional preconditioner libraries.

With the options rtol, atol, divtol, max_it users can control the convergence test of the
interactive methods. The convergence of CG is detected at iteration if

 - Residual

or

In our tests, we performed 1000 iterations. This number is sufficient to analyse the
behaviour of the method without excessive computational time.

One of the major challenges was to initialize the external solver with the test data. The
transfer of a linear system (matrix A, vector b) of the application to the solver and the
solution of this linear system to the application can be implemented in different ways:

© CRESTA Consortium Partners 2011 Page 9 of 29

• Linking of the external library (function call).
• Through MPI Communication between two MPI_COMM_WORLDs.
• Through an I/O server architecture by using a file system (e.g. Lustre).
• Through an I/O server architecture by using IO Forwarding.

The first and second methods are undoubtedly the fastest. However they often require
more than a trivial additional function call in the application code. The compatibility of
the application and the library, as well as load balancing can also be problematic. The
use of a file system (in the HPC area, this is Lustre) is the simplest way for
communication between an external application and the solver. However, this method
is slow. An alternative to communication via the file system, is provided by an I/O
server architecture that uses IO Forwarding. Some nodes in the system can be used as
the buffer nodes. These nodes store the files with the system of linear equations in
memory. The application exchanges data with external solvers through these buffer
nodes. The communication happens over the high-speed network achieving high
bandwidth and good scaling by using several buffer nodes. The main feature of the
communication via IO Forwarding is that the programmer can use the general IO
interface. We have programmed a system in which the matrix and the vectors are
loaded in parallel, distributed and prepared for the solver. Until the IO Forwarding
system works, the data must be saved on a storage system. Despite the capable
parallel file systems that we have, the bandwidth achieved very modest values (3-4
Gigabyte per second). It shows the importance of an IO Forwarding system. Its
performance increases with the number of used channels. Figure 6 and Figure 7
illustrate the distribution scheme on a coarse-grained level scheme. On Figure 6, those
processes are combined in groups, which addressing the separate data streams. The
red boxes are the processes that read the data (for example, the matrix) and then
redistribute it to the processes (which are highlighted with a green colour). In further
tests on the Cray XE6 system, we used 10 master processes. If the data is distributed,
PETSc (or another solver) can solve the linear system using the green highlighted
processors (see Figure 7).

Figure 6 - Distribution of the system of linear
equations, part 1

Figure 7 - Distribution of the system of linear
equations, part 2

The PETsC library operates with the matrices in distributed (Block-) Compressed Row
Storage (CRS) format.

For our tests we have used the symmetric positive definite matrix of the size
and with columns. The detailed description of the bone matrix is

available in section 8 (Additionally, one other matrix is presented in this section, which

I/O server I/O server

© CRESTA Consortium Partners 2011 Page 10 of 29

we will use in future tests and development). Since the matrix is in the above format,
you can easily initialize the PETsC library with it.

All computations were performed on a petaflop system CrayXE6. The technical data of
the system is listed in section 7.1.1.

© CRESTA Consortium Partners 2011 Page 11 of 29

5.1.2 Statistics	
 of	
 the	
 PETsC	
 Library	

5.1.2.1 Single	
 and	
 double	
 precision	
 floating-­‐point	
 data	
 types	

As mentioned above, we only compute the first one thousand iterations. To achieve
sufficient accuracy usually requires many more iterations. In order to solve the system
of the bone matrix with the accuracy of (needed for the bone simulation), we
have to iterate approximately ten thousand times. The dependencies of the residual on
the number of CG iteration with double and single precision computation are shown in
Figure 8. Furthermore, the residuals of the computation with smaller matrix of the same
simulation problem are shown (the curves: residual single / double small matrix). This
matrix is thousand times smaller (100'000 diagonal elements, with 6’901’344 none zero
elements). As noted above, the method converges more slowly as the domain of the
simulation becomes larger. After 15’600 iterations with double precision the residual
does not decrease and there are no benefits to iterating any longer. After 2’800
iterations with single precision the residual achieves the minimal value of 8.28e-07. The
error will not decrease from this. By increasing the size of the problem, the situation will
only worsen. But in this case, collective operations, which probably play a primary role
in the precision of this algorithm, can be reprogrammed to increase their accuracy.
Increasing the accuracy of the collective reduction operations will be considered by the
future WP4 task: “Exascale collective reduction collective approaches”). In addition, we
observed changes in the precision of the calculation depending on the number of the
processes. The first residual double value, calculated on 320 and 5760 processors,
differs by 0.001 percent. This difference seems small, but the use of hundreds of
thousands (or millions) of processes can lead to a substantial increase in these kinds of
errors.

Figure 8 - Dependency of the residual on the number of CG iteration (double, single, bone matrix)

© CRESTA Consortium Partners 2011 Page 12 of 29

5.1.2.2 Computation	
 with	
 double	
 precision	
 floating-­‐point	
 data	
 type	

Figure 9 - Run-time of 1000 iterations of CG method on Cray XE6 (double, i64, bone matrix)

Figure 9 shows the runtime per thousand iterations on the CrayXE6 system at HLRS.
The computation was done with double precision and a 64-bit integer representation for
the indices. To collect the statistical data, the benchmark was run several times. This
test was repeated several times. The differences in the run time were no more than 2
percent. The graph shows two curves, one for the run-time, while another shows the
run-time in the case of ideal scaling. As a starting point for the ideal scaling calculation,
the program's run-time on 320 processes has been chosen. The average performance
of one process is pictured in Figure 10. The achieved performance is no more than one
and a half percent of the theoretical peak performance. This can be explained because
the matrix does not consist of the blocks and the CRS format is not optimal for the
matrix vector multiplication.

Figure 10 - Average performance of one process during CG iterations on Cray XE6

© CRESTA Consortium Partners 2011 Page 13 of 29

Matrix vector multiplication (MVM) and the vector operations make up the largest part
of the computation. In this configuration, for the operation MVM used asynchronous
data transfer with the commands MPI_Isend and MPI_Irecv. To synchronize it the MPI
operation MPI_Waitany is used. To calculate the scalar of the vector operations
MPI_Allreduce is applied. If we compute on only 320 processes (10 nodes) the MPI
ratio of the runtime is low. The most computational parts are shown in Figure 11.

Matrix vector product MPI_Allreduce (sync)

 Vector dot product Precondition (diag. matrix x vector)

All Others MPI_Waitany

Figure 11 - CrayPat Diagram of the computation
on 320 processes (excludes MPI call profiling)

Figure 12 - CrayPat Diagram of the computation
on 320 processes (includes MPI call profiling)

Figure 12 shows the MPI calls that were included in the profiling (with the option “–g
mpi”). These two charts show that most of the time of the scalar product has been
spent in MPI_Allreduce.

Figure 13 - CrayPat Diagrams of the computation on 4800 and 9600 processes (includes MPI call

profiling)

73.6%

14.4% 17.8%

5.2%

6.8% 6.3%

69.9% 65.7%

13.2% 13.2%

14.2% 16.9%

7.4%

75.9%

© CRESTA Consortium Partners 2011 Page 14 of 29

The MPI_Allreduce fraction increases with the number of processes. It amounts to
13.2% of the overall computation with 4800 processes. The MVM communication part
increases slowly, but at 9600 processes it begins to become an important factor. For
further explanation, we will investigate the distribution of the matrix (load balancing)
and the impact of the implementation of MPI collective operations in the CRESTA Co-
design team “Linear solvers and pre conditioners”. In addition, we explore the library in
the next section. This also gives us an insight into the previously mentioned problems
of scalability.

For comparison, Figure 14 shows the execution time of 1000 CG iterations with the
small bone matrix. In this case we can also observe even super-linear scaling: data
processing takes place in the cache. One node has 32 cores.

Figure 14 - Run-time of 1000 iterations of the CG method on Cray XE6 (double, i64, small bone
matrix)

© CRESTA Consortium Partners 2011 Page 15 of 29

5.1.2.3 Computation	
 with	
 double	
 /	
 single	
 precision	
 and	
 64-­‐bit	
 /	
 32-­‐bit	
 indices	

In this section, we carry out a comparative analysis of the computation with different
data types. In Section 4.1.2.1 we have shown that the calculation with single precision
does not lead to satisfactory results. It is possible, that using more accurate reduction
operations will improve the accuracy. In addition, the statistics, collected with different
data types, may be of great interest for the evaluation of the prediction model of limiting
hardware factors.

Simply using the 32-bit representation of the indices is not always possible. The largest
positive number that we can use is . The considered matrix is
composed of about the seven billion items. The distributed “CRS” format allows us to
organize the indexing of its elements, so that we can compute the solution by using
more than three processes. However, the is the upper limit for the
number of diagonal elements.

Applying different data types results in undesirable properties:

• The interface between the different modules of the simulation becomes more
complex.

• There is a need for copying and reformatting data.
• The probability of programming errors increases.

However the computational time can be greatly reduced. Figure 15 shows the run-time
of the computation using different data types for floating-point numbers and indices.
The time axis is logarithmic.

Figure 15 - Run-time of 1000 iterations of the CG method on the Cray XE6 (double / single, i64 / i32,
bone matrix)

As you can see, the fraction of operations associated with the floating-point numbers is
greater than the fraction of the indices operation. The curve for "single i32" has the

© CRESTA Consortium Partners 2011 Page 16 of 29

greatest fluctuations, particularly between the points (7680; 8.7674) and (8000;
10.2315). The curve "double i64" has following values at these points: (7680; 11.5821)
and (8,000; 11.5364).
The diagrams in Figure 16 show the proportion of parts of computation by single i32
and double i64 on 7680 and 8000 processes.

Matrix vector product MPI_Allreduce(sync)

 MPI_Waitany MPI_Waitall

 All Others

Figure 16 - CrayPat Diagrams of the computation on 7680 and 8000 processes

The operation MPI_Waitany is used in the MVM for the scattering of the vector. The
vector data is packed before sending. Hence after the data have been received it can
be immediately extracted. It is possible also to use the operation MPI_Alltoallv instead
of asynchronous data transfer. To do this, the user has to add a new parameter to the
PETsC configurations file (Table 2): -vecscatter_alltoall. The run-time increases
dramatically if MPI_Alltoall is used: 1000 iterations take around 117 seconds on 7680
processes and 129 seconds on 8000 processes.

As shown above, the use of different data representations can lead to positive results.
However, it should also not significantly increase the complexity of the software.

single i32 8000 procs single i32 7680 procs

double i64 7680 procs double i64 8000 procs

41.5%

20.3%

15.1%

16.3%

6.9%

42.6%

19.8%

15.9% 6.0%

15.7%

64.7% 65.6%

16.2%

11.9% 7.3% 11.7% 7.1%

15.5%

© CRESTA Consortium Partners 2011 Page 17 of 29

5.2 Algebraic	
 Multigrid	

As a representative of the Algebraic Multigrid methods we selected the library
BoomerAMG. BoomerAMG is a parallel implementation. It can be used as a solver or
as a preconditioner. BoomerAMG is part of the Hypre library (6). It is also possible to
directly use the Algebraic Multigrid as a preconditioner in the PETsC library (with
linking of Hypre library). As already mentioned, this method is very difficult. It is difficult
not only to implement but also to use. Currently, we have not been able to solve the
problem with a large matrix with sufficient accuracy (it is still unclear whether it is
possible with BoomerAMG). The method diverges after a few iterations. For the small
bone matrix the algorithm works without a glitch. The intermediate result is presented in
the next Figure. This shows the differences of the residual reduction for the Jacobi and
Algebraic Multigrid pre conditioner.

Figure 17 - Convergence of the CG method with the Jacobi and AMG pre conditioner (small bone

matrix)

The preparation of the AMG preconditioner (the setup phase) requires a lot of time. In
addition, one iteration step takes longer than when using one of the simple
preconditioners. So for small matrices it is much faster to use a simple method, e.g. CG
with a Jacobi pre conditioner. But when the matrix size is large, we need many more
iterations to solve the system of linear equations. Reducing the number of iterations
gives enough time for the AMG setup phase. Hence we expect AMG to be relevant for
Exascale.

© CRESTA Consortium Partners 2011 Page 18 of 29

5.3 FFT	

5.3.1 Theory	

The fundamental limiting factors for FFTs are intrinsic to the algorithm rather than being
specific to any one implementation so it is instructive to consider these in the abstract.

As mentioned previously the FFT algorithm has a complexity of O(N log(N)) this can be
broken down into log(N) steps each with a potential parallelism of N. The same
complexity behaviour applies to multi-dimensional FFTs which is unsurprising because
the recursive step used in the derivation of the FFT algorithm is essentially to convert a
one dimensional DFT into a two dimensional DFT, which contains the same total
number of points; with the additional application of multiplicative phase factors. On
modern computer architectures the performance of the FFT algorithm is completely
dominated by data movement costs. This data movement is very expensive but is
necessary because every word in the output of a DFT calculation depends on every
word of the input. This also means it is highly unlikely that any equivalent calculation
(for example an iterative solver that solves equations in real-space) will require less
communication than the log(N) data exchange steps, as required by the FFT algorithm.
However for calculations where the full results of an FFT calculation have more
information than is required for the solution of the problem then alternative approaches
with less demanding communication requirements might be possible. Such examples
occur in situations where high frequency components are not required.

In practice, modern machine architectures present a hierarchy of storage locations with
different data movement costs. Data movement is much cheaper within caches close to
the processor than within lower levels of the memory hierarchy. Similarly with
distributed memory systems, communication between nodes is significantly more costly
than communications within a node.

The data movement costs of the FFT algorithm can be minimized by arranging the
intermediate data layouts to perform as many of the data movements as possible in the
higher levels of the storage hierarchy. Similarly with distributed memory systems
implementations arrange for as much of the data movements as possible to occur
within a node.

In practice most codes that perform FFTs perform transformations on large multi-
dimensional datasets (frequently the transform is only applied to a sub-set of the
dataset dimensions). In this case it is convenient to implement the overall transform as
a series of data redistributions between different data decompositions with each of the
active dimensions in turn being local to a node (transpose operations). Between each
of the redistributions the local active dimension is transformed using a non-distributed
FFT library. The convenience of this approach is because it allows distributed FFT
implementations to be built out of optimized single node FFT libraries and highly
optimized MPI collectives. However in common with all implementations the overall
performance is largely limited by the data movements.

Many highly optimized node local FFT libraries exist. For example the FFTW library:
http://www.fftw.org. This library is an example of an auto-tuning library capable of
automatically tuning its algorithms at run-time to find a good solution for the specific
problem and hardware/software environment encountered by the application. However
for distributed memory applications the majority of performance of the inter-node data
communications is far more significant for performance than the performance of the
underlying node-local FFT library so the choice of which underlying FFT library is
largely irrelevant and the performance of the MPI collectives dominate the
performance. Though multi node FFT libraries do exist, most applications do not use
these, instead each application currently builds their own multi-node FFTs out of a
combination of node-local FFT libraries and MPI collectives. Most of the multi-node
FFT libraries only support a limited range of input and output data decompositions that
typically don’t correspond to the data decompositions required by real application. They

© CRESTA Consortium Partners 2011 Page 19 of 29

also typically have no performance advantage over what is generally obtained by
application specific implementations built out of the same underlying libraries. Most
applications use the collective call MPI_Alltoall because in this collective the global
communication pattern is known by all participating processors allowing greater scope
for optimisation. The MPI_Alltoallv collective allows greater flexibility in data
decomposition and may be used by applications where load imbalance considerations
are more important than the absolute performance of the FFT.

5.3.2 Statistics	

The following figure shows the time to complete different sizes of 3 dimensional FFT on
different core counts of a Cray XE6. Three different sizes of FFT are shown 1283 2563

and 5123

In each case 32 MPI tasks per node and a 2 dimensional processor grid was used.
Each data-point represents the best performing data decomposition for that problem
size and processor count. All communications used the MPI_Alltoall collective
operation within one row or column of the processor grid.

Figure 18 - Performance of 3D FFTs on a Cray XE6

This data shows a clear difference in behaviour depending on how the size of the
problem relates to the number of processors. For very large problem sizes the
message sizes within the MPI_Alltoall are of a reasonable size and the communication
time will be limited by the available bandwidth (either within the node network interface
or the bisection bandwidth of the network itself) the aggregate bandwidth increases as
node count increases so for large problems the run-time decreases with the number of
nodes. For small problem sizes the message sizes within the MPI_AlltoAll are small
and communication time is limited by per-message costs such as message latencies. It
seems reasonable to consider the small problem example as indicative of performance
extrapolated to Exascale.

© CRESTA Consortium Partners 2011 Page 20 of 29

5.3.3 Model	

If we use a modified Latency/Bandwidth model where the message latency may
depend on the number of simultaneous messages so the time to send x messages of
size S is given by:

We can expand the latency factor as a power series in x:

• l0 can be interpreted as a pipelined latency including the network transfer time.

• l1 can be interpreted as non-pipelined latency for example representing critical
sections in the MPI library or contention for the network interface.

• l2(if significant) could be interpreted as a cost associated with searching internal
message queues (each message incurs a cost proportional to the number of
outstanding messages). However we will assume terms higher than l2 are negligible.

We can therefore estimate the time for an MPI_Alltoall (or an MPI_Alltoallv) of a local
volume of data V across P processors as being:

If l1 is large then the performance of MPI_Alltoall with small message sizes can be
improved by using a multi-stage algorithm (e.g. (7)) that reduces the overall number of
messages at the expense of increasing the overall volume of data sent (some data
passes through intermediate nodes before being forwarded to its ultimate destination).
This is a logarithmic algorithm where half the data is exchanged with a peer processor
at each step giving a communication cost of:

The MPI library on the XE6 implements this optimisation for small message sizes and
performance of the smallest data size above is consistent with a cost logarithmic in the
number of processors.

This suggests that the ultimate limiting factor in the performance of the distributed FFT
operation is the performance of the MPI_AlltoAll operation (or equivalent) and this is in
turn limited by the non-pipelined message latency. The figure shows that in the current
technology non-pipelined latency is relatively large and is limiting the scalability of
distributed FFTs. Though particularly relevant to distributed FFTs this term is also
important for many other communication patterns and will have to be reduced in order
to produce usable Exascale systems. There are fundamental limits on message
latency. One of these is due to the speed of light though this applies to l0 rather than
l1.A limiting value of l1 can be derived from the size of the message protocol header
multiplied by b.

In principle it is possible to use single sided communications to overlap some of the
data movement with the calculation of the local FFTs however this requires the use of
many small messages and would therefore also be very sensitive to communication
latency.

© CRESTA Consortium Partners 2011 Page 21 of 29

5.4 Trilinos	

First we give a general overview or Trilinos followed by a short description of some
packages selected regarding the probable needs of CRESTA in general and WP4
more specifically. How Trilinos can match these is explored afterwards.

5.4.1 Overview	

"The Trilinos Project is an effort to facilitate the design, development, integration and
on-going support of mathematical software libraries within an object-oriented
framework for the solution of large-scale, complex multi-physics engineering and
scientific problems."(8)

Based on a package system Trilinos facilitates interoperability. Every package is a self-
contained collection of code dedicated to one specific subtask like a direct solver
implementation or multilevel preconditioner. It is mostly maintained by a small group
with expertise on this particular subject and can therefore match the state-of-the-art.
Licensed under LGPL or BSD Trilinos is open source software and thus open for
participation. Given implementations can be analysed closely and if they don't meet
CRESTA requirements the available packages can be enhanced as needed.

5.4.2 Short	
 package	
 description	

The basis of Trilinos is provided by the package Epetra. It provides a uniform interface
to various objects like matrices and vectors and thus represents a common language
that every package has to be capable with. Furthermore, it can be used to access the
well optimized BLAS and LAPACK routines.

AztecOO contains several iterative algorithms that can be applied optionally as a pure
solver, a preconditioner for the former or in multiple combinations for both. Although
using a somewhat different approach the Belos package yields the same functionality.
In this context the package ML should be mentioned which is furnished as a Multigrid
preconditioner, of course with a vast amount of possible settings.

To get a decent load balancing Zoltan and its Epetra-interface Isorropia is at hand
providing different graph partioning methods. It also implements interfaces to PTScotch
and ParMETIS likewise and is therefore particularly useful to run those three against
each other in a common environment.

Apart from this Trilinos supplies various tools internally. A command line parser is
present for run-time adjusting own programs, Flop counts can be performed in different
manners, error handling is widely supported.

© CRESTA Consortium Partners 2011 Page 22 of 29

5.4.3 Trilinos	
 within	
 CRESTA	

5.4.3.1 WP4:	
 algorithms	
 and	
 libraries	

Once a matrix interface for application data is available it can be used to set up the
corresponding Epetra matrix. From this point on Trilinos supplies various possibilities to
precondition and solve this matrix with only a few steps. Thus it is quite easy to get an
overview over different algorithm-application interaction under even more different
circumstances. Using this approach an exhaustive investigation of the algorithms
provided by Trilinos is achievable. Monitoring precisely the outcome hints for an
improvement of the algorithm should be possible. If the supplied parameter list for the
application specifically best algorithm isn't sufficient enough or a completely new
method is needed, a new Trilinos package could be written covering these issues.

5.4.4 Other	
 WPs	

Another advantage of Trilinos is its interoperability that is also needed internally in
CRESTA. Especially regarding the pre- and post-processing (WP5) the algorithms (and
their footing) aren't separated at all. Hence building both (or even more) work packages
on the same foundation could lead to overall benefits.

5.5	
 Collective	
 Operations	

It almost goes without saying that the collective communication phases of a parallel
application will be the most likely algorithmic components to limit scalability. In the
benchmark study of the co-design applications (D2.6.1) collective operations were
identified as a potential scaling liability for Nek5000, HemeLB and IFS.

We have shown that for codes using linear solvers the residual calculation can be a
limitation on scalability with the MPI_Allreduce reduction operation taking a significant
fraction of execution time.

More generally we expect that any code using MPI_Alltoall is likely to suffer challenges
in scalability and have already noted the importance of the collective communication
phase in FFT implementations in the previous subsections.

For the IFS co-design application we have undertaken some detailed scalability
analysis and this code currently requires MPI_Alltoallv that consumes an increasing
fraction of time as the core count or model complexity increases. The non-blocking
collectives that will be developed and implemented in later phases of the CRESTA
project are likely to help with this issue. One particular approach that is currently under
investigation is changing algorithms to use single-sided non-blocking communication
that we expect will give opportunities for increased scalability.

At the time of writing the initial benchmark suite became available and this will give us
the ability to further study the limiting factors in the collective phases of the co-design
applications in order to inform our developments.

© CRESTA Consortium Partners 2011 Page 23 of 29

6 Conclusions	
 and	
 Future	
 Work	

We have considered how our use of solvers, FFT and collective libraries can be a
limitation for the CRESTA applications as we aim towards exascale.

For linear solvers initial tests have shown that iterative methods must be used only with
suitable pre conditioners. The huge number of iterations is not acceptable for CRESTA
Co-design applications. Also of great interest is the performance and behaviour of the
solver, if we change the precision of floating point numbers and the format for the
indices of 64 to 32 bits. Another important task is to expand the test data.

For the example of reading and distributing large data sets, which is described in 5.1.1,
we were able to make some additional important conclusions for our future work:

• The transmission of data through an I/O server is promising, and is relatively
simple to implement.

• Further development of I/O Forwarding is a necessary condition for the success
of our work.

In the next step of verification of existing algorithms, we want to look closely at the
libraries BoomerAMG and Trillinos (described above).

FFT operations are almost entirely communication limited and their scalability depends
on the scalability of the communication capabilities of the target system rather than
their computational capabilities. The high communication requirements of FFTs mean
that they are difficult to scale and where a FFT is an over-specification of the problem
alternative algorithms may be preferable. However where this is not the case the FFT
algorithm remains exceptionally efficient and Exascale implementations need to be
addressed. We have developed some simple but informative models of FFT
performance that should help in the evaluation of FFT operations at the Exascale.

Collective operations are important and are a potential scaling liability for the co-design
application Nek5000, HemeLB and IFS. More generally they are important for FFT
operations, linear solvers and when embedded in applications. Our work on optimized
reduction approaches and realizing collectives at extreme scale will address some of
these limitations.

In this document we have considered how limitations of various libraries may be an
inhibiting factor as we progress towards exascale. Our future work on FFTs, linear
solvers and collective operations will address these limitations.

© CRESTA Consortium Partners 2011 Page 24 of 29

7 Platforms	

7.1 HLRS-­‐Platforms	

7.1.1 CrayXE6	

Figure 19 - Cray XE6 (Hermit)

Technical description (installation step 1)

Peak performance 1.045 PFlops

Cabinets 38 with 96 nodes each

Number of compute nodes 3552

Number of compute cores per node 2 sockets with 16 cores each: 113
664

Number of service nodes 96

Processor compute nodes Dual Socket AMD Interlagos @ 2.3GHz 16
cores each

Memory/node 32 GB and 64 GB

Disk capacity 2.7 PB

Node-node interconnect Cray Gemini

Special nodes External Access Nodes, Pre-
&Postprocessing Nodes, Remote
Visualization Nodes

Power consumption 2 MW maximal

© CRESTA Consortium Partners 2011 Page 25 of 29

7.1.2 NEC	
 Nehalem	
 Cluster	

Figure 20 - NEC Nehalem Cluster

Technical description

Peak Performance 62 TFlops

Number of Nodes 700 Dual Sockel Quad Core

Processor Intel Xeon (X5560) Nehalem @ 2.8 GHz, 8MB
Cache

Memory/node 12 GB

Disk 80 TB shared scratch (lustre)

Node-node interconnect infiniband, GigE

accelerators 32 nodes provide Nvidia Tesla S1070 GPGPU

graphical pre- and post processing nodes 6 nodes provide NvidiaQuadro 5800FX
graphics card

© CRESTA Consortium Partners 2011 Page 26 of 29

8 Matrix	
 Collection	

8.1 Bone	
 matrix	

8.1.1 Project	

Biomechanical simulations on parallel computers to assist in
trauma care and hip endoprosthetics– BiSPar.
Motivation: To improve the patient-specific treatment options
and reduce treatment costs.
Developers:

• HLRS: Ralf Schneider ;
• LASSO Ingenieurgesellschaft mbH;
• Universitätsklinikum Freiburg;

Figure 21 - Description of the bone matrix project

8.1.2 Short	
 description	
 and	
 geometry	

The bone matrix was assembled during the static Finite-Element (FE) simulations of
bone-implant-systems. The Figure 22 pictures the small part of the geometrical data of
a cortical bone that was used to assembly the matrix. The topology consists of 44’332
hexaeder8 and 58948 nodes.

Figure 22 - Model of cortical bone of size 1 cm3with colour figure of displacement.

8.1.3 Properties	
 of	
 the	
 matrix	

The bone matrix is symmetric and positive definite. It is strongly diagonally dominant:

It is saved in four files in the serial CRS format (binary). Each of the files stores one
field. Additional to these files the vector b and the short description of the internal
structure are saved in the files (header and vector_b). The details to the size of the
matrix and files are in the following table2.

© CRESTA Consortium Partners 2011 Page 27 of 29

Table 3 - Quantitative properties of the bone matrix

Possible size:

1) 48 x 48 , for interface adjustment / debugging
2) 107’568 x 107’568 (non zeros: 6’793’776)
3) 100 million x 100 million (non zeros: 7.5 billion)

Required size:

A simulation of a relevant part of the knee bone (for treatment) will produce matrices of
size and more.

© CRESTA Consortium Partners 2011 Page 28 of 29

8.2 Aircraft	
 grids	

8.2.1 Project	

Prediction of viscous and inviscid flows
about complex geometries from the low
subsonic to the hypersonic flow regime,
employing hybrid unstructured grids.

Developer: DLR Institute of Aerodynamics
and Flow Technology

Motivation: To improve complex aircraft-
type configurations in shape and material
design.

Figure 23 - Description of the aircraft grid matrix project

8.2.2 Short	
 description	
 and	
 geometry	

Flow Simulation (including coupling to structure and flight mechanics):
TAU can be used with both (block-) structured and hybrid unstructured grids
composed of hexahedrons, prisms, tetrahedrons and pyramids. The
calculations of viscous flow around a delta wing at M=0.5, alpha=9º is pictured
on the Figure 24.

	

Figure 24 - Calculations of viscous flow around a delta wing

8.2.3 Properties	
 of	
 the	
 matrix	

The matrix is non-symmetric, and real. It is stored in binary Blocked CSR Format:

Usual CRS containing a 5x5 block in each matrix position.

Possible size:

1) 4 x 4 2x2-blocks, for interface adjustment / debugging
2) 108‘396 x 108‘396 5x5-blocks, therefore 541‘980 unknowns

(non zero:170‘610‘950)
3) on demand (almost) arbitrary

Required size:

The dimension depends on the specific simulation done and the grid size is adjustable
and produces better results at a finer setting. Thus 107x107 could be a first step.

© CRESTA Consortium Partners 2011 Page 29 of 29

9 References	

1. Algebraic Multigrid (AMG): An Introduction with Applications. Stüben, K. 1999.

2. Hackbusch, Wolfgang. Hierarchische Matrizen: Algorithmen und Analysis. s.l. :
Springer, ISBN 978-3-642-00221-2, 2009.

3. Küster, Uwe. HLRS and Institute of High Performance Computing (Universität
Stuttgart). Modeling, simulation and optimization methods. [Online] 2011-2012.
http://www.ihr.uni-stuttgart.de/lehre/vorlesungen/modellierung-simulation-und-
optimierungsverfahren-i/.

4. Ronald Kriemann. HLIBpro. [Online] Max-Planck-Institut für Mathematik in den
Naturwissenschaften, 2012. http://www.hlibpro.com/.

5. Portable, Extensible Toolkit for Scientific Computation. [Online] 09 08, 2011.
http://www.mcs.anl.gov/petsc/.

6. http://acts.nersc.gov/hypre/. [Online] Center for Applied Scientific Computing (CASC)
at Lawrence Livermore National Laboratory.

7. IEEE TPDS. al, Jehoshua Bruck et. 1997.

8. An overview of the Trilinos project. Michael A. Heroux, Roscoe A. Bartlett, Vicki
E. Howle ... s.l. : ACM Press, 2005.

