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1 Executive	
  Summary	
  
 

In this deliverable, we give an overview of the main external libraries that are of 
importance for the CRESTA Co-design applications. This document presents the state 
of the art for the use of external libraries in Co-design applications, and presents new 
methods for their use. The problems faced today and in the future are described. A list 
and associated brief explanation are provided for algorithms that are currently being 
used or are under development. Some of the implementations have already been 
tested on most modern platforms. For this purpose, Cray XE6 and NEC Nehalem 
platforms have been utilised. The deliverable shows how the algorithms can be 
described mathematically to study their suitability for future exascale systems. 
Statistics have been collected for the verification of such models, which can be 
expanded at any time, depending on the requirements of future models. Finally there is 
a description of the CRESTA SVN repository for WP4, which should unite the software 
that we are going to use and develop in the CRESTA project.  
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2 Introduction	
  
 

Our small but detailed survey of the European HPC user communities1 has shown that 
many of the applications tend to use their own implementations of parallel computation 
in preference to using any external libraries. For this there are a number of reasons: 
additional difficulties in linking external libraries, specific features of the problems to be 
solved, some difficulties in the control of the external solvers, the need to reformat data 
for export/import to an external library, and so on. But the requirements for the 
algorithms will be dramatically increased on going to the new scales of simulated tasks 
(increasing of the computational area, the amount and complexity of processors and 
their interconnectivity, limitation on power consumption). There’s a lot of doubt that 
those solutions that more or less fit today will be able to give satisfactory results even 
in the near future. This was also confirmed by the European HPC user communities. 
So it is not advisable to develop in parallel the same methods on different systems, and 
so disperse the limited resources. 

The only exceptions to this trend for our Co-design applications are ELMFIRE that uses 
PETsC (the software library for domain decomposition and solving system of linear 
equations) and HemeLB that uses ParMetis (used for domain decomposition and graph 
partitioning). This is one of the main reasons for our choice of the PETsC library for our 
initial tests. The application HemeLB is a Lattice Boltzmann code so it does not use 
any FFT libraries or linear system solver libraries. The library ParMetis is used by 
HemeLB during the initialization phase in order to optimize the domain decomposition. 
Also based on the experience of using this library in the pre-processing phase, it 
seems that ParMetis will not be the weak link in this exascale computation. 

To identify the external libraries for NEK5000 we need to work more closely with its 
users within CRESTA. This is due to the specific assembly of its matrices for the 
systems of linear equations. The first contacts and specific arrangements towards this 
goal have been agreed upon at the CRESTA collaboration meetings in Edinburgh and 
Cologne. 

The Spectral Transformations used within the IFS and GROMACS systems requires 
global communication. And this seems to be a weak link for exascale computing. 
Therefore, we consider a model for the FFT computation, with an emphasis on global 
communications.  New developments in the field of global communications should be 
especially tested in this area. To do this, we have also developed some tests for FFTs. 
The integration of these tests into the test environment of WP4 is in progress. 

The application OpenFOAM is very complex in terms of the Software Engineering and 
uses innumerable C++ classes. Their definition is also hidden with the help of 
templates. We have identified the classes that we will use to connect an external solver 
for the systems of linear equations. Currently, work is underway to release the matrix 
data suitable for this purpose. 

The table below highlights whether the Co-design application requires a new approach 
towards HPC computation. 

                                                
1 A recent survey carried out across the CRESTA co-design applications. 
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Application Requirement for a new approach 

HemeLB NO 

ELMFIRE YES (iterative methods, Multigrid) 

IFS YES (FFT) 

GROMACS YES (FFT) 

OpenFOAM YES (iterative methods, Multigrid) 

NEK5000 YES (iterative methods, Multigrid) 
Table 1 - Requirement of the Co-design applications 

All CRESTA Co-design applications use libraries such as BLAS and LAPACK. This is 
unsurprising as this has become standard in HPC. With their help, local calculations 
are made for standard tasks, e.g.: scaling of vectors, dense matrix multiplication, 
solving small systems of linear equations. There are a large number of high-
performance implementations that are partially developed by processor vendors. In this 
first task for WP4 we didn’t examine these libraries, as they are not the factor that 
prevents applications from being highly effective. On the contrary, their use is one of 
the essential factors for their success. It is of coursed necessary to consider this. But 
first we need to study other factors which limit the effectiveness of the applications. 
Initial progress has been made towards this and this document presents this progress.  

2.1 Purpose	
  
The purpose of this deliverable and our future work is as follows: 

• Overview of the most important algorithms for the solving of large systems of 
linear equations. 

• Create a suitable benchmark system to test the existing external libraries and to 
support the development of new algorithms. 

• Analyse the most prominent libraries for their suitability to solve large systems 
of linear equations. 

• Deliver statistical data in order to develop and evaluate new models (including 
the model for FFTs presented in this deliverable) for exascale computation. 

• Select the best algorithms and their implementation for the MPI collective 
operations that occur in the CRESTA Co-design applications. 

• Creating an external solver for a system of linear equations, and the 
mechanism of its connection to a variety of CRESTA’s Co-design applications 
for effective distribution of tasks on exascale systems. 

2.2 Glossary	
  of	
  Acronyms	
  
cronym Definition 
AMG Algebraic Multigrid 
CG Conjugate Gradient Method 
CrayPat Cray Performance Analysis Tools 
CRS or CSR Compressed Row Storage format 
DFT Discrete Fourier Transform 
FE Finite-Element 
FFT Fast Fourier Transforms 
H-MATRIX Hierarchical Matrix 
LU LU decomposition 
MVM Matrix Vector Multiplication 
PETsC Portable, Extensible Toolkit for Scientific Computation 
SVN Subversion 
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3 Simulation	
  Problems	
  and	
  Algorithms	
  for	
  their	
  Solution	
  
Solving the issues of biomolecular systems, fusion energy, the virtual physiological 
human, numerical weather prediction and engineering plays an increasing role in 
modern life. In order to meet the growing demands on these process simulations, the 
computational program may need to use new approaches. When scientists or 
engineers simulate a continuous event, for example the flow of a fluid through a pipe, 
they impose a grid over the area of interest and compute the relevant parameters in the 
nodes of the grid. This often leads – alongside the definition of the parameters on the 
boundary grid nodes – to a large system of linear equations .  The matrix  
describes the relationships between the parameters (e.g. the velocity of the flow in the 
grid point), the vector  is the unknown parameter and the vector  is the given input 
(e.g. the velocity of the flow at the beginning and end of the pipe). One of the current 
bottlenecks in the scientific computation is the solving of these very large systems of 
linear equations. This relates to square matrices  of size 108 x 108 and higher.  

In the next sections we introduce some important algorithms for HPC computation. 
Some of them are widely used and others just beginning to be utilised by HPC 
applications. Detailed descriptions of the algorithms can be found in many books and 
on the Internet. We also provide some references to, in our opinion, the most 
informative and modern resources. Following this, we describe our testing and software 
development for parallel computing. 

3.1 Overview	
  of	
  the	
  Algorithms	
  
For many centuries, scientists developed new methods for solving the simple 
equation  fast and reliably. Carl Friedrich Gauss developed the Gaussian 
elimination technique around the 1800’s.  This method has been used effective until 
today. Its advantages include the techniques guarantee to solve the problem. It makes 
this algorithm with some modifications (e.g. pivoting) one of the most frequently used 
sequential computations for solving systems of linear equations of small order (with the 
number of equitation less than 104). Unfortunately (or fortunately for computer 
scientists), its degree of complexity ( ) and inability to be parallelized makes it 
impractical for solving large systems of linear equations. Even if we could determine 
how to parallelize the algorithm with one hundred percent efficiency, it is unlikely that it 
will be helpful for us. In order to solve the system with 108 of linear equations, we need 
to perform 103x8≡ 1024 operations. One exascale computer will compute 1018 operations 
in a second. We would still require more than 12 days to compute the solution with 
such a computer. 

The next step in the development of algorithms for solving systems of linear equations 
is the use of iterative methods. One of the simplest and oldest of these algorithms is 
the Jacobi method. Unlike Gaussian elimination, the Jacobi method computes an 
approximate solution. Unfortunately the Jacobi method typically converges very slowly.  
But some of its beneficial properties make it attractive for use in modern algorithms: the 
Multigrid method (so-called Jacobi relaxation step (1)). The most prominent iterative 
method for solving sparse systems of linear equations is the Conjugate Gradient 
Method. It was developed around the 1950’s by Cornelius Lanczos and Walter Arnoldi. 
There are many different modifications of the algorithm (Bi-CG, GMRES...), so that 
almost any system of linear equations, if at all possible, can be approximately solved. 
One of the main advantages of this method is that it simple to parallelize, which greatly 
reduces the duration of a single iteration. Unfortunately, with the number of iterations 
required to solve the system of linear equations, it is often an insurmountable problem. 
Hence Krylov space methods are typically used in conjunction with a preconditioner. 
The new theory of hierarchical matrices (2) promises to be one of the most interesting 
ways of finding an effective preconditioner. 
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3.1.1 Jacobi	
  

   

   
Figure 1 - The first 6 iterations of the Jacobi method (Poisson's equation) 

Figure 1 shows the approximate solutions to Poisson's equation after the first six 
iterations calculated by the Jacobi method. The finer the mesh the more iterations 
needed to achieve a sufficient accuracy of the solution (pictured below in the Figure 3 
for the Multigrid method). But the high error frequencies are attenuated within a few 
iterations. 

3.1.2 Conjugate	
  Gradient	
  

   

   
Figure 2 - The first 6 iterations of the CG method (Poisson's equation) 

The CG method converges faster than the Jacobi method. The reduction of the error 
works from the edge to the centre (see Figure 2). 

3.1.3 Multigrid	
  

   
Figure 3 - The first 3 iterations of the algebraic Multigrid method (Poisson's equation) 

This method converges very quickly. The error reduction is independent of the mesh 
size. The error is reduced by one order per iteration. The method is much more 
complicated than Jacobi and CG. For more details about the Multigrid method see one 
of the most prominent books in this area: (1). 



 

© CRESTA Consortium Partners 2011  Page 6 of 29 

 

Many more details and source code for these methods can be found in various books 
and on the Internet. One of the latest detailed overviews was done in lectures in the 
University Stuttgart, see (3). The images were also made with the help of various 
source codes, which can be found in these University of Stuttgart lectures. 

3.1.4 Hierarchical	
  Matrix	
  
The main idea in the "H-Matrix"(2) theory lies in the fact that the matrix  can be 
expressed in approximate form. An approximation is acceptable as a discretization of 
differential equations by itself leads to some errors: it is called discretization error. For 
the approximation, the matrix is divided into many blocks of various sizes. Some of 
these blocks can then be represented as low-rank matrices of rank k. A low-rank matrix 
has many fewer elements than the exact matrix (if k much less as number of rows). 
One of the major challenges is to divide the matrix, so that the blocks are large enough, 
and the parameter k (rank of the block matrix) is small. In this case, it is possible to 
construct a good preconditioner (like LU) with almost linear complexity. On the other 
hand there is a problem of data distribution and load balancing. There are several 
libraries for solving these systems of linear equations using H-Matrix on shared 
memory systems (H-Libpro is the one of the best implementation of it (4)). Currently, 
work is underway to develop a library that uses MPI. In the CRESTA project, we also 
want to try to apply this new theory to solve systems of linear equations. 

 

 

 Dense block matrix 

 Low-rank block matrix 

Figure 4 - Example of the H-Matrix 

3.1.5 FFTs	
  
Fast Fourier Transforms are the generic name for a class of algorithms used for 
computing Fourier transforms (technically Fourier transforms are continuous functions 
and FFTs actually calculate the discrete approximation to the Fourier transforms).  

The Discrete Fourier Transform can be defined as follows: 

 

 
 
This is defined for all  

Though a naïve implementation of the DFT would require O(N2) operations the FFT 
algorithm is a very efficient recursive algorithm with complexity O(N log(N)). Many 
computational problems contain particular calculations that are significantly easier to 
compute using either real or spectral space data representations. This can be a very 
large saving, for example replacing an expensive iterative solver with a local 
calculation. Unfortunately many applications contain a mixture of calculations with 
different optimal data representations but the highly efficient nature of the FFT 
algorithms make it feasible to change data representations many times during the 
execution of the application. 
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4 CRESTA	
  SVN	
  repository	
  WP4/task1_external_libraries	
  
 

In order to test the existing libraries for solving the systems of linear equations of the 
CRESTA Co-design applications we require a lot of different modules and data sets, 
here some of them: 

• External Libraries (PETsC, Hypre, Trilinos, …) 

• Data for the tests 

• Programs to generate the test data 

• Modules to read and distribute the data 

• Benchmarks 

• Environment settings for different platforms 

These modules will be needed throughout the project to develop our own system, for 
solving systems of linear equations. For these reasons we have created the CRESTA 
SVN repositoryWP4/task1 in which we manage the above-mentioned modules. During 
the project "CRESTA" we will develop this further. This is, among other things, the 
basis for the work of the “linear solver” co-design team, which brings together teams 
from WP4, WP5, WP6 and WP2. More information for this is located in CRESTA’s 
BSCW under the directory "Co-design teams". Figure 5 illustrates the structure of the 
repository. In addition we have provided support for semi-automatic compilation and 
integration of different modules on HLRS platforms. The flexibility of this test system 
allows this support to be extended to other platforms and external libraries that are 
used in the project. 

 

CRESTA
	
  svn	
  repository

wp4

task1_external_libraries

hpcdkhab@eslogin003:~/wp4/task1_external_libraries/benchmark/hlrs/make
hpcdkhab@eslogin003:~/wp4/task1_external_libraries/benchmark/hlrs/qsub	
  …	
  	
  
petsc_benchmark_hlrs_crayxe6_gnu_craypat_double_i64	
  	
  	
  	
  	
  	
  	
  /ws/matrix_data/	
  
petsc_get_solution::	
  solve	
  the	
  system	
  average	
  cycles:	
  10526488;	
  solve	
  the	
  system	
  average	
  time:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4.577407E-­‐03	
  sec.;

Makefile_env
ORGANISATION=_hlrs
PLATFORM=_crayxe6
COMPILER=_gnu
PROFILER=_craypat
FP_PRECISION=_double
INDX_FORMAT=_i64
...

Makefile_compiler_hlrs
#CRAYXE6	
  GNU
F90_hlrs_crayxe6_gnu_double_i64=CC
…
#CRAYE6	
  GNU	
  DEBUG
F90_hlrs_crayxe6_gnu_debug_double_i64=CC
…
#CRAYXE6	
  CRAY
F90_hlrs_crayxe6_cray_double_i64=ftn
...
#NECNEHALEM	
  GNU
...

external_libraries benchmark matrix_data matrix_interface

PETsC hlrs/
petsc_benchmark

hlrs/
debug_matrix

hlrs/
...

docs

task_1_statistic Hypre

 
Figure 5 - CRESTA SVN repository for the analyse and tests of external libraries 

In the directory "wp4/task1_external_libraries/docs/task1_statistic" are the statistics 
that we have collected during initial testing. Some of the data was used in this 
document. This data will also be used in the next task of WP4 for the development of a 
"Prediction model for limiting factors for hardware and algorithm libraries”. 
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5 External	
  Libraries	
  and	
  their	
  Application	
  
 

5.1 Iterative	
  Methods	
  
5.1.1 Test	
  environment	
  for	
  external	
  libraries	
  
As a representative library of iterative methods we have selected the library PETsC (5). 
PETsC is written in C ++ and Fortran and uses MPI for all message-passing 
communication. The core part of the library deals with solving systems of linear 
equations. It provides a highly scalable implementation of the CG-method with some 
simple preconditioners. We analysed benchmark results on the examples for matrix 
size of 108x108 to determine at first the most important challenges of an exascale 
computation. For some tests, we’ve used matrix size of 105x105, which was assembled 
for the same simulation problem but for a smaller domain. Generating matrices of 
different sizes based on the simulation problems of the Co-design applications was not 
possible within this timescale, as the assembly of the matrix is hard bound to the code 
of the applications. One of our next tasks is to solve this problem (one possibility is to 
use the I/O server architecture, see below). 

CG embodies all the important sub-operations used in iterative methods. The library 
can be compiled for single-, double- and long-double-precision computation. The 
configuration of the solver can be made directly in the code or by using a configuration 
file. We used the later for our experiments. In the following table we present the 
chosen parameters for solving the system of linear equations. 

-ksp_type cg # Conjugate Gradient Method  

-pc_typeJacobi # preconditioner 

-ksp_rtol 1.e-12 # residual norm relative to the norm of the right hand (b) 

-ksp_atol 1.e-52 # absolute size of the residual norm 

-ksp_divtol 100000 # divergence 

-ksp_max_it 1000 # maximum number of iterations 

-ksp_converged_reason # gets the reason the KSP iteration was stopped 
Table 2 - The configurations file for the solver of the system of linear equations 

The KSP is the object for access to the Krylov subspace methods. In the configuration 
above it was set to CG.  The Jacobi preconditioner was selected for our benchmark 
program. For the system of linear equations we used it was the only possible candidate 
implemented in this library. One of the features of the matrix that we used was it was 
not a block matrix. This is due to the fact that during its assembly, some of the degrees 
of freedom have been reduced (~ 10%). The Jacobi preconditioner has a minimal 
impact on the number of iterations and its computation requires only a few 
milliseconds. The PETsC library supports the use of additional preconditioner libraries. 

With the options rtol, atol, divtol, max_it users can control the convergence test of the 
interactive methods. The convergence of CG is detected at iteration  if 

  - Residual 

or 

 
In our tests, we performed 1000 iterations. This number is sufficient to analyse the 
behaviour of the method without excessive computational time.  

One of the major challenges was to initialize the external solver with the test data. The 
transfer of a linear system (matrix A, vector b) of the application to the solver and the 
solution of this linear system to the application can be implemented in different ways: 
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• Linking of the external library (function call). 
• Through MPI Communication between two MPI_COMM_WORLDs. 
• Through an I/O server architecture by using a file system (e.g. Lustre). 
• Through an I/O server architecture by using IO Forwarding. 

The first and second methods are undoubtedly the fastest. However they often require 
more than a trivial additional function call in the application code. The compatibility of 
the application and the library, as well as load balancing can also be problematic. The 
use of a file system (in the HPC area, this is Lustre) is the simplest way for 
communication between an external application and the solver. However, this method 
is slow. An alternative to communication via the file system, is provided by an I/O 
server architecture that uses IO Forwarding. Some nodes in the system can be used as 
the buffer nodes. These nodes store the files with the system of linear equations in 
memory. The application exchanges data with external solvers through these buffer 
nodes. The communication happens over the high-speed network achieving high 
bandwidth and good scaling by using several buffer nodes. The main feature of the 
communication via IO Forwarding is that the programmer can use the general IO 
interface. We have programmed a system in which the matrix and the vectors are 
loaded in parallel, distributed and prepared for the solver. Until the IO Forwarding 
system works, the data must be saved on a storage system. Despite the capable 
parallel file systems that we have, the bandwidth achieved very modest values (3-4 
Gigabyte per second). It shows the importance of an IO Forwarding system. Its 
performance increases with the number of used channels. Figure 6 and Figure 7 
illustrate the distribution scheme on a coarse-grained level scheme. On Figure 6, those 
processes are combined in groups, which addressing the separate data streams. The 
red boxes are the processes that read the data (for example, the matrix) and then 
redistribute it to the processes (which are highlighted with a green colour). In further 
tests on the Cray XE6 system, we used 10 master processes. If the data is distributed, 
PETSc (or another solver) can solve the linear system using the green highlighted 
processors (see Figure 7). 

 

 

 

 

Figure 6 - Distribution of the system of linear 
equations, part 1 

 

 

 

Figure 7 - Distribution of the system of linear 
equations, part 2 

  

The PETsC library operates with the matrices in distributed (Block-) Compressed Row 
Storage (CRS) format. 

For our tests we have used the symmetric positive definite matrix of the size 
and with  columns. The detailed description of the bone matrix is 

available in section 8 (Additionally, one other matrix is presented in this section, which 

I/O server I/O server 
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we will use in future tests and development).  Since the matrix is in the above format, 
you can easily initialize the PETsC library with it.  

All computations were performed on a petaflop system CrayXE6. The technical data of 
the system is listed in section 7.1.1. 
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5.1.2 Statistics	
  of	
  the	
  PETsC	
  Library	
  

5.1.2.1 Single	
  and	
  double	
  precision	
  floating-­‐point	
  data	
  types	
  
As mentioned above, we only compute the first one thousand iterations. To achieve 
sufficient accuracy usually requires many more iterations. In order to solve the system 
of the bone matrix with the accuracy of  (needed for the bone simulation), we 
have to iterate approximately ten thousand times. The dependencies of the residual on 
the number of CG iteration with double and single precision computation are shown in 
Figure 8. Furthermore, the residuals of the computation with smaller matrix of the same 
simulation problem are shown (the curves: residual single / double small matrix). This 
matrix is thousand times smaller (100'000 diagonal elements, with 6’901’344 none zero 
elements). As noted above, the method converges more slowly as the domain of the 
simulation becomes larger. After 15’600 iterations with double precision the residual 
does not decrease and there are no benefits to iterating any longer. After 2’800 
iterations with single precision the residual achieves the minimal value of 8.28e-07. The 
error will not decrease from this. By increasing the size of the problem, the situation will 
only worsen. But in this case, collective operations, which probably play a primary role 
in the precision of this algorithm, can be reprogrammed to increase their accuracy. 
Increasing the accuracy of the collective reduction operations will be considered by the 
future WP4 task: “Exascale collective reduction collective approaches”). In addition, we 
observed changes in the precision of the calculation depending on the number of the 
processes. The first residual double value, calculated on 320 and 5760 processors, 
differs by 0.001 percent. This difference seems small, but the use of hundreds of 
thousands (or millions) of processes can lead to a substantial increase in these kinds of 
errors. 

 

 
Figure 8 - Dependency of the residual on the number of CG iteration (double, single, bone matrix) 
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5.1.2.2 Computation	
  with	
  double	
  precision	
  floating-­‐point	
  data	
  type	
  
 

 
Figure 9 - Run-time of 1000 iterations of CG method on Cray XE6 (double, i64, bone matrix) 

Figure 9 shows the runtime per thousand iterations on the CrayXE6 system at HLRS. 
The computation was done with double precision and a 64-bit integer representation for 
the indices. To collect the statistical data, the benchmark was run several times. This 
test was repeated several times. The differences in the run time were no more than 2 
percent. The graph shows two curves, one for the run-time, while another shows the 
run-time in the case of ideal scaling. As a starting point for the ideal scaling calculation, 
the program's run-time on 320 processes has been chosen. The average performance 
of one process is pictured in Figure 10. The achieved performance is no more than one 
and a half percent of the theoretical peak performance. This can be explained because 
the matrix does not consist of the blocks and the CRS format is not optimal for the 
matrix vector multiplication. 

 
Figure 10 - Average performance of one process during CG iterations on Cray XE6 
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Matrix vector multiplication (MVM) and the vector operations make up the largest part 
of the computation. In this configuration, for the operation MVM used asynchronous 
data transfer with the commands MPI_Isend and MPI_Irecv. To synchronize it the MPI 
operation MPI_Waitany is used. To calculate the scalar of the vector operations 
MPI_Allreduce is applied. If we compute on only 320 processes (10 nodes) the MPI 
ratio of the runtime is low. The most computational parts are shown in Figure 11. 

 

  

Matrix vector product MPI_Allreduce (sync) 

 Vector dot product  Precondition (diag. matrix x vector) 

All Others MPI_Waitany 

Figure 11 - CrayPat Diagram of the computation 
on 320 processes (excludes MPI call profiling) 

Figure 12 - CrayPat Diagram of the computation 
on 320 processes (includes MPI call profiling) 

Figure 12 shows the MPI calls that were included in the profiling (with the option “–g 
mpi”). These two charts show that most of the time of the scalar product has been 
spent in MPI_Allreduce. 

 

  
Figure 13 - CrayPat Diagrams of the computation on 4800 and 9600 processes (includes MPI call 

profiling) 

73.6% 

14.4% 17.8% 

5.2% 

6.8% 6.3% 

69.9% 65.7% 

13.2% 13.2% 

14.2% 16.9% 

7.4% 

75.9% 
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The MPI_Allreduce fraction increases with the number of processes. It amounts to 
13.2% of the overall computation with 4800 processes. The MVM communication part 
increases slowly, but at 9600 processes it begins to become an important factor. For 
further explanation, we will investigate the distribution of the matrix (load balancing) 
and the impact of the implementation of MPI collective operations in the CRESTA Co-
design team “Linear solvers and pre conditioners”. In addition, we explore the library in 
the next section. This also gives us an insight into the previously mentioned problems 
of scalability. 

For comparison, Figure 14 shows the execution time of 1000 CG iterations with the 
small bone matrix. In this case we can also observe even super-linear scaling: data 
processing takes place in the cache. One node has 32 cores. 

 

 
Figure 14 - Run-time of 1000 iterations of the CG method on Cray XE6 (double, i64, small bone 
matrix) 
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5.1.2.3 Computation	
  with	
  double	
  /	
  single	
  precision	
  and	
  64-­‐bit	
  /	
  32-­‐bit	
  indices	
  
In this section, we carry out a comparative analysis of the computation with different 
data types. In Section 4.1.2.1 we have shown that the calculation with single precision 
does not lead to satisfactory results. It is possible, that using more accurate reduction 
operations will improve the accuracy. In addition, the statistics, collected with different 
data types, may be of great interest for the evaluation of the prediction model of limiting 
hardware factors. 

Simply using the 32-bit representation of the indices is not always possible. The largest 
positive number that we can use is . The considered matrix is 
composed of about the seven billion items. The distributed “CRS” format allows us to 
organize the indexing of its elements, so that we can compute the solution by using 
more than three processes. However, the  is the upper limit for the 
number of diagonal elements.  

Applying different data types results in undesirable properties: 

• The interface between the different modules of the simulation becomes more 
complex.  

• There is a need for copying and reformatting data. 
• The probability of programming errors increases. 

However the computational time can be greatly reduced. Figure 15 shows the run-time 
of the computation using different data types for floating-point numbers and indices. 
The time axis is logarithmic. 
 

 
 

Figure 15 - Run-time of 1000 iterations of the CG method on the Cray XE6 (double / single, i64 / i32, 
bone matrix) 

 
As you can see, the fraction of operations associated with the floating-point numbers is 
greater than the fraction of the indices operation. The curve for "single i32" has the 
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greatest fluctuations, particularly between the points (7680; 8.7674) and (8000; 
10.2315). The curve "double i64" has following values at these points: (7680; 11.5821) 
and (8,000; 11.5364). 
The diagrams in Figure 16 show the proportion of parts of computation by single i32 
and double i64 on 7680 and 8000 processes. 
 
 

  
  

  
  

Matrix vector product MPI_Allreduce(sync) 

 MPI_Waitany  MPI_Waitall 

 All Others 
 

  
Figure 16 - CrayPat Diagrams of the computation on 7680 and 8000 processes 

The operation MPI_Waitany is used in the MVM for the scattering of the vector. The 
vector data is packed before sending. Hence after the data have been received it can 
be immediately extracted. It is possible also to use the operation MPI_Alltoallv instead 
of asynchronous data transfer. To do this, the user has to add a new parameter to the 
PETsC configurations file (Table 2): -vecscatter_alltoall. The run-time increases 
dramatically if MPI_Alltoall is used: 1000 iterations take around 117 seconds on 7680 
processes and 129 seconds on 8000 processes. 

As shown above, the use of different data representations can lead to positive results. 
However, it should also not significantly increase the complexity of the software. 

single i32 8000 procs single i32 7680 procs 

double i64 7680 procs double i64 8000 procs 

41.5% 

20.3% 

15.1% 

16.3% 

6.9% 

42.6% 

19.8% 

15.9% 6.0% 

15.7% 

64.7% 65.6% 

16.2% 

11.9% 7.3% 11.7% 7.1% 
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5.2 Algebraic	
  Multigrid	
  
As a representative of the Algebraic Multigrid methods we selected the library 
BoomerAMG.  BoomerAMG is a parallel implementation. It can be used as a solver or 
as a preconditioner. BoomerAMG is part of the Hypre library (6). It is also possible to 
directly use the Algebraic Multigrid as a preconditioner in the PETsC library (with 
linking of Hypre library). As already mentioned, this method is very difficult. It is difficult 
not only to implement but also to use. Currently, we have not been able to solve the 
problem with a large matrix with sufficient accuracy (it is still unclear whether it is 
possible with BoomerAMG). The method diverges after a few iterations. For the small 
bone matrix the algorithm works without a glitch. The intermediate result is presented in 
the next Figure. This shows the differences of the residual reduction for the Jacobi and 
Algebraic Multigrid pre conditioner. 

 

 
Figure 17 - Convergence of the CG method with the Jacobi and AMG pre conditioner (small bone 

matrix) 

The preparation of the AMG preconditioner (the setup phase) requires a lot of time. In 
addition, one iteration step takes longer than when using one of the simple 
preconditioners. So for small matrices it is much faster to use a simple method, e.g. CG 
with a Jacobi pre conditioner. But when the matrix size is large, we need many more 
iterations to solve the system of linear equations. Reducing the number of iterations 
gives enough time for the AMG setup phase. Hence we expect AMG to be relevant for 
Exascale. 
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5.3 FFT	
  
5.3.1 Theory	
  
The fundamental limiting factors for FFTs are intrinsic to the algorithm rather than being 
specific to any one implementation so it is instructive to consider these in the abstract. 

As mentioned previously the FFT algorithm has a complexity of O(N log(N)) this can be 
broken down into log(N) steps each with a potential parallelism of N. The same 
complexity behaviour applies to multi-dimensional FFTs which is unsurprising because 
the recursive step used in the derivation of the FFT algorithm is essentially to convert a 
one dimensional DFT into a two dimensional DFT, which contains the same total 
number of points; with the additional application of multiplicative phase factors. On 
modern computer architectures the performance of the FFT algorithm is completely 
dominated by data movement costs. This data movement is very expensive but is 
necessary because every word in the output of a DFT calculation depends on every 
word of the input. This also means it is highly unlikely that any equivalent calculation 
(for example an iterative solver that solves equations in real-space) will require less 
communication than the log(N) data exchange steps, as required by the FFT algorithm. 
However for calculations where the full results of an FFT calculation have more 
information than is required for the solution of the problem then alternative approaches 
with less demanding communication requirements might be possible.  Such examples 
occur in situations where high frequency components are not required. 

In practice, modern machine architectures present a hierarchy of storage locations with 
different data movement costs. Data movement is much cheaper within caches close to 
the processor than within lower levels of the memory hierarchy. Similarly with 
distributed memory systems, communication between nodes is significantly more costly 
than communications within a node. 

The data movement costs of the FFT algorithm can be minimized by arranging the 
intermediate data layouts to perform as many of the data movements as possible in the 
higher levels of the storage hierarchy. Similarly with distributed memory systems 
implementations arrange for as much of the data movements as possible to occur 
within a node.  

In practice most codes that perform FFTs perform transformations on large multi-
dimensional datasets (frequently the transform is only applied to a sub-set of the 
dataset dimensions). In this case it is convenient to implement the overall transform as 
a series of data redistributions between different data decompositions with each of the 
active dimensions in turn being local to a node (transpose operations). Between each 
of the redistributions the local active dimension is transformed using a non-distributed 
FFT library. The convenience of this approach is because it allows distributed FFT 
implementations to be built out of optimized single node FFT libraries and highly 
optimized MPI collectives. However in common with all implementations the overall 
performance is largely limited by the data movements. 

Many highly optimized node local FFT libraries exist. For example the FFTW library: 
http://www.fftw.org. This library is an example of an auto-tuning library capable of 
automatically tuning its algorithms at run-time to find a good solution for the specific 
problem and hardware/software environment encountered by the application. However 
for distributed memory applications the majority of performance of the inter-node data 
communications is far more significant for performance than the performance of the 
underlying node-local FFT library so the choice of which underlying FFT library is 
largely irrelevant and the performance of the MPI collectives dominate the 
performance. Though multi node FFT libraries do exist, most applications do not use 
these, instead each application currently builds their own multi-node FFTs out of a 
combination of node-local FFT libraries and MPI collectives. Most of the multi-node 
FFT libraries only support a limited range of input and output data decompositions that 
typically don’t correspond to the data decompositions required by real application. They 
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also typically have no performance advantage over what is generally obtained by 
application specific implementations built out of the same underlying libraries. Most 
applications use the collective call MPI_Alltoall because in this collective the global 
communication pattern is known by all participating processors allowing greater scope 
for optimisation. The MPI_Alltoallv collective allows greater flexibility in data 
decomposition and may be used by applications where load imbalance considerations 
are more important than the absolute performance of the FFT. 

5.3.2 Statistics	
  
The following figure shows the time to complete different sizes of 3 dimensional FFT on 
different core counts of a Cray XE6. Three different sizes of FFT are shown 1283 2563 

and 5123 

In each case 32 MPI tasks per node and a 2 dimensional processor grid was used. 
Each data-point represents the best performing data decomposition for that problem 
size and processor count. All communications used the MPI_Alltoall collective 
operation within one row or column of the processor grid. 

 
Figure 18 - Performance of 3D FFTs on a Cray XE6 

This data shows a clear difference in behaviour depending on how the size of the 
problem relates to the number of processors. For very large problem sizes the 
message sizes within the MPI_Alltoall are of a reasonable size and the communication 
time will be limited by the available bandwidth (either within the node network interface 
or the bisection bandwidth of the network itself) the aggregate bandwidth increases as 
node count increases so for large problems the run-time decreases with the number of 
nodes. For small problem sizes the message sizes within the MPI_AlltoAll are small 
and communication time is limited by per-message costs such as message latencies. It 
seems reasonable to consider the small problem example as indicative of performance 
extrapolated to Exascale.  
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5.3.3 Model	
  
If we use a modified Latency/Bandwidth model where the message latency may 
depend on the number of simultaneous messages so the time to send x messages of 
size S is given by: 

 
We can expand the latency factor as a power series in x: 

 
 

• l0 can be interpreted as a pipelined latency including the network transfer time. 

• l1 can be interpreted as non-pipelined latency for example representing critical 
sections in the MPI library or contention for the network interface. 

• l2(if significant) could be interpreted as a cost associated with searching internal 
message queues (each message incurs a cost proportional to the number of 
outstanding messages). However we will assume terms higher than l2 are negligible. 

 

We can therefore estimate the time for an MPI_Alltoall (or an MPI_Alltoallv) of a local 
volume of data V across P processors as being: 

 
If l1 is large then the performance of MPI_Alltoall with small message sizes can be 
improved by using a multi-stage algorithm (e.g. (7)) that reduces the overall number of 
messages at the expense of increasing the overall volume of data sent (some data 
passes through intermediate nodes before being forwarded to its ultimate destination). 
This is a logarithmic algorithm where half the data is exchanged with a peer processor 
at each step giving a communication cost of: 

 
The MPI library on the XE6 implements this optimisation for small message sizes and 
performance of the smallest data size above is consistent with a cost logarithmic in the 
number of processors. 

This suggests that the ultimate limiting factor in the performance of the distributed FFT 
operation is the performance of the MPI_AlltoAll operation (or equivalent) and this is in 
turn limited by the non-pipelined message latency. The figure shows that in the current 
technology non-pipelined latency is relatively large and is limiting the scalability of 
distributed FFTs. Though particularly relevant to distributed FFTs this term is also 
important for many other communication patterns and will have to be reduced in order 
to produce usable Exascale systems. There are fundamental limits on message 
latency. One of these is due to the speed of light though this applies to l0 rather than 
l1.A limiting value of l1 can be derived from the size of the message protocol header 
multiplied by b. 

In principle it is possible to use single sided communications to overlap some of the 
data movement with the calculation of the local FFTs however this requires the use of 
many small messages and would therefore also be very sensitive to communication 
latency. 
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5.4 Trilinos	
  
First we give a general overview or Trilinos followed by a short description of some 
packages selected regarding the probable needs of CRESTA in general and WP4 
more specifically. How Trilinos can match these is explored afterwards. 

5.4.1 Overview	
  
"The Trilinos Project is an effort to facilitate the design, development, integration and 
on-going support of mathematical software libraries within an object-oriented 
framework for the solution of large-scale, complex multi-physics engineering and 
scientific problems."(8) 

Based on a package system Trilinos facilitates interoperability. Every package is a self-
contained collection of code dedicated to one specific subtask like a direct solver 
implementation or multilevel preconditioner. It is mostly maintained by a small group 
with expertise on this particular subject and can therefore match the state-of-the-art. 
Licensed under LGPL or BSD Trilinos is open source software and thus open for 
participation. Given implementations can be analysed closely and if they don't meet 
CRESTA requirements the available packages can be enhanced as needed. 

5.4.2 Short	
  package	
  description	
  
The basis of Trilinos is provided by the package Epetra. It provides a uniform interface 
to various objects like matrices and vectors and thus represents a common language 
that every package has to be capable with. Furthermore, it can be used to access the 
well optimized BLAS and LAPACK routines. 

AztecOO contains several iterative algorithms that can be applied optionally as a pure 
solver, a preconditioner for the former or in multiple combinations for both. Although 
using a somewhat different approach the Belos package yields the same functionality. 
In this context the package ML should be mentioned which is furnished as a Multigrid 
preconditioner, of course with a vast amount of possible settings. 

To get a decent load balancing Zoltan and its Epetra-interface Isorropia is at hand 
providing different graph partioning methods. It also implements interfaces to PTScotch 
and ParMETIS likewise and is therefore particularly useful to run those three against 
each other in a common environment. 

Apart from this Trilinos supplies various tools internally. A command line parser is 
present for run-time adjusting own programs, Flop counts can be performed in different 
manners, error handling is widely supported. 
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5.4.3 Trilinos	
  within	
  CRESTA	
  
 

5.4.3.1 WP4:	
  algorithms	
  and	
  libraries	
  
Once a matrix interface for application data is available it can be used to set up the 
corresponding Epetra matrix. From this point on Trilinos supplies various possibilities to 
precondition and solve this matrix with only a few steps. Thus it is quite easy to get an 
overview over different algorithm-application interaction under even more different 
circumstances. Using this approach an exhaustive investigation of the algorithms 
provided by Trilinos is achievable. Monitoring precisely the outcome hints for an 
improvement of the algorithm should be possible. If the supplied parameter list for the 
application specifically best algorithm isn't sufficient enough or a completely new 
method is needed, a new Trilinos package could be written covering these issues. 

5.4.4 Other	
  WPs	
  
Another advantage of Trilinos is its interoperability that is also needed internally in 
CRESTA. Especially regarding the pre- and post-processing (WP5) the algorithms (and 
their footing) aren't separated at all. Hence building both (or even more) work packages 
on the same foundation could lead to overall benefits. 

5.5	
  Collective	
  Operations	
  
It almost goes without saying that the collective communication phases of a parallel 
application will be the most likely algorithmic components to limit scalability.  In the 
benchmark study of the co-design applications (D2.6.1) collective operations were 
identified as a potential scaling liability for Nek5000, HemeLB and IFS.    

We have shown that for codes using linear solvers the residual calculation can be a 
limitation on scalability with the MPI_Allreduce reduction operation taking a significant 
fraction of execution time.  

More generally we expect that any code using MPI_Alltoall is likely to suffer challenges 
in scalability and have already noted the importance of the collective communication 
phase in FFT implementations in the previous subsections.   

For the IFS co-design application we have undertaken some detailed scalability 
analysis and this code currently requires MPI_Alltoallv that consumes an increasing 
fraction of time as the core count or model complexity increases.  The non-blocking 
collectives that will be developed and implemented in later phases of the CRESTA 
project are likely to help with this issue.  One particular approach that is currently under 
investigation is changing algorithms to use single-sided non-blocking communication 
that we expect will give opportunities for increased scalability. 

At the time of writing the initial benchmark suite became available and this will give us 
the ability to further study the limiting factors in the collective phases of the co-design 
applications in order to inform our developments. 
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6 Conclusions	
  and	
  Future	
  Work	
  
 

We have considered how our use of solvers, FFT and collective libraries can be a 
limitation for the CRESTA applications as we aim towards exascale. 
 
For linear solvers initial tests have shown that iterative methods must be used only with 
suitable pre conditioners. The huge number of iterations is not acceptable for CRESTA 
Co-design applications.  Also of great interest is the performance and behaviour of the 
solver, if we change the precision of floating point numbers and the format for the 
indices of 64 to 32 bits. Another important task is to expand the test data. 
 
For the example of reading and distributing large data sets, which is described in 5.1.1, 
we were able to make some additional important conclusions for our future work: 

• The transmission of data through an I/O server is promising, and is relatively 
simple to implement. 

• Further development of I/O Forwarding is a necessary condition for the success 
of our work. 
 

In the next step of verification of existing algorithms, we want to look closely at the 
libraries BoomerAMG and Trillinos (described above). 

FFT operations are almost entirely communication limited and their scalability depends 
on the scalability of the communication capabilities of the target system rather than 
their computational capabilities. The high communication requirements of FFTs mean 
that they are difficult to scale and where a FFT is an over-specification of the problem 
alternative algorithms may be preferable. However where this is not the case the FFT 
algorithm remains exceptionally efficient and Exascale implementations need to be 
addressed. We have developed some simple but informative models of FFT 
performance that should help in the evaluation of FFT operations at the Exascale. 

Collective operations are important and are a potential scaling liability for the co-design 
application Nek5000, HemeLB and IFS. More generally they are important for FFT 
operations, linear solvers and when embedded in applications.  Our work on optimized 
reduction approaches and realizing collectives at extreme scale will address some of 
these limitations. 

In this document we have considered how limitations of various libraries may be an 
inhibiting factor as we progress towards exascale.  Our future work on FFTs, linear 
solvers and collective operations will address these limitations. 
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7 Platforms	
  
 

7.1 HLRS-­‐Platforms	
  
7.1.1 CrayXE6	
  
 

 
Figure 19 - Cray XE6 (Hermit) 

 

Technical description (installation step 1) 

Peak performance 1.045 PFlops 

Cabinets 38 with 96 nodes each 

Number of compute nodes 3552 

Number of compute cores per node 2 sockets with 16 cores each: 113 
664 

Number of service nodes 96 

Processor compute nodes Dual Socket AMD Interlagos @ 2.3GHz 16 
cores each 

Memory/node 32 GB and 64 GB 

Disk capacity 2.7 PB 

Node-node interconnect Cray Gemini 

Special nodes External Access Nodes, Pre- 
&Postprocessing Nodes, Remote 
Visualization Nodes 

Power consumption 2 MW maximal 
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7.1.2 NEC	
  Nehalem	
  Cluster	
  
 

 
Figure 20 - NEC Nehalem Cluster 

 

Technical description 

Peak Performance 62 TFlops 

Number of Nodes 700 Dual Sockel Quad Core 

Processor Intel Xeon (X5560) Nehalem @ 2.8 GHz, 8MB 
Cache 

Memory/node 12 GB 

Disk 80 TB shared scratch (lustre) 

Node-node interconnect infiniband, GigE 

accelerators 32 nodes provide Nvidia Tesla S1070 GPGPU 

graphical pre- and post processing nodes 6 nodes provide NvidiaQuadro 5800FX 
graphics card 
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8 Matrix	
  Collection	
  
 

8.1 Bone	
  matrix	
  
8.1.1 Project	
  
 

 

Biomechanical simulations on parallel computers to assist in 
trauma care and hip endoprosthetics– BiSPar. 
Motivation: To improve the patient-specific treatment options 
and reduce treatment costs. 
Developers:  

• HLRS: Ralf Schneider ;  
• LASSO Ingenieurgesellschaft mbH; 
• Universitätsklinikum Freiburg; 

Figure 21 - Description of the bone matrix project 

 

8.1.2 Short	
  description	
  and	
  geometry	
  
The bone matrix was assembled during the static Finite-Element (FE) simulations of 
bone-implant-systems. The Figure 22 pictures the small part of the geometrical data of 
a cortical bone that was used to assembly the matrix.  The topology consists of 44’332 
hexaeder8 and 58948 nodes. 

 

 
Figure 22 - Model of cortical bone of size 1 cm3with colour figure of displacement. 

8.1.3 Properties	
  of	
  the	
  matrix	
  
The bone matrix is symmetric and positive definite. It is strongly diagonally dominant: 

 
It is saved in four files in the serial CRS format (binary). Each of the files stores one 
field. Additional to these files the vector b and the short description of the internal 
structure are saved in the files (header and vector_b). The details to the size of the 
matrix and files are in the following table2. 
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Table 3 - Quantitative properties of the bone matrix 

 

Possible size: 

1) 48 x 48 , for interface adjustment / debugging 
2) 107’568 x 107’568 (non zeros: 6’793’776) 
3) 100 million x 100 million (non zeros: 7.5 billion) 

 

Required size: 

A simulation of a relevant part of the knee bone (for treatment) will produce matrices of 
size  and more. 
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8.2 Aircraft	
  grids	
  
8.2.1 Project	
  
 

 

Prediction of viscous and inviscid flows 
about complex geometries from the low 
subsonic to the hypersonic flow regime, 
employing hybrid unstructured grids. 

Developer: DLR Institute of Aerodynamics 
and Flow Technology 

Motivation: To improve complex aircraft-
type configurations in shape and material 
design. 

Figure 23 - Description of the aircraft grid matrix project 

 

8.2.2 Short	
  description	
  and	
  geometry	
  
 

Flow Simulation (including coupling to structure and flight mechanics): 
TAU can be used with both (block-) structured and hybrid unstructured grids 
composed of hexahedrons, prisms, tetrahedrons and pyramids. The 
calculations of viscous flow around a delta wing at M=0.5, alpha=9º is pictured 
on the Figure 24.  

	
  
Figure 24 - Calculations of viscous flow around a delta wing 

8.2.3 Properties	
  of	
  the	
  matrix	
  
The matrix is non-symmetric, and real. It is stored in binary Blocked CSR Format: 

Usual CRS containing a 5x5 block in each matrix position. 

 

Possible size: 

1) 4 x 4 2x2-blocks, for interface adjustment / debugging 
2) 108‘396 x 108‘396 5x5-blocks, therefore 541‘980 unknowns 

(non zero:170‘610‘950) 
3) on demand (almost) arbitrary 

 

Required size: 

The dimension depends on the specific simulation done and the grid size is adjustable 
and produces better results at a finer setting. Thus 107x107 could be a first step. 
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