

Copyright © CRESTA Consortium Partners 2011

D5.2.1	
 –	
 Post-­‐processing:	

analysis	
 and	
 system	
 definition	
 for	

exascale	
 systems	

WP5:	
 User	
 tools	

Due date: M6

Submission date: 31/03/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation DLR

Version: 2.0

Status Final

Author(s): Christian Wagner (DLR), Fang Chen (DLR), Achim Basermann
(DLR)

Reviewer(s) David Lecomber (ASL), Lorna Smith (UEDIN)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 24/02/2012 First version of the deliverable
Christian Wagner (DLR),
Fang Chen (DLR)

0.4 01/03/2012 Added User requirements section Christian Wagner (DLR),
Fang Chen (DLR)

1.0 09/03/2012 Revision Achim Basermann (DLR)

2.0 22/03/2012 Add reviewers´ comments Christian Wagner (DLR)

Fang Chen (DLR)

2.0 26/03/2012 Final check after internal review Achim Basermann (DLR)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

3	
 ANALYSIS	
 OF	
 REQUIREMENTS	
 FOR	
 INTERACTIVE	
 DATA	
 EXPLORATION	
 ON	
 EXASCALE	
 SYSTEMS	
 ...	
 3	

3.1	
 ONLINE	
 MONITORING	
 AND	
 COMPUTATIONAL	
 STEERING	
 ..	
 3	

3.2	
 MESH	
 VISUALISATION	
 AND	
 INTERACTION	
 ..	
 4	

4	
 REQUIREMENTS	
 OF	
 THE	
 CODES	
 ..	
 6	

4.1	
 HEMELB	
 ..	
 6	

4.1.1	
 Current	
 State	
 ..	
 6	

4.1.2	
 Requirements	
 ..	
 6	

4.2	
 OPENFOAM	
 ..	
 7	

4.2.1	
 Testing	
 example	
 ..	
 7	

5	
 DEFINITION	
 OF	
 A	
 POST-­‐PROCESSING	
 SYSTEM	
 TOWARDS	
 EXASCALE	
 ...	
 8	

6	
 POST-­‐PROCESSING	
 TECHNIQUES	
 TOWARDS	
 HIGH	
 SCALABILITY	
 ..	
 9	

6.1	
 IN-­‐SITU	
 PROCESSING	
 ...	
 9	

6.1.1	
 Data	
 Reduction	
 ...	
 9	

6.1.2	
 Data	
 Extraction	
 ...	
 10	

6.1.3	
 Quality	
 Assessment	
 ...	
 10	

6.1.4	
 In-­‐Situ	
 Rendering	
 ..	
 10	

6.2	
 MULTI-­‐RESOLUTION	
 DATA	
 STRUCTURES	
 AND	
 STREAMING	
 ...	
 10	

6.2.1	
 Why	
 using	
 multi-­‐resolution	
 data	
 structure	
 ...	
 11	

6.2.2	
 Classification	
 of	
 data	
 streaming	
 techniques	
 ...	
 11	

7	
 CONCLUSION	
 ...	
 12	

8	
 REFERENCES	
 ..	
 13	

Index	
 of	
 Figures	

Figure 1: Prototype to visualise and adapt meshes of on-line simulations in a virtual
environment. ... 5	

Figure 2: Aneurysm dataset simulated by HemeLB. .. 6	

Figure 3: Geometry of a Francis turbine. .. 7	

Figure 4: System architecture. .. 8	

	
 	

© CRESTA Consortium Partners 2011 Page 1 of 14

1 Executive	
 Summary	

This deliverable gives an overview how post-processing can be designed and
implemented to support interactive data exploration and visualisation in exascale
environments. Post-processing is concerned with extracting visualisation primitives
from solver results, for example computing a stream surface given a flow field. The
related workpackage task 5.3 handles the subsequent rendering of these primitives to
produce a screen representation (cf. [1]). Within workpackage task 5.1, methods for
pre-processing are explored which partition an input data set to minimize
communication in the solver phase (cf. [2]). The post-processing algorithms then have
to operate on data in the given partitioning.

While the performance of extreme-scale simulations is a key aspect, pre- and post-
processing are additional important steps. Mesh creation and partitioning define the
accuracy of the simulation results, and visualisation is used to finally analyse the
simulated phenomena.

Furthermore, real-time visualisation of the simulation mesh, its partitioning and
intermediate simulation results is also important during a simulation run. This not only
makes it possible to analyse intermediate results, but also to detect and solve problems
arising during a simulation. This avoids wasting a lot of CPU time for inappropriate
parameter configurations.

Interactive visualisations during runtime, so-called online-monitoring, come with
additional challenges and require for a combination of different solutions described in
this document.

In order to further analyse requirements of interactive online-monitoring solutions, the
following two applications are discussed:

HemeLB would benefit from elaborate and scalable visualisation and steering
approaches that do not interfere with its specific lattice Boltzmann simulation data
layout. Introspection of simulations is important to deliver information to developers and
users about the detailed status during simulation runs.

OpenFOAM as a traditional grid based solver is considered to scale well and will be
prepared for exascale architectures during this project. Therefore, the visualisation
tools used have to scale to the same order of magnitude.

© CRESTA Consortium Partners 2011 Page 2 of 14

2 Introduction	

Application domains, such as fluid dynamics, meteorology, nuclear physics, or material
science, heavily rely on numerical simulations on High Performance Computing (HPC)
resources. To improve the performance of extreme-scale simulations, post-processing
of the numerical data has become an important tool for analysing and monitoring
simulation processes.

Partitioning and mesh creation are critical for the accuracy of numerical simulations
and are normally pre-defined before a simulation run. However, it is often the case that
these automatically pre-defined meshes are not appropriate or have to be changed
while the simulation progresses. With increasing complexity in exascale simulations,
validating meshes becomes a challenging task, which requires innovative visualisation
techniques.

Interactive exploration and visualisation methods have proven to be successful in
analysing large-scale, complex simulation data. The process of analysing simulation
results, however, requires the computed raw data to be transformed to suitable
representations by passing all or part of the data through a post-processing pipeline,
typically consisting of data extraction, filtering, mapping and visualisation stages. This
is a time-consuming process so that the requirements for efficient interactive
exploration like the ability to move freely through the data will be hard to meet. A
solution to maintain interactivity in exascale environments is to distribute the phases of
the post-processing pipeline to a high extent.

The aim of this work package task is to provide interactive visualisation tools to the on-
going simulation process. A combination of different scalable techniques will be
presented, such as in-situ processing, multi resolution data formats, and data
streaming approaches.

This document contains an overview of techniques, which, in combination, allow for
interactive explorative post-processing in an exascale environment. In chapter 3,
general requirements are stated and further explained by the examples described in
chapter 4. Finally, interactive explorative post-processing techniques are explained in
detail in chapter 5.

© CRESTA Consortium Partners 2011 Page 3 of 14

3 Analysis	
 of	
 Requirements	
 for	
 Interactive	
 Data	

Exploration	
 on	
 Exascale	
 Systems	

Visualisation will be one of the key aspects in exascale environments in order to
analyse the huge amount of generated data. Visualisation, however, will face many
problems. Among these the scalability of visualisation algorithms is of great
importance.

Exascale simulation clusters with peak performances over 1018 flop/s are expected to
be available in 2018 [3]. The realisation of exascale systems will, unlike past hardware
trends, rely on massively parallel hybrid systems and high concurrency per node [4].

High-quality visualisation is important for many application domains. To be successful
in analysing large-scale, complex simulation data, interactive exploration and
visualisation methods have proven to be useful [5]. This involves complex tasks such
as volume rendering of scalar fields and streamline integrations on vector fields. These
complex extraction and rendering approaches need to be performed in a highly parallel
and scalable way in order to be applicable to the massively parallel simulations and
distributed data on future exascale systems.

3.1 Online	
 Monitoring	
 and	
 Computational	
 Steering	

Visualisation is of increasing importance in the context of exascale applications and not
only dedicated to classical post-processing tasks. With increasing complexity
simulations need to support introspection capabilities. Developers and users need to
be aware about the detailed status of a running simulation. Therefore, information
about timings, numerical stability and simulation progress must be collected.
Furthermore, intermediate results are important to justify the state of a running
simulation (online monitoring). In complex simulations interactive exploration is
beneficial in order to support the ability to freely move through the current data and
identify regions of interest or critical situations.

Nowadays, a common online monitoring solution is to copy the current simulation data
to a dedicated visualisation cluster. This will not be an option for exascale
environments as the amount of raw data will be too huge to be transferred in a
reasonable time, considering the available network bandwidths. Using in-situ
visualisation is a key component for online monitoring in order to convert raw data to
meaningful visual representations. Since compute power is cheap compared to
network transmission, data reduction as early as possible appears to be the only viable
solution. However, visual representations are still huge. In order to provide interactive
exploration, multi-resolution data structures are required. While they can be streamed
for further processing or visualisation a progressive visualisation can be supported.
First intermediate results are rendered at once; details increase when additional data
arrives.

Online monitoring allows justification the state of running simulations. Since exascale
systems will add additional requirements on efficiency and power consumption to
simulation applications [6], computational steering is a very promising approach to
reduce pre- and post-processing efforts by providing the possibility to directly interact
and steer a running simulation.

Computational steering introduces additional technical and usability challenges. A
suitable software framework needs to be designed. In the past, computational steering
systems were developed to interact with on-going simulations by enhancing existing

© CRESTA Consortium Partners 2011 Page 4 of 14

visualisation tools [7] [8] or by developing specific computational steering frameworks
[9]. These solutions mainly concentrate on data management and data interfaces [10].
However, the main drawback of both approaches is that all steerable parameters as
well as callable methods have to be known at compile time [11]. To address this
problem, new software frameworks are desired which will allows on-the-fly steering of
the simulation process.

A computational steering solution for CFD simulation, developed at DLR, inherently
couples the simulation code with visualisation algorithms, rendering systems, and user
interaction methods. First tests of this environment with DLR CFD codes were
promising (cf. Figure 1). From these experiences, interaction and manipulation
techniques also appear to be an appropriate means to enable intuitive and effective
online monitoring and computational steering of exascale simulations with e.g.
HemeLB or OpenFOAM.

3.2 Mesh	
 Visualisation	
 and	
 Interaction	

The quality of a simulation mesh is crucial for the simulation run. The mesh cells
directly influence the accuracy of simulation results, domain partitioning of the mesh
cells has an effect on simulation performance and efficiency. Although the maintenance
of high mesh quality is desired throughout the entire simulation, automatic mesh
adaption algorithms use local heuristics and do not guarantee a certain global mesh
quality.

Suitable visualisation approaches are required in order to assess the quality of a
simulation mesh. Common solutions, such as cut-away representations, make use of
the mesh wireframe representation. In exascale simulations, even with future high-
resolution displays, these approaches are not usable anymore. Furthermore, simulation
meshes in exascale environments are too large to be rendered by a traditional frontend
system.

A next point is mesh interaction. How can mesh portions be interactively selected and
manipulated even if raw data is still present only on the simulation side and maybe only
a small fraction of the mesh is visible?

Furthermore, what are suitable manipulation strategies for those large meshes? They
will also be different for different mesh types. How will the manipulation be synced with
the original mesh on the simulation side?

Another point is steering the domain partitioning and checking for unbalanced
partitions. Here cooperation with workpackage task 5.1 (pre-processing, cf. [2]) and
workpackage 6 (co-design via applications) is required.

© CRESTA Consortium Partners 2011 Page 5 of 14

Figure 1: Prototype to visualise and adapt meshes of on-line simulations in a virtual environment.

	

© CRESTA Consortium Partners 2011 Page 6 of 14

4 Requirements	
 of	
 the	
 Codes	

HemeLB and OpenFOAM are two open-source simulation codes that have the
potential to run on exascale systems. The following section focuses on the state of the
art of these simulation tools and the arising issues for interactive data post-processing
if HemeLB and OpenFOAM are executed on exascale computer architectures.

4.1 HemeLB	

Figure 2: Aneurysm dataset simulated by HemeLB.

4.1.1 Current	
 State	

A simple ray-casting approach is available for the current in situ visualisation of
HemeLB datasets. Figure 2 illustrates an aneurysm dataset from a HemeLB simulation.
Each sub-domain renders a set of pixels, which are then communicated, in a binary
tree with non-blocking MPI, the sets of pixels being merged at each level with the final
image finishing on a root task. The steering data, which currently only consist of
visualisation parameters, is passed from the root task back down the tree.

Aside from ray-casting, a few other visualisation techniques are available, such as
streak-lines, volume rendering of the velocity field and surface pressure and stress
fields.

4.1.2 Requirements	

The goal of this work package is to develop better visualization modules which are
scalable to exascale scenarios and have a minimal impact on memory footprint. This
requires co-optimisation of solver and visualisation codes and development of
interfaces to allow for sharing of data structures between both [12].

A platform approach which requires the solver algorithm to represent its working set in
a format pre-described by a visualisation library is not acceptable, as it would interfere
with core functionality and potentially reduce solver performance.

The alternative strategy of providing additional code to transform in-memory data to
such a format is also not an option as the necessary copying of data implies a large
memory cost.

Instead, the goal is to develop a generic visualisation library, which can be configured
using domain specific languages (DSLs) to adapt to given data structures. In terms of

© CRESTA Consortium Partners 2011 Page 7 of 14

functionality, it is desired to provide a superset of the visualisation methods, which are
currently available.

4.2 OpenFOAM	

While the visualisation library being developed should be adaptable to different solver
codes, the primary focus of workpackage task 5.2 (post-processing) will be the
integration with HemeLB. OpenFOAM integration has been identified as a long-term
goal.

4.2.1 Testing	
 Example	

A application test case is the simulation of the flow in an entire hydro turbine, see
Figure 3.

Figure 3: Geometry of a Francis turbine.

A large eddy simulation approach is applied to very fine computational grids. The
number of nodes can be estimated to approximately one milliard for all parts of the
Francis pump-turbine. Due to the large node numbers and fine time steps,
approximately 80 million core hours will be needed for a full-converged simulation.

Resulting simulation data has the size of 250 GB for a single time step only. The
number of time steps that have to be saved depends on the visualisation of the
instantaneous flow phenomena.

Even though the available data set is only of tera/peta scale, it could be a starting point
for modelling exascale systems.

© CRESTA Consortium Partners 2011 Page 8 of 14

5 Definition	
 of	
 a	
 Post-­‐Processing	
 System	
 Towards	

Exascale	

Post-processing in exascale scenarios implies in-situ extraction of visualisation
primitives based on a given partitioning of numerical data. In order to allow for scaling
into these regimes, localizing and minimizing communication is of utmost importance.

Communication is required in post-processing either to access input data stored on
another node or to transmit partially processed visualisation primitives to another node
for further processing. An example for this is streamline computation. Streamlines can
be integrated on a node until they leave the local partition. The partially computed
streamline can then be transmitted to the node containing the adjacent partition to
continue the integration. In such schemes, it is beneficial if the network topology
mirrors the topology of the partitioning such that communication between nodes which
are responsible for neighbouring partitions is efficient.

In developing the post-processing system, the focus therefore has to be on
visualisation methods that require only a minimal amount of communication, which
should be limited to the immediate neighbourhood. As scalability is the primary goal,
the amount of local computation required is only of secondary importance.

The system will consist of a set of distributed post-processing algorithms that can be
controlled interactively by a front-end workstation (cf. Figure 4). Visualisation primitives
generated locally by these algorithms are then rendered and composited by the
methods described in workpackage task 5.3 (cf. [1]). The purpose of these interactive,
in-situ visualisation techniques is to support computational steering by providing insight
into the current state of a numerical simulation.

Figure 4: System architecture.

solver solver

solver

Post-
processing

Rendering

Rendering

Rendering

Compose

Post-
processing

Post-
processing

Frontend
Interactive post
processing

Comp. steering
processing

 node 1 node 2 node n

© CRESTA Consortium Partners 2011 Page 9 of 14

6 Post-­‐Processing	
 Techniques	
 Towards	
 High	
 Scalability	

6.1 In-­‐situ	
 Processing	

Understanding the science behind large-scale simulations requires the extraction of
meaning from datasets of hundreds of terabytes and more [13].

However, the cost of moving the simulation output to a visualisation machine is
increasing with larger simulations. According to [12], it is preferable to not move the
data at all, or to keep the moved data to a minimum. This can be achieved by applying
simulation and visualisation calculations on the same parallel supercomputer in-situ, so
that data can be shared.

According to [12], the following processing steps can be performed in-situ and enhance
the scientists' research activities.

6.1.1 Data	
 Reduction	

Common data reduction techniques are subsampling, quantisation and transform-
based compression. Subsampling is the simplest way to reduce simulation data. A
common practice is to skip time steps and select, e.g., every hundredth time steps.
However, skipping time steps for simulation output poses a major challenge to
temporal-space visualization. For instance, the accuracy of path-lines computation will
suffer from large temporal step length.

Simulation data is mostly computed in single or double precision floating point numbers
with high accuracy. However, it is not always necessary to preserve this level of
accuracy, for example, if relative values are in the focus of research and absolute
values are not important. Also, hardware accelerated rendering makes use of texturing
hardware with 8 or 16 bit of resolution. In those cases, quantisation makes sense in
order to reduce the amount of data to store.

Data quantisation can be performed in many ways. Simplest Quantisation methods are
direct scalar quantisation methods, which use only local data and are fast to compute.
Data quantisation also contains more elaborate methods making use of data statistics,
such as the global Lloyd-Max method [14] or the local Jayant quantiser [15].

Another class of quantisation methods is vector quantisation that groups data values
into blocks of data and encodes these blocks. Since these methods, such as the Linde-
Buzo-Gray algorithm [16], requires the training of a codebook, vector quantisation
methods are computationally too expensive to be used as an in-situ processing method
[17].

Finally, transform-based compression is a very effective way to reduce data to store on
disk.

This compression transforms the data from spatial domain to frequency domain
resulting in energy coefficients for each frequency. Since this representation is often
more meaningful for the physical situation, a compression in this domain introduces
fewer errors by only quantising the less important lower energy coefficients more
coarsely.

Most popular transform-based encodings are the discrete cosine transform and the
wavelet transform, later allowing an additional multi-resolution data representation and
a level of detail to be selected according to the visualisation requirements.

© CRESTA Consortium Partners 2011 Page 10 of 14

In terms of cost and performance, transform-based compression is an advantageous
choice for in-situ data reduction [12].

6.1.2 Data	
 Extraction	

A feature is a particular physical structure isolated with domain knowledge. Some
examples are vortices, shocks, eddies, critical points etc. These features can be used
to categorise the overall physical phenomenon.

The saving of storage space using feature extraction can be very significant. Scientists,
however, do not always know exactly what to extract and track in their data.

In [18], a method is demonstrated for feature tracking using a low cost and incremental
prediction and morphing approach to track a turbulent vortex flow. Feature extraction
and tracking remains to be an active area of research, because the high-level data
reduction explicitly takes domain knowledge into account. Although many feature
extraction and tracking methods have evolved in the last decades, less work has been
done to apply them to in-situ processing.

6.1.3 Quality	
 Assessment	

Most of the presented in-situ processing methods focus on reducing data size during
simulation run-time. Therefore, the information loss compared to the original data
should be conveyed to the user to identify and quantify the loss of data quality.

Most data quality metrics, such as the mean square error, require access to the original
data and are therefore not applicable to large-scale simulations where the original data
are too large.

A solution applicable in in-situ processing is shown by [19], who only used statistical
information extracted from the original data in the simulation. In the visualisation the
distance of the reduced data can be compared with the extracted statistical information
and in order to indicate quality loss. An improved version extracts statistical information
in the wavelet domain and also enables a cross-comparison of different reduction
types.

6.1.4 In-­‐Situ	
 Rendering	

For monitoring and steering purposes a direct rendering of images in-situ can be
beneficial to give insight into the simulation without requiring an additional visualisation
system.

In [20] in-situ rendering is conducted during a tera-scale earthquake simulation. For the
presented ray casting visualisation each processor renders its local data. The same
data partitioning created by the simulation can be reused, and thus no data movement
is needed among processors. Only an API provided by the simulation is required,
because all access operations are read-only.

No further changes are needed to adapt the simulation. In the image compositing
stage, a new algorithm is designed to build a communication schedule in parallel on the
fly.

6.2 Multi-­‐Resolution	
 Data	
 Structures	
 and	
 Streaming	

Exascale simulation data are large and complex. To study and analyse these types of
data, it is beneficial to first look into a lower resolution of the entire data. Further studies
can be carried out by refining the level of resolutions. A multi-resolution data structure
enables a fast representation and an early approximation of the final results.

© CRESTA Consortium Partners 2011 Page 11 of 14

6.2.1 Why	
 Use	
 a	
 Multi-­‐resolution	
 Data	
 Structure	
 	

The main purpose of data streaming, parallelisation and data management is to reduce
the total run time. The explorative and interactive examination of flow data is always
disturbed and interrupted by the long waiting time.

However, one can observe that within the context of interactive exploration even
simplified, approximate results can be sufficient to decide whether to cancel the
simulation, to change parameters for the next iteration step or to wait for the final result.

An additional benefit of presenting preliminary results to the user is the perception of a
shorter total computation time. Even when the presented data does not yet convey
useful information, it can improve the perceived level of interactivity. Integration of an
interface to cancel a command or restart it with modified parameters almost brings us
very close to explorative analysis.

6.2.2 Classification	
 of	
 Data	
 Streaming	
 Techniques	

Streaming visualisation algorithms are often derived variants of existing approaches.
One class of streaming algorithms transmits already computed parts of the result to the
visualisation front-end. This includes viewer-optimised extraction methods. In these
approaches, the data is decomposed into multiple blocks that are spatially organised,
usually using tree-based meta-data structures. Algorithm execution then prioritises
those blocks that are spatially close to the viewer. Some schemes also consider the
viewing direction. Those blocks that are further away are processed later as they are
assumed to contain less relevant details due to their small representation on screen
and potential occlusion.

Another class of algorithms, so-called Level of Detail (LOD) schemes, computes a
coarse initial representation of the result which, in contrast to the previous approaches,
always gives a global, although coarse, overview of the extracted flow feature. This can
be computationally expensive if these initial results cannot be used in the computation
of the next finer resolution step. If this is possible, however, the relation between
individual detail levels is called progressive. The data structures which are transmitted
in this process of refinement from coarsest approximation to the final result are called
progressive multi-resolution structures.

© CRESTA Consortium Partners 2011 Page 12 of 14

7 Conclusion	

In this deliverable, we have studied the challenges and possible solutions in interactive
post-processing of result data from simulations on exascale systems. Techniques that
allow for scalable visualisation algorithms were presented, and a system architecture
was designed which relates the post-processing component to the numerical solver as
well as the distributed rendering system described in workpackage task 5.3 (cf. [1]).

© CRESTA Consortium Partners 2011 Page 13 of 14

8 References	

	

[1] F. Niebling, J. Hetherington and A. Basermann, “CRESTA D 5.3.1: Remote hybrid
rendering: analysis and system definition for exascale systems,” March 2012.

[2] G. Matura and A. Basermann, “CRESTA D 5.1.1: Pre-processing: analysis and
system definition for exascale systems,” March 2012.

[3] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio and J. Andre, “The
international exascale software project roadmap,” International Journal of High
Performance COmputing Applications, vol. 25, no. 1, pp. 3-60, 2011.

[4] A. Geist, “Paving the roadmap to exascale,” SciDAC Review, special issue, 2010.

[5] M. Wolter, M. Schirski, T. Kuhlen, C. Bischof, M. Buecker and P. Gibbon, Hybrid
parallelization for interactive exploration in virtual enrionments.

[6] S. Borkar, “The exascale challenge,” International symposium on Vlsi design
automation and test (vlsi-dat), pp. 2-3, 2010.

[7] T. Eickermann, W. Frings, P. Gibbon, L. Kirtchakova and D. Mallmann, “Steering
unicore applications with visit,” Philosophical transactions of the royal society,
2005.

[8] S. G. Parker, D. M. Weinstein and C. R. Johnson, The scirun computational
steering software system, 1997.

[9] D. B. M. Jenz, The computational steering framework steereo, 2010.

[10] O. Coulaud, M. Dussere and A. Esnard, Toward a distributed computational
steering environment based on corba, 2003.

[11] C. Wagner, M. Flatken, M. Meinel, A. Gerndt and H. Hagen, FSSteering: A
distributed framwork for computational steering in a script-based CFD simulation
environment, Berlin, Germany: Lehmanns Media-LOB.de, 2010.

[12] K. K. Ma, C. Wang, H. Yu and A. Tikhonova, “In-situ processing and visualization
for ultrascale simulations,” Journal of Physics: conference series, vol. 78, no. 1, pp.
12-43, 2007.

[13] K. L. Ma, R. Ross, J. H. G. Huang, K. Morel and J. Owens, Utra-scale
visualization: Research and education, 2007.

[14] R. C. Gonzalez and R. E. WOods, Digital image processing, third edition, Upper
Saddle River, NJ, USA: Prentice-Hall, Inc, 2006.

[15] N. S. Jayant, “Adaptie quantization with a one-word memory,” Bell system
technical journal, vol. 52, pp. 1119-1144, 1973.

[16] Y. Linde, A. Buzo and R. Gray, “AL algorithm for vector quantizer design,” IEEE
transactions on communications, vol. 28, no. 1, pp. 84-95, 1980.

[17] N. Fout, K. L. Ma and J. Ahrens, “Time-varying multivariate volume data
reduction.,” in 2005 ACM symposium on applied computing, New York, NY, 2005.

[18] C. Muelder and K. L. Ma, “Rapid feature extraction and tracking through region
morphing,” Computer Science Department, UC Davis, Davis, CA, USA, 2007.

[19] C. Wang and K. L. Ma, “A statistical approach to volume data quality assessment,”
IEEE trasactions on visualization and computer graphids, vol. 14, no. 3, pp. 590-

© CRESTA Consortium Partners 2011 Page 14 of 14

602, 2008.

[20] T. Tu, H. Yu, L. Ramirez-guzman, J. Bielak, O. Ghattas and K. L. Ma, “From mesh
generation to scientific visualization and end-to-end approach to parrallel
supercomputing,” in ACM/IEEE supercomputing conference, 2006.

[21] Z. Wang, G. S. H. R. Wu, E. P. Simoncelli, E. Yang and A. C. Bovik, “Quality-
aware images,” IEEE transaction on Image Processing, vol. 16, no. 6, pp. 1680-
1689, Jun 2006.

	

