

Copyright © CRESTA Consortium Partners 2011

D5.3.1	
 –	
 Remote	
 hybrid	
 rendering:	

analysis	
 and	
 system	
 definition	
 for	

exascale	
 systems	

WP5:	
 User	
 tools	

Due date: M6

Submission date: 31/03/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation USTUTT

Version: 1.2

Status Final

Author(s): Florian Niebling (USTUTT), James Hetherington (UCL), Achim
Basermann (DLR)

Reviewer(s) Mats Aspnäs (ABO), Uwe Kuester (USTUTT)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 17/02/2012 First version of the deliverable Florian Niebling
(USTUTT)

0.2 21/02/2012 Added section on raycasting James Hetherington
(UCL)

0.3 03/03/2012 Still missing: sections 4, 5.1, 7,
summary

Florian Niebling
(USTUTT)

0.4 05/03/2012 Added Section 7 Florian Niebling
(USTUTT)

0.5 05/03/2012 Added more content to section 5.1 Florian Niebling
(USTUTT)

0.6 06/03/2012 Proofread Andreas Kopecki
(USTUTT)

0.7 07/03/2012 Executive summary Florian Niebling
(USTUTT)

1.0 09/03/2012 Revision Achim Basermann
(DLR)

1.1 16/03/2012 Incorporated reviewer’s comments
(Uwe Kuester, USTUTT)

Florian Niebling
(USTUTT)

1.2 19/03/2012 Incorporated reviewer’s comments
(Mats Aspnäs, ABO)

Florian Niebling
(USTUTT)

1.2 22/03/2012 Check of the final version after internal
review

Achim Basermann
(DLR)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 PURPOSE	
 ..	
 2	

2.2	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 2	

3	
 REMOTE	
 RENDERING	
 OF	
 SCIENTIFIC	
 SIMULATION	
 DATA	
 ..	
 3	

3.1	
 THE	
 VISUALISATION	
 AND	
 RENDERING	
 PIPELINE	
 ..	
 3	

3.1.1	
 Hardware-­‐accelerated	
 indirect	
 Polygonal	
 Rendering	
 of	
 Post-­‐Processed	
 Simulation	
 Datasets	

from	
 OpenFOAM	
 Simulations	
 ..	
 4	

3.1.2	
 Raycasting	
 in	
 HemeLB	
 ..	
 4	

3.2	
 PARALLEL	
 RENDERING	
 TECHNIQUES	
 FOR	
 REMOTE	
 RENDERING	
 ..	
 5	

3.2.1	
 Sort-­‐First	
 ...	
 5	

3.2.2	
 Sort-­‐Middle	
 ...	
 5	

3.2.3	
 Sort-­‐Last	
 ..	
 5	

3.3	
 SORT-­‐LAST	
 COMPOSITING	
 METHODS	
 ...	
 5	

3.3.1	
 Serial	
 Compositing	
 ..	
 6	

3.3.2	
 Direct	
 Send	
 ..	
 6	

3.3.3	
 Binary	
 Swap	
 ..	
 6	

3.4	
 STATE	
 OF	
 THE	
 ART	
 IN	
 REMOTE	
 PARALLEL	
 RENDERING	
 AND	
 COMPOSITING	
 FRAMEWORKS	
 	
 7	

4	
 RENDERING	
 ENVIRONMENTS	
 ...	
 9	

4.1	
 USER	
 WORKSTATIONS	
 ..	
 9	

4.2	
 IMMERSIVE	
 VIRTUAL	
 REALITY	
 ...	
 9	

4.2.1	
 Multi-­‐Wall	
 Projections	
 and	
 Stereo	
 Rendering	
 ...	
 9	

5	
 ANALYSIS	
 OF	
 REQUIREMENTS	
 FOR	
 REMOTE	
 RENDERING	
 ON	
 EXASCALE	
 SYSTEMS	
 	
 10	

5.1	
 EXASCALE	
 SYSTEMS	
 ..	
 10	

5.1.1	
 Massively	
 Parallel	
 Systems	
 ...	
 10	

5.1.2	
 Accelerators	
 ..	
 10	

5.1.3	
 Many-­‐Core	
 CPUs	
 ...	
 10	

5.2	
 PERFORMANCE	
 CONSIDERATIONS	
 FOR	
 MASSIVELY	
 PARALLEL	
 RENDERING	
 ...	
 10	

5.2.1	
 Bandwidth	
 Requirements	
 ...	
 10	

5.2.2	
 Latency	
 Considerations	
 ...	
 11	

6	
 DEFINITION	
 OF	
 A	
 REMOTE	
 RENDERING	
 SYSTEM	
 TOWARDS	
 EXASCALE	
 	
 12	

6.1	
 SOFTWARE	
 COMPONENT:	
 MASSIVELY	
 PARALLEL	
 RENDERER	
 ...	
 12	

6.2	
 SOFTWARE	
 COMPONENT:	
 MASSIVELY	
 PARALLEL	
 COMPOSITOR	
 ...	
 12	

7	
 SOFTWARE	
 ARCHITECTURE	
 INTERFACES	
 ..	
 14	

7.1	
 POST-­‐PROCESSING	
 TO	
 RENDERING	
 ..	
 14	

7.2	
 PARALLEL	
 RENDERING	
 TO	
 PARALLEL	
 COMPOSITING	
 ...	
 14	

8	
 REFERENCES	
 ..	
 15	

Index	
 of	
 Figures	

Figure 1: The visualisation pipeline (adapted from Haber and McNabb [1]) 3	

Figure 2: Simplified rendering pipeline ... 3	

Figure 3: Post-processing of a turbomachinery simulation. Isosurface extraction for
visualisation of cavitation (left), cutting plane showing colour-coded pressure
distribution (right) .. 4	

Figure 4: Rendered images of individual partitions on different post-processing cluster
nodes .. 5	

Copyright © CRESTA Consortium Partners 2011

Figure 5: Result of final image composition .. 6	

Figure 6: Communication between partitions (left), Composition of sub-images on
partitions (right) ... 7	

Figure 7: Post-processing of numerical simulation data in a CAVE 9	

Figure 8: Surface extraction using GPGPU computing with focus on rendering
performance ... 12	

	
 	

© CRESTA Consortium Partners 2011 Page 1 of 15

1 Executive	
 Summary	

In this work, we introduce remote hybrid rendering strategies to make exascale
resources available for interactive visualisation of large-scale numerical simulation
data. We use the CRESTA co-design vehicles OpenFOAM [14] and HemeLB [13] to
work out system requirements for a remote rendering solution in large-scale cluster
environments. We compare different rendering strategies based on the Sort-Last
algorithm according to their suitability for compositing in large-scale cluster
environments on the road to exascale systems. Sort-Last was selected since rendering
of large-scale distributed data generated by distributed post-processing systems is
inherently supported by the algorithm with adequate communication overhead between
the partitions. There are multiple possibilities for compositing of rendered images in the
Sort-Last algorithm. The Binary Swap algorithm and its derivative, 2-3 Swap, were
discovered to be promising candidates for Sort-Last compositing of interactive
renderings in large-scale clusters. We propose various additions to existing remote
rendering architectures to minimise the network bandwidth needed in the system
during the compositing phase.

• Image and video compression techniques implemented on CPU as well as on
accelerators such as GPGPU devices can be employed to minimise
communication overhead between cluster nodes.

• Mechanisms such as bounding box projection and view frustum culling can be
used to identify areas in rendered images that do not have to be
(re-)transmitted to other cluster nodes or additional GPU devices during
compositing.

• Similarities in consecutive images, as well as between images for the left and
right eye during stereo rendering, could be exploited to reduce the amount of
data that have to be communicated to remote nodes.

We identify two possibilities for the integration of distributed post-processing and
remote hybrid rendering in future exascale systems:

1. Employing accelerators such as GPGPU devices not only for rendering, but
also for post-processing algorithms throughout the visualisation pipeline.

2. Using cores in advanced many-core CPUs such as Intel’s MIC architecture for
post-processing, rasterisation and image compositing.

Both methods would allow for the elimination - or at least a drastic reduction - of data
transfers between the host CPU and the accelerator, which is a major cause of latency
in today’s large-scale post-processing systems.

Concluding this deliverable, a software architecture for remote parallel rendering in
large-scale cluster environments is defined consisting of a parallel rendering
component and a parallel compositor component. Different modes of communication
between these two components are sketched that have to be supported for interactive,
low-latency post-processing and rendering. These modes of communication lead to the
definition of an interface between these two components, alongside with the definition
of an interface between the post-processing environment (see WP 5.2), and the remote
hybrid rendering solution that is going to be developed in WP 5.3.

© CRESTA Consortium Partners 2011 Page 2 of 15

2 Introduction	

Remote hybrid rendering is used to make the post-processing resources used in large-
scale cluster systems available to remote users. The structure of this document is as
follows: Section 3.1 will introduce the workflows in visualisation and rendering of data
obtained from scientific simulations as well as state requirements for rendering in
exascale systems obtained from the co-design vehicles OpenFOAM and HemeLB. In
section 3.2, existing parallel rendering techniques will be introduced and compared
according to their usefulness to exploit the compute power of large-scale visualisation
clusters.

Section 4 compares different rendering environments used by scientists or teams of
engineers in the assessment of large-scale numerical simulation data. In section 5,
bandwidth and latency requirements of compositing algorithms in large-scale clusters
will be gathered and further analysed.

In section 6, software components for a remote parallel rendering system that fulfil
these requirements will be defined. Finally, section 7 concludes the deliverable with a
description of interfaces between the components specified in section 6.

2.1 Purpose	

The purposes of this deliverable are as follows:

• Introduce existing methods for parallel remote rendering and establish a context
in which they can be useful to support post-processing of numerical simulation
results towards exascale systems.

• Define software components that are to be used in a large-scale hybrid parallel
rendering system.

• Specify interfaces between these components as well as interfaces to post-
processing software that will be developed in the scope of WP 5.2.

2.2 Glossary	
 of	
 Acronyms	

 Definition
CPU
DMA
FBO
GPU
GPGPU
MIC
OpenGL
RMA
VBO

Central Processing Unit
Direct Memory Access
Frame Buffer Object
Graphics Processing Unit
General purpose computing on graphics processing units
Many Integrated Cores
Open Graphics Language
Remote Memory Access
Vertex Buffer Object

WP Work Package

© CRESTA Consortium Partners 2011 Page 3 of 15

3 Remote	
 Rendering	
 of	
 Scientific	
 Simulation	
 Data	

3.1 The	
 Visualisation	
 and	
 Rendering	
 Pipeline	

The workflow of visualising simulation results to gain scientific insight can be divided
into several tasks, traditionally defined as shown in Figure 1. The transfer of data
between data space and visualisation space, the post-processing of simulation results,
is usually a highly interactive process and will be analysed in detail in CRESTA’s WP
5.2 [12]. In contrast to that, the rendering of geometric data, as the final step in the
visualisation pipeline and focus of WP 5.3, is completely non-interactive and vastly
accelerated by programmable graphics processing units (GPUs).

Figure 1: The visualisation pipeline (adapted from Haber and McNabb [1])

The rendering itself can be broken down into smaller parts, many of which can be
influenced by small pieces of code, called shaders, which are supplied by the computer
graphics developer and which are executed directly on the GPU as can be seen in
Figure 2. Parallel rendering techniques which we will compare in section 3.2
considering their usefulness for exascale rendering can be classified according to the
location in the rendering pipeline where the distribution of work using parallel
processes is performed.

Figure 2: Simplified rendering pipeline

There are multiple possibilities for the implementation and execution of a rendering
pipeline in modern computer architectures that are the basis of current high
performance compute clusters.

1. Using the fixed-function pipeline implemented in the driver of the GPU.
2. Using programmable shaders to augment or replace parts of the fixed-function

pipeline of the GPU.
3. Using custom software renderers that are either implemented on the CPU or on

accelerators such as GPGPU devices.

There are numerical solvers that include methods for post-processing and rendering of
these post-processed data for interactive analysis. HemeLB, a Lattice Boltzmann

© CRESTA Consortium Partners 2011 Page 4 of 15

solver from UCL and one of the CRESTA co-design vehicles, uses software ray-casting
for rendering of streamlines and isosurfaces that will be described in section 3.1.2.

3.1.1 Hardware-­‐accelerated	
 indirect	
 Polygonal	
 Rendering	
 of	
 Post-­‐Processed	
 Simulation	

Datasets	
 from	
 OpenFOAM	
 Simulations	

Data obtained from post-processing of numerical simulation results typically consist of
a large number of geometric primitives (cf. Figure 1). These primitives, generally huge
amounts of triangle data, can be rendered by GPUs using either the fixed function
pipeline or programmable shaders. Because of memory limitations of single
workstations or cluster nodes as well as the complexity of the computations that need
to be performed, efficient parallel post-processing of large-scale simulation data is
essential.

Figure 3: Post-processing of a turbomachinery simulation. Isosurface extraction for visualisation

of cavitation (left), cutting plane showing colour-coded pressure distribution (right)

The size of engineering simulation datasets such as the ones shown in Figure 3, are
predicted to grow to several 100 million volume elements with hundreds of time steps
before the end of the CRESTA project. To reduce latency of user interactions within the
visualisation environment, post-processing and rendering have to be tightly integrated
and able to exploit locality of data. Parallel rendering of distributed graphics primitives
offers the possibility to maintain interactive rendering speeds when visualising these
large-scale, partitioned simulation data.

3.1.2 Raycasting	
 in	
 HemeLB	

HemeLB's ray-tracing implementation is designed to be as local as possible and avoid
unnecessary communication of data. Images are rendered locally by casting a ray from
the viewpoint through each pixel of the image and accumulating data about the fluid
sites that are near the ray's path through the geometry. Each core does this for its own
fluid sites, grouping cubes of fluid site blocks into clusters and calculating in advance
the area of each block mapped onto the screen in order to make the casting more
efficient.

Each ray accumulates the distance from the screen to the first fluid site, the integrated
length spent in fluid, the fluid density and stress nearest the screen. One
implementation of the ray adds to this a colour-mapping of velocity and stress, which is
integrated through the fluid. Another implementation adds "fog" to a velocity and stress
integration, giving better depth-cuing.

Once each partition has rendered its local contribution to the overall image, the cast
rays must be combined. To combine the images in this fashion, the cores are arranged
in a binary tree, where lower-ordered ranks will have two child-cores with higher rank.
In each subsequent iteration after rendering, each core passes its rays to its parent in
the tree that combines the sets of rays from its children with its own set of rays. The
properties accumulated by the rays are carefully chosen to allow this. Once the rays
reach the topmost node in the tree, all cast rays have been combined and the final set

© CRESTA Consortium Partners 2011 Page 5 of 15

can be transformed into an RGB image, ready for passing to an HTTP client or writing
to disk.

HemeLB maintains scaling performance by ensuring that each ordered pair of cores
will only perform one asynchronous send-receive per Lattice-Boltzmann iteration,
reducing the amount of time each core spends on communication and minimising the
effects of communication latency. The accumulation of ray information between cores
therefore happens across several Lattice Boltzmann steps.

3.2 Parallel	
 Rendering	
 Techniques	
 for	
 Remote	
 Rendering	

Molnar et al. [15] classify parallel rendering techniques according to the location in the
rendering pipeline where work is distributed to parallel rendering clients. Three classes
of parallel rendering algorithms are identified.

3.2.1 Sort-­‐First	

Sort-First algorithms sort graphics primitives during geometry processing. Renderer
partitions are responsible for a specific rectangle in screen-space. Graphics primitives
can be assigned to renderer partitions by evaluating the screen-projection of the
graphics primitives’ bounding box. Sort-First parallel rendering is a suitable strategy
when either the bandwidth requirements for re-distribution of geometric primitives is
relatively small, or when rendering times are dominated by the limited fill-rate of the
GPU.

3.2.2 Sort-­‐Middle	

Sort-Middle algorithms redistribute graphics primitives between geometry processing
and rasterisation. After geometry processing, primitives transformed to screen
coordinates are distributed to the partition responsible for rasterisation of the particular
primitive. Sort-Middle algorithms do no longer play an important role in parallel
rendering, since the data reduction between rasterisation and fragment processing is
rather large and these processes are highly integrated on modern GPUs.

3.2.3 Sort-­‐Last	

Sort-Last rendering algorithms assign arbitrary geometry to each of the n partitions.
Each rendering partition produces a full-size partial image, containing colour and depth
rendering of the objects assigned to the specific partition. These n images are then
sent to one or more compositing nodes where they have to be overlaid considering per-
fragment z-visibility.

3.3 Sort-­‐Last	
 Compositing	
 Methods	

The most simple sort-last compositing solution is the serial approach which combines
and merges all intermediate images on the destination rendering unit responsible for
the final display (cf. the sample scenario in Figure 4 and Figure 5). Several other
parallelisation schemes for software composition have been proposed. Most notably,
these include Direct Send [2], Binary Tree [3], Binary Swap [4] and Parallel Pipeline [5],
among which Binary Swap is the most commonly used algorithm [6].

Figure 4: Rendered images of individual partitions on different post-processing cluster nodes

© CRESTA Consortium Partners 2011 Page 6 of 15

Figure 5: Result of final image composition

3.3.1 Serial	
 Compositing	

When using Serial Compositing, all nodes send their colour and depth images to a
single compositing node. This leads to very high bandwidth requirements to the single
compositor node and makes concurrent image transmission impossible. Since the total
compositing time needed for this method increases linearly with the number of nodes in
the system, interactive frame rates cannot be achieved when reaching a certain
number of nodes.

3.3.2 Direct	
 Send	

With Direct Send compositing, the final image-gathering task is divided into n screen-
space tiles to avoid exchanging full-size images between the n compositing nodes [6].
Each tile is associated to and composited by one cluster node, and the composited
tiles are eventually assembled together to form the final image.

With direct send, each of the n nodes has to read back n-1 tiles from GPU memory.
Each node sends the tiles to their respective compositing node, where composition of
sub-images to tiles is performed. Each tile is then sent to the final display node.
Although direct send allows for concurrent transmission of image tiles to their
corresponding compositor node, the algorithm requires all-to-all communication which
will be suboptimal in large-scale cluster networks which are not fully-connected.

3.3.3 Binary	
 Swap	

Binary Swap algorithms [[4] also distribute the composition of parts of images to all
nodes in the cluster. A naïve approach for parallel merging of the partial images is to
do binary compositing. By pairing up processors in order of compositing, each disjoint
pair produces a new subimage. Thus after the first stage, we are left with the task of
compositing only n/2 subimages. Then we use half the number of the original
processors, and pair them up for the next level of compositing. Continuing similarly,
after log2 n stages, the final image is obtained. One problem with the above method is
that during the compositing process many processors become idle. At the top of the
tree, only one processor is active [4].

To exploit the compute power of all nodes in the cluster, the key idea in Binary Swap is
that, at each compositing stage, the two processors involved in a composite operation
split the image plane into two pieces and each processor takes responsibility for one of
the two pieces.

In the early phases of the Binary Swap algorithm, each processor is responsible for a
large portion of the image area as can be seen in Figure 6. In later phases of the
algorithm, the processors are responsible for a smaller and smaller portion of the
image area. At the top of the tree, all processors have complete information for a small
rectangle of the image. As in Direct Send, the final image can be constructed by
sending the subimage tiles to the display node or a remote workstation. The bandwidth
requirements for Binary Swap compositing are similar to the Direct Send algorithm.
Fortunately, the communication patterns are much more suitable for cluster networks

© CRESTA Consortium Partners 2011 Page 7 of 15

that are not fully connected, since larger image tiles are distributed in early stages of
the compositing tree where directly neighbouring cluster nodes communicate.

There are further developments of binary swap such as 2-3 Swap [8] that eliminate the
need to use power-of-two number of nodes. 2-3 Swap along with enhancements such
as improved scanline methods, RLE encoding and the use of bounding boxes [9],
make for a promising approach towards even very large numbers of rendering nodes in
future high performance cluster systems.

Figure 6: Communication between partitions (left), Composition of sub-images on partitions (right)

	

3.4 State	
 of	
 the	
 Art	
 in	
 Remote	
 Parallel	
 Rendering	
 and	

Compositing	
 Frameworks	

There are different types of software libraries that can be used to implement remote
parallel rendering in cluster systems. We provide a short list of methods citing one
typical implementation of each and discuss their advantages and disadvantages for
remote parallel rendering regarding exascale resources.

Chromium [17] intercepts OpenGL calls and forwards them to one or more Chromium
servers. This can be used to split an OpenGL command stream into smaller parts that
can then be processed by different nodes. After rasterisation, depth-buffer composition
of the resulting images can be applied, leading to an implementation of Sort-Last, using
object decomposition at the OpenGL command level.

OpenSG [16] is a scenegraph API that provides functionality for parallel rendering,
including network data distribution and scalable rendering modes.

Equalizer [15] is a parallel rendering middleware, which enables the development of
fully distributed and parallel graphics applications.
Ice-T [18] (Image Composition Engine for Tiles) is a lightweight parallel compositing
library that can be used for tiled displays as well as single displays, featuring different
compositing algorithms, including sort-last based image compositing.

Libraries such as Chromium have been developed to enable existing serial programs to
exploit parallel rendering resources. In applications that are to be optimised for large-
scale parallel systems, developers typically are able to make much better optimisations
themselves than what would be possible by an automatic parallelisation of library calls.

© CRESTA Consortium Partners 2011 Page 8 of 15

Distributed scenegraph APIs such as OpenSG enable the programmer to distribute
rendering data among different cluster nodes. Typically, they require the scenegraph
itself to be replicated among the cluster nodes, often leading to communication
requirements among nodes when the scenegraph is changed in one partition of the
parallel program, which is a prohibitive network overhead in large-scale programs.

Middleware libraries or frameworks are typically trying to be independent of a given
scenegraph API. In large-scale real-world projects, the combination of Equalizer with
scenegraph libraries such as OpenSG or OpenSceneGraph, which might be already
used in the post-processing or rendering system, can become very cumbersome to the
programmer. Since the functionality of rendering middleware and scenegraph libraries
often overlap and the layout of data structures in use are incompatible, integration of
the different libraries often is not possible in an efficient manner.

Integration of light-weight compositing libraries such as Ice-T into existing systems
proves to be much easier since these libraries are often written to complement existing
rendering libraries or scenegraphs. Often, a large number of different image encodings
and layouts are already supported. Although the compositing libraries in existence
today are not yet optimised for many-core CPUs or GPGPU devices, we believe that
the methods used in these parallel compositing libraries could be an interesting starting
point to enable visualisation software to make use of future exascale systems
regarding distributed rendering of large-scale simulation data.

© CRESTA Consortium Partners 2011 Page 9 of 15

4 Rendering	
 Environments	

There are different rendering environments that make it possible for individuals or small
teams of engineers to collaborate on exploring large-scale numerical simulation data.
These environments have different requirements for the remote rendering system. In
general, it should be possible to combine various rendering environments, even of
different types, to allow sharing of a post-processing session by multiple,
geographically separated users.

4.1 User	
 Workstations	

Workstations are typically used by single users and require renderings of comparably
low resolution. Since the viewpoint as well as the post-processing data generally is not
updated all the time, the load on the rendering is not constantly high. This enables the
post-processing, rendering and compositing components to execute time-consuming
load-balancing in between rendering steps. Workstation users also might be satisfied
with compressed images and progressive updates, providing low-latency by lowering
image quality. Collaborative analysis of simulation datasets can be assisted by making
it possible for multiple desktop workstations to participate in the post-processing.

4.2 Immersive	
 Virtual	
 Reality	

An immersive digital environment is an artificial, interactive, computer-created scene
within which users can immerse themselves. Because of cost-efficiency, these
installations are often a central resource in the company, university or research
institution, in many cases featuring a high bandwidth and low latency network
connection to the datacenter.

4.2.1 Multi-­‐Wall	
 Projections	
 and	
 Stereo	
 Rendering	

Virtual Reality environments such as large tiled display walls or CAVEs (cf. Figure 7)
need to make high-resolution, very low latency, high bandwidth stereo image
renderings available to the users. Since these installations also often feature tracking
equipment for user interactions as well as viewpoint changing, the rendering needs to
be updated much more often compared to desktop environments, often continuously.
The targeted immersion of the users into the scene makes it prohibitive to introduce
compression artifacts or progressive updates to the rendered images.

Figure 7: Post-processing of numerical simulation data in a CAVE

© CRESTA Consortium Partners 2011 Page 10 of 15

5 Analysis	
 of	
 Requirements	
 for	
 Remote	
 Rendering	
 on	

Exascale	
 Systems	

5.1 Exascale	
 Systems	

5.1.1 Massively	
 Parallel	
 Systems	

Large-scale clusters in use today provide the possibility to exploit parallelism on
different levels.

• Data parallelism can be exploited on the cluster nodes’ CPUs as well as on
accelerator cards such as GPGPU devices that are many-core processing units
themselves. On GPGPU devices, data parallelism through the use of stream-
processing must be exploited to achieve adequate speedups when employing
hundreds of relatively simple GPU cores. Data parallelism in clusters has to be
exploited at another scale by simultaneously processing partitions of data on
different nodes in a distributed memory environment.

• Task parallelism makes it possible to execute different algorithms on the same
or distinct data in parallel. In the case of visualisation, post-processing,
rendering and compositing of a dataset or a partition thereof have to be
executed sequentially and cannot be overlapped. Though, visualisation of data
partitions might be, depending on the post-processing algorithms that are
employed, computed in parallel to the visualisation of other partitions.

5.1.2 Accelerators	

HPC clusters often feature accelerators such as GPGPU devices that can be used for
post-processing and rendering. Since many post-processing algorithms such as
surface extraction are relatively easy to implement in a data-parallel form, these
devices provide an optimal target for data analysis. GPGPU post-processing is even
more attractive in low-latency applications, since expensive data transfers from host to
GPU memory are no longer necessary between post-processing and rendering. The
availability of accelerators makes it possible to free host CPUs for load balancing tasks
that require re-partitioning of data, or to develop hybrid algorithms that share
computations between CPU and accelerators.

5.1.3 Many-­‐Core	
 CPUs	

The introduction of many-core CPUs such as Intel’s MIC architecture (Many Integrated
Cores) indicates the possibility that the distance between traditional CPUs and GPGPU
cores might be shrinking. In future exascale systems, applications may exploit the
potential to efficiently generate rasterised, ray-casted or ray-traced images directly on
some cores of the utilised many-core CPUs without the need for additional
accelerators. This would also allow for a reduction of the latency of interactive post-
processing algorithms as has been argued in section 5.1.2. The integration of the
different memory spaces that exist now in accelerator-based systems would also lead
to improvements in programmability as well as to optimisation potential in image
compositing algorithms, since memory on remote nodes would hopefully be accessible
by RMA.

5.2 Performance	
 Considerations	
 for	
 Massively	
 Parallel	

Rendering	

5.2.1 Bandwidth	
 Requirements	
 	

The total number of pixels to be transmitted, discarding potentially expensive
optimisations to both groups of algorithms for the moment, is the same for Direct Send
and Binary Swap and 2-3 Swap. The most important advantage of Binary Swap and 2-
3 Swap in large-scale clusters is the exploitation of fast nearest neighbour

© CRESTA Consortium Partners 2011 Page 11 of 15

communication paths. When using Direct Send, link contention is likely to happen since
multiple nodes are sending messages to the same node at the same time.

Yu et al [15] demonstrate empirically that Binary Swap and 2-3 Swap show a much
more pleasant behaviour than Direct Send using both moderate image sizes
(1024x1024) as well as a relatively small number of parallel rendering nodes (1024). In
their implementation, the total compositing time of Direct Send grows much faster
compared to Binary Swap and 2-3 Swap when the number of nodes or the image size
is increased.

5.2.2 Latency	
 Considerations	

Direct send may require a total number of n * (n – 1) messages to be sent during
compositing. In Binary Swap compositing, each node sends exactly log2 n messages,
making the total number of messages n * log2 n. When implemented in systems with a
high message passing overhead, this behaviour will certainly decrease the applicability
of Binary Swap or generally of tree-based composition algorithms. In an asynchronous
message passing environment, Direct Send latency costs are O(1). Since Binary Swap
requires a total number of log2 n compositing passes, latency grows logarithmically with
the number of nodes in the cluster participating in parallel rendering.

© CRESTA Consortium Partners 2011 Page 12 of 15

6 Definition	
 of	
 a	
 Remote	
 Rendering	
 System	
 Towards	

Exascale	

6.1 Software	
 Component:	
 Massively	
 Parallel	
 Renderer	

The parallel renderer has to be tightly integrated with the post-processing environment.
To optimise the system for locality of data, immediate rendering has to be performed
on the same cluster nodes that are used for parallel post-processing. Data transfer
between post-processing and rendering can be further sped up when both can make
use of the same accelerator, for example a dedicated programmable GPU per node in
the post-processing cluster. The output generated by the post-processing algorithms
should be optimised for immediate rendering on the GPU without having to perform
additional conversions or copying of data as can be seen in the surface extraction
algorithm example in Figure 8.

Figure 8: Surface extraction using GPGPU computing with focus on rendering performance

For post-processing algorithms that do not finish their computation in time for
interactive feedback, multiple different scenarios have to be supported by the renderer:

• The post-processing algorithm may generate partial results for immediate
rendering before the whole computation is finished. These partial results may
be updated by the post-processing algorithm in further calculations.

• The post-processing algorithm may generate incomplete results that are not
suitable for immediate rendering, such as geometry that was already processed
but is still missing data for appropriate colour mappings.

• The post-processing algorithm may generate an inaccurate result for
intermediate rendering that will be corrected in further calculations. These
inaccurate results may be generated e.g. by using a coarser sampled grid
instead of the high resolution CFD grid to get an approximate initial result.

For accurate blending of translucent graphics primitives in the subsequent parallel
compositing step, the renderer has to support proper sorting and additional multi-pass
rendering of these primitives.

6.2 Software	
 Component:	
 Massively	
 Parallel	
 Compositor	

After independent parallel rendering of partitioned simulation data obtained from post-
processing, a parallel compositor has to blend the various sub-images to form a final
image (or final images) for display at the remote site. The parallel compositor should
allow for exchangeable algorithms such as Direct Send, Binary Swap and 2-3 Swap.
To support low-bandwidth networks to remote sites, an optional compression of image
streams will have to be supported. This encoding could also be used to speed up

© CRESTA Consortium Partners 2011 Page 13 of 15

communication of sub-images between the cluster nodes themselves. CPU- as well as
GPU-based compression schemes should be evaluated regarding their suitability for
large-scale rendering. For scenarios where consecutive frames bear high affinity, such
as constant small amounts of head movement in virtual environments, similarities
between frames should be exploited to optimise for network bandwidth. Similarities
between frames in stereo-rendering environments may also prove to be a promising
target for further optimisation.

In addition to high throughput, low-latency application networks in compute clusters,
the compositor has to support outgoing communication to remote hosts to be able to
send images to workstations or virtual reality environments outside of the local cluster
network.

© CRESTA Consortium Partners 2011 Page 14 of 15

7 Software	
 Architecture	
 Interfaces	

7.1 Post-­‐Processing	
 to	
 Rendering	

Since post-processing of numerical simulation data is a highly interactive process, new
post-processing data is generated continuously. These data are converted to geometric
primitives, such as texture-mapped triangles, through the visualisation pipeline. These
large amounts of data have to be passed to the renderer with a minimum amount of
added latency, as described in section 6.1. When the post-processing and rendering
are executed on the same GPU, the interface between the two components can be
optimised to the passing of pointers to vertex buffer objects (VBOs). Due to
implementation constraints in today’s graphics hardware and drivers, this method only
works when post-processing and rendering are implemented to share a graphics
context, which in turn is only possible if the two are actually implemented as a single
process. Since modern GPUs and GPU drivers are currently underway to develop
virtual memory and shared address spaces between multiple processes or graphics
contexts, this issue should be solved in the medium term.

The interface between post-processing and rendering should provide a feedback
mechanism to make the load on the rendering and compositing processes available to
the post-processing. The post-processing environment will then be able to decide how
and when to move data between different rendering partitions to perform load-
balancing. The interface to the rendering has to communicate the type of data that
should be rendered, as well as the mode of update that is performed as described in
section 6.1: full results, partial results, incomplete data or inaccurate data.

7.2 Parallel	
 Rendering	
 to	
 Parallel	
 Compositing	

The parallel rendering component has to provide an interface for communication
between the graphics device memory and the host memory. This can either be
implemented as a traditional readback/upload, but should be able to be adapted to
methods that make DMA possible to remote graphics cards such as NVIDIA’s GPUs
directly over HPC network interfaces such as Infiniband. As the compositing should be
able to be accelerated by GPGPU devices, the compositor has to be granted access to
the rendered image, for compression of the images to reduce bus and network
communications, as well as for the actual compositing of (sub-) images. In Binary Swap
algorithms, where the composition is divided into multiple stages, explicit attention has
to be spent on the performance overhead of the interface between rendering and
compositing.

To accelerate compositing, the rendering should be able to provide bounding
rectangles of the area that has actually been rendered in this partition. This can be
implemented e.g. as a projection of the object’s bounding boxes to the viewing plane. A
bounding rectangle enables the compositing to optimise memory transfers from GPU
device to host, and from cluster node to cluster node by transferring only those parts of
the image that have actually been affected by rendering.

© CRESTA Consortium Partners 2011 Page 15 of 15

8 References	

[1] Haber, R. and McNabb, D.: Visualization idioms: A conceptual model for scientific

visualization systems. In Visualization in Scientific Computing (1990), G. Nielson, B.
Shriver, and L. Rosenblum, Eds., IEEE Computer Society Press, pp 74-92.

[2] Stompel, A. and Ma, K.-L. and Lum, E. B. and Ahrens, J. and Patchett,: J. SLIC: Scheduled
linear image composition on a PC cluster system. Parallel Computing 30, 2 (2004), pp 285-
299.

[3] Shaw, C. D. and Green, M. and Schaeffer, J.: A VLSI architecture for image composition. In
Advances in Computer Graphics Hardware III. Springer Verlag, pp 183-200.

[4] Ma, K.-L. and Painter, J. S. and Hansen, C. D. and Krogh, M.F.: Parallel Volume Rendering
using Binary-Swap Image Composition. IEEE Computer Graphics and Algorithms, 1994.

[5] Lee, T. Y. and Raghavendra, C. S. and Nicholas, J. N.: Image composition methods for
sort-last polygon rendering on 2D mesh architectures. In Proceedings of the IEEE
Symposium on Parallel Rendering 1995, pp. 55-62.

[6] Eilemann, Stefan and Pajarola, Renato.: Direct Send compositing for parallel sort-last
rendering. ACM SIGGRAPH ASIA 2008, ACM, New York, pp. 39:1-39:8

[7] Molnar, S. and Ellsworth, D. and Fuchs, H.: A sorting classification of parallel rendering. In
IEEE Computer Graphics and Applications (1994), vol. 14. pp. 23-32.

[8] Yu, H. and Wang, C. and Ma, K.-L.: Massively parallel volume rendering using 2-3 swap
image compositing. In Proceedings of the 2008 ACM/IEEE conference on supercomputing
(Piscataway, NJ, USA, 2008), SC08, IEEE Press, pp 48:1-48:11.

[9] Takeuchi, A. and Ino, F. and Hagihara, K.: An improved binary swap compositing for sort-
last parallel rendering on distributed memory multi-processors. In Parallel Computing 29
(November 2003), pp. 1745-1762.

[10] Neumann, U. Parallel Volume-Rendering Algorithm Performance on Mesh-Connected
Multicomputers. In Proceedings of Parallel Rendering Symposium 1993, pp. 97-104.

[11] Matura, G. and Basermann, A. CRESTA D 5.1.1: Pre-processing: analysis and system
definition for exascale systems

[12] Wagner, C. and Chen, F. and Basermann, A. CRESTA D 5.2.1: Post-processing: analysis
and system definition for exascale systems

[13] Mazzeo, M.D. and Coveney, P.V. HemeLB: A high performance parallel lattice-Boltzmann
code for large scale fluid flow in complex geometries, Computer Physics Communications,
Volume 178, Issue 12, 15 June 2008, Pages 894-914

[14] Weller, H.G. and, Tabor, G. and Jasak, H. and Fureby, C. A Tensorial Approach to
Computational Continuum Mechanics using Object Orientated Techniques, Computers in
Physics, Vol. 12, No. 6. (1998), pp. 620-631

[15] Eilemann, S. and Makhinya, M. and Pajarola, R. Equalizer: a scalable parallel rendering
framework. In Proceedings of SIGGRAPH Asia 2008

[16] Roth, M. and Reiners, D. "Sorted Pipeline Image Composition ", in Proceedings of EGPGV,
2006, pp.119-126.

[17] Humphreys, G. and Houston, M. and Ng, R. and Frank, R. and Ahern, S. and Kirchner, P.D.
and Klokowski, J.T. Chromium: a stream-processing framework for interactive rendering on
clusters. SIGGRAPH Asia 2008 Courses

[18] Moreland, K. and Kendall, W. and Peterka, T. and Huang, J. An Image Compositing
Solution at Scale. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC '11). November 2011.

