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1 Executive	
  Summary	
  
In this work, we introduce remote hybrid rendering strategies to make exascale 
resources available for interactive visualisation of large-scale numerical simulation 
data. We use the CRESTA co-design vehicles OpenFOAM [14] and HemeLB [13] to 
work out system requirements for a remote rendering solution in large-scale cluster 
environments. We compare different rendering strategies based on the Sort-Last 
algorithm according to their suitability for compositing in large-scale cluster 
environments on the road to exascale systems. Sort-Last was selected since rendering 
of large-scale distributed data generated by distributed post-processing systems is 
inherently supported by the algorithm with adequate communication overhead between 
the partitions. There are multiple possibilities for compositing of rendered images in the 
Sort-Last algorithm. The Binary Swap algorithm and its derivative, 2-3 Swap, were 
discovered to be promising candidates for Sort-Last compositing of interactive 
renderings in large-scale clusters. We propose various additions to existing remote 
rendering architectures to minimise the network bandwidth needed in the system 
during the compositing phase. 

• Image and video compression techniques implemented on CPU as well as on 
accelerators such as GPGPU devices can be employed to minimise 
communication overhead between cluster nodes. 

• Mechanisms such as bounding box projection and view frustum culling can be 
used to identify areas in rendered images that do not have to be  
(re-)transmitted to other cluster nodes or additional GPU devices during 
compositing. 

• Similarities in consecutive images, as well as between images for the left and 
right eye during stereo rendering, could be exploited to reduce the amount of 
data that have to be communicated to remote nodes. 

We identify two possibilities for the integration of distributed post-processing and 
remote hybrid rendering in future exascale systems: 

1. Employing accelerators such as GPGPU devices not only for rendering, but 
also for post-processing algorithms throughout the visualisation pipeline. 

2. Using cores in advanced many-core CPUs such as Intel’s MIC architecture for 
post-processing, rasterisation and image compositing. 

Both methods would allow for the elimination - or at least a drastic reduction - of data 
transfers between the host CPU and the accelerator, which is a major cause of latency 
in today’s large-scale post-processing systems. 

Concluding this deliverable, a software architecture for remote parallel rendering in 
large-scale cluster environments is defined consisting of a parallel rendering 
component and a parallel compositor component. Different modes of communication 
between these two components are sketched that have to be supported for interactive, 
low-latency post-processing and rendering. These modes of communication lead to the 
definition of an interface between these two components, alongside with the definition 
of an interface between the post-processing environment (see WP 5.2), and the remote 
hybrid rendering solution that is going to be developed in WP 5.3. 
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2 Introduction	
  
Remote hybrid rendering is used to make the post-processing resources used in large-
scale cluster systems available to remote users. The structure of this document is as 
follows: Section 3.1 will introduce the workflows in visualisation and rendering of data 
obtained from scientific simulations as well as state requirements for rendering in 
exascale systems obtained from the co-design vehicles OpenFOAM and HemeLB. In 
section 3.2, existing parallel rendering techniques will be introduced and compared 
according to their usefulness to exploit the compute power of large-scale visualisation 
clusters. 

Section 4 compares different rendering environments used by scientists or teams of 
engineers in the assessment of large-scale numerical simulation data. In section 5, 
bandwidth and latency requirements of compositing algorithms in large-scale clusters 
will be gathered and further analysed. 

In section 6, software components for a remote parallel rendering system that fulfil 
these requirements will be defined. Finally, section 7 concludes the deliverable with a 
description of interfaces between the components specified in section 6. 

2.1 Purpose	
  
The purposes of this deliverable are as follows: 

• Introduce existing methods for parallel remote rendering and establish a context 
in which they can be useful to support post-processing of numerical simulation 
results towards exascale systems. 

• Define software components that are to be used in a large-scale hybrid parallel 
rendering system. 

• Specify interfaces between these components as well as interfaces to post-
processing software that will be developed in the scope of WP 5.2. 

2.2 Glossary	
  of	
  Acronyms	
  
 Definition 
CPU 
DMA 
FBO 
GPU 
GPGPU 
MIC 
OpenGL 
RMA 
VBO 

Central Processing Unit 
Direct Memory Access 
Frame Buffer Object 
Graphics Processing Unit 
General purpose computing on graphics processing units 
Many Integrated Cores 
Open Graphics Language 
Remote Memory Access 
Vertex Buffer Object 

WP Work Package 
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3 Remote	
  Rendering	
  of	
  Scientific	
  Simulation	
  Data	
  
3.1 The	
  Visualisation	
  and	
  Rendering	
  Pipeline	
  
The workflow of visualising simulation results to gain scientific insight can be divided 
into several tasks, traditionally defined as shown in Figure 1. The transfer of data 
between data space and visualisation space, the post-processing of simulation results, 
is usually a highly interactive process and will be analysed in detail in CRESTA’s WP 
5.2 [12]. In contrast to that, the rendering of geometric data, as the final step in the 
visualisation pipeline and focus of WP 5.3, is completely non-interactive and vastly 
accelerated by programmable graphics processing units (GPUs). 

 

 
Figure 1: The visualisation pipeline (adapted from Haber and McNabb [1]) 

 

The rendering itself can be broken down into smaller parts, many of which can be 
influenced by small pieces of code, called shaders, which are supplied by the computer 
graphics developer and which are executed directly on the GPU as can be seen in 
Figure 2. Parallel rendering techniques which we will compare in section 3.2 
considering their usefulness for exascale rendering can be classified according to the 
location in the rendering pipeline where the distribution of work using parallel 
processes is performed. 

 

 
Figure 2: Simplified rendering pipeline 

 

There are multiple possibilities for the implementation and execution of a rendering 
pipeline in modern computer architectures that are the basis of current high 
performance compute clusters. 

1. Using the fixed-function pipeline implemented in the driver of the GPU. 
2. Using programmable shaders to augment or replace parts of the fixed-function 

pipeline of the GPU. 
3. Using custom software renderers that are either implemented on the CPU or on 

accelerators such as GPGPU devices. 

There are numerical solvers that include methods for post-processing and rendering of 
these post-processed data for interactive analysis. HemeLB, a Lattice Boltzmann 
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solver from UCL and one of the CRESTA co-design vehicles, uses software ray-casting 
for rendering of streamlines and isosurfaces that will be described in section 3.1.2. 

 

3.1.1 Hardware-­‐accelerated	
   indirect	
  Polygonal	
  Rendering	
  of	
  Post-­‐Processed	
  Simulation	
  
Datasets	
  from	
  OpenFOAM	
  Simulations	
  

Data obtained from post-processing of numerical simulation results typically consist of 
a large number of geometric primitives (cf. Figure 1). These primitives, generally huge 
amounts of triangle data, can be rendered by GPUs using either the fixed function 
pipeline or programmable shaders. Because of memory limitations of single 
workstations or cluster nodes as well as the complexity of the computations that need 
to be performed, efficient parallel post-processing of large-scale simulation data is 
essential. 

 
Figure 3: Post-processing of a turbomachinery simulation. Isosurface extraction for visualisation 

of cavitation (left), cutting plane showing colour-coded pressure distribution (right) 

The size of engineering simulation datasets such as the ones shown in Figure 3, are 
predicted to grow to several 100 million volume elements with hundreds of time steps 
before the end of the CRESTA project. To reduce latency of user interactions within the 
visualisation environment, post-processing and rendering have to be tightly integrated 
and able to exploit locality of data. Parallel rendering of distributed graphics primitives 
offers the possibility to maintain interactive rendering speeds when visualising these 
large-scale, partitioned simulation data. 

3.1.2 Raycasting	
  in	
  HemeLB	
  
HemeLB's ray-tracing implementation is designed to be as local as possible and avoid 
unnecessary communication of data. Images are rendered locally by casting a ray from 
the viewpoint through each pixel of the image and accumulating data about the fluid 
sites that are near the ray's path through the geometry. Each core does this for its own 
fluid sites, grouping cubes of fluid site blocks into clusters and calculating in advance 
the area of each block mapped onto the screen in order to make the casting more 
efficient. 

Each ray accumulates the distance from the screen to the first fluid site, the integrated 
length spent in fluid, the fluid density and stress nearest the screen. One 
implementation of the ray adds to this a colour-mapping of velocity and stress, which is 
integrated through the fluid. Another implementation adds "fog" to a velocity and stress 
integration, giving better depth-cuing. 

Once each partition has rendered its local contribution to the overall image, the cast 
rays must be combined. To combine the images in this fashion, the cores are arranged 
in a binary tree, where lower-ordered ranks will have two child-cores with higher rank. 
In each subsequent iteration after rendering, each core passes its rays to its parent in 
the tree that combines the sets of rays from its children with its own set of rays. The 
properties accumulated by the rays are carefully chosen to allow this. Once the rays 
reach the topmost node in the tree, all cast rays have been combined and the final set 
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can be transformed into an RGB image, ready for passing to an HTTP client or writing 
to disk. 

HemeLB maintains scaling performance by ensuring that each ordered pair of cores 
will only perform one asynchronous send-receive per Lattice-Boltzmann iteration, 
reducing the amount of time each core spends on communication and minimising the 
effects of communication latency. The accumulation of ray information between cores 
therefore happens across several Lattice Boltzmann steps. 

 

3.2 Parallel	
  Rendering	
  Techniques	
  for	
  Remote	
  Rendering	
  
Molnar et al. [15] classify parallel rendering techniques according to the location in the 
rendering pipeline where work is distributed to parallel rendering clients. Three classes 
of parallel rendering algorithms are identified. 

3.2.1 Sort-­‐First	
  
Sort-First algorithms sort graphics primitives during geometry processing. Renderer 
partitions are responsible for a specific rectangle in screen-space. Graphics primitives 
can be assigned to renderer partitions by evaluating the screen-projection of the 
graphics primitives’ bounding box. Sort-First parallel rendering is a suitable strategy 
when either the bandwidth requirements for re-distribution of geometric primitives is 
relatively small, or when rendering times are dominated by the limited fill-rate of the 
GPU. 

3.2.2 Sort-­‐Middle	
  
Sort-Middle algorithms redistribute graphics primitives between geometry processing 
and rasterisation. After geometry processing, primitives transformed to screen 
coordinates are distributed to the partition responsible for rasterisation of the particular 
primitive. Sort-Middle algorithms do no longer play an important role in parallel 
rendering, since the data reduction between rasterisation and fragment processing is 
rather large and these processes are highly integrated on modern GPUs. 

3.2.3 Sort-­‐Last	
  
Sort-Last rendering algorithms assign arbitrary geometry to each of the n partitions. 
Each rendering partition produces a full-size partial image, containing colour and depth 
rendering of the objects assigned to the specific partition. These n images are then 
sent to one or more compositing nodes where they have to be overlaid considering per-
fragment z-visibility. 

 

3.3 Sort-­‐Last	
  Compositing	
  Methods	
  
The most simple sort-last compositing solution is the serial approach which combines 
and merges all intermediate images on the destination rendering unit responsible for 
the final display (cf. the sample scenario in Figure 4 and Figure 5). Several other 
parallelisation schemes for software composition have been proposed. Most notably, 
these include Direct Send [2], Binary Tree [3], Binary Swap [4] and Parallel Pipeline [5], 
among which Binary Swap is the most commonly used algorithm [6]. 

 
Figure 4: Rendered images of individual partitions on different post-processing cluster nodes 
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Figure 5: Result of final image composition 

3.3.1 Serial	
  Compositing	
  
When using Serial Compositing, all nodes send their colour and depth images to a 
single compositing node. This leads to very high bandwidth requirements to the single 
compositor node and makes concurrent image transmission impossible. Since the total 
compositing time needed for this method increases linearly with the number of nodes in 
the system, interactive frame rates cannot be achieved when reaching a certain 
number of nodes. 

3.3.2 Direct	
  Send	
  
With Direct Send compositing, the final image-gathering task is divided into n screen-
space tiles to avoid exchanging full-size images between the n compositing nodes [6]. 
Each tile is associated to and composited by one cluster node, and the composited 
tiles are eventually assembled together to form the final image. 

With direct send, each of the n nodes has to read back n-1 tiles from GPU memory. 
Each node sends the tiles to their respective compositing node, where composition of 
sub-images to tiles is performed. Each tile is then sent to the final display node. 
Although direct send allows for concurrent transmission of image tiles to their 
corresponding compositor node, the algorithm requires all-to-all communication which 
will be suboptimal in large-scale cluster networks which are not fully-connected. 

3.3.3 Binary	
  Swap	
  
Binary Swap algorithms [[4] also distribute the composition of parts of images to all 
nodes in the cluster. A naïve approach for parallel merging of the partial images is to 
do binary compositing. By pairing up processors in order of compositing, each disjoint 
pair produces a new subimage. Thus after the first stage, we are left with the task of 
compositing only n/2 subimages. Then we use half the number of the original 
processors, and pair them up for the next level of compositing. Continuing similarly, 
after log2 n stages, the final image is obtained. One problem with the above method is 
that during the compositing process many processors become idle. At the top of the 
tree, only one processor is active [4]. 

To exploit the compute power of all nodes in the cluster, the key idea in Binary Swap is 
that, at each compositing stage, the two processors involved in a composite operation 
split the image plane into two pieces and each processor takes responsibility for one of 
the two pieces. 

In the early phases of the Binary Swap algorithm, each processor is responsible for a 
large portion of the image area as can be seen in Figure 6. In later phases of the 
algorithm, the processors are responsible for a smaller and smaller portion of the 
image area. At the top of the tree, all processors have complete information for a small 
rectangle of the image. As in Direct Send, the final image can be constructed by 
sending the subimage tiles to the display node or a remote workstation. The bandwidth 
requirements for Binary Swap compositing are similar to the Direct Send algorithm. 
Fortunately, the communication patterns are much more suitable for cluster networks 
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that are not fully connected, since larger image tiles are distributed in early stages of 
the compositing tree where directly neighbouring cluster nodes communicate. 

There are further developments of binary swap such as 2-3 Swap [8] that eliminate the 
need to use power-of-two number of nodes. 2-3 Swap along with enhancements such 
as improved scanline methods, RLE encoding and the use of bounding boxes [9], 
make for a promising approach towards even very large numbers of rendering nodes in 
future high performance cluster systems. 

 
Figure 6: Communication between partitions (left), Composition of sub-images on partitions (right) 

	
  
3.4 State	
   of	
   the	
   Art	
   in	
   Remote	
   Parallel	
   Rendering	
   and	
  

Compositing	
  Frameworks	
  
There are different types of software libraries that can be used to implement remote 
parallel rendering in cluster systems. We provide a short list of methods citing one 
typical implementation of each and discuss their advantages and disadvantages for 
remote parallel rendering regarding exascale resources. 

Chromium [17] intercepts OpenGL calls and forwards them to one or more Chromium 
servers. This can be used to split an OpenGL command stream into smaller parts that 
can then be processed by different nodes. After rasterisation, depth-buffer composition 
of the resulting images can be applied, leading to an implementation of Sort-Last, using 
object decomposition at the OpenGL command level. 

OpenSG [16] is a scenegraph API that provides functionality for parallel rendering, 
including network data distribution and scalable rendering modes.  

Equalizer [15] is a parallel rendering middleware, which enables the development of 
fully distributed and parallel graphics applications. 
Ice-T [18] (Image Composition Engine for Tiles) is a lightweight parallel compositing 
library that can be used for tiled displays as well as single displays, featuring different 
compositing algorithms, including sort-last based image compositing. 

Libraries such as Chromium have been developed to enable existing serial programs to 
exploit parallel rendering resources. In applications that are to be optimised for large-
scale parallel systems, developers typically are able to make much better optimisations 
themselves than what would be possible by an automatic parallelisation of library calls. 
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Distributed scenegraph APIs such as OpenSG enable the programmer to distribute 
rendering data among different cluster nodes. Typically, they require the scenegraph 
itself to be replicated among the cluster nodes, often leading to communication 
requirements among nodes when the scenegraph is changed in one partition of the 
parallel program, which is a prohibitive network overhead in large-scale programs. 

Middleware libraries or frameworks are typically trying to be independent of a given 
scenegraph API. In large-scale real-world projects, the combination of Equalizer with 
scenegraph libraries such as OpenSG or OpenSceneGraph, which might be already 
used in the post-processing or rendering system, can become very cumbersome to the 
programmer. Since the functionality of rendering middleware and scenegraph libraries 
often overlap and the layout of data structures in use are incompatible, integration of 
the different libraries often is not possible in an efficient manner. 

Integration of light-weight compositing libraries such as Ice-T into existing systems 
proves to be much easier since these libraries are often written to complement existing 
rendering libraries or scenegraphs. Often, a large number of different image encodings 
and layouts are already supported. Although the compositing libraries in existence 
today are not yet optimised for many-core CPUs or GPGPU devices, we believe that 
the methods used in these parallel compositing libraries could be an interesting starting 
point to enable visualisation software to make use of future exascale systems 
regarding distributed rendering of large-scale simulation data. 
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4 Rendering	
  Environments	
  
There are different rendering environments that make it possible for individuals or small 
teams of engineers to collaborate on exploring large-scale numerical simulation data. 
These environments have different requirements for the remote rendering system. In 
general, it should be possible to combine various rendering environments, even of 
different types, to allow sharing of a post-processing session by multiple, 
geographically separated users. 

4.1 User	
  Workstations	
  
Workstations are typically used by single users and require renderings of comparably 
low resolution. Since the viewpoint as well as the post-processing data generally is not 
updated all the time, the load on the rendering is not constantly high. This enables the 
post-processing, rendering and compositing components to execute time-consuming 
load-balancing in between rendering steps. Workstation users also might be satisfied 
with compressed images and progressive updates, providing low-latency by lowering 
image quality. Collaborative analysis of simulation datasets can be assisted by making 
it possible for multiple desktop workstations to participate in the post-processing. 

4.2 Immersive	
  Virtual	
  Reality	
  
An immersive digital environment is an artificial, interactive, computer-created scene 
within which users can immerse themselves. Because of cost-efficiency, these 
installations are often a central resource in the company, university or research 
institution, in many cases featuring a high bandwidth and low latency network 
connection to the datacenter. 

4.2.1 Multi-­‐Wall	
  Projections	
  and	
  Stereo	
  Rendering	
  
Virtual Reality environments such as large tiled display walls or CAVEs (cf. Figure 7) 
need to make high-resolution, very low latency, high bandwidth stereo image 
renderings available to the users. Since these installations also often feature tracking 
equipment for user interactions as well as viewpoint changing, the rendering needs to 
be updated much more often compared to desktop environments, often continuously. 
The targeted immersion of the users into the scene makes it prohibitive to introduce 
compression artifacts or progressive updates to the rendered images. 

 

 
Figure 7: Post-processing of numerical simulation data in a CAVE 
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5 Analysis	
   of	
   Requirements	
   for	
   Remote	
   Rendering	
   on	
  
Exascale	
  Systems	
  

 

5.1 Exascale	
  Systems	
  
5.1.1 Massively	
  Parallel	
  Systems	
  
Large-scale clusters in use today provide the possibility to exploit parallelism on 
different levels. 

• Data parallelism can be exploited on the cluster nodes’ CPUs as well as on 
accelerator cards such as GPGPU devices that are many-core processing units 
themselves. On GPGPU devices, data parallelism through the use of stream-
processing must be exploited to achieve adequate speedups when employing 
hundreds of relatively simple GPU cores. Data parallelism in clusters has to be 
exploited at another scale by simultaneously processing partitions of data on 
different nodes in a distributed memory environment. 

• Task parallelism makes it possible to execute different algorithms on the same 
or distinct data in parallel. In the case of visualisation, post-processing, 
rendering and compositing of a dataset or a partition thereof have to be 
executed sequentially and cannot be overlapped. Though, visualisation of data 
partitions might be, depending on the post-processing algorithms that are 
employed, computed in parallel to the visualisation of other partitions. 

5.1.2 Accelerators	
  
HPC clusters often feature accelerators such as GPGPU devices that can be used for 
post-processing and rendering. Since many post-processing algorithms such as 
surface extraction are relatively easy to implement in a data-parallel form, these 
devices provide an optimal target for data analysis. GPGPU post-processing is even 
more attractive in low-latency applications, since expensive data transfers from host to 
GPU memory are no longer necessary between post-processing and rendering. The 
availability of accelerators makes it possible to free host CPUs for load balancing tasks 
that require re-partitioning of data, or to develop hybrid algorithms that share 
computations between CPU and accelerators. 

5.1.3 Many-­‐Core	
  CPUs	
  
The introduction of many-core CPUs such as Intel’s MIC architecture (Many Integrated 
Cores) indicates the possibility that the distance between traditional CPUs and GPGPU 
cores might be shrinking. In future exascale systems, applications may exploit the 
potential to efficiently generate rasterised, ray-casted or ray-traced images directly on 
some cores of the utilised many-core CPUs without the need for additional 
accelerators. This would also allow for a reduction of the latency of interactive post-
processing algorithms as has been argued in section 5.1.2. The integration of the 
different memory spaces that exist now in accelerator-based systems would also lead 
to improvements in programmability as well as to optimisation potential in image 
compositing algorithms, since memory on remote nodes would hopefully be accessible 
by RMA. 

 

5.2 Performance	
   Considerations	
   for	
   Massively	
   Parallel	
  
Rendering	
  

5.2.1 Bandwidth	
  Requirements	
  	
  
The total number of pixels to be transmitted, discarding potentially expensive 
optimisations to both groups of algorithms for the moment, is the same for Direct Send 
and Binary Swap and 2-3 Swap. The most important advantage of Binary Swap and 2-
3 Swap in large-scale clusters is the exploitation of fast nearest neighbour 
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communication paths. When using Direct Send, link contention is likely to happen since 
multiple nodes are sending messages to the same node at the same time. 

Yu et al [15] demonstrate empirically that Binary Swap and 2-3 Swap show a much 
more pleasant behaviour than Direct Send using both moderate image sizes 
(1024x1024) as well as a relatively small number of parallel rendering nodes (1024). In 
their implementation, the total compositing time of Direct Send grows much faster 
compared to Binary Swap and 2-3 Swap when the number of nodes or the image size 
is increased. 

5.2.2 Latency	
  Considerations	
  
Direct send may require a total number of n * (n – 1) messages to be sent during 
compositing. In Binary Swap compositing, each node sends exactly log2 n messages, 
making the total number of messages n * log2 n. When implemented in systems with a 
high message passing overhead, this behaviour will certainly decrease the applicability 
of Binary Swap or generally of tree-based composition algorithms. In an asynchronous 
message passing environment, Direct Send latency costs are O(1). Since Binary Swap 
requires a total number of log2 n compositing passes, latency grows logarithmically with 
the number of nodes in the cluster participating in parallel rendering. 
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6 Definition	
   of	
   a	
   Remote	
   Rendering	
   System	
   Towards	
  
Exascale	
  

6.1 Software	
  Component:	
  Massively	
  Parallel	
  Renderer	
  
The parallel renderer has to be tightly integrated with the post-processing environment. 
To optimise the system for locality of data, immediate rendering has to be performed 
on the same cluster nodes that are used for parallel post-processing. Data transfer 
between post-processing and rendering can be further sped up when both can make 
use of the same accelerator, for example a dedicated programmable GPU per node in 
the post-processing cluster. The output generated by the post-processing algorithms 
should be optimised for immediate rendering on the GPU without having to perform 
additional conversions or copying of data as can be seen in the surface extraction 
algorithm example in Figure 8. 

 
Figure 8: Surface extraction using GPGPU computing with focus on rendering performance 

For post-processing algorithms that do not finish their computation in time for 
interactive feedback, multiple different scenarios have to be supported by the renderer: 

• The post-processing algorithm may generate partial results for immediate 
rendering before the whole computation is finished. These partial results may 
be updated by the post-processing algorithm in further calculations. 

• The post-processing algorithm may generate incomplete results that are not 
suitable for immediate rendering, such as geometry that was already processed 
but is still missing data for appropriate colour mappings. 

• The post-processing algorithm may generate an inaccurate result for 
intermediate rendering that will be corrected in further calculations. These 
inaccurate results may be generated e.g. by using a coarser sampled grid 
instead of the high resolution CFD grid to get an approximate initial result. 

For accurate blending of translucent graphics primitives in the subsequent parallel 
compositing step, the renderer has to support proper sorting and additional multi-pass 
rendering of these primitives. 

6.2 Software	
  Component:	
  Massively	
  Parallel	
  Compositor	
  
After independent parallel rendering of partitioned simulation data obtained from post-
processing, a parallel compositor has to blend the various sub-images to form a final 
image (or final images) for display at the remote site. The parallel compositor should 
allow for exchangeable algorithms such as Direct Send, Binary Swap and 2-3 Swap. 
To support low-bandwidth networks to remote sites, an optional compression of image 
streams will have to be supported. This encoding could also be used to speed up 
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communication of sub-images between the cluster nodes themselves. CPU- as well as 
GPU-based compression schemes should be evaluated regarding their suitability for 
large-scale rendering. For scenarios where consecutive frames bear high affinity, such 
as constant small amounts of head movement in virtual environments, similarities 
between frames should be exploited to optimise for network bandwidth. Similarities 
between frames in stereo-rendering environments may also prove to be a promising 
target for further optimisation. 

In addition to high throughput, low-latency application networks in compute clusters, 
the compositor has to support outgoing communication to remote hosts to be able to 
send images to workstations or virtual reality environments outside of the local cluster 
network. 
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7 Software	
  Architecture	
  Interfaces	
  
7.1 Post-­‐Processing	
  to	
  Rendering	
  
Since post-processing of numerical simulation data is a highly interactive process, new 
post-processing data is generated continuously. These data are converted to geometric 
primitives, such as texture-mapped triangles, through the visualisation pipeline. These 
large amounts of data have to be passed to the renderer with a minimum amount of 
added latency, as described in section 6.1. When the post-processing and rendering 
are executed on the same GPU, the interface between the two components can be 
optimised to the passing of pointers to vertex buffer objects (VBOs). Due to 
implementation constraints in today’s graphics hardware and drivers, this method only 
works when post-processing and rendering are implemented to share a graphics 
context, which in turn is only possible if the two are actually implemented as a single 
process. Since modern GPUs and GPU drivers are currently underway to develop 
virtual memory and shared address spaces between multiple processes or graphics 
contexts, this issue should be solved in the medium term. 

The interface between post-processing and rendering should provide a feedback 
mechanism to make the load on the rendering and compositing processes available to 
the post-processing. The post-processing environment will then be able to decide how 
and when to move data between different rendering partitions to perform load-
balancing. The interface to the rendering has to communicate the type of data that 
should be rendered, as well as the mode of update that is performed as described in 
section 6.1: full results, partial results, incomplete data or inaccurate data. 

 

7.2 Parallel	
  Rendering	
  to	
  Parallel	
  Compositing	
  
The parallel rendering component has to provide an interface for communication 
between the graphics device memory and the host memory. This can either be 
implemented as a traditional readback/upload, but should be able to be adapted to 
methods that make DMA possible to remote graphics cards such as NVIDIA’s GPUs 
directly over HPC network interfaces such as Infiniband. As the compositing should be 
able to be accelerated by GPGPU devices, the compositor has to be granted access to 
the rendered image, for compression of the images to reduce bus and network 
communications, as well as for the actual compositing of (sub-) images. In Binary Swap 
algorithms, where the composition is divided into multiple stages, explicit attention has 
to be spent on the performance overhead of the interface between rendering and 
compositing. 

To accelerate compositing, the rendering should be able to provide bounding 
rectangles of the area that has actually been rendered in this partition. This can be 
implemented e.g. as a projection of the object’s bounding boxes to the viewing plane. A 
bounding rectangle enables the compositing to optimise memory transfers from GPU 
device to host, and from cluster node to cluster node by transferring only those parts of 
the image that have actually been affected by rendering. 
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