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1 Executive	
  Summary	
  
The ‘Roadmap to Exascale’ contains an overview of how the CRESTA applications 
codes may be developed such that they can take advantage of future computers with 
computational capacity in the exaflop/second realm. The summary for the codes are as 
follows: 

ELMFIRE: needs to be developed such that it includes a true domain decomposition 
scheme. With the present algorithm it does not seem likely that the code can run 
efficiently on exascale systems, as it would require unrealistic amount of memory. Also 
the data handling needs to be made parallel in order to cope with exascale data.  
GROMACS: is going to be developed towards exascale according to three different 
strategies: (i) improve wall-clock-time/iteration (ii) soft-scaling improvements for large 
simulations and (iii) ‘ensemble’ approach for efficient simulations of systems with large 
fluctuations for which large amount of statistics and/or optimization is needed. These 
approaches include efficient implementation of GP-GPU algorithms, O(N) FFT and 
parallel I/O.  
OpenFOAM: At EPCC the development will focus on the most recent version of 
OpenFOAM from the OpenFOAM foundation [1].  

At the Institute of Fluid Mechanics and Hydraulic Machinery, the University of Stuttgart 
version OpenFOAM-extend-1.6 [2] will be used. The code has been extended by 
additional features, including the General Grid Interface (GGI). By these extensions 
OpenFOAM has become a powerful open source CFD software package specialized in 
turbo machinery. The interest here will be to simulate a whole hydraulic machine on 
exascale architectures with the OpenFOAM version mentioned above. 

NEK5000: will be developed towards exascale scalability by implementing new 
theoretical solutions for parallelism like: adaptive refinements, alternative discretisation 
and hybrid parallelisation. Extra care will be taken with respect to exascale boundary 
conditions, data handling and load balancing. 

IFS: will be developed by utilizing Fortran co-arrays to overlap calculations and 
communication for Legendre transforms and semi-Lagrangian halo calculations. Load 
balancing for Fourier transforms is another area that will be optimized. 
HemeLB: is going to need an improved visualization scheme for handling exascale 
data sets. Also the meshing procedure will be improved. 
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2 Introduction	
  
This document contains roadmaps over the actions needed to develop the CRESTA 
codes towards exascale performance. The roadmaps of the different codes are 
presented in chapter 3. The codes can be summarized as follows: 

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and 
interaction between high-speed particles in a torus-shaped geometry on a three 
dimensional grid. The particles are held together by an external magnetic field. The 
objective is to simulate significant portions of large-scale fusion reactors like JET or 
ITER. 

GROMACS:  is a molecular dynamics code that is extensively used for simulation of 
biomolecular systems. Useful investigation of this kind of systems is typically limited by 
computational capacity. The limitations concern both system sizes and in particular 
time duration of interesting processes. Also efficient implementation of ensembles of 
simulation are needed for gathering statistic validity. 

OpenFOAM®: is an open source application for computational fluid dynamics (CFD). 
The program is a “toolbox” which provides a selection of different solvers as well as 
routines for various kinds of analysis, pre- and post-processing. Within this project the 
focus of University Stuttgart will be on a specialized code for turbo machinery. The 
objective is to simulate a whole hydraulic machine on exascale architectures. 

NEK5000: is an open-source code for the simulation of incompressible flow in complex 
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000. 

IFS: is the production weather forecasting application used at the European Centre for 
Medium Range Weather Forecasts (ECMWF). The objective is to develop more 
reliable 10-day weather forecasts that can be run in an hour or less. 

HemeLB: is being developed and is intended to form part of a clinically deployed 
exascale virtual physiological human. HemeLB simulate blood flow in measured 
blood vessel geometries. The objective is to develop a clinically useful exascale 
tool. 

2.1 Glossary	
  of	
  Acronyms	
  
JET A Tokamak fusion reactor 
ITER A Tokamak fusion reactor 
CFD  Computational fluid dynamics 
ECMWF European Centre for Medium Range Weather Forecasts 
ns Nanosecond 
CPU Central processing unit 
PETSC  A computer code algorithm library 
GPU Graphics processing unit 
SIMD  Single instruction multiple data 
PME  Particle-Mesh Ewalds 
FFT Fast Fourier transform 
O(N)  Order - N 
LES  Large-Eddie simulation 
GGI General grid interface 
SIMPLE  Pressure-velocity coupling in CFD 
PICO Pressure-velocity coupling in CFD 
FSM  Fractional step method 
SEM  Spectral element method 
FLT  Fast Legendre transform 
API  Application programming interface 
DSL  Domain specific language 
SL  Semi-Lagrangian 
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3 Roadmaps	
  for	
  the	
  codes	
  
 

3.1 ELMFIRE	
  
ELMFIRE is a particle-in-cell code that simulates the movement and interaction 
between extended gyrokinetic particles moving at high speed in a torus-shaped 
geometry on a three dimensional grid. The particles are held together by a strong 
external magnetic field. 

ELMFIRE approximates the Coulomb interaction between particles by solving a global 
electrostatic field on a grid, using the particle charges as sources. ELMFIRE then 
advances particles in time by free streaming along the magnetic field line and particle 
drift perpendicular to the magnetic field. Typically, time steps correspond to 30-50ns 
real time.  

Today the time step based simulation in ELMFIRE can be roughly divided into seven 
parts: 

• Perform collisions between particles close to each other 
• Using a 4th order Runge-Kutta, calculate particle movements in continuous space 

during the time step based on the electric field 
• Collect grid cell charge data from the particles for the electrostatic field. 
• Combine and split the grid charge data so each processor has a smaller part of it 
• Construct a large modified gyro kinetic Poisson equation based on the data and 

solve it in parallel 
• Calculate additional movement caused by magnetic field drift of particles based on 

the acquired electric field 
• Write diagnostics output 

The most CPU heavy part of the code presently is calculating particle movements but 
as each processor is assigned a fixed number of particles this scales linearly with the 
number of processors and is therefore not an issue when scaling to larger systems. 
The most problematic part is the collection and distribution of grid cell charge data. In 
the current version each processor can have its assigned particles moving in any part 
of the torus, leading to all processor contributing charge data to all grid cells in the 
system. As a consequence each processor has the full electrostatic grid data and a 
huge sparse matrix (#grid cells x #grid cells) for collecting charge data for the grid cells. 
The matrix has been optimized by reducing the second dimension to a constant, which 
is the number of cells around a given cell to which charges due to gyrokinetic motion 
can be moved from the given cell. This reduces memory usage significantly but not 
enough for large-scale simulations. It also introduces an extra index conversion when 
gathering the data. 

Once the grid cell charge data has been combined and split among the processors, 
each processor can construct its own part of the Poission equation individually. The 
Poisson equation is then solved in parallel using PETSc. The solution (the electric 
potential) is then distributed to all processors to be used in the next time step. 

Focus of the initial work on ELMFIRE will be on basic scalability, mostly related to 
memory usage. The version provided for the project does not implement any spatial 
domain decomposition that leads to massive memory usage and data duplication. 
Particles are split between processors but can during the simulation be located in any 
grid cell in the system, leading to massive memory requirements for gathering the 
charge data and large data transfers when combining the data. This currently 
completely prevents simulations on large grids. 

The items mentioned below are what currently have been identified as problems 
preventing ELMFIRE from scaling to simulations larger than 100 000 processors. It is 
however expected that we find additional, and more important, problems once the initial 
domain decomposition has been done. 



 

© CRESTA Consortium Partners 2011  Page 4 of 19 

 

3.1.1 Implement	
  a	
  3D	
  domain	
  decomposition	
  
The version provided for the project does not implement any spatial decomposition. 
Particles are distributed evenly among processors but the electrostatic grid data is 
duplicated in all processors. This prevents scaling to larger grids than approximately 
120x150x8 regardless of the number of cores available. For large scale simulations of 
e.g. JET or ITER it would be beneficial to be able to simulate electrostatic grids up to 
3000x4000x16 i.e. almost 1500 times larger than today. An estimate for an ITER 
simulation is that 640 000 cores would be needed for 590 billion particles. With the 
current version this would require approximately 28TB memory per core. 

We plan to implement an electrostatic grid cell based domain decomposition of the 
code so that each processor can only own particles inside its own grid cells. This 
should restrict the grid cell data needed in each processor to its own grid cells and a 
few surrounding grid cells (in order to propagate the particles in time). It should also 
remove the need to communicate large amount of data for the charge data with the 
downside of having to send particle data between processors in each time step. We 
expect to have implemented the domain decomposition by M18. 

3.1.2 Improve	
  load	
  balancing	
  
In the current version load balancing is not a large problem but it is expected that the 
3D domain decomposition will introduce load-balancing issues, as the particles are not 
evenly distributed between all grid cells in the simulation. These need to be 
investigated and addressed after the initial domain decomposition has been performed. 
One approach would be to dynamically reallocate the electrostatic grid based on the 
workload, that is, the size of the grid and the number of particles. We expect to have 
measured and implemented load balancing by M24. 

3.1.3 Improve	
  memory	
  usage	
  for	
  binary	
  collisions	
  
ELMFIRE calculates collisions between randomly chosen particles close to each other 
in each time step. In order to assess how close particles are to each other, a separate 
collision grid is set up. Currently this uses 10 times the memory it really needs. By 
introducing data structures that avoids duplications this could be improved. We plan to 
implement this by M36 

3.1.4 Parallelize	
  file	
  writing	
  
File writing in ELMFIRE is presently done by all processes sending data to process 0, 
which then writes the data to disk. For small simulations this is typically not an issue (< 
5% of the each time steps goes to writing diagnostics) but it will likely block large scale 
simulations and input files for visualizations. The file writing needs to be parallelized for 
ELMFIRE to scale to ITER sized problems. We expect to have implemented parallel file 
writing by M36. 

3.2 GROMACS	
  	
  
The work in GROMACS is focused on achieving significant improvements for real 
applications. Seen from the user side, there are three overall important objectives to 
advance the state-of-the-art for applications: (i) to reduce the time-step per iteration in 
order to achieve longer simulations, (ii) to be able to handle much larger application 
systems to model e.g. mesoscopic phenomena, and (iii) to improve accuracy and 
results for small application systems through massive sampling. 

All three aspects are critically important, but they require slightly different approaches. 
The wallclock time for a single time-step iteration is already today in the range of a few 
milliseconds for some systems, and while we have strategies to improve this further we 
do not believe this is possible to push more than one order of magnitude beyond 
today’s standard.  In contrast, handling much larger systems is easier (although not 
trivial) from a parallelization algorithm point-of-view, but it will involve challenges 
related to handling of data when a single master node no longer can control all input 
and output, both when starting execution and for checkpointing or output. Finally, for 
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small systems the main approach will be ensemble techniques to handle thousands of 
simulations that each will use thousands of cores. 

3.2.1 Benchmarking	
  new	
  GROMACS	
  releases,	
  and	
  GPU	
  coding	
  (Q1-­‐3	
  2012)	
  
GROMACS version 4.6, which has been developed during the first part of the project, 
is currently in the beta stage, and will bring some important new advances in domain 
decomposition and scaling over previous versions. We have developed a new set of 
computational kernels that have departed from the classical implementation with 
neighbor lists, which will make it much easier to parallelize both with SIMD and 
multithreading, and achieve a higher fraction of the hardware peak floating-point 
performance. These kernels are also being implemented on GPUs, and Gromacs 4.6 
will use heterogeneous acceleration with some kernels running on the GPU while other 
execute simultaneously on the CPU, where the domain decomposition is also done. 

It will be an important step to benchmark all these new kernels on different hardware, in 
particular large clusters with GPU co-processors (such as Cray XK6), and in this frame 
we will also implement support for the next-generation Nvidia Kepler architecture 
scheduled for release in spring – these cards in particular will be used on several new 
Cray installations. 

3.2.2 Multi-­‐grid	
  solvers	
  for	
  efficient	
  PME	
  electrostatics	
  (Q2	
  2012-­‐2014)	
  
The vast majority of biomolecular simulations rely on particle-mesh Ewald (PME) lattice 
summation to handle long-range electrostatic interactions. Since this in turn relies in 3D 
FFTs, the associated all-to-all communication pattern is a major bottleneck for scaling.  

We are developing improved FFT algorithms and communication patterns, but to 
improve support for heterogeneous architectures such as CPU-GPU parallelism on 
each node, we need to develop algorithms that avoid communicating grids over all 
processors. This can currently be achieved either through multipole-based [20], or 
multigrid-based [21] methods, and we intend to investigate both. This part is targeting 
"medium" parallelization for normal-size systems (10k-100k cores), and the O(N) 
algorithms will provide virtually perfect weak scaling, even for systems including long-
range electrostatics (currently this is only true for simple cut-off interactions). 

3.2.3 Efficient	
  large-­‐scale	
  IO	
  (2013)	
  
With the completion of long-range electrostatics algorithms that exhibit O(N) scaling, it 
should be possible to reach multi-petascale for normal simulations of very large 
systems such as virus particles, complexes of several molecules, or material science 
studies. Typical simulations in this domain might involve a few hundred million 
particles. To support this, we need to rewrite the input/output layer of Gromacs so that 
a large set of IO tasks participate in reading the data from files to avoid running out of 
memory on the master node, not to mention avoid global communication during start-
up. This will ideally use a minimalistic PGAS-like library that is fully portable (or even 
included in the code), so that all IO code does not have to do explicit communication. 
We will also implement code for check-pointing and trajectory output that supports 
asynchronous output by sending the data to a subset of IO nodes that then transpose 
the date (to be decomposed over time-frames rather than space), and write it to 
trajectories while the simulation continues.  

3.2.4 Task-­‐based	
  parallelism	
  (2013-­‐2014)	
  
One of the most significant long-term changes will be a complete code re-write to 
support introduction of task-based parallelism to improve the efficiency inside many-
core nodes, to enable better simultaneous utilization of CPU-GPUs, and to enable 
overlap of computation and communication between nodes. The latter will be 
particularly critical to increase scaling appreciably, since we are gradually moving into 
the realm where more time is spent on communication than computation. At this point 
we will also investigate the usage of lower-level communication libraries to improve 
scaling further. Presently, our preliminary tests indicate that automated tools such as 
OpenMP do not provide sufficiently fine-grained control over the execution, and we 
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might therefore have to use threads directly unless partners in the project come up with 
better alternatives. 

3.2.5 Ensemble	
  computing	
  &	
  parallel	
  adaptive	
  molecular	
  dynamics	
  (2012-­‐2014)	
  
Our main disruptive long-term path to true exascale performance will be to combine 
direct domain-decomposition scaling in individual simulations with ensemble 
approaches to support simultaneous execution of thousands of coupled simulations. 
This will be accomplished by using Markov State Models and kinetic clustering for 
parallel adaptive simulation [Pande, V.S., Beauchamp, K, Bowman G.R., Everything 
you wanted to know about Markov State Models but were afraid to ask., Methods 52, 
99-105 (2010)]. In contrast to the distributed computing approach used e.g. in 
Folding@Home, exascale resources will enable extremely tight coupling between 
simulations each using 1k-100k cores. This will make it possible to employ kinetic 
clustering for slow dynamics (e.g. multi-millisecond structural transitions in proteins) 
where even single state transitions will require petascale-level simulations, and 
complete mapping of the processes is simply not possible with todays resources. This 
will initially be implemented as a separate layer of code, where our idea is to formulate 
dynamic data flow networks that execute a set of simulations, perform analysis, and 
based on the result of the analysis a second generation of simulations is executed. The 
advantage of this approach is that the resulting code will be very easy to adapt to other 
simulation programs (in principle anything that relies on sampling). In particular, this 
setup will enable is to achieve exascale performance for typical application systems. A 
target setup is a normal membrane protein system with around 250,000 atoms. With 
the new electrostatics solvers and task parallelism, we expect to achieve efficient 
scaling over 1k-10k cores (including heterogeneous CPU-GPU parallelism), and an 
ensemble could then typically include 1,000 such simulations, which means efficient 
use of well over a million cores. Larger systems will enable us to push this to even 
larger supercomputers, and approach a billion cores on future exascale resources. 
Figure 1 illustrates the multi-level parallelization. 
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Figure 1: Multi-level parallelism in ensemble-centric parallel adaptive molecular 
dynamics. “Worker” simulations in a single cluster are members of a tightly coupled 
ensemble, but it is also possible to couple multiple separate clusters. 

3.3 OpenFOAM	
  	
  
OpenFOAM is an open source application for computational fluid dynamics (CFD). The 
program is a “toolbox” which provides a selection of different solvers as well as routines 
for various kinds of analysis, pre- and post-processing. OpenFOAM is licenced under 
the GPL. As such, modifications have been made to the code by different parties at 
different times and several versions are in common use. In this project, we consider the 
official release from the OpenFOAM foundation (a not-for profit organisation, wholly 
owned by OpenCFD Ltd.), and the release from the OpenFOAM Extend project.  

It is hoped that any changes to the code contributed by the CRESTA project could be 
made available for inclusion in both distributions, but if there are good reasons to make 
optimisations or improvements to one particular version, we will do so. For example, 
there is code specific to the Extend project for dealing with moving geometries. If it 
turns out that this code introduces a performance bottleneck, then this would be a valid 
candidate for optimisation during the project. 

Since the code can be used in many different ways, it is challenging to identify ways to 
enable the application for exascale systems in general. It is likely that there are some 
problems that are much more amenable to large-scale systems, but it is not obvious a 
priori that there is much to be gained in making simulations of “simple” systems (such 
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as Lid-driven Cavity	
   Flow) scale to many more processors than at present. In 
conjunction with contacts at OpenCFD Ltd., we have identified a use-case that is 
considered a realistic candidate for simulation at exascale. This specific example, 
which consists of modelling the flow of air around a motorbike, is representative of a 
wider class of problems that could benefit from simulation on exascale systems. 

There is no published roadmap for the development of OpenFOAM, so this activity will 
have to be fairly reactive to any developments in the releases of the code. Having said 
that, it is expected that the following approach will be taken to prepare OpenFOAM for 
exascale systems: 

3.3.1 Benchmarking	
  of	
  the	
  latest	
  version	
  of	
  the	
  code	
  (2-­‐3Q2012)	
  
Version 2.1.0 of OpenFOAM has been released since the CRESTA project started. 
There have been some fairly major changes to the code since version 1, including the 
incorporation of parallel mesh generation. Benchmarking and profiling of OpenFOAM 
have been undertaken on previous versions, but before we know where to concentrate 
our efforts in optimization for future systems, we need to understand the impacts of 
recent changes on the code’s performance. 

In addition to providing an update of previous results on the performance of 
OpenFOAM based on current systems and the newest version of the code, we will 
adjust parameters of our profiling runs in order to attempt to measure how the 
performance would vary as the ratios of computation, communication and memory 
access vary. In addition, we will specifically investigate the I/O performance of the code 
and seek to identify how these I/O patterns are likely to change when scaling up to 
exascale. 

3.3.2 Code	
  analysis	
  of	
  the	
  latest	
  version	
  of	
  the	
  code	
  (2-­‐4Q2012)	
  
In tandem to measuring the performance of the code, an analysis of the code’s 
structure will be undertaken in order to, for example: 

• Determine internal interfaces in the code where alternative solvers, libraries, 
etc. could be swapped in if it was determined that these could provide better 
performance; 

• Determine the parallelisation patterns currently used in the code and 
evaluate these with respect to exascale issues such as fault-tolerance. A 
simple example of this might be that a synchronous domain-decomposition 
might not be intolerant to a process failing, whereas a tracked task-farm 
approach might be able to recover from a process failing. (Note that this is 
example is illustrative. At present, there is no evidence that either of these 
patterns is directly relevant to OpenFOAM.) 

3.3.3 Performance	
  analysis	
  of	
  kernels,	
  libraries	
  (3-­‐4Q2012)	
  
In the course of the activities above, we will have been able to quantitatively measure 
the characteristics of the sub-problems solved by libraries and routines used for linear 
algebra and meshing. We will then engage with the developers of these libraries and 
seek comparisons with the other applications investigated in WP6 to determine 
possible optimisations. 

3.3.4 Iterative	
  performance	
  improvement	
  (2013)	
  
Concentrating on those parts of the code which have been determined to be potential 
future bottlenecks, we will use standard optimisation techniques to seek to improve the 
scaling of the code (including, for example, overlapping communication and 
computation, possibly through the use of more asynchronous communications, 
investigating the effects of compiler optimization, changing memory access patterns, 
introducing further (hybrid) levels of parallelisation). 

3.3.5 Investigation	
  of	
  alternative	
  parallelisation	
  approaches	
  (2014)	
  
This is a riskier approach to improving parallel performance scaling, but potentially has 
large rewards, especially if it emerges that future architectures look like they will be 
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qualitatively different from those of today. With a large code like OpenFOAM, it is very 
difficult to make non-incremental changes to the code, but having gained a good 
understanding of the code’s structure and performance over the first two years of the 
project, it is likely that proof-of-concept code could be written to demonstrate alternative 
parallelisation patterns that could eventually be adopted by the code’s developers.  
These will probably involve exposing more potential parallelism in the problem so that 
the code can make use of the millions of cores expected to feature in the machines of 
the future. Such patterns could include hybrid message-passing / shared memory 
approaches, adding task parallelism, or re-computing certain data to reduce 
communications. 

3.3.6 Hydraulic	
  machinery	
  
The application of OpenFOAM at the Institute of Fluid Mechanics and Hydraulic 
Machinery, University of Stuttgart, is the simulation of the flow in an entire hydraulic 
turbine using a Large Eddy Simulation (LES). This means that a great part of the 
turbulence in the flow will be resolved in the computation up to very fine turbulent 
scales. Since the Reynolds number of this flow is very high this simulation needs very 
fine computational grids, very fine time steps and long simulation times. Consequently 
a very high computational effort is required. According to a publication of Chapman [3] 
and Fröhlich [4] the number of vertices in the computational domain can be estimated 
to approximately 1000 million for all parts of a hydraulic machine. 

In order to do LES for a whole hydraulic machine (including rotor/stator interaction) the 
General Grid Interface (GGI) implemented in OpenFOAM is needed. For this reason 
the version OpenFOAM-extend-1.6 [2]is required. In our knowledge no work has been 
done on exascale systems with the OpenFOAM-extend-1.6 version. GGI was a 
bottleneck in the OpenFOAM-extend version but due to a new implementation 
performs well when running on 512 cores. Further performance and scale up tests will 
be carried out to find out if GGI is a possible bottleneck on exascale systems. In case 
GGI could be bottleneck on exascale systems, an upgrade must be carried out. 

Furthermore, the standard simulation technique in OpenFOAM for incompressible flows 
is an implicit time discretization with a SIMPLE or PISO type pressure-velocity 
coupling. These algorithms could be computationally time expensive because of the 
need to repeatedly solve global systems of linear equations in an iterative loop. The 
solution of these global linear equation systems could be a bottleneck for a LES on 
very fine grids. Performance and scale up tests will be carried out in order to identify if 
the algorithms mentioned before are able to get good results, as well as a good 
performance with OpenFOAM-extend. If it is not the case, the algorithms will be 
changed towards an explicit formulation. A version of the Fractional Step Method would 
be proposed to solve the equations. It is well known that the Fractional Step Method 
(FSM) is used for Direct Numerical Simulation (DNS) and LES to enhance the stability 
of the solution. It is expected, that this method will reach a higher performance for very 
large computational grids. 

To realize the tests mentioned above two test cases have been prepared at IHS. To 
check if the physics is correct quite quickly, we have prepared the ERCOFTAG square 
cylinder with about 15 million grid vertices. The ERCOFTAG square cylinder is a 
unique test case that is experimentally measured [5]. 

Furthermore, the final scope is to compute a whole hydraulic machine and therefore we 
have as final test case a whole hydraulic machine shown below:  
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Fig.1: Geometry of a Francis turbine 

3.4 NEK5000	
  	
  
Nek5000 (nek5000.mcs.anl.gov) is an open-source code for the simulation of 
incompressible flow in complex geometries. The discretization is based on the spectral-
element method (SEM) that combines the higher-order accuracy from spectral methods 
with the geometric flexibility of finite element methods. 

Nek5000 is written in mixed Fortran77/C and designed to employ fully large-scale 
parallelism. The code has a long history of HPC development.  Recently the large-
scale simulations were successful performed on the Cray XE6 system at PDC, KTH 
with 32,768 cores (“Coherent structures and dominant frequencies in a turbulent three-
dimensional diffuser” by J. Malm, P. Schlatter and D. S. Henningson, J. Fluid Mech. 
2012) and on the IBM BG/P Eugene with 262144 cores (“Extreme Scaling Workshop 
2010 Report”). An overview of the capabilities and recent developments within the 
Nek5000 community is given in the presentation by Paul Fischer, Main developer 
(http://www.mcs.anl.gov/~fischer/nek5000/fischer_nek5000_dec2010.pdf) 

Based on the description of Nek5000 in the WP6 needs analysis deliverable D 6.2 in 
the CRESTA project, we main focus on the development of the following software 
environment and tools. 

3.4.1 Adaptive	
  refinement	
  
The original Nek5000 code uses uniform order of the spatial interpolations throughout 
the domain. The principal way for grid refinement is by global p-refinement, i.e. by 
increasing the approximation order globally. Adaptive h-refinement, i.e. the splitting of 
cells into smaller ones, is not possible due to algorithmic considerations (negative 
effect on scalability). However, local refinement, either adaptive or by user intervention, 
is a desirable feature for nek5000 which will be crucial for the future scalability of the 
code, in particular for the simulation of large-scale problems involving turbulence.  

In the CRESTA project we will work on framework of adaptive refinement in p-types 
(various order accurate). The basic idea is that the refinements are only used in the 
regions with significant errors. Such error estimators can be formulated based on the 
solution of the adjoint equations (dual problem) that can be thought as a measure of 
the sensitivity of certain observables to the local mesh quality. Such estimators have 
been developed at KTH. Though consideration of multiple local observables such as 
drag, shedding frequency etc. it is proposed to decide when to switch from lower-order 
to higher-order (or vice versa). 

3.4.2 Alternative	
  discretisation	
  
So far, nek5000 is designed to have a spectral-element discretization in all directions, 
either 2D or 3D. For certain cases, in particular flows in which spatial homogeneity can 
be assumed in at least one direction, the SEM discretization could be replaced by a 
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more optimal Fourier-Galerkin discretization. A substantial gain in performance can be 
expected for such flow cases. The algorithmic changes implied by this new 
discretization, and in particular the impact on scalability will be studied within CRESTA. 

3.4.3 Hybrid	
  parallelization	
  
In the present state, Nek5000 does not employ any hybrid approach to parallelization. 
All communication is handled by MPI, which has proven to be very efficient, mainly due 
to the element structure of the mesh. However, in the light of alternative discretization 
that might include an additional level into the mesh topology, a hybrid approach should 
be reconsidered. This will be done in collaboration with WP6 and WP3. 

3.4.4 Boundary	
  conditions	
  for	
  exascale	
  computing	
  
The definition of boundary conditions requires special attention, especially in cases 
where large parts of the domain are in the turbulent state. In particular for exascale 
computations, which are aimed at realistic geometries in large domains, a faithful 
prescription of boundary conditions is crucial. The challenge is two-fold: First, 
reflections in the form of pressure waves need to be avoided at boundaries, and 
secondly, proper convective properties need to be maintained as to reduce the 
upstream influence of the condition, even in the presence of highly unsteady flow 
towards the boundary. Similar issues need to be dealt with at inflow boundaries when 
transient turbulent velocity profiles are required: Simply adding random fluctuations to 
the DNS profiles lacks the temporal and spatial correlation of real turbulence. The 
fluctuations must be pre-computed and stored in a database or computed on the fly 
from an auxiliary computation. In the framework of exascale simulations, the handling 
of such unsteady conditions needs to be assessed and refined. 

3.4.5 Pre-­‐	
  and	
  post-­‐processing	
  
In the CRESTA project it is decided to focus on p- instead of h-type refinements. This 
means that we do not need to consider the mesh generations. However, only 
quadrilateral (2D) and hexahedral (3D) elements are used in the types of mesh used in 
the Nek5000. For the real-life and industrial applications, it is necessary to employ 
scalable pre-processing tools for complex geometries. Together with WP 5 Task 5.1, 
an interface to optimized solutions of meshes with domain decomposition and load 
balancing should be created.  

3.4.6 Load	
  balancing	
  
Nek5000 can obtain full scaling with uniform order on the petascale computations. 
When employ the strategy of adaptive refinement introduced in Section 3.4.1, the load 
balancing should be carefully considered due to the factor that the computations are 
different due to various order even on identify element.   

3.4.7 Nek5000	
  roadmap	
  to	
  exascale	
  
In summary, the development of the code is an essential new ingredient that will take 
the coupling idea from a theoretical concept to a practically useful tool for fluid flow 
investigations in exascale computations. Together with the other teams that develop 
algorithmic, modelling and performance analysis, all additions to the code will directly 
feedback into the code repository and are thus readily available to all users. The 
timetable is as follows. 

3.4.7.1 Document	
  existing	
  code	
  architecture	
  (Oct.	
  2011	
  –	
  Mar.	
  2012)	
  
Documentation of all input parameters and setup files (.rea, .usr and SIZE). To create 
wiki pages with benchmarks of setup files for all users. Using DDT or other debug and 
performance tools developed WP3 Task 3.4 to learn and improve the code 
architecture. Assess refactoring possibilities. 

3.4.7.2 Implement	
   error	
   estimator	
   and	
   initial	
   refinement	
   code	
   (Apr.	
   2012	
   –	
   Sep.	
  
2012)	
  

The goal is to develop new and improved computational tools for the study of flows in 
both fundamental and real-world environments. This includes implementation, 
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assessment and adaptation of error estimators in nek5000 developed at KTH. Create 
an interface between the error estimator and Nek5000. 

3.4.7.3 Complete	
  refinement	
  development	
  (Oct.	
  2012	
  –	
  Mar.	
  2013)	
  
To gain a fundamental understanding of most aspects of implementation of nek5000 
with special attention to the large-scale simulation of incompressible flow. 

3.4.7.4 Implement	
  load	
  balancing	
  using	
  existing	
  Nek5000	
  tool	
  suite	
  (Apr.	
  2013	
  –	
  Sep.	
  
2013)	
  

To investigate and analyse the load balancing affected the refinement. Using the 
existing tools (Zoltan, Parmetis, Scotch etc.) to obtain full scaling and load balancing. 
To speed up Nek5000 with autotuning and performance analysis tools developed by 
WP3 Task 3.3. 

3.4.7.5 Undertake	
  test	
  and	
  development	
  on	
  large	
  scale	
  applications	
  (Oct.	
  2013	
  –	
  Sep.	
  
2014)	
  

By using the developed software environments to conduct simulations of large-scale 
real-life and industrial application. These applications may include the simulation 
around a full airplane wing include the transition and separated region, and complex 
internal flows. Such simulations are only possible with adaptive mesh refinement, 
proper boundary treatment and adapted post processing tools, all aspects to be 
developed during CRESTA.  

3.5 IFS	
  	
  
The Integrated Forecasting System (IFS) is the production numerical weather forecast 
application at ECMWF. IFS comprise several component suites, namely, a 10-day 
deterministic forecast, a four dimension variational analysis (4D-Var), an ensemble 
prediction system (EPS) and an ensemble data assimilation system (ENDA). 

The use of ensemble methods are well matched to today’s HPC systems, as each 
ensemble application (model or data assimilation) is independent and can be sized in 
resolution and by the number of ensemble members to fill any supercomputer. 
However, these ensemble applications are only part of the IFS production suite and the 
high resolution deterministic model (referred to as ‘IFS model’ from now on) and 4D-
Var analysis applications are equally important in providing forecasts to ECMWF 
member states of up to 10 to 15 days ahead. 

For the CRESTA project it has been decided to focus on the IFS model to understand 
its present limitations and to explore approaches to get it to scale well on future 
exascale systems. While the focus is on the IFS model, it is expected that 
developments to the model should also improve the performance of the other IFS 
suites (EPS, 4D-Var and ENDA) mentioned above. 

The resolution of the operational IFS model today is T1279L91 (1279 spectral waves 
and 91 levels in the atmosphere). For the IFS model, it is paramount that it completes a 
10-day forecast in less than one hour so that forecast products can be delivered on 
time to ECMWF member states. The IFS model is expected to be increased in 
resolution over time as shown in Table 1.  

 

IFS model 
resolution 

Envisaged 
Operational 

Implementation 

Grid point 
spacing (km) 

Time-step 
(seconds) 

T1279L91 2011 16 600 

T2047L137 2014-2015 10 450 

T3999LXXX 2020-2021 5 240 

T7999LXXX 2025-2026 2.5 120 

Table 1   IFS model: current and planned model resolutions 
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As can be seen in this table, the time-step reduces as the model resolution increases. 
In general halving the grid spacing increases the computational cost by 16, a doubling 
of cost for each of the 3 coordinate directions plus the time-step. However, in reality the 
cost can be greater than this, when some non-linear items are included such as the 
Legendre transforms and Fourier transforms. 

It is clear from this that the IFS model from a computational viewpoint can utilize future 
supercomputers at Exascale and beyond. What is less clear is whether the IFS model 
can continue to run efficiently on such systems and continue to meet the operational 
target of one hour when running on 100,000 or more cores which it would have to do. 

In a nutshell, IFS is a spectral, semi-implicit, semi-Lagrangian code, where data exists 
in 3 spaces, namely, grid-point, Fourier and spectral space. In a single time-step data 
is transposed between these spaces so that the respective grid-point, Fourier and 
spectral computations are independent over two of the three co-ordinate directions in 
each space. Fourier transforms are performed between grid-point and Fourier spaces, 
and Legendre transforms are performed between Fourier and spectral spaces. A full 
description of the above IFS parallelization scheme is contained in [6]. 

The performance of the IFS model has been well documented over the past 20 years, 
with many developments to improve performance, with more recent examples 
described in [7], [8], [9], [10], [11] and [12]. 

In recent years focus has turned to the cost of the Legendre transform, where the 
computational cost is O(N**3) for the global model, where N denotes the cut-off wave 
number in the triangular truncation of the spherical harmonics expansion. This has 
been addressed by a Fast Legendre Transform (FLT) development, where the 
computational cost is reduced to CL*N**2*LOG(N) where CL is a constant and CL<<N. 
The FLT algorithm is described in [13], [14], and [15]. While the cost of the Legendre 
transforms has been addressed, the associated TRMTOM and TRMTOL transpositions 
between Fourier and spectral space are relatively expensive at T3999 (>10 per cent of 
wall time). Today, these transpositions are implemented using efficient MPI_allgatherv 
collective calls in separate communicator groups, which can be considered the state of 
the art for MPI communications. 

Within the CRESTA project we plan to address this performance issue by using 
Fortran90 coarrays to overlap these communications with the computation of the 
Legendre transforms, this being done per wave number within an OpenMP parallel 
region. If this approach is successful, it could pave the way for other areas in the IFS 
where similar communication can be overlapped with computation.  

The semi-implicit semi-Lagrangian (SL) scheme in IFS allows the use of a relatively 
long time-step as compared with a Eulerian solution. This scheme involves the use of a 
halo of data from neighbouring MPI tasks which is needed to compute the departure-
point and mid-point of the wind trajectory for each grid-point (‘arrival’ point) in a tasks 
partition (see [9] slides 19-29). While the communications in the SL scheme are 
relatively local the downside is that the location of the departure point is not known until 
run-time and therefore the IFS must assume a worst case geographic distance for the 
halo extent computed from a maximum assumed wind speed of 400 m/s and the time-
step. Today, each task must perform MPI communications for this halo of data before 
the iterative scheme can execute to determine the departure-point and mid-point of the 
wind trajectory. This approach is clearly non-scaling as the same halo of data must be 
communicated, even if a task only has one grid-point (a rather extreme example). 

To address this non-scaling issue, the SL scheme will be optimized to use Fortran90 
coarrays to only get grid-columns from neighbouring tasks as and when they are 
required in the iterative scheme to compute the departure-point and mid-point of the 
trajectory. 

In IFS the cost for computing Fourier transforms is CF*NJ*LOG(NJ), for each varying 
length latitude J=1.. N (N as above), where CF is a constant and NJ is the number of 
grid points on latitude J. For optimal performance of the fourier transforms, full latitudes 
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are statically load-balanced to tasks, where each task is responsible to computing 
FFTs for a subset of latitudes and a subset of atmospheric levels. The heuristic 
currently used will be reviewed as part of the CRESTA project and to explore an 
improved cost function for this load-balancing problem. The improved scheme should 
be applicable to all model resolutions. 

Based on the above background description of IFS, we propose the following schedule 
of developments within the CRESTA project. It should be noted that some of these 
developments will overlap in time. 

3.5.1 Coarray	
  kernel	
  (4Q2011-­‐1Q2012)	
  
Develop kernel to investigate overlapping computation and communication using 
Fortran 2008 coarrays in an OpenMP parallel region. 

3.5.2 IFS	
  CY37R3	
  port	
  (1Q2012)	
  
Port IFS model (CY37R3) to HECToR and analyse performance for model resolutions 
up to T2047. 

3.5.3 Exascale	
  “Legendre	
  transform”	
  optimization	
  (2Q-­‐3Q2012)	
  
The IFS transform library will be optimized to overlap the computation of the Legendre 
transforms with the associated communications. 

These code developments will use the same strategy as prototyped in the Coarray 
Kernel, where the Legendre transform computation and associated coarray 
communications will execute in the same OpenMP parallel region. 

This development will be tested using IFS model resolutions up to T2047 (a 2014-2015 
sized model). 

3.5.4 IFS	
  CY38R1	
  port	
  (3Q2012)	
  
Port IFS model (CY38R1) to HECToR. This code cycle is expected to become 
available in 2Q2012 and include support for the T3999 model resolution, FLT and 
substantially reduced memory requirements for computing the associated Legendre 
coefficients. 

Run T3999 IFS model (an exascale case). 

Assess “Legendre transform” optimization at T3999. 

3.5.5 Exascale	
  “Semi-­‐Lagrangian”	
  optimization	
  (4Q2012-­‐2Q2013)	
  
Developments to the IFS semi-Lagrangian scheme to use Fortran 2008 coarrays to 
improve scalability by removing the need to perform full halo wide communications. 

3.5.6 Optimization	
  of	
  Fourier	
  latitude	
  load-­‐balancing	
  heuristic	
  (2013)	
  
Optimization of the heuristic used to statically load-balance the distribution of variable 
length latitudes in grid-space. An optimal distribution of latitudes is required to load-
balance the cost of performing Fourier transforms as IFS transforms data from grid to 
Fourier space. 

3.5.7 Development	
  of	
  a	
  future	
  solver	
  for	
  IFS	
  (2014)	
  
Research into a new multigrid solver for extreme scaling of IFS and a replacement of 
the spectral method. Such a solver could be initially tested using a shallow water model 
code and not IFS. Please note, this development is not part of ECMWF's current 
research plans and should be considered more speculative. 

3.6 HemeLB	
  
Based on the discussion in HemeLB’s contribution to the WP6 needs analysis 
deliverable [CRESTA deliverable D62], the following are tools and libraries that 
need to be developed within CRESTA for HemeLB to deliver reliable exascale 
performance. As discussed in that deliverable, it is not sufficient that these libraries 
be delivered as research code capable only of use on specific platforms, each of 
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these must be usable, manageable, deployable well-engineered, well-tested code.

 

Figure 1 HemeLB strong scaling performance. The 2010 data was before extensive redevelopment 
completed in 2011. The changes since (2012) have been focused on software engineering and 
improving code readability etc. We observe a small increase in performance despite more 
extensive use of object-oriented design.  

3.6.1 Visualisation	
  and	
  steering	
  
Support for standard flow field visualisation for exascale simulations is a 
prerequisite for HemeLB to work at the exascale. As a first step, standard tools for 
flow visualisation, such as COVISE [17] will be linked to HemeLB in an ad-hoc 
fashion. However, to move forward, we will need to work with CRESTA 
collaborators to define a configuration system (API or DSL) so that visualisation 
tools can work with HemeLB’s data in-situ, to support co-visualisation. In order to 
handle remote visualisation for steering at the exascale, data-volumes will need to 
be reduced by in-situ extraction of medically relevant properties, such as vessel 
wall stress, so that these smaller datasets can be shared. As HemeLB will form part 
of an ecosystem of computational physiology models within the Virtual 
Physiological Human, these systems will need to be made sufficiently configurable 
so that HemeLB results can be visualised alongside those of collaborating codes as 
part of a multiscale simulation. 

3.6.2 Pre-­‐processing	
  
HemeLB uses the Parmetis [16] library to achieve domain decomposition for sparse 
geometries. Effort will be required within CRESTA to ensure this library scales 
appropriately. CRESTA enhanced or developed domain decomposition tools must 
support configurable interfaces for application specific domain decomposition. Later 
efforts will support continuous dynamic domain decomposition, in response to both 
simulation and system variability, including support for fault-tolerance. 

3.6.3 Environments	
  and	
  operating	
  systems	
  
The vision of HemeLB as part of a clinically deployed exascale virtual physiological 
human will require usable environments for exascale deployment and job 
management. Job management infrastructure must support remote on-demand 
access from clinical settings, and appropriate algorithms for resource sharing must 
be developed for exascale hardware for this context. Operating system support for 
applications must be robust and easy-to-use, supporting multiple interacting 
applications using heterogeneous languages and paradigms for multiscale 
simulation. 
 
Environmental support for auto-tuning of application configuration will be 
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necessary, and this will require effort to support interaction with HemeLB’s compile-
time auto configuration facilities through CMake. 

3.6.4 Introspection	
  
HemeLB, as with many other applications, needs to be aware of its own progress 
as time passes. This application introspection, if it is not to be a blocker to exascale 
performance, will require attention from HemeLB developers and CRESTA tool 
effort. This will require not only performance measurement, but also support for 
report generation, visualisation of the correctness of the lattice-Boltzmann 
simulation. Within the multiscale VPH context, HemeLB introspection will need to 
interact with that of other applications. A clear API allowing application developers 
to discover on-going changes in the host environment, responding to faults and 
slow-downs, will be required for performance at Exascale. 
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4 Conclusion	
  
In conclusion, the development of the CRESTA codes towards exascale is challenging. 
In principle, the task is not difficult, but for the scientifically most interesting cases the 
task seems almost impossible. The simple approach is to run the codes in much the 
same way as they are run today on terascale and repeat the setup a few 1000 times in 
an ensemble approach and call the result exascale. This approach has some benefits 
for cases were statistical averages and design optimization are important. Another 
approach is to simulate increasingly larger systems as the computing capacity grows. 
This is so called weak scaling. This is motivated and important for e.g. IFS in which 
case resolution must be improved in order to make more accurate predictions. For 
most cases, however, increasing system size adds only marginal scientific value. From 
a scientific point of view the most interesting is strong scaling. This means that small 
systems should be simulated over longer times. This would be important for e.g. 
GROMACS. Important biomolecular mechanism may take 10s of seconds in reality, 
which using the algorithms of today could take 10-100 years of computing.  
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