

Copyright © CRESTA Consortium Partners 2011

D6.2	 –	 Needs	 analysis	 	

WP6:	 Co-‐design	 via	 applications	

Due date: M6

Submission date: 31/03/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization CSC

Version: 1.0

Status Final

Author(s):
J.A. Åström (CSC), Adam Carter (EPCC), Konstantinos
Ioakimidis (USTUTT), Rupert W. Nash (UCL), James
Hetherington (UCL), Artur Signell (ABO), Jan Westerholm (ABO)

Reviewer(s) Christian Wagner (DLR), Harvey Richardson (Cray)

Dissemination level

<PU/PP/RE/CO> PU – Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

	

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 17/01/2012 First version of the deliverable J.A. Åström (CSC)

 Gromacs added

0.2 23/02/2012 OpenFOAM added Joerg Hertzer (USTUTT)

 IFS added

 ELMFIRE added

 NEK5000 added

 HemeLB added

1.0 1/3/2012 Final corrections made to document
based on reviewer feedback

J.A. Åström (CSC)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	

2	 INTRODUCTION	 ...	 2	

3	 NEEDS	 ANALYSIS	 FOR	 THE	 CODES	 ..	 3	

3.1	 ELMFIRE	 ...	 3	
3.2	 GROMACS	 ..	 3	

3.2.1	 Performance	 &	 Scaling	 of	 the	 core	 MD	 algorithm	 ..	 4	
3.2.2	 Extreme	 system	 parallelism	 and	 IO	 needs	 ..	 5	

3.3	 OPENFOAM	 ..	 5	
3.3.1	 Scalability	 of	 main	 computation	 ...	 6	
3.3.2	 Pre-‐	 and	 Postprocessing	 ...	 7	
3.3.3	 Preprocessing	 ...	 7	
3.3.4	 Postprocessing	 ..	 7	
3.3.5	 Fault	 tolerance	 ..	 8	

3.4	 NEK5000	 ..	 8	
3.5	 IFS	 ..	 9	
3.6	 HEMELB	 ..	 10	
3.6.1	 Engineering	 requirements	 for	 Software	 Components	 ...	 10	
3.6.2	 Visualisation	 ...	 10	
3.6.3	 Introspection	 ...	 12	
3.6.4	 Lattice	 Boltzmann	 ...	 12	
3.6.5	 Geometry	 and	 Preprocessing	 ..	 12	
3.6.6	 Multiscale	 ...	 13	

4	 REFERENCES	 ..	 15	

	 	

© CRESTA Consortium Partners 2011 Page 1 of 15

1 Executive	 Summary	
This ‘Needs analysis’ contains an overview of what the CRESTA applications codes
need in order to be developed towards the exaflop/second realm. The summaries of
the requirements for the co-design codes are as follows:

ELMFIRE: would benefit from real-time visualisation, automated hardware failure
recovery, an exascale linear solver and file I/O, exascale profiling and debugging.
These aspects are being dealt with together with other work packages within the
project.

GROMACS: The main challenge for Gromacs is to improve scaling for lattice
summation electrostatic interactions through more efficient FFT libraries, or by using
completely different algorithms that do not involve all-to-all communication. For the
remaining part of the code, the requirements are more focused on improving
parallelism on all levels, including tasks over CPUs/cores/GPUs, and improving IO data
handling for extremely large systems. For small systems, the exascale needs will have
to be addressed with ensemble techniques that do not require synchronization between
all nodes for each time step.

OpenFOAM: OpenFOAM® is considered to scale well to thousands of cores. Some
important use cases need the OpenFOAM®-extend versions including the GGI
(General Grid Interface). The possible bottleneck GGI seems to work well after
maintenances had been done few months ago from the OpenFOAM®-extend
community. OpenFOAM®-extend, however, still has to be prepared for the exascale
architectures.

NEK5000: needs an integration of the pre- and post-processing codes, a p-type mesh
refinement, hybrid parallelism, parallel file I/O, and an investigation of the exascale
performance of BLAS, among other things. These issues are developed with the other
WPs.

IFS: needs to take advantage of Fortran co-arrays. In order for proper exascale
implementation the code needs profiling and debugging tools that can handle this type
of data-structures. Furthermore, Fourier transforms and multi-grid will be developed in
cooperation with other WPs.

HEMELB: would benefit from e.g. exascale visualization, debugging and profiling tools,
failure tolerant MPI and dynamic domain decomposition. These issues will be
investigated in cooperation with other WPs.

© CRESTA Consortium Partners 2011 Page 2 of 15

2 Introduction	
This document contains a ‘needs analysis’ over the actions needed to develop the
CRESTA codes towards exascale performance. The needs of the different codes are
presented in chapter 3. The codes and their purpose are as follows:

OpenFOAM®: is an open source application for computational fluid dynamics (CFD).
The program is a “toolbox” which provides a selection of different solvers as well as
routines for various kinds of analysis, pre- and post-processing. Within this project the
focus of the University of Stuttgart will be on a specialised code for turbo machinery.
The objective is to simulate a whole hydraulic machine on exascale architectures.

ELMFIRE: is a gyro-kinetic particle-in-cell code that simulates movement and
interaction between particles moving at high speed in a torus-shaped geometry on a
three-dimensional grid held together by an external magnetic field. The objective is to
simulate significant portions of large-scale fusion reactors like JET or ITER.

GROMACS: is a molecular dynamics code that is extensively used for simulation of
biomolecular systems. Useful investigation of these kinds of systems is typically limited
by computational capacity. The limitations concern both system sizes and in particular
time duration of interesting processes. Also efficient implementation of ensembles of
simulation are needed for gathering statistic validity.

NEK5000: is an open-source code for the simulation of incompressible flow in complex
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000.

IFS: is the production weather forecasting application used at the European Centre for
Medium Range Weather Forecasts (ECMWF). The objective is to develop more
reliable 10-day weather forecasts that can be run in an hour or less.

HemeLB: is being developed and is intended to form part of a clinically deployed
exascale virtual physiological human. HemeLB simulate blood flow in measured
blood vessel geometries. The objective is to develop a clinically useful exascale
tool.

2.1 Glossary	 of	 Acronyms	
JET A Tokamak fusion reactor
ITER A Tokamak fusion reactor
CFD Computational fluid dynamics
ECMWF European Centre for Medium Range Weather Forecasts
CPU Central processing unit
PETSC A computer code algorithm library
GPU Graphics processing unit
BLAS Basic linear algebra library
FFT Fast Fourier transform
O(N) Order - N
LES Large-Eddie simulation
GGI General grid interface
O(N) Order - N
API Application programming interface
HDF Hierarchical data format
LB Lattice-Boltzmann

© CRESTA Consortium Partners 2011 Page 3 of 15

3 Needs	 analysis	 for	 the	 codes	

3.1 ELMFIRE	
ELMFIRE lacks real time visualization support, which would bring the usability of the
program to a new level. A full run of the program must be completed before the results
can be analysed and visualized. Real time visualization would be beneficial not only to
be able to partly analyse the results before the run has finished but also to detect
problems with the program or the input data before wasting a week of CPU time. This
will be done in collaboration with WP5.

Check pointing is done in ELMFIRE at given intervals (every Nth time step). Check
pointing is performed by dumping all particle data to files, which can be read back later
to initialize the program. Around 72 bytes per particle are stored, meaning a checkpoint
of an ITER simulation would require around 40TB. It would be beneficial to be able to
remove the custom code for this from the program and have a more efficient approach
for fault tolerance or fault recovery. What we would like to see is an automated
approach for recovering from hardware faults by not stopping the program completely
but instead revert to the latest checkpoint, bring in new processors if needed, and
continue running from the checkpoint.

ELMFIRE constructs a sparse, linear, modified gyro kinetic Poisson equation that is
solved in parallel using PETSc. It is at the moment unclear if PETSc scales to exascale
problems or if this needs to be replaced by another approach. Research on this topic
will be done in collaboration with WP4.

File output in ELMFIRE is mostly done by all processors sending their data to
processor 0, which then writes the data to disk. Some initial prototyping has been done
for moving to a HDF5 based output format but falls out of the scope of what we are
able to do during the project. This could be done in cooperation with work package 5.

Running an ITER simulation on ELMFIRE would involve hundreds of thousands of
cores. Profiling of such a large application would likely be difficult using tools of today.
What would be needed is separate numbers for CPU usage, MPI/network traffic, load
balancing information and file I/O for all processes and good ways of visualizing the
results to be able to detect where possible bottlenecks are. We hope that we can work
together with WP3 to ensure this is made possible.

Debugging is a topic of interest, mainly in the scope of being able to find out why the
run with 100K processes crashed at some point. Ideally we would like to see a way that
debugging could always be enabled for a program but not really kick in before there is
a problem. The overhead of debugging should be minimal and there shouldn’t be a
need to re-compile and re-run the program using 100K cores to get debug info. If an
optimized program takes days to crash using 100K cores it will take even longer if
running in debug mode. It is not really feasible to re-run the program to find out why it
crashed.

3.2 Gromacs	 	
Gromacs is a major open source code that performs classical molecular dynamics
simulations based in interactions between particles moving in space, typically for
biomolecular systems. It has been developed for over 15 years, initially with a large
focus on the highest possible single-core performance, but over the last few years we
have made a complete overhaul of the parallelization approach and the code currently
exhibits some of the best relative scaling in the field.

The main challenge for classical molecular dynamics in general – and Gromacs in
particular – is that it relies on integration of Newton’s equations of motion, and high
performance therefore requires very fast iterations over integration time-steps. This has
largely driven 20 years of development in the field, and current algorithms are very

© CRESTA Consortium Partners 2011 Page 4 of 15

focused on providing simple interaction forms to reduce the floating-point instruction
bottleneck. Historically, runtime for these types of codes was completely dominated by
the evaluation of interactions between particles. In principle, this lends itself very well to
parallelization, but 20 years of optimization focused on algorithms to avoid floating-
point operations has resulted in complex data structures and inhomogeneities in
interaction density over space that makes efficient parallelization challenging. In this
regard, Gromacs is a particular challenge since the single-core performance is
significantly higher than many other codes, and the code is therefore spending a
relatively larger part of time on communication [16].

The central challenge for pushing Gromacs to exascale performance is to develop
algorithms and problem formulations that can make efficient use of this amount of
floating-point instructions. While there is important work to be done on classical
parallelization improvement, it will not be possible to achieve this solely by increased
parallelization that reduces the wallclock time per iteration, since this would bring the
time-step in the nanosecond range for small systems, which is completely out of range
of current architectures.

3.2.1 Performance	 &	 scaling	 of	 the	 core	 MD	 algorithm	
Gromacs is parallelized on several different levels, which is critical to reach high
application performance rather than merely good relative scaling. On the lowest level,
we have long employed Single-Instruction Multiple-Data parallelism on modern
hardware, but largely with hand-written assembly language. One important need is to
formulate these algorithms in a more portable fashion that makes it possible to rapidly
recompile and adapt the computational kernels to new generations of hardware with
different capabilities. It is also important to include better support for streaming co-
processors such as GPUs and/or heterogeneous parallelization.

On a higher level, Gromacs uses message-passing parallelization to distribute work
over separate nodes. While this works well, it is currently the main bottleneck for
scaling. For systems that only contain simple interactions, Gromacs scales well down
to roughly 250 atoms per core (i.e., weak scaling is essentially perfect). However, most
biomolecular simulations involve electrostatic interactions, and these have to be treated
with lattice-summation based algorithms involving fast Fourier transforms. While there
are parallel FFT implementations, the dimensions of the grid are relatively small, and
this means the latency of the FFT implementation becomes a bottleneck. Lower-
latency FFTs would go a long way towards improving this problem, but it might also be
possible to develop completely new algorithms that do not depend on FFTs to solve
long-range electrostatic interactions, for instance multi-grid solvers or even fast multiple
algorithms. Work on FFT libraries in particular will be performed in WP4, and also as a
CRESTA co-design team.

After the long-range electrostatics, the next current limitation is the latency and
communication patterns for the domain decomposition. This is likely not possible to
solve in any other way than hard manual work in the core of the code, and this has to
be pursued by the Gromacs team in the present project. However, this communication
in turn relies on the MPI communication library. We have already seen that other codes
(such as NAMD) have achieved improved performance by directly targeting Infiniband
OpenFabrics verbs (http://www.openfabrics.org) or other communication libraries
closer to hardware, and such implementations could also be highly useful for Gromacs.
In general, CRESTA WP2 should be able to help find lower-latency communication
strategies for Gromacs.

Finally, present hardware with ever-increasing core-counts opens the possibility to
introduce an intermediate parallelization layer by directly utilizing the shared memory
inside each compute node. This can be surprisingly hard with non-uniform memory
architectures (NUMA). It might be possible to address better with a task-based
parallelization to avoid synchronization, and here Gromacs would benefit significantly
from better libraries to automatically distribute tasks over resources based on memory

© CRESTA Consortium Partners 2011 Page 5 of 15

latency e.g. between different cores, dies, and what co-processor is attached to what
bus and what CPU die.

In addition, the development is highly dependent on availability of good profilers that
simultaneously work on multi-thread and multi-MPI-job level to find data imbalances
and points where we are waiting for communication.

3.2.2 Extreme	 system	 parallelism	 and	 IO	 needs	
The obvious way to utilize exascale resources is to increase the simulated system size.
Typical targets for the US Blue Waters system include biomolecular systems with over
300 million particles. For these systems, Gromacs has a current major bottleneck in
how it handles IO for simulation data. Currently, the system input has to be read into
the master node and then distributed, which takes a very long time and it can even be
impossible for large systems running on hardware without any swap space available. In
the same way, the current algorithms for checkpointing and writing trajectory data rely
on sending the data through the master node. Here, we have a clear need for a good,
portable, and small C/C++ library that can handle distributed data in a rudimentary
fashion, in particular for IO. A problem with solutions like PGAS languages is that they
are less portable, and we do not want to include a completely different parallelization
approach just to handle IO for the very largest simulations.

3.2.3 Scaling	 for	 small	 biomolecular	 systems	
One significant failure with most current parallelization work for biomolecular system is
that it is frequently focused on using as many cores as possible by increasing the
problem size. While this provides great scaling plots, it is of very limited use to practical
life science applications where the vast majority of molecular systems studied are well
below a million atoms, and frequently down to 30,000 atoms. To utilize exascale
resources for these applications, we need a completely different approach based on
running huge ensembles of closely coupled simulations [17]. Some challenges here
revolve around the algorithms used for sampling, but there is also a great need for
better tools for checkpointing automatically and reissuing failed tasks, and not least:
data handling. In particular, Gromacs would benefit from better libraries to place
processes on the hardware in large clusters as well as how to place tasks/threads
within nodes to minimize the communication latency and bandwidth. We also see a
need for better abilities to start & stop sub-tasks in an ensemble of simulations, e.g.
when hardware problems are detected, without separating a gigantic ensemble into
thousands of separate cluster jobs that would not be able to communicate. This will be
addressed in WP6.

3.3 OpenFOAM	 	
OpenFOAM® is an open source code, and multiple versions are in common use. For
the purposes of this project, we have chosen to consider two widely used versions,
namely

• The OpenFOAM foundation release from OpenCFD Ltd (a company which
owns the OpenFOAM trademark)[1]

• The release from the OpenFOAM Extend Project[2].

Whilst there are several potential challenges in running OpenFOAM at the exascale,
the most challenging aspect of preparing OpenFOAM for exascale systems remains
the parallel scaling of the computationally intensive sections of the code.

OpenFOAM, in general, is considered to scale well on current systems. For simple use-
cases it has been shown to scale to thousands of processors[3]. It is likely, however,
that exascale machines will have hundreds of thousands of processors. Further work is
required to understand what the limiting factors will be as the code is scaled up, but it is
expected that the performance will be limited by inter-process communication, and in
particular, large reduction operations[4]. On a single-core basis, the performance is
probably limited by memory latency[4].

© CRESTA Consortium Partners 2011 Page 6 of 15

Mesh creation and partitioning are also very important components of the code, and it
must be ensured that these will scale up as well as the main solvers. Recent versions
of OpenFOAM use the PT-Scotch library [5] to do mesh creation and partitioning in
parallel. We will work with partners in WP4 and WP5 to investigate the limitations of
these pre-processing steps, both in terms of their algorithms and their interaction with
the solver part of the code.

To determine the needs of the OpenFOAM application, the project will consider a set of
specific use cases. The application’s needs described here are based on these use-
cases. As one of the use-cases, we have considered the flow of air around a moving
motorbike. This is one of the tutorial examples distributed with OpenFOAM and has
been identified as being both representative of large problems, and having
characteristics that could lead to non-trivial issues when scaling to very large numbers
of processors. In order to help stimulate the development of OpenFOAM and to
motivate improvements to the code, two specific cases have been prepared by the
Institute of Fluid Mechanics and Hydraulic Machinery (IHS) of the University of
Stuttgart. The first one is a quite simple geometry of a square cylinder that is also an
ERCOFTAC test case in order to validate LES. This case should be suitable for first
computations in order to validate as simple as possible the new implementations. The
second one is a real hydraulic machine that is more complex geometry but is the most
important case for the Institute, because of the complexity of moving parts in particular.

Important use-cases at the Institute of Fluid Mechanics and Hydraulic Machinery (IHS)
of the University of Stuttgart are simulations of a whole hydraulic machine that have
particular needs, in particular the need to simulate moving parts. This is one of the
main advantages to the OpenFOAM Extend version. In general, the same tools for pre-
and post processing could be used in all OpenFOAM versions. In order to simulate a
whole hydraulic machine, however, a moving mesh interface like GGI is needed. That
means there is a need to check that GGI works in order to simulate rotor/stator
interaction with for example the OpenFOAM-2.1 version. Assuming it can be used, GGI
should then be checked for scalability because the experience shows that GGI could
probably be bottleneck on Large Scale Computing.

The relevant test case is the use of OpenFOAM to simulate the flow in an entire
hydraulic machine using Large Eddy Simulation (LES). This means that a great part of
the turbulence in the flow will be resolved in the computation up to very fine turbulent
scales. This simulation therefore requires very fine computational grids and
consequently a very high computational effort.

The flow in a hydraulic machine has relative high Reynolds numbers (Highly Turbulent
Flow) in a test rig size of about 3*106 – 5*106. The number of vertices and the small
time step size will lead to a requirement of 80 millions core hours to get a full
converged simulation. This would lead to a usage of 50000 cores for about 65 days.

The resulting data size of a full solution is about 250GB for one time step. To get
transient data of global parameters, like torque, efficiency or flow fields in selected
points or lines, the storage needs about 100GB. The number of time steps that have to
be saved, depends on the visualisation of the instantaneous flow phenomena. E.g.
storing every degree runner rotation for one complete rotation would require
360*250GB=90000GB=90TB.

3.3.1 Scalability	 of	 main	 computation	
A traditional approach to optimising OpenFOAM will be adopted, namely to iteratively
profile the code, identify bottlenecks and seek to improve the scalability of those parts
of the code which do not scale well. To do this effectively, we will need to understand
the expected trends for the balance between compute, communication, memory, and
I/O in future hardware so that we are optimising for the platforms of tomorrow, as well
as those on which the code is currently being run. We would work with WP2 to
understand the implications of these trends on the future performance of OpenFOAM,
and as we scale up the problems being looked at we are very likely to benefit from the

© CRESTA Consortium Partners 2011 Page 7 of 15

expertise of partners in WP2 and WP3 in the use of performance analysis and
debugging tools for exascale problems.

3.3.2 Pre-‐	 and	 postprocessing	
Pre- and Post-processing are two important tasks in Computational Fluid Dynamics. In
case of a LES these tasks are time expensive. The Institute of Fluid Dynamics and
Hydraulic Machinery (University of Stuttgart, Germany) works on the OpenFOAM®
version OpenFOAM-1.6-extend. The tools for Pre- and Post processing should be the
same to the tools of other OpenFOAM® versions.

3.3.3 Preprocessing	
For Preprocessing a block structured mesh is created and written out as OpenFOAM®
input. The next step is to refine that mesh, in order to reach the appropriate number of
computational domain vertices as mentioned above, see the schematical view in fig 1.
This could be done with the OpenFOAM® utility refineMesh which refines the mesh in
every direction.

Fig. 1: Schematical view of the grid refinement process

After the refinement, domain decomposition is needed. This can be realized with the
redistributeMeshPar that is coupled to the PT-Scotch library [5] to mesh partitioning in
parallel. This enables cooperation with partners in WP4 and WP5 to investigate
limitations in these pre-processing steps. Ideally, the mesh refinement and the domain
decomposition should be done into a single step.

Furthermore, another topic to realise a LES, is the need of a very good initialisation. In
order to do this, the traditional way is to get a first solution of the problem with a
standard turbulence model of the Average Navier-Stokes Simulation (RANS) family, in
example k-epsilon model or the SST-k-omega model. The Reynolds Average Navier-
Stokes Simulation is realizable on coarse computational domain grids and the results
are then mapped on the grid prepared for the LES. There exists a tool in OpenFOAM®
called mapFields for doing that, but to our knowledge the tool runs not in parallel. This
enables cooperation to parallelization group of the WP3 in order to find out an efficient
parallel programming model to parallelize mapFields.

3.3.4 Postprocessing	
The visualization tools Paraview and Covise (from HLRS) are currently being used
successfully for postprocessing. The amount of data, typically 90TB, is difficult to
transfer from the HPC system to do postprocessing locally to the user. Thus, parallel
postprocessing on up to 50000 cores is needed. Furthermore, efficient data reduction
and compression of the results is needed in order to reduce I/O time of the visualization
tools. We will need to work with the colleagues from the visualization group in WP5 on
that topic in order to see if it is possible and if not we should find another process to
visualise the results.

© CRESTA Consortium Partners 2011 Page 8 of 15

The general intended workflow is shown in fig. 2. It consists of

• Grid generation
• Decomposition and refinement
• Simulation
• Data reduction and compression and
• Visualisation.

It is essential, that all tools, which work on the refined mesh, are running highly
efficiently on many thousands of cores, in order to obtain an overall good performance
for the simulation.

Fig. 2: Schematical view of the overall work process

3.3.5 Fault	 tolerance	
OpenFOAM, like nearly every existing massively parallel code has no explicit
functionality (other than checkpointing) to tolerate faults in the underlying system. We
plan to further investigate the parallelism patterns used in the code and determine the
scope for making modifications that could work with system-level fault tolerance
mechanisms. We will need to work with WP5 in order to understand the form that such
mechanisms are likely to take.

3.4 NEK5000	 	
Nek5000 is an open-source code for the simulation of incompressible flow in complex
geometries. Nek5000 already scales up to 200,000 processors and our work in
CRESTA will focus on extending scalability on exascale supercomputers. Towards
exascale scalability new theoretical solutions for parallelism will be implemented.
These solutions include adaptive refinements, alternative discretisation and hybrid
parallelisation. Extra care will be taken to data handling, load balancing and pre and
post processing. In order to adapt the Nek5000 code for the exascale computation, we

© CRESTA Consortium Partners 2011 Page 9 of 15

will work in close collaboration with other CRESTA work packages throughout the
entire development process.

The developments of Nek5000 in the CRESTA project will focus on two main points.
First, we will develop and implement software interfaces between Nek5000 and the
codes responsible for mesh generation and visualization in the pre- and post-
processing stages. This will allow us to capture the features and complexity of
geometries as well as predict the errors in the mean flow field. This work will be done
collaboration with WP5. Second, we will work on developing and implementing a p-type
adaptive refinement in Nek5000. In collaboration with Nek5000 main developer Paul
Fischer at Argonne National Laboratory, we will analyse the stability conditions for the
various order levels, and we will implement this new approach in the Nek5000.

In addition, other Nek5000 optimizations for exascale computing platforms as
discussed in the project plan will be considered (alternate discretization, hybrid etc.).

The scalability of Nek5000 mainly depends on the global communication due to the
pressure constraint. Nek5000 employs the Crystal Router algorithm to implement the
global communication. This is an efficient (but rather old) technique for collective
communication with massively parallel processors connected in a hyper-cube topology.
The algorithm collects many small messages in an effort to reduce the latency costs
dominate. We will use the performance analysis tools and data collection developed
by WP3 to analyse and improve the algorithm.

The execution time of Nek5000 is dominated by the calculations of small dense,
rectangular matrix-matrix and matrix-vector products. On the majority of the computer
architectures, Nek5000 uses the third-party library Basic Linear Algebra Subroutine
(BLAS) to carry out these calculations. The BLAS was original designed for the
calculations of large dense matrices. To speed up the Nek5000 code we will work
together with WP4 to analyse the BLAS limitations and improve the other existing
libraries for the exascale computations. We will also work with WP3 to employ the
auto-tuning techniques and exascale compilers.

In the present state, Nek5000 does not employ any hybrid approach to parallelization.
All communication is handled by MPI, which has been proven to be very efficient,
mainly due to the element structure of the mesh. However, a hybrid approach with
MPI/OpenMP might be considered in the future. The analysis of advantages and
disadvantages of a hybrid approach in Nek5000 will be carried out with WP3.

Also, with the help of the Cray Experts, we will analyse the file I/O requirements of the
code (which might be quite considerable depending on the flow case), and optimize
using parallel techniques. So far, the code allows writing from a user-defined number of
nodes, however creating separate files. Using either HDF of MPI-I/O we might further
optimize/simplify the file handling, in particular for restart/checkpointing using a
multistep time-integration method.

3.5 IFS	 	
The main developments to the IFS model to get it to run efficiently on future exascale
systems will be done by ECMWF. These developments require the use of Fortran90
coarrays to optimize the communications associated with the Legendre transforms and
to improve the scalability of semi-Langrangian communications that are described in
some detail in D6.1.1.

The availability of Fortran90 coarrays is paramount for these developments and further
it is essential for both developments that coarray transfers between images be
supported within the context of OpenMP parallel regions.

These capabilities have already been tested using a “Coarray Kernel” on HECTOR
using the crayftn compiler, however, coarray transfers only work today on HECTOR if
they are constrained within an OpenMP critical section. ECMWF will work with partners
WP3 to find a resolution to this issue.

© CRESTA Consortium Partners 2011 Page 10 of 15

It is equally important that performance analysis tools and debuggers work reliably for
large production applications such as IFS, so ECMWF is keen to test such tools in
WP3 during the development cycle and to provide feedback to the tool developers.
These tools need to support Fortran90 coarrays and particularly when they are used
within the context of OpenMP parallel regions.

ECMWF will work with WP4 to optimize the Fourier latitude load-balancing heuristic
used in IFS, to improve the scalability of the Fourier transforms.

Finally, ECMWF will also work with WP4 to investigate a new multi-grid solver for
extreme scaling. This work would involve comparing the existing solver used in IFS
with a potential replacement, and tested in a much simpler code such as a shallow
water model. It should be noted that a new replacement solver is not part of ECMWF’s
current research plans and should be considered more speculative.

3.6 HemeLB	
The development work on HemeLB will be mostly undertaken by UCL. The work
described in sections 3.6.2 and 3.6.5 below will be informed by co-design with other
partners in WP5.

3.6.1 Engineering	 requirements	 for	 software	 components
Scientific codes addressing problems that challenge exascale resources
necessarily address very complex problems. Challenges from problem size and
data volume are strongly correlated with software engineering challenges of code
complexity and information management. HemeLB has a strong object oriented
design, necessitated by the complexity of the problems we try to address.

Software components developed within CRESTA for use by co-design vehicles
must, of course, scale in terms of computational resources. However, for this work
to have utility for co-design applications, they must also scale in terms of problem
complexity.

Therefore, for utility at the exascale, tools must be well architected, modular, well
tested, have clearly defined dependencies and be deployable in widely
heterogeneous environments. Tools that provide exascale performance that are not
engineered to be usable, sustainable, and manageable within the context of
exascale scientific applications cannot be considered to be successful. The
“definition of done” for such work, must, therefore, reflect these requirements.

Efforts toward exascale computing cannot neglect maintainability or development
and integration time in favour of optimum use of resources. Tools must integrate
easily with scientific applications and deploy smoothly to a wide variety of target
machines. Interactivity and usability for scientific insight must be valued as much as
efficient computation. At the exascale, computation can be assumed to be an
abundant resource, relative to the time and effort spent developing, managing, and
coordinating the development of scientific codes.

3.6.2 Visualisation
High-quality, medically relevant visualisation is a core aim of the HemeLB project.
By providing clear spatial representations of hemodynamics in complex vascular
topologies, HemeLB will enhance and support clinical decision-making.

Some of the visualisation needs for HemeLB, being based around the visualisation
of flow fields, match those of other computational fluid dynamics visualisation
problems. Achieving efficient visualisation of exascale flow-fields is a complex
problem in its own right, and HemeLB will benefit, along with other CRESTA co-
design vehicles, in advances in this area. Scalable support for visualisation

© CRESTA Consortium Partners 2011 Page 11 of 15

techniques such as dynamic line integral convolution and volume rendering will be
of value.

Given the volumes of data and the complexity of the simulations involved, it is likely
that co-visualisation will be necessary - that is, production of visualisation data on
the same computational infrastructure as the simulation. This could either be fully
in-situ visualisation (with the same process carrying out both visualisation and
simulation) or within a separate process on the same infrastructure. Support for
asymmetric parallelism may be important here, with visualisation taking place on
one or more cores of a node, with the other cores carrying out simulation, and
communication between simulation and visualisation taking place through shared
memory.

As a lattice Boltzmann simulation, however, there are ways in which visualisation
support for HemeLB differs from that required for traditional CFD.

The memory layout of the lattice-boltzmann field (from which the flow-field may be
obtained by a weighted averaging), optimised for computation, may be arranged in
ways unusual for interpretation by CFD visualisation codes. If the visualisation
library is to be a pluggable software component, it is essential that it be capable of
adapting to a variety of efficient methods of communication with simulation code.
For optimum efficiency we suggest this could be through a domain specific
language capable of specifying memory layout for shared-memory communication
in an in-situ visualisation context.

Although lattice Boltzmann simulations have gained traction due to their excellent
scaling properties, best practice for its application to scientific problems remains an
area of active research. Issues such as the choice of parameters needed to
produce a pseudo-incompressible lattice Boltzmann fluid, and the appropriate
selection of boundary conditions to model convoluted or deformable surfaces mean
that application of LB techniques can be a subtle process. For this reason
visualisation of the behaviour of the LB implementation, at a level below that of the
intended physical observables, will also be important.

HemeLB’s targeted deployment into clinical environments also differentiates it from
other CFD visualisation tasks, by placing the emphasis on visualisations that
resonate with the intuition of medical practitioners, as opposed to engineers or
physical scientists.

Extraction and visualisation of clinically relevant properties, such as the stress on
the vascular walls which can lead to rupture or induce malformation, is therefore of
paramount importance for HemeLB. As these properties can be peculiar to the
application at hand, it is therefore necessary that visualisation libraries developed
for the exascale are componentised and made configurable in such a way as to
support re-use for novel, domain-specific visualisations. This may include
visualisations that attempt to mimic the outputs of experimental observations of
modelled systems, so as to better resonate with clinical intuition.

Our target for HemeLB is deployment into clinical contexts. Thus, interfaces
developed to interact with and steer simulations must take into account the need for
remote interaction between exascale computing resources and practitioners in
hospitals. Job management infrastructure on exascale resources must support
resource allocation strategies appropriate to use in clinical practice.

© CRESTA Consortium Partners 2011 Page 12 of 15

3.6.3 Introspection	
Applications must carry out introspection -- to be aware, as they run, of how they
are running, and report this to developers and users. Tools to support this activity
for exascale resources are needed, as introspection can be a block to scalability,
and yet introspection is vital for code development.

Information that must be collected includes on-going timing measurement and
profiling, numerical stability, simulation progress and logging, debug information,
and the impact of adjustments for fault tolerance. Reporting objectives include
monitoring of running simulations, including potential for adjustment via steerability
to rescue failing simulations, archiving of textual and machine-readable reports,
and visualisation.

3.6.4 Lattice	 Boltzmann	
The family of lattice-Boltzmann methods have, over the last two decades, been
used for studying a wide variety of flow problems. One of its strongest “selling
points” is the relative straight-forwardness of designing an efficient parallel
implementation, due to the method requiring each lattice point to only communicate
with its neighbours, in order to advance the simulation state forward one time-step.
Most parallel codes show near-perfect weak scaling up to thousands of cores, with
state-of-the-art implementations scaling up to hundreds of thousands (for example
LUDWIG, LB3D [6]). These examples, however, are for very simple geometries, i.e.
solid cuboids of fluid, which can be easily decomposed across nodes and have the
communications mapped onto the network fabric’s topology. (Clearly, this is
predicated on nodes being reliable.)

However the bottleneck for simulation performance for lattice-Boltzmann is usually
attributed to the relative slowness of main memory, whether memory bandwidth
[10][7] memory latency or the smallness of the translation lookaside buffer (TLB,
used to translate virtual memory addresses to hardware addresses) requiring extra
loads from main memory[11] This issue will have to be kept in mind at all points
during CRESTA. Due to the complex, platform-dependent interplay of factors, we
see some form of auto-tuning as a key approach to reaching high per-node
performance. This library must interact efficiently with existing standard build-
management tools, such as CMake [12] to allow a fluent interface to configurable
builds of client tools such as HemeLB.

No fault tolerance is currently implemented within HemeLB. We observe that MPI
implementations are typically not fault-tolerant and this must be addressed. If the
application, through introspection or notification by the operating system, is notified
of an impending failure, then the data for the sub-domain could be transferred to a
hot spare, its neighbouring tasks notified of the change and the simulation could
proceed. This would require only a modest application programming effort, but
requires over-provision of nodes. Dynamic load balancing (discussed below) and/or
repartitioning would clearly reduce the need for over-provision, by allowing the
simulation to proceed at slightly degraded performance in the case of node failure.

3.6.5 Geometry	 and	 pre-‐processing	
In contrast to most LB applications mentioned above, HemeLB is optimised for
sparse geometries such as the vasculature, where the typical fluid fraction of a
cuboidal bounding box is ~5%. This requires that we be able to distribute these
fluid sites across cores in a more flexible manner than a simple Cartesian
decomposition. Currently we are using ParMETIS, a parallel graph-partitioning
library [9], to produce a static decomposition at simulation start up. (This same
choice has been made by the developers of MUPHY for comparable problems [8].)

© CRESTA Consortium Partners 2011 Page 13 of 15

As our systems get larger, the demands placed on the decomposition algorithm will
grow.

The domain decomposition also affects the performance of the visualisation
subsystem. Ideally this should be taken into account by the decomposition
algorithm, in order to co-optimise the whole simulation.

Dynamically changing the domain decomposition during the simulation, either in
response to variation in the workload or node availability, is a theoretically attractive
option. This has been implemented by, for example, the Charm++ project, used by
the NAMD molecular dynamics code and would delegate much of the work of
domain decomposition to the API and run-time system. While this might
significantly reduce the code complexity of HemeLB it would require significant
development effort and is unlikely to be completed within the timescale of CRESTA.
However it would require a large redevelopment of HemeLB.

HemeLB currently used MPI-IO for reading its geometry data and writing snapshots
of the simulation state. The geometry files are block-decomposed and each task
reads only the (variable-length) blocks for which it is assigned responsibility. The
snapshot files are currently a simple custom binary format, written with collective
MPI-IO functions. We expect to replace this with a more sophisticated format
through the use of a library, such as HDF.

Our pre-processing tool is currently a workstation level application, that uses VTK
[13] to convert a description of the surfaces of the vasculature into our custom
format. This is currently only practical for systems with less than approximately 108
lattice points, at least two orders of magnitude below an exascale system. We will
consider how this can be parallelised across a smaller cluster.

3.6.6 Multiscale
HemeLB forms part of wider efforts in computational physiology. HemeLB will
interact with other instances of HemeLB running at different scales, with simpler
one-dimensional models of the remainder of the circulatory system, and with
models of surrounding solid tissue. HemeLB’s involvement with the Virtual
Physiological Human (VPH) [14] and Multiscale Applications on European e-
Infrastructures (MAPPER) [15] projects is a major part of this effort.

Tools to support multiscale modelling, (i.e. to support interaction between different
programs), on exascale resources will therefore be important for HemeLB.
Visualisation, decomposition, and introspection tools must have APIs generic
enough to work not just with HemeLB, but also with a heterogeneous variety of
application codes, so that multiple codes may be executed, visualised and
evaluated together.

Different components of a multiscale simulation may exist on distinct, spatially
separated exascale resources, so support for wide-area exascale computing will be
necessary. Exascale operating systems must support fluent deployment of multiple
codes using a variety of languages, paradigms, and approaches.

© CRESTA Consortium Partners 2011 Page 14 of 15

4 Conclusion	
In conclusion, exascale will set a lot of challenges on data handling like pre- and post-
processing, visualization, meshing, etc. These challenges consist in the vast amount of
data to handle, but also the usefulness of visually inspecting the data. Furthermore
profiling tools and debuggers will have to cope with an enormous amount of tasks.
Existing libraries and algorithms will also face new types of challenges. Finally, the
‘fault-tolerance’ problem is still largely unresolved including a realistic estimate of how
severe it may become.

© CRESTA Consortium Partners 2011 Page 15 of 15

5 References	
[1] OpenFOAM® - The open source CFD toolbox, See: http://www.openfoam.org/

[2] The OpenFOAM® Extend Project, See: http://www.extend-project.de/

[3] G. Pringle, “Porting OpenFOAM to HECToR - A dCSE Project”, Technical
Report (2010), See:
http://www.hector.ac.uk/cse/distributedcse/reports/openfoam/openfoam.pdf

[4] G. Wierink, OpenCFD Ltd., Personal correspondence

[5] Scotch Home Page, See: http://www.labri.fr/perso/pelegrin/scotch/

[6] Bernd, M., & Frings, W. (Eds.). (2011). Jülich Blue Gene/P Extreme Scaling
Workshop 2011. (M. Bernd & W. Frings, Eds.). Retrieved from
http://www2.fz-juelich.de/jsc/docs/autoren2011/mohr1/

[7] Heuveline, V., Krause, M. J., & Lätt, J. (2009). Towards a hybrid
parallelization of lattice Boltzmann methods. Computers & Mathematics with
Applications, 58(5), 1071–1080. doi:10.1016/j.camwa.2009.04.001

[8] Melchionna, S., Bernaschi, M., Succi, S., Kaxiras, E., Rybicki, F. J.,
Mitsouras, D., Coskun, A., et al. (2010). Hydrokinetic approach to large-
scale cardiovascular blood flow. Computer Physics Communications,
181(3), 462–472. doi:10.1016/j.cpc.2009.10.017

[9] Schloegel, K., Karypis, G., & Kumar, V. (2002). Parallel static and dynamic
multi-constraint graph partitioning. Concurrency and Computation: Practice
and Experience, 14(3), 219–240. doi:10.1002/cpe.605

[10] Wellein, G., Zeiser, T., Hager, G., & Donath, S. (2006). On the single
processor performance of simple lattice Boltzmann kernels. Computers and
Fluids, 35(8–9), 910–919. doi:10.1016/j.compfluid.2005.02.008

[11] Williams, S., Carter, J., Oliker, L., Shalf, J., & Yelick, K. (2009).
Optimization of a lattice Boltzmann computation on state-of-the-art multicore
platforms. Journal of Parallel and Distributed Computing, 69(9), 762–777.
doi:10.1016/j.jpdc.2009.04.002

[12] CMake – Cross Platform Make. See: http://www.cmake.org/
[13] Visualization Toolkit (VTK). See: http://www.vtk.org/
[14] Virtual Physiological Human Network of Excellence. See:

http://www.vph-noe.eu/
[15] Multiscale Applications on European e-Infrastructures. See:

http://www.mapper-project.eu/
[16] Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008). GROMACS 4:

Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular
Simulation. J. Chem. Theory Comput., 2008, 4 (3), pp 435–447

[17] Pronk, S., Larsson, P., Pouya, I., Bowman, G.R., Haque, I.S.,
Beauchamp, K., Hess, B., Pande, V.S., Kasson, P.M., and Lindahl, E.
Copernicus: a new paradigm for parallel adaptive molecular dynamics. In
Proceedings of SC. 2011, 60-60.

