
 
Copyright © CRESTA Consortium Partners 2011 

 

D6.2	  –	  Needs	  analysis	  	  

WP6:	  Co-‐design	  via	  applications	  

Due date: M6 

Submission date: 31/03/2012 

Project start date: 01/10/2011 

Project duration: 36 months 

Deliverable lead 
organization CSC 

Version: 1.0 

Status Final 

Author(s): 
J.A. Åström (CSC), Adam Carter (EPCC), Konstantinos 
Ioakimidis (USTUTT), Rupert W. Nash (UCL), James 
Hetherington (UCL), Artur Signell (ABO), Jan Westerholm (ABO) 

Reviewer(s) Christian Wagner (DLR), Harvey Richardson (Cray) 

 

Dissemination level 

<PU/PP/RE/CO> PU – Public 

Project Acronym CRESTA 

Project Title Collaborative Research Into Exascale Systemware, Tools and 
Applications 

Project Number 287703 

Instrument Collaborative project 

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation 



 
Copyright © CRESTA Consortium Partners 2011 

 

	  

	  

Version	  History	  
Version Date Comments, Changes, Status Authors, contributors, 

reviewers 

0.1 17/01/2012 First version of the deliverable J.A. Åström (CSC) 

  Gromacs added  

0.2 23/02/2012 OpenFOAM added Joerg Hertzer (USTUTT) 

  IFS added  

  ELMFIRE added  

  NEK5000 added  

  HemeLB added  

1.0 1/3/2012 Final corrections made to document 
based on reviewer feedback  

J.A. Åström (CSC) 



 
Copyright © CRESTA Consortium Partners 2011 

 

Table	  of	  Contents	  
1	   EXECUTIVE	  SUMMARY	  .................................................................................................................	  1	  

2	   INTRODUCTION	  ...........................................................................................................................	  2	  

3	   NEEDS	  ANALYSIS	  FOR	  THE	  CODES	  ................................................................................................	  3	  

3.1	   ELMFIRE	  .........................................................................................................................................	  3	  
3.2	   GROMACS	  ......................................................................................................................................	  3	  

3.2.1	   Performance	  &	  Scaling	  of	  the	  core	  MD	  algorithm	  ..................................................................	  4	  
3.2.2	   Extreme	  system	  parallelism	  and	  IO	  needs	  ..............................................................................	  5	  

3.3	   OPENFOAM	  ..................................................................................................................................	  5	  
3.3.1	   Scalability	  of	  main	  computation	  .............................................................................................	  6	  
3.3.2	   Pre-‐	  and	  Postprocessing	  .........................................................................................................	  7	  
3.3.3	   Preprocessing	  .........................................................................................................................	  7	  
3.3.4	   Postprocessing	  ........................................................................................................................	  7	  
3.3.5	   Fault	  tolerance	  ........................................................................................................................	  8	  

3.4	   NEK5000	  ......................................................................................................................................	  8	  
3.5	   IFS	  ................................................................................................................................................	  9	  
3.6	   HEMELB	  ......................................................................................................................................	  10	  
3.6.1	   Engineering	  requirements	  for	  Software	  Components	  ...........................................................	  10	  
3.6.2	   Visualisation	  .........................................................................................................................	  10	  
3.6.3	   Introspection	  .........................................................................................................................	  12	  
3.6.4	   Lattice	  Boltzmann	  .................................................................................................................	  12	  
3.6.5	   Geometry	  and	  Preprocessing	  ................................................................................................	  12	  
3.6.6	   Multiscale	  .............................................................................................................................	  13	  

4	   REFERENCES	  ..............................................................................................................................	  15	  

	  	  



 

© CRESTA Consortium Partners 2011  Page 1 of 15 

  

1 Executive	  Summary	  
This ‘Needs analysis’ contains an overview of what the CRESTA applications codes 
need in order to be developed towards the exaflop/second realm. The summaries of 
the requirements for the co-design codes are as follows: 

ELMFIRE: would benefit from real-time visualisation, automated hardware failure 
recovery, an exascale linear solver and file I/O, exascale profiling and debugging. 
These aspects are being dealt with together with other work packages within the 
project.  

GROMACS: The main challenge for Gromacs is to improve scaling for lattice 
summation electrostatic interactions through more efficient FFT libraries, or by using 
completely different algorithms that do not involve all-to-all communication. For the 
remaining part of the code, the requirements are more focused on improving 
parallelism on all levels, including tasks over CPUs/cores/GPUs, and improving IO data 
handling for extremely large systems. For small systems, the exascale needs will have 
to be addressed with ensemble techniques that do not require synchronization between 
all nodes for each time step. 

OpenFOAM: OpenFOAM® is considered to scale well to thousands of cores. Some 
important use cases need the OpenFOAM®-extend versions including the GGI 
(General Grid Interface). The possible bottleneck GGI seems to work well after 
maintenances had been done few months ago from the OpenFOAM®-extend 
community. OpenFOAM®-extend, however, still has to be prepared for the exascale 
architectures. 

NEK5000: needs an integration of the pre- and post-processing codes, a p-type mesh 
refinement, hybrid parallelism, parallel file I/O, and an investigation of the exascale 
performance of BLAS, among other things. These issues are developed with the other 
WPs. 

IFS: needs to take advantage of Fortran co-arrays. In order for proper exascale 
implementation the code needs profiling and debugging tools that can handle this type 
of data-structures. Furthermore, Fourier transforms and multi-grid will be developed in 
cooperation with other WPs. 

HEMELB: would benefit from e.g. exascale visualization, debugging and profiling tools, 
failure tolerant MPI and dynamic domain decomposition. These issues will be 
investigated in cooperation with other WPs. 
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2 Introduction	  
This document contains a ‘needs analysis’ over the actions needed to develop the 
CRESTA codes towards exascale performance. The needs of the different codes are 
presented in chapter 3. The codes and their purpose are as follows: 

OpenFOAM®: is an open source application for computational fluid dynamics (CFD). 
The program is a “toolbox” which provides a selection of different solvers as well as 
routines for various kinds of analysis, pre- and post-processing. Within this project the 
focus of the University of Stuttgart will be on a specialised code for turbo machinery. 
The objective is to simulate a whole hydraulic machine on exascale architectures. 

ELMFIRE: is a gyro-kinetic particle-in-cell code that simulates movement and 
interaction between particles moving at high speed in a torus-shaped geometry on a 
three-dimensional grid held together by an external magnetic field. The objective is to 
simulate significant portions of large-scale fusion reactors like JET or ITER. 

GROMACS:  is a molecular dynamics code that is extensively used for simulation of 
biomolecular systems. Useful investigation of these kinds of systems is typically limited 
by computational capacity. The limitations concern both system sizes and in particular 
time duration of interesting processes. Also efficient implementation of ensembles of 
simulation are needed for gathering statistic validity. 

NEK5000: is an open-source code for the simulation of incompressible flow in complex 
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000. 

IFS: is the production weather forecasting application used at the European Centre for 
Medium Range Weather Forecasts (ECMWF). The objective is to develop more 
reliable 10-day weather forecasts that can be run in an hour or less. 

HemeLB: is being developed and is intended to form part of a clinically deployed 
exascale virtual physiological human. HemeLB simulate blood flow in measured 
blood vessel geometries. The objective is to develop a clinically useful exascale 
tool. 

2.1 Glossary	  of	  Acronyms	  
JET A Tokamak fusion reactor 
ITER A Tokamak fusion reactor 
CFD  Computational fluid dynamics 
ECMWF European Centre for Medium Range Weather Forecasts 
CPU Central processing unit 
PETSC  A computer code algorithm library 
GPU Graphics processing unit 
BLAS  Basic linear algebra library 
FFT Fast Fourier transform 
O(N)  Order - N 
LES  Large-Eddie simulation 
GGI General grid interface 
O(N)  Order - N 
API  Application programming interface 
HDF  Hierarchical data format 
LB  Lattice-Boltzmann 
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3 Needs	  analysis	  for	  the	  codes	  
 

3.1 ELMFIRE	  
ELMFIRE lacks real time visualization support, which would bring the usability of the 
program to a new level. A full run of the program must be completed before the results 
can be analysed and visualized. Real time visualization would be beneficial not only to 
be able to partly analyse the results before the run has finished but also to detect 
problems with the program or the input data before wasting a week of CPU time. This 
will be done in collaboration with WP5. 

Check pointing is done in ELMFIRE at given intervals (every Nth time step). Check 
pointing is performed by dumping all particle data to files, which can be read back later 
to initialize the program. Around 72 bytes per particle are stored, meaning a checkpoint 
of an ITER simulation would require around 40TB. It would be beneficial to be able to 
remove the custom code for this from the program and have a more efficient approach 
for fault tolerance or fault recovery. What we would like to see is an automated 
approach for recovering from hardware faults by not stopping the program completely 
but instead revert to the latest checkpoint, bring in new processors if needed, and 
continue running from the checkpoint. 

ELMFIRE constructs a sparse, linear, modified gyro kinetic Poisson equation that is 
solved in parallel using PETSc. It is at the moment unclear if PETSc scales to exascale 
problems or if this needs to be replaced by another approach. Research on this topic 
will be done in collaboration with WP4. 

File output in ELMFIRE is mostly done by all processors sending their data to 
processor 0, which then writes the data to disk. Some initial prototyping has been done 
for moving to a HDF5 based output format but falls out of the scope of what we are 
able to do during the project. This could be done in cooperation with work package 5. 

Running an ITER simulation on ELMFIRE would involve hundreds of thousands of 
cores. Profiling of such a large application would likely be difficult using tools of today. 
What would be needed is separate numbers for CPU usage, MPI/network traffic, load 
balancing information and file I/O for all processes and good ways of visualizing the 
results to be able to detect where possible bottlenecks are. We hope that we can work 
together with WP3 to ensure this is made possible. 

Debugging is a topic of interest, mainly in the scope of being able to find out why the 
run with 100K processes crashed at some point. Ideally we would like to see a way that 
debugging could always be enabled for a program but not really kick in before there is 
a problem. The overhead of debugging should be minimal and there shouldn’t be a 
need to re-compile and re-run the program using 100K cores to get debug info. If an 
optimized program takes days to crash using 100K cores it will take even longer if 
running in debug mode. It is not really feasible to re-run the program to find out why it 
crashed. 

3.2 Gromacs	  	  
Gromacs is a major open source code that performs classical molecular dynamics 
simulations based in interactions between particles moving in space, typically for 
biomolecular systems. It has been developed for over 15 years, initially with a large 
focus on the highest possible single-core performance, but over the last few years we 
have made a complete overhaul of the parallelization approach and the code currently 
exhibits some of the best relative scaling in the field. 

The main challenge for classical molecular dynamics in general – and Gromacs in 
particular – is that it relies on integration of Newton’s equations of motion, and high 
performance therefore requires very fast iterations over integration time-steps. This has 
largely driven 20 years of development in the field, and current algorithms are very 
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focused on providing simple interaction forms to reduce the floating-point instruction 
bottleneck. Historically, runtime for these types of codes was completely dominated by 
the evaluation of interactions between particles. In principle, this lends itself very well to 
parallelization, but 20 years of optimization focused on algorithms to avoid floating-
point operations has resulted in complex data structures and inhomogeneities in 
interaction density over space that makes efficient parallelization challenging. In this 
regard, Gromacs is a particular challenge since the single-core performance is 
significantly higher than many other codes, and the code is therefore spending a 
relatively larger part of time on communication [16]. 

The central challenge for pushing Gromacs to exascale performance is to develop 
algorithms and problem formulations that can make efficient use of this amount of 
floating-point instructions. While there is important work to be done on classical 
parallelization improvement, it will not be possible to achieve this solely by increased 
parallelization that reduces the wallclock time per iteration, since this would bring the 
time-step in the nanosecond range for small systems, which is completely out of range 
of current architectures.  

3.2.1 Performance	  &	  scaling	  of	  the	  core	  MD	  algorithm	  
Gromacs is parallelized on several different levels, which is critical to reach high 
application performance rather than merely good relative scaling. On the lowest level, 
we have long employed Single-Instruction Multiple-Data parallelism on modern 
hardware, but largely with hand-written assembly language. One important need is to 
formulate these algorithms in a more portable fashion that makes it possible to rapidly 
recompile and adapt the computational kernels to new generations of hardware with 
different capabilities. It is also important to include better support for streaming co-
processors such as GPUs and/or heterogeneous parallelization. 

On a higher level, Gromacs uses message-passing parallelization to distribute work 
over separate nodes. While this works well, it is currently the main bottleneck for 
scaling. For systems that only contain simple interactions, Gromacs scales well down 
to roughly 250 atoms per core (i.e., weak scaling is essentially perfect). However, most 
biomolecular simulations involve electrostatic interactions, and these have to be treated 
with lattice-summation based algorithms involving fast Fourier transforms. While there 
are parallel FFT implementations, the dimensions of the grid are relatively small, and 
this means the latency of the FFT implementation becomes a bottleneck. Lower-
latency FFTs would go a long way towards improving this problem, but it might also be 
possible to develop completely new algorithms that do not depend on FFTs to solve 
long-range electrostatic interactions, for instance multi-grid solvers or even fast multiple 
algorithms. Work on FFT libraries in particular will be performed in WP4, and also as a 
CRESTA co-design team. 

After the long-range electrostatics, the next current limitation is the latency and 
communication patterns for the domain decomposition. This is likely not possible to 
solve in any other way than hard manual work in the core of the code, and this has to 
be pursued by the Gromacs team in the present project. However, this communication 
in turn relies on the MPI communication library. We have already seen that other codes 
(such as NAMD) have achieved improved performance by directly targeting Infiniband 
OpenFabrics verbs (http://www.openfabrics.org) or other communication libraries 
closer to hardware, and such implementations could also be highly useful for Gromacs. 
In general, CRESTA WP2 should be able to help find lower-latency communication 
strategies for Gromacs. 

Finally, present hardware with ever-increasing core-counts opens the possibility to 
introduce an intermediate parallelization layer by directly utilizing the shared memory 
inside each compute node. This can be surprisingly hard with non-uniform memory 
architectures (NUMA). It might be possible to address better with a task-based 
parallelization to avoid synchronization, and here Gromacs would benefit significantly 
from better libraries to automatically distribute tasks over resources based on memory 
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latency e.g. between different cores, dies, and what co-processor is attached to what 
bus and what CPU die. 

In addition, the development is highly dependent on availability of good profilers that 
simultaneously work on multi-thread and multi-MPI-job level to find data imbalances 
and points where we are waiting for communication. 

3.2.2 Extreme	  system	  parallelism	  and	  IO	  needs	  
The obvious way to utilize exascale resources is to increase the simulated system size. 
Typical targets for the US Blue Waters system include biomolecular systems with over 
300 million particles. For these systems, Gromacs has a current major bottleneck in 
how it handles IO for simulation data. Currently, the system input has to be read into 
the master node and then distributed, which takes a very long time and it can even be 
impossible for large systems running on hardware without any swap space available. In 
the same way, the current algorithms for checkpointing and writing trajectory data rely 
on sending the data through the master node. Here, we have a clear need for a good, 
portable, and small C/C++ library that can handle distributed data in a rudimentary 
fashion, in particular for IO. A problem with solutions like PGAS languages is that they 
are less portable, and we do not want to include a completely different parallelization 
approach just to handle IO for the very largest simulations. 

3.2.3 Scaling	  for	  small	  biomolecular	  systems	  
One significant failure with most current parallelization work for biomolecular system is 
that it is frequently focused on using as many cores as possible by increasing the 
problem size. While this provides great scaling plots, it is of very limited use to practical 
life science applications where the vast majority of molecular systems studied are well 
below a million atoms, and frequently down to 30,000 atoms. To utilize exascale 
resources for these applications, we need a completely different approach based on 
running huge ensembles of closely coupled simulations [17]. Some challenges here 
revolve around the algorithms used for sampling, but there is also a great need for 
better tools for checkpointing automatically and reissuing failed tasks, and not least: 
data handling. In particular, Gromacs would benefit from better libraries to place 
processes on the hardware in large clusters as well as how to place tasks/threads 
within nodes to minimize the communication latency and bandwidth. We also see a 
need for better abilities to start & stop sub-tasks in an ensemble of simulations, e.g. 
when hardware problems are detected, without separating a gigantic ensemble into 
thousands of separate cluster jobs that would not be able to communicate. This will be 
addressed in WP6. 

3.3 OpenFOAM	  	  
OpenFOAM® is an open source code, and multiple versions are in common use. For 
the purposes of this project, we have chosen to consider two widely used versions, 
namely  

• The OpenFOAM foundation release from OpenCFD Ltd (a company which 
owns the OpenFOAM trademark)[1] 

• The release from the OpenFOAM Extend Project[2]. 

Whilst there are several potential challenges in running OpenFOAM at the exascale, 
the most challenging aspect of preparing OpenFOAM for exascale systems remains 
the parallel scaling of the computationally intensive sections of the code.  

OpenFOAM, in general, is considered to scale well on current systems. For simple use-
cases it has been shown to scale to thousands of processors[3]. It is likely, however, 
that exascale machines will have hundreds of thousands of processors. Further work is 
required to understand what the limiting factors will be as the code is scaled up, but it is 
expected that the performance will be limited by inter-process communication, and in 
particular, large reduction operations[4]. On a single-core basis, the performance is 
probably limited by memory latency[4].  
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Mesh creation and partitioning are also very important components of the code, and it 
must be ensured that these will scale up as well as the main solvers. Recent versions 
of OpenFOAM use the PT-Scotch library [5] to do mesh creation and partitioning in 
parallel. We will work with partners in WP4 and WP5 to investigate the limitations of 
these pre-processing steps, both in terms of their algorithms and their interaction with 
the solver part of the code. 

To determine the needs of the OpenFOAM application, the project will consider a set of 
specific use cases. The application’s needs described here are based on these use-
cases. As one of the use-cases, we have considered the flow of air around a moving 
motorbike. This is one of the tutorial examples distributed with OpenFOAM and has 
been identified as being both representative of large problems, and having 
characteristics that could lead to non-trivial issues when scaling to very large numbers 
of processors.  In order to help stimulate the development of OpenFOAM and to 
motivate improvements to the code, two specific cases have been prepared by the 
Institute of Fluid Mechanics and Hydraulic Machinery (IHS) of the University of 
Stuttgart. The first one is a quite simple geometry of a square cylinder that is also an 
ERCOFTAC test case in order to validate LES. This case should be suitable for first 
computations in order to validate as simple as possible the new implementations. The 
second one is a real hydraulic machine that is more complex geometry but is the most 
important case for the Institute, because of the complexity of moving parts in particular.  

Important use-cases at the Institute of Fluid Mechanics and Hydraulic Machinery (IHS) 
of the University of Stuttgart are simulations of a whole hydraulic machine that have 
particular needs, in particular the need to simulate moving parts. This is one of the 
main advantages to the OpenFOAM Extend version. In general, the same tools for pre- 
and post processing could be used in all OpenFOAM versions. In order to simulate a 
whole hydraulic machine, however, a moving mesh interface like GGI is needed. That 
means there is a need to check that GGI works in order to simulate rotor/stator 
interaction with for example the OpenFOAM-2.1 version. Assuming it can be used, GGI 
should then be checked for scalability because the experience shows that GGI could 
probably be bottleneck on Large Scale Computing. 

The relevant test case is the use of OpenFOAM to simulate the flow in an entire 
hydraulic machine using Large Eddy Simulation (LES). This means that a great part of 
the turbulence in the flow will be resolved in the computation up to very fine turbulent 
scales. This simulation therefore requires very fine computational grids and 
consequently a very high computational effort. 

The flow in a hydraulic machine has relative high Reynolds numbers (Highly Turbulent 
Flow) in a test rig size of about 3*106 – 5*106. The number of vertices and the small 
time step size will lead to a requirement of 80 millions core hours to get a full 
converged simulation. This would lead to a usage of 50000 cores for about 65 days. 

The resulting data size of a full solution is about 250GB for one time step. To get 
transient data of global parameters, like torque, efficiency or flow fields in selected 
points or lines, the storage needs about 100GB. The number of time steps that have to 
be saved, depends on the visualisation of the instantaneous flow phenomena. E.g. 
storing every degree runner rotation for one complete rotation would require 
360*250GB=90000GB=90TB. 

3.3.1 Scalability	  of	  main	  computation	  
A traditional approach to optimising OpenFOAM will be adopted, namely to iteratively 
profile the code, identify bottlenecks and seek to improve the scalability of those parts 
of the code which do not scale well. To do this effectively, we will need to understand 
the expected trends for the balance between compute, communication, memory, and 
I/O in future hardware so that we are optimising for the platforms of tomorrow, as well 
as those on which the code is currently being run. We would work with WP2 to 
understand the implications of these trends on the future performance of OpenFOAM, 
and as we scale up the problems being looked at we are very likely to benefit from the 



 

© CRESTA Consortium Partners 2011  Page 7 of 15 

  

expertise of partners in WP2 and WP3 in the use of performance analysis and 
debugging tools for exascale problems.  

3.3.2 Pre-‐	  and	  postprocessing	  
Pre- and Post-processing are two important tasks in Computational Fluid Dynamics. In 
case of a LES these tasks are time expensive. The Institute of Fluid Dynamics and 
Hydraulic Machinery (University of Stuttgart, Germany) works on the OpenFOAM® 
version OpenFOAM-1.6-extend. The tools for Pre- and Post processing should be the 
same to the tools of other OpenFOAM® versions.  

3.3.3 Preprocessing	  
For Preprocessing a block structured mesh is created and written out as OpenFOAM® 
input. The next step is to refine that mesh, in order to reach the appropriate number of 
computational domain vertices as mentioned above, see the schematical view in fig 1. 
This could be done with the OpenFOAM® utility refineMesh which refines the mesh in 
every direction.  

 

Fig. 1: Schematical view of the grid refinement process 

After the refinement, domain decomposition is needed. This can be realized with the 
redistributeMeshPar that is coupled to the PT-Scotch library [5] to mesh partitioning in 
parallel. This enables cooperation with partners in WP4 and WP5 to investigate 
limitations in these pre-processing steps. Ideally, the mesh refinement and the domain 
decomposition should be done into a single step. 

Furthermore, another topic to realise a LES, is the need of a very good initialisation. In 
order to do this, the traditional way is to get a first solution of the problem with a 
standard turbulence model of the Average Navier-Stokes Simulation (RANS) family, in 
example k-epsilon model or the SST-k-omega model. The Reynolds Average Navier-
Stokes Simulation is realizable on coarse computational domain grids and the results 
are then mapped on the grid prepared for the LES. There exists a tool in OpenFOAM® 
called mapFields for doing that, but to our knowledge the tool runs not in parallel. This 
enables cooperation to parallelization group of the WP3 in order to find out an efficient 
parallel programming model to parallelize mapFields. 

3.3.4 Postprocessing	  
The visualization tools Paraview and Covise (from HLRS) are currently being used 
successfully for postprocessing. The amount of data, typically 90TB, is difficult to 
transfer from the HPC system to do postprocessing locally to the user. Thus, parallel 
postprocessing on up to 50000 cores is needed. Furthermore, efficient data reduction 
and compression of the results is needed in order to reduce I/O time of the visualization 
tools. We will need to work with the colleagues from the visualization group in WP5 on 
that topic in order to see if it is possible and if not we should find another process to 
visualise the results. 
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The general intended workflow is shown in fig. 2. It consists of  

• Grid generation 
• Decomposition and refinement 
• Simulation 
• Data reduction and compression and 
• Visualisation.  

It is essential, that all tools, which work on the refined mesh, are running highly 
efficiently on many thousands of cores, in order to obtain an overall good performance 
for the simulation. 

 

 
Fig. 2: Schematical view of the overall work process 

 

3.3.5 Fault	  tolerance	  
OpenFOAM, like nearly every existing massively parallel code has no explicit 
functionality (other than checkpointing) to tolerate faults in the underlying system. We 
plan to further investigate the parallelism patterns used in the code and determine the 
scope for making modifications that could work with system-level fault tolerance 
mechanisms. We will need to work with WP5 in order to understand the form that such 
mechanisms are likely to take. 

3.4 NEK5000	  	  
Nek5000 is an open-source code for the simulation of incompressible flow in complex 
geometries. Nek5000 already scales up to 200,000 processors and our work in 
CRESTA will focus on extending scalability on exascale supercomputers. Towards 
exascale scalability new theoretical solutions for parallelism will be implemented. 
These solutions include adaptive refinements, alternative discretisation and hybrid 
parallelisation. Extra care will be taken to data handling, load balancing and pre and 
post processing. In order to adapt the Nek5000 code for the exascale computation, we 
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will work in close collaboration with other CRESTA work packages throughout the 
entire development process.  

The developments of Nek5000 in the CRESTA project will focus on two main points. 
First, we will develop and implement software interfaces between Nek5000 and the 
codes responsible for mesh generation and visualization in the pre- and post-
processing stages. This will allow us to capture the features and complexity of 
geometries as well as predict the errors in the mean flow field. This work will be done 
collaboration with WP5. Second, we will work on developing and implementing a p-type 
adaptive refinement in Nek5000. In collaboration with Nek5000 main developer Paul 
Fischer at Argonne National Laboratory, we will analyse the stability conditions for the 
various order levels, and we will implement this new approach in the Nek5000.  

In addition, other Nek5000 optimizations for exascale computing platforms as 
discussed in the project plan will be considered (alternate discretization, hybrid etc.). 

The scalability of Nek5000 mainly depends on the global communication due to the 
pressure constraint. Nek5000 employs the Crystal Router algorithm to implement the 
global communication. This is an efficient (but rather old) technique for collective 
communication with massively parallel processors connected in a hyper-cube topology.  
The algorithm collects many small messages in an effort to reduce the latency costs 
dominate.  We will use the performance analysis tools and data collection developed 
by WP3 to analyse and improve the algorithm.  

The execution time of Nek5000 is dominated by the calculations of small dense, 
rectangular matrix-matrix and matrix-vector products. On the majority of the computer 
architectures, Nek5000 uses the third-party library Basic Linear Algebra Subroutine 
(BLAS) to carry out these calculations.  The BLAS was original designed for the 
calculations of large dense matrices. To speed up the Nek5000 code we will work 
together with WP4 to analyse the BLAS limitations and improve the other existing 
libraries for the exascale computations.  We will also work with WP3 to employ the 
auto-tuning techniques and exascale compilers.  

In the present state, Nek5000 does not employ any hybrid approach to parallelization. 
All communication is handled by MPI, which has been proven to be very efficient, 
mainly due to the element structure of the mesh. However, a hybrid approach with 
MPI/OpenMP might be considered in the future. The analysis of advantages and 
disadvantages of a hybrid approach in Nek5000 will be carried out with WP3. 

Also, with the help of the Cray Experts, we will analyse the file I/O requirements of the 
code (which might be quite considerable depending on the flow case), and optimize 
using parallel techniques. So far, the code allows writing from a user-defined number of 
nodes, however creating separate files. Using either HDF of MPI-I/O we might further 
optimize/simplify the file handling, in particular for restart/checkpointing using a 
multistep time-integration method. 

3.5 IFS	  	  
The main developments to the IFS model to get it to run efficiently on future exascale 
systems will be done by ECMWF. These developments require the use of Fortran90 
coarrays to optimize the communications associated with the Legendre transforms and 
to improve the scalability of semi-Langrangian communications that are described in 
some detail in D6.1.1.  

The availability of Fortran90 coarrays is paramount for these developments and further 
it is essential for both developments that coarray transfers between images be 
supported within the context of OpenMP parallel regions. 

These capabilities have already been tested using a “Coarray Kernel” on HECTOR 
using the crayftn compiler, however, coarray transfers only work today on HECTOR if 
they are constrained within an OpenMP critical section. ECMWF will work with partners 
WP3 to find a resolution to this issue. 
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It is equally important that performance analysis tools and debuggers work reliably for 
large production applications such as IFS, so ECMWF is keen to test such tools in 
WP3 during the development cycle and to provide feedback to the tool developers. 
These tools need to support Fortran90 coarrays and particularly when they are used 
within the context of OpenMP parallel regions. 

ECMWF will work with WP4 to optimize the Fourier latitude load-balancing heuristic 
used in IFS, to improve the scalability of the Fourier transforms. 

Finally, ECMWF will also work with WP4 to investigate a new multi-grid solver for 
extreme scaling. This work would involve comparing the existing solver used in IFS 
with a potential replacement, and tested in a much simpler code such as a shallow 
water model. It should be noted that a new replacement solver is not part of ECMWF’s 
current research plans and should be considered more speculative. 

3.6 HemeLB	  
The development work on HemeLB will be mostly undertaken by UCL. The work 
described in sections 3.6.2 and 3.6.5 below will be informed by co-design with other 
partners in WP5. 

3.6.1 Engineering	  requirements	  for	  software	  components 
Scientific codes addressing problems that challenge exascale resources 
necessarily address very complex problems. Challenges from problem size and 
data volume are strongly correlated with software engineering challenges of code 
complexity and information management. HemeLB has a strong object oriented 
design, necessitated by the complexity of the problems we try to address.  
 
Software components developed within CRESTA for use by co-design vehicles 
must, of course, scale in terms of computational resources. However, for this work 
to have utility for co-design applications, they must also scale in terms of problem 
complexity.  
 
Therefore, for utility at the exascale, tools must be well architected, modular, well 
tested, have clearly defined dependencies and be deployable in widely 
heterogeneous environments. Tools that provide exascale performance that are not 
engineered to be usable, sustainable, and manageable within the context of 
exascale scientific applications cannot be considered to be successful. The 
“definition of done” for such work, must, therefore, reflect these requirements. 
 
Efforts toward exascale computing cannot neglect maintainability or development 
and integration time in favour of optimum use of resources. Tools must integrate 
easily with scientific applications and deploy smoothly to a wide variety of target 
machines. Interactivity and usability for scientific insight must be valued as much as 
efficient computation. At the exascale, computation can be assumed to be an 
abundant resource, relative to the time and effort spent developing, managing, and 
coordinating the development of scientific codes.  

3.6.2 Visualisation 
High-quality, medically relevant visualisation is a core aim of the HemeLB project. 
By providing clear spatial representations of hemodynamics in complex vascular 
topologies, HemeLB will enhance and support clinical decision-making.  
 
Some of the visualisation needs for HemeLB, being based around the visualisation 
of flow fields, match those of other computational fluid dynamics visualisation 
problems. Achieving efficient visualisation of exascale flow-fields is a complex 
problem in its own right, and HemeLB will benefit, along with other CRESTA co-
design vehicles, in advances in this area. Scalable support for visualisation 
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techniques such as dynamic line integral convolution and volume rendering will be 
of value. 
 
Given the volumes of data and the complexity of the simulations involved, it is likely 
that co-visualisation will be necessary - that is, production of visualisation data on 
the same computational infrastructure as the simulation. This could either be fully 
in-situ visualisation (with the same process carrying out both visualisation and 
simulation) or within a separate process on the same infrastructure. Support for 
asymmetric parallelism may be important here, with visualisation taking place on 
one or more cores of a node, with the other cores carrying out simulation, and 
communication between simulation and visualisation taking place through shared 
memory. 
 
As a lattice Boltzmann simulation, however, there are ways in which visualisation 
support for HemeLB differs from that required for traditional CFD. 
 
The memory layout of the lattice-boltzmann field (from which the flow-field may be 
obtained by a weighted averaging), optimised for computation, may be arranged in 
ways unusual for interpretation by CFD visualisation codes. If the visualisation 
library is to be a pluggable software component, it is essential that it be capable of 
adapting to a variety of efficient methods of communication with simulation code. 
For optimum efficiency we suggest this could be through a domain specific 
language capable of specifying memory layout for shared-memory communication 
in an in-situ visualisation context. 
 
Although lattice Boltzmann simulations have gained traction due to their excellent 
scaling properties, best practice for its application to scientific problems remains an 
area of active research. Issues such as the choice of parameters needed to 
produce a pseudo-incompressible lattice Boltzmann fluid, and the appropriate 
selection of boundary conditions to model convoluted or deformable surfaces mean 
that application of LB techniques can be a subtle process. For this reason 
visualisation of the behaviour of the LB implementation, at a level below that of the 
intended physical observables, will also be important.  
 
HemeLB’s targeted deployment into clinical environments also differentiates it from 
other CFD visualisation tasks, by placing the emphasis on visualisations that 
resonate with the intuition of medical practitioners, as opposed to engineers or 
physical scientists. 
 
Extraction and visualisation of clinically relevant properties, such as the stress on 
the vascular walls which can lead to rupture or induce malformation, is therefore of 
paramount importance for HemeLB. As these properties can be peculiar to the 
application at hand, it is therefore necessary that visualisation libraries developed 
for the exascale are componentised and made configurable in such a way as to 
support re-use for novel, domain-specific visualisations. This may include 
visualisations that attempt to mimic the outputs of experimental observations of 
modelled systems, so as to better resonate with clinical intuition. 
 
Our target for HemeLB is deployment into clinical contexts. Thus, interfaces 
developed to interact with and steer simulations must take into account the need for 
remote interaction between exascale computing resources and practitioners in 
hospitals. Job management infrastructure on exascale resources must support 
resource allocation strategies appropriate to use in clinical practice. 
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3.6.3 Introspection	  
Applications must carry out introspection -- to be aware, as they run, of how they 
are running, and report this to developers and users. Tools to support this activity 
for exascale resources are needed, as introspection can be a block to scalability, 
and yet introspection is vital for code development. 
 
Information that must be collected includes on-going timing measurement and 
profiling, numerical stability, simulation progress and logging, debug information, 
and the impact of adjustments for fault tolerance. Reporting objectives include 
monitoring of running simulations, including potential for adjustment via steerability 
to rescue failing simulations, archiving of textual and machine-readable reports, 
and visualisation.  

3.6.4 Lattice	  Boltzmann	  
The family of lattice-Boltzmann methods have, over the last two decades, been 
used for studying a wide variety of flow problems. One of its strongest “selling 
points” is the relative straight-forwardness of designing an efficient parallel 
implementation, due to the method requiring each lattice point to only communicate 
with its neighbours, in order to advance the simulation state forward one time-step. 
Most parallel codes show near-perfect weak scaling up to thousands of cores, with 
state-of-the-art implementations scaling up to hundreds of thousands (for example 
LUDWIG, LB3D [6]). These examples, however, are for very simple geometries, i.e. 
solid cuboids of fluid, which can be easily decomposed across nodes and have the 
communications mapped onto the network fabric’s topology. (Clearly, this is 
predicated on nodes being reliable.) 
 
However the bottleneck for simulation performance for lattice-Boltzmann is usually 
attributed to the relative slowness of main memory, whether memory bandwidth 
[10][7] memory latency or the smallness of the translation lookaside buffer (TLB, 
used to translate virtual memory addresses to hardware addresses) requiring extra 
loads from main memory[11] This issue will have to be kept in mind at all points 
during CRESTA. Due to the complex, platform-dependent interplay of factors, we 
see some form of auto-tuning as a key approach to reaching high per-node 
performance. This library must interact efficiently with existing standard build-
management tools, such as CMake [12] to allow a fluent interface to configurable 
builds of client tools such as HemeLB. 
 
No fault tolerance is currently implemented within HemeLB. We observe that MPI 
implementations are typically not fault-tolerant and this must be addressed. If the 
application, through introspection or notification by the operating system, is notified 
of an impending failure, then the data for the sub-domain could be transferred to a 
hot spare, its neighbouring tasks notified of the change and the simulation could 
proceed. This would require only a modest application programming effort, but 
requires over-provision of nodes. Dynamic load balancing (discussed below) and/or 
repartitioning would clearly reduce the need for over-provision, by allowing the 
simulation to proceed at slightly degraded performance in the case of node failure. 

3.6.5 Geometry	  and	  pre-‐processing	  
In contrast to most LB applications mentioned above, HemeLB is optimised for 
sparse geometries such as the vasculature, where the typical fluid fraction of a 
cuboidal bounding box is ~5%. This requires that we be able to distribute these 
fluid sites across cores in a more flexible manner than a simple Cartesian 
decomposition. Currently we are using ParMETIS, a parallel graph-partitioning 
library [9], to produce a static decomposition at simulation start up. (This same 
choice has been made by the developers of MUPHY for comparable problems [8].) 
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As our systems get larger, the demands placed on the decomposition algorithm will 
grow. 
 
The domain decomposition also affects the performance of the visualisation 
subsystem. Ideally this should be taken into account by the decomposition 
algorithm, in order to co-optimise the whole simulation. 

 
Dynamically changing the domain decomposition during the simulation, either in 
response to variation in the workload or node availability, is a theoretically attractive 
option. This has been implemented by, for example, the Charm++ project, used by 
the NAMD molecular dynamics code and would delegate much of the work of 
domain decomposition to the API and run-time system. While this might 
significantly reduce the code complexity of HemeLB it would require significant 
development effort and is unlikely to be completed within the timescale of CRESTA. 
However it would require a large redevelopment of HemeLB. 

 
HemeLB currently used MPI-IO for reading its geometry data and writing snapshots 
of the simulation state. The geometry files are block-decomposed and each task 
reads only the (variable-length) blocks for which it is assigned responsibility. The 
snapshot files are currently a simple custom binary format, written with collective 
MPI-IO functions. We expect to replace this with a more sophisticated format 
through the use of a library, such as HDF. 

 
Our pre-processing tool is currently a workstation level application, that uses VTK  
[13] to convert a description of the surfaces of the vasculature into our custom 
format. This is currently only practical for systems with less than approximately 108 
lattice points, at least two orders of magnitude below an exascale system. We will 
consider how this can be parallelised across a smaller cluster. 

3.6.6 Multiscale 
HemeLB forms part of wider efforts in computational physiology. HemeLB will 
interact with other instances of HemeLB running at different scales, with simpler 
one-dimensional models of the remainder of the circulatory system, and with 
models of surrounding solid tissue. HemeLB’s involvement with the Virtual 
Physiological Human (VPH) [14] and Multiscale Applications on European e-
Infrastructures (MAPPER) [15] projects is a major part of this effort.  
 
Tools to support multiscale modelling, (i.e. to support interaction between different 
programs), on exascale resources will therefore be important for HemeLB. 
Visualisation, decomposition, and introspection tools must have APIs generic 
enough to work not just with HemeLB, but also with a heterogeneous variety of 
application codes, so that multiple codes may be executed, visualised and 
evaluated together. 
  
Different components of a multiscale simulation may exist on distinct, spatially 
separated exascale resources, so support for wide-area exascale computing will be 
necessary. Exascale operating systems must support fluent deployment of multiple 
codes using a variety of languages, paradigms, and approaches. 
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4 Conclusion	  
In conclusion, exascale will set a lot of challenges on data handling like pre- and post-
processing, visualization, meshing, etc. These challenges consist in the vast amount of 
data to handle, but also the usefulness of visually inspecting the data. Furthermore 
profiling tools and debuggers will have to cope with an enormous amount of tasks.  
Existing libraries and algorithms will also face new types of challenges. Finally, the 
‘fault-tolerance’ problem is still largely unresolved including a realistic estimate of how 
severe it may become.   
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