

Copyright © CRESTA Consortium Partners 2011

D2.2.1	 –	 Simulation	 and	 modeling	
exascale	 technology	

WP2:	 Underpinning	 and	 cross-‐cutting	
technologies	

Due date: M12

Submission date: 30/09/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization UEDIN

Version: 2.0

Status Final

Author(s): Stephen Booth (UEDIN)

Reviewer(s) Achim Basermann (DLR), Derek Groen (UCL)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 29/08/2012 First version of the deliverable Stephen Booth (UEDIN)

1.0 31/08/2012 Version for review Achim Basermann (DLR),
Derek Groen (UCL)

2.0 14/09/2012 Addressed internal reviewers
comments

Stephen Booth (UEDIN)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 GLOSSARY	 OF	 ACRONYMS	 ...	 2	
3	 MOTIVATION	 ...	 3	

3.1	 THE	 NEED	 FOR	 MODELS	 AND	 SIMULATION	 ...	 3	
3.2	 ABSTRACT	 MODELS	 AND	 DESIGN	 ...	 3	

4	 MODELS	 FOR	 THE	 EXASCALE	 ..	 5	
5	 SIMULATION	 ..	 7	

5.1	 TRACE	 DRIVEN	 SIMULATION	 ...	 7	
5.2	 LIBRARY	 DRIVEN	 SIMULATION.	 ..	 7	
5.3	 SKELETON	 DRIVEN	 SIMULATION.	 ...	 8	
5.4	 SIMULATION	 TOOLS	 ...	 9	

5.4.1	 DIMEMAS	 ..	 9	
5.4.2	 BigSiM	 ...	 9	
5.4.3	 µπ/xSIM	 ..	 9	
5.4.4	 SST/SST-‐macro	 ..	 10	

6	 FFT	 CASE	 STUDY	 ...	 11	
6.1	 CONCLUSIONS	 FROM	 THE	 CASE-‐STUDY	 ...	 13	

7	 CONCLUSIONS	 ...	 15	
8	 REFERENCES	 ..	 16	

Index	 of	 Figures	
Figure 1	 DAG representation of a computation .. 6	

Figure 2 DAG representation of a 24 FFT algorithm ... 11	

Figure 3 DAG representation of a (22 x 22) 2D FFT .. 12	

Figure 4 Simulated performance of FFT benchmark .. 13	

	 	

© CRESTA Consortium Partners 2011 Page 1 of 16

1 Executive	 Summary	
Simulation and modeling are important tools in the development of exascale systems.
There are very few other mechanisms for evaluating our designs for exascale hardware
and software other than developing models of their behavior and simulating these
models in a computer. The behavior of both hardware and software needs to be
modeled.

In the early stages of the design process these models need to be quite simple and
abstract. This allows us to develop and evolve our designs quickly and efficiently. If we
attempt to use overly complex models in these early design stages then we will waste
time and resources performing overly detailed simulations of design choices that will be
abandoned before the final system is built.

Current thinking about exascale hardware design is that these designs will be highly
constrained by system power consumption. To keep power consumption within
acceptable levels exascale systems will need to utilize very high degrees of parallelism
and the performance of their communication systems may also have to be limited. This
implies that we should be using software models that explicitly capture the available
parallelism and the communication requirements of an algorithm. One way of capturing
this information is to consider modeling the parallelizable sections of the algorithm as
directed acyclic graphs.

Application behavior can be simulated at a high level by simulating the communication
pattern of the application. This allows the behavior of the application to be extrapolated
to different (possibly theoretical) hardware platforms. This allows us to explore the
behavior of applications on exascale hardware well before such hardware becomes
available.

Various different approaches to application simulation exist. One particularly interesting
approach is the use of simple skeleton applications to drive the simulation. These are
lightweight simple codes intended to capture the essential behavior of larger much
more complex applications. They provide a mechanism of exploring the behavior of
new designs without the cost of first developing the design into a fully functional
application. As this approach aims to capture the communication pattern rather than
the details of the computational sections it provides a mechanism to develop a directed
acyclic graph model into a form that can be simulated.

A number of simulation platforms exist that are suitable for this kind of simulation.
These can give useful insights into the limitations that the network imposes on
application performance. Many of these platforms are explicitly targeting the
development of exascale systems. Though these simulation tools are useful they are
fairly complex research tools and can be quite difficult to use.

© CRESTA Consortium Partners 2011 Page 2 of 16

2 Introduction	
This report looks at the role of modeling and simulation in the development of exascale
hardware and software.

Section 3 describes the motivation for using modeling and simulation in the
development of exascale systems and the role these can play in the design process.

Section 4 discusses what types of model are appropriate for the current stage of
exascale system development.

Section 5 investigates the various types of simulator that might be useful in this
process and some of the available software packages.

Section 6 is a case study applying some of the tools and techniques discussed in this
report to the FFT algorithm.

2.1 Glossary	 of	 Acronyms	
Crony Definition
DES Discrete Event Simulation
PDES Parallel Discrete Event Simulation
DAG Directed Acyclic Graph
MPI Message Passing Interface
OTF Open Trace Format
FFT Fast Fourier Transform

© CRESTA Consortium Partners 2011 Page 3 of 16

3 Motivation	
3.1 The	 need	 for	 models	 and	 simulation	
In order to achieve exascale science we will require Computers capable of running at
exascale performance levels. We also require codes and system software that are
capable of utilizing these machines effectively. Neither of these exists at the current
time so will need to be designed and built over the next few years. Inevitably the
development processes for hardware and software will have to take place in parallel.
This introduces a potential problem, as the target hardware will not be available while
the software is being developed. This makes it difficult to evaluate how the new codes
will run on real exascale hardware. Similarly hardware designers will be trying to
anticipate the requirements of software that does not yet exist. The normal approach to
understanding the behavior of any system that cannot be observed directly is to build a
model of the system and to use the model to predict the behavior of the system.
Frequently the model is too complex to allow analytic calculations based on the model.
In these cases we simulate the model in a computer and observe the behavior of the
simulation. It therefore seems sensible to attempt to model and simulate the behavior
of exascale hardware and software.

The other obvious way of approaching this problem is to assume only incremental
changes in hardware and software. Software developers can assume that future
machines will behave as larger versions of current systems and hardware designers
can assume that future code requirements may be extrapolated from the behavior of
current codes. Even when taking this conservative approach, simulation is still a very
useful tool as it provides a mechanism to perform these extrapolations to systems
larger than those currently available.

If we wish to consider more radical and disruptive changes in hardware architecture
then software developers can use models of possible exascale hardware designs and
can simulate code running on these designs in order to evaluate how these designs will
impact the behavior of their codes.

Similarly if we wish to consider more radical and disruptive changes in software,
including application code and system software, then the hardware designers can use
models of these possible exascale software stacks in order to evaluate the suitability of
their designs for these new requirements.

If we want to consider radical and disruptive changes in all areas then is seems logical
to use a co-design approach where the overall design space is explored as a
coordinated activity using models of both hardware, applications and system software.

3.2 Abstract	 models	 and	 design	
Any design activity proceeds via a series of candidate designs. Each design needs to
be evaluated in some way to determine if the design is a good one or if it contains flaws
or inefficiencies that need to be fixed in the next design iteration. This requires some
model of the behavior of the design in order to perform the evaluation. Designs and
models are therefore very closely related.

Designs (and their associated behavioral models) can exist at various levels of detail
and complexity ranging from a single power point slide up to detailed design drawings
and full source code listings. Even though these fully detailed designs will be necessary
eventually, simple abstract and low-detailed designs have an important part to play in
the design process. Frequently when a problem is discovered during the design
process it is necessary to backtrack to an earlier design in order to pursue a different
design choice. When this happens much of the design effort (and the modeling and
simulation effort) expended on the abandoned design choice is wasted. However if the
possible design choices can be explored and partially evaluated early in the design

© CRESTA Consortium Partners 2011 Page 4 of 16

process, using simple abstract designs and models, it might be possible to identify
such problems at this early stage. If we can use relatively inexpensive abstract models
to identify problems then the amount of effort being wasted will also be relatively low. If
the same flaw is not detected until much later in the design process, when the design
has become more detailed, then cost of fixing the problem will probably be substantially
greater.

It is therefore useful to have a range of different models at different levels of
abstraction. Simple lightweight and highly abstract models are needed to evaluate early
designs. As the design process proceeds and designs become more detailed newer
more detailed models will also need to be developed in order to evaluate them. When
modeling software, these abstract early models need to capture the essential
characteristics of the algorithm with more implementation specific details being added
later in the process.

These need to be parameterized models. Parameters typically represent design
choices such as the number of processors, clock frequency or the size of problem
being simulated. They may also represent characteristics that would be derivable from
a more detailed model but need to be added as an estimated parameter in simpler
models.

If a design is expressed in a formal well-defined syntax it is often possible to
automatically extract a behavioral model from the design. For example a simulation of
an electronic circuit may be automatically generated from a VHDL circuit specification.
Program source code can also be thought of as a fully specified design that the
compiler uses to build an executable. Compiler based technology can also be used to
extract a behavioral model of the software. Unfortunately such well-defined designs are
typically only available quite late in the design process and the tools needed to extract
the behavioral models are complex software products in their own right and will require
significant effort to develop.

© CRESTA Consortium Partners 2011 Page 5 of 16

4 Models	 for	 the	 exascale	
Because the space of possible models is very large the first thing we need to consider
is what kind of models are most appropriate for the current stage of development of
exascale systems.

Current exascale hardware designs are very abstract; the key details of current straw-
man proposals for exascale systems can be conveyed in a handful of PowerPoint
slides. Nevertheless simple models of these very rough designs have been sufficient to
identify a number of critical constraints on how exascale systems will be built which in
turn place constraints on the software designs and inform the types of corresponding
model that we should be using to represent software. One key constraint on practical
exascale hardware seems to be a limit on the total power consumption of the system.
This implies that models of power consumption are as important as the performance
models. There seems to be unanimous agreement that processor clock frequencies
cannot be allowed to increase much beyond the current GHz frequencies so exascale
performance can only be achieved for applications with an inherent parallelism of
O(109). In addition the power costs of data movement are also expected to become a
significant part of the overall power budget so the communication capabilities of
practical exascale systems will need to be limited to keep this power consumption in
check. Models of exascale algorithms/software will therefore need to pay particular
attention to potential parallelism and data movement patterns.

Most proposed exascale hardware designs assume multiple levels of hardware
concurrency with a high degree of on-node parallelism (e.g. SIMD instruction sets and
multiple cores connected by shared memory) as well as a high degree of parallelism
between nodes (i.e. a large number of nodes). Some proposals assume almost as
much parallelism within a node as between nodes.

Traditionally, algorithms are described in terms of their complexity O(n), O(n.log(n)) etc.
This can be thought of as an extremely simple parameterized behavioral model that
only considers the total number of operations to be performed. While this would be
appropriate for computer architectures where the performance is primarily limited by
the rate that instructions can be issued; it is far too simple for our purposes as it
ignores both parallelism and communication. A more complex, but more informative,
approach is to model algorithms as directed graphs, where the nodes of the graph
represent computations and the edges of the graph represent data dependencies.
While graphs containing cycles are required to represent a general algorithm, for
example an iterative or time-stepping algorithm, the parallelizable sections of the
algorithm can always be represented by Directed Acyclic Graphs (DAGs). Using such a
representation makes the available parallelism explicit (the width of the graph) as well
as capturing the essential communication pattern (see Figure 1 Example of a DAG
representation of a computation).

Quite simple, but nevertheless informative behavioral models, can then be built by
modeling the hardware in terms of a network of computational elements and
decomposing the nodes of the graph onto the compute elements. Time and energy
costs can be assigned to computation on the nodes and messages passing through the
network. Though still relatively simple this kind of model will quickly become too
complex to easily extract performance predictions without simulating the model in a
computer. This is particularly necessary when trying to understand contention for a
shared resource.

© CRESTA Consortium Partners 2011 Page 6 of 16

Figure 1 Example of a DAG representation of a computation

The DAG representation of an algorithm can also form the basis of a model of the on-
node parallelism. The behavior of the memory system will be hard to evaluate in early
abstract models as small changes in the cache architecture or the memory layout can
have a significant impact on performance. This means that the hardware and software
designs will have to be very detailed to allow this to be simulated to any accuracy and
can therefore only be considered much later in the design process. Nevertheless a
simple DAG representation of the algorithm does allow the degree of on-node
concurrency in the hardware design to be compared with the amount of intrinsic
parallelism available in the on-node fragment of the DAG. In the early stages of design
it seems logical to concentrate on modeling and simulating the inter-node behavior of
the system.

Work

Work

Work

Work

Work Work

Work Work

CPU-1

CPU-2

CPU-3

© CRESTA Consortium Partners 2011 Page 7 of 16

5 Simulation	
While it might be possible to perform some design evaluations by direct analysis of the
model there are many cases where this is too difficult and the model will need to be
simulated in a computer. Historically there have been two main use-cases for
simulators of HPC systems.

Highly detailed simulators have been used to emulate new machine architectures on
existing hardware as part of the final design stages. These simulations typically
emulated individual machine instructions running full applications compiled for the
target architecture. These simulations run very slowly so there is always a practical
limit on how much use can be made of detailed simulations of this type. Currently we
are far too early in the design process for exascale systems to be able to build
sufficiently detailed models to utilize simulations of this type. In addition a highly
detailed simulation of an exascale system would itself be a challenging computational
problem, possibly beyond current systems.

The second main use case is as a part of application performance analysis. These
kinds of simulators typically work at a much lower level of detail and concentrate on
simulating application communications. This makes them more suitable for our current
purposes.

5.1 Trace	 driven	 simulation	
Many HPC performance analysis packages such as Vampir [1] Paraver [2] Tau [3] and
Scalasca [4] can generate application performance traces. These performance traces
typically contain detailed information about every MPI message sent by the program as
well as data from performance counters about the computational requirements of the
code. This can then be used to construct a behavioral model of the application that can
then be simulated using course-grain simulators such as Dimemas [5] and sst-macro
[6] to predict the performance of the application on various different kinds of hardware
(real or theoretical). These are equivalent to the DAG based models discusses in
Section 4. The performance counter data is used to generate a model of the
computations and the MPI message data is used to generate a model of the
communications. The main use of this kind of simulation is to gain insight into the
behavior of applications. For example the sensitivity of application performance to
communication bandwidth and latency can be explored by performing a series of
experiments varying the corresponding simulation parameters. This is a very powerful
technique for modeling existing application codes as the models are automatically
extracted from existing applications. However there are a number of limitations to this
technique.

• Many of the important model parameters (such as the number of processors
and the problem size) are represented as input parameters of the application
being traced so it is only possible to generate a trace corresponding to an
exascale problem running on a realistic number of processors by running the
same problem on a lesser machine using significantly more MPI tasks than
processors.

• Fully functional application codes are required to generate the traces so new
algorithms and approaches need to be fully coded before they can be evaluated
via simulation.

• The trace data can quickly become very large making it difficult to simulate
large systems for long periods of time.

5.2 Library	 driven	 simulation.	
Library driven simulators attempt to address the large size of the trace data by coupling
the application directly to the simulator rather than recording simulated trace data and
simulating it at a later time. As the applications being simulated are typically large
distributed memory codes, library driven simulators are typically implemented as

© CRESTA Consortium Partners 2011 Page 8 of 16

distributed Parallel Discrete Event Simulators (PDES) that are linked into the
application. The simulator either replaces or is layered on top of the usual MPI library.

Using a distributed simulator also makes it easier to scale to very large simulations of
very large numbers of virtual processes. Unfortunately distributed discrete event
simulation is a significantly hard problem to implement and frequently very simple
network models are used to improve the scaling behavior of the simulation.

Library driven simulation typically only simulates the network and relies on running the
full application to provide information on the computational sections and to drive the
network simulation. When extrapolating to very large systems this requires very large
numbers of MPI tasks to be run on each node of the host system. Some of these
simulation environments attempt to reduce the costs associated with this over-
subscription by implementing the MPI tasks as threads instead of processes. This can
make porting applications to these environments difficult for large and complex codes.
Running full application codes might be expected to provide a perfect simulation of the
computational portions of the code. In practice, competition for memory resources
between MPI tasks on the same node will compromise the accuracy of the results.

5.3 Skeleton	 driven	 simulation.	
The authors of the sst-macro simulator [6] have developed an approach that addresses
many of the problems associated with the other two approaches. When using sst-
macro the model can be defined using “skeleton applications”. These are very
simplified code fragments intended only to generate the pattern of MPI calls
corresponding to the behavior of much more complicated full applications but requiring
significantly less resources to execute. Skeleton applications need to duplicate enough
of the control logic from the full application to generate the correct communication and
computation patterns but instead of actually implementing these operations library calls
are used to drive the behavior of the simulation engine.

Skeleton driven simulation is closely related to library driven simulation except that the
skeleton is not attempting to perform the actual calculation only to drive a simulation of
its performance. Both the communication and computation parts of the application are
simulated. This reduces the overall cost compared to adding a simulation overhead on
top of running the actual application.

Despite being simpler than full application codes, representative skeleton applications
nevertheless require significant effort to develop. The control and communication logic
of the skeleton application may need to be very complex. In fact it needs to be of
equivalent complexity to the control and communication logic of the target application.
This is inevitable if the skeleton is to accurately generate a representative pattern of
communications. On the other hand it should be possible to use a very simplified model
of the computational parts of the application.

For existing applications it is frequently possible to use conditional compilation to allow
a single set of source code to be compiled as either the full application or a
representative skeleton. Even though this does not allow lightweight model
development it does allow much larger simulations to be attempted than would be
practical than using a trace file to drive the simulator. As an added advantage the
performance characteristics of additional functionality being added to the code can be
first explored by adding it in skeleton form. If the simulation results look promising this
skeleton can then be extended to support the computational components needed to
implement the new functionality.

Where a set of applications use very similar common communication patterns (for
example boundary communication) then it might be possible to develop a single
parameterized skeleton application that can represent any of the applications from the
set.

© CRESTA Consortium Partners 2011 Page 9 of 16

5.4 Simulation	 tools	
Simulation tools are highly complex pieces of software that take significant amounts of
resources to develop. It therefore seems prudent to use existing simulation software
where possible. This section is a survey of some of the existing software packages
capable of simulating HPC applications.

5.4.1 DIMEMAS	
Dimemas [5] is a trace driven simulator developed by the Barcelona Supercomputer
Center and intended for application analysis. It can operate in a trace-to-trace mode
where the output of the simulation is a perturbed trace file that can then be used as
input to trace visualization tools. It is primarily intended to work with the BSC Paraver
trace visualization tool but these traces can be converted to the Open Trace Format
(OTF) for use with other tools such as Vampir.

The default network model for Dimemas is a fairly abstract linear model. Point to point
communication is modeled using parameters such as latency, bandwidth and link
contention. However contention between messages is modeled using a simple
“shared-bus” model. It is also possible to add explicit point-to-point communication links
between nodes that allows a more accurate representation of communication networks.

Separate (very simple) models are used to model collective communication giving a
choice of constant/logarithmic/linear scaling of the fan-in/fan-out stages of each
collective.

It is also possible to use the Dimemas replay engine to drive much more sophisticated
network simulators such as the IBM Venus network simulator [7]. This simulator is in
turn based on the commercial Omnest [8] network simulator.

Dimemas is promoted as a performance analysis tool rather than a research simulator
so it comes with a GUI interface. Unfortunately this GUI only provides a mechanism to
edit the complicated simulator configuration file so the tool remains difficult to use.

The source codes for the Paraver/Dimemas tools are available under the LGPL. This
package is a mature tool but is still being maintained with the most recent update July
2012.

5.4.2 BigSiM	
BigSIM [9] is a family of simulator/emulator packages developed by the Department of
Computer Science University of Illinois. It is explicitly targeting the development of
future extreme scale applications.

This code does not provide support for general MPI programs but focuses on emulation
and simulation of applications written using the Charm++ and AMPI libraries (also
developed at UIUC). However within this limitation it seems to support a wide variety of
features.

The BigSim Emulator allows large Charm++ or AMPI program runs to be emulated on
much smaller machines, this allows debugging and testing and generation of tracefiles
for performance simulation.

The BigSim Simulator is a parallel trace-driven discrete event simulator. It supports a
variety of network models ranging from very simple latency models to complex models
of the network fabric.

The BigNetSim package provides detailed network simulation models.

5.4.3 µπ/xSIM	
These are similar but independent library driven simulator packages developed at Oak
Ridge national laboratories. Though the xSIM simulator has been described in the
literature [10] only the µπ [10] package appears to be available for download.

The µπ package uses a very simple latency bandwidth network model. The xSIM
package seems to support a slightly more complex model where message latency is

© CRESTA Consortium Partners 2011 Page 10 of 16

adjusted based on the simulated network topology. xSIM also maps MPI processes
onto threads to allow a higher number of MPI processes to be simulated. A clever
linker based mechanism is used to prevent this implementation from breaking
application codes that use global variables. It is not clear if either package is currently
under active development.

5.4.4 SST/SST-‐macro	
These are a family of simulation tools developed by the Sandia national Laboratories.
SST stands for Structural Simulation Toolkit. The SST is a toolkit for performing
simulation at various levels of detail up to full simulation of HPC systems including
accurate models of both CPUs and networks. The toolkit is capable of integrating a
number of existing simulators such as the DRAMSim2 package from the University of
Maryland and the standard GeM5 processor simulator. The general approach taken by
the toolkit is apparently to integrate existing simulator packages as components tied
together as a distributed MPI application. It is explicitly targeting the design of Exascale
systems and the simulations of power and thermal issues are key parts of the design.

SST/macro is the macro level simulator from the SST. It can be compiled and run
independently from the rest of the SST and is a stand-alone simulation tool in its own
right. SST/macro supports both skeleton driven and trace driven simulation. Trace
driven simulation is supported by using a special skeleton application that reads and
replays the events from a trace-file. SST/macro uses its own trace file format DUMPI
and the simulator can be configured to output a modified trace as a result of the
simulation. Tools are being developed to convert the DUMPI format into Open Trace
Format (OTF) files that are readable by the majority of trace visualization tools such as
Vampir and Paraver.

SST/macro has a relatively detailed network model as the network topology is explicitly
modeled within the simulator. Within this framework a variety of different network
models are available. Even the simplest of these models are quite detailed with
messages modeled as data flows through the network with contention being handled
by apportioning the available bandwidth on each link between the active data flows.

SST/macro is a research simulator and as such is fairly complex to use. This is mainly
because the relatively detailed simulations require a complex machine description file
to define the machine being simulated. However tools exist to automatically generate
machine description files by querying the configuration of existing Cray XT systems.
Machine description files corresponding to much larger systems can also be produced
with a little more effort. Once such a configuration exists it is fairly easy to run
additional experiments on the same simulated machine.

The skeleton driven simulation approach provides a good mechanism for exploring
design choices without the overhead of developing a full application code. However this
is a more complex mode of operation than trace driven simulation.

Unfortunately the trace driven mode of operation currently has some limitations. The
trace generation library successfully captures all of the MPI calls in the application.
However some of the more obscure auxiliary MPI routines such as MPI group
operations are not currently handled by the skeleton application that replays the traces.
This prevents trace based simulation of any application that uses the missing functions.

SST-macro is under active development by with frequent updates to the source code
repository by multiple authors. While this is positive for the long term future of the
package it does mean that the software is not easy to use and is lacking
documentation in some areas. The latest release was made July 2012.

© CRESTA Consortium Partners 2011 Page 11 of 16

6 FFT	 Case	 study	
As a case study we investigate modeling and simulation of an example problem. We
selected the Fast Fourier Transform (FFT) as an example problem as an algorithm,
important for many applications, that is known to be difficult to scale but nevertheless
simple enough to be considered in detail.

The DAG representation of the FFT algorithm is the “butterfly” pattern (see Figure 2
DAG representation of a 24 FFT algorithm). As can clearly be seen from the DAG
representation a 2n FFT has a computational complexity of O(n log(n)). The algorithm
has a potential parallelism of O(n) with good load-balance but is also a non-local
algorithm requiring a high degree of data movement.

Figure 2 DAG representation of a 24 FFT algorithm

Even this simple model is sufficient for us to derive some analytic predictions about the
use of the FFT algorithm on exascale systems. In section 4 we noted that current
exascale proposals assume a level of parallelism of O(109). Even allowing for a
reasonable amount of instruction level parallelism within the computational sections
this still means that FFT calculations smaller than say 5123 will not expose enough
parallelism to make full use of an exascale system. It is therefore important when
designing exascale applications that use smaller FFTs to identify additional parallelism
outside of the FFT itself that can be used to provide the additional required parallelism.
This can be achieved by evaluating multiple independent FFTs in parallel or by
identifying some other part of the application that can be executed simultaneously with
the FFT.

In addition the number of data words being moved in each stage of the computation is
of a similar magnitude to the number of floating point operations. For this algorithm the
ability of the target platform to move data is at least as important as its ability to
perform floating point operations. To a large extent optimizing the FFT algorithm
consists of re-writing the DAG to minimize the amount of long distance communication,
keeping as many levels of the algorithm as possible either within cache or within a
node. However it is impossible to eliminate the long distance communication entirely.
The best of the current “Petascale” systems have a floating point performance
measured in Peta-flop/s but a bisection bandwidth that is only measured in Tera-
bytes/s so communication costs dominate FFT performance on these systems.

The most common use of Fourier transforms in HPC applications are as multi-
dimensional FFTs. The DAG representation of a multi-dimensional FFT is actually the
same as that of a single large FFT with the same number of input points, the two
computations only differ in terms of the phase factors applied in the computational
steps. This tells us that any implementation strategy for a multi-dimensional FFT can
be converted into a strategy for implementing large single dimension FFTs and vice-
versa.

The most common implementation strategy for parallel multi-dimensional FFTs is to
perform each dimension of the FFT in turn using node-local FFT implementations with
a communication phase between each stage to transpose the data. In terms of the
DAG representation this is a re-write of the graph to reduce the number of

© CRESTA Consortium Partners 2011 Page 12 of 16

communications that cross node boundaries. This is done by introducing an additional
data redistribution step into the graph (see Figure 3 DAG representation of a (22 x 22)
2D FFT).

Figure 3 DAG representation of a (22 x 22) 2D FFT

Where the data can be equally distributed across processors this communication step
is equivalent to a MPI MPI_Alltoall collective operation. If the data cannot be equally
distributed this corresponds to an MPI_Alltoallv operation. When using only a single
communication step this approach limits the available parallelism to the width of one
dimension of the FFT. However additional parallelism can be introduced by
decomposing the data in more than one of its dimensions or by using the equivalence
between the 1D and 2D DAG representations to split up the 1D operations. This
produces an overall communication pattern that consists of a series of all-to-all
collective communications of size pi where 𝑁!"#$% = 𝑝!! . As the computation
performed by each node of the DAG is quite small the time to execute these
communication steps will dominate performance at large processor counts. Because
optimized single node FFT libraries are highly efficient the same can be true even for
the course grain data decompositions commonly used in current HPC applications.

Where we have an analytic model of the performance of an all-to-all collective
operation this is sufficient to build an analytic model of parallel FFT performance. While
analytic models are an important part of the design evaluation process and should not
be needlessly neglected in favor of simulation the performance of real distributed FFT
operations have frequently been observed to be limited by data contention in the
network. Data contention is very difficult to address analytically so we need to resort to
simulation to investigate this.

We chose to investigate this problem using a simple FFT benchmark written using the
MPI communication library. The benchmark was configured to perform a 2563 FFT and
to attempt all possible 1 and 2 dimensional decompositions that result in a balanced
decomposition and performs 10 cycles of forward/backward FFTs for each of the
decompositions.

It quickly became apparent that many of the available simulation technologies were not
suitable for this task.

The BigSIM package is targeted at the Charm++ communication package not MPI.

The µπ package is only capable of simulating point to point communication and
currently has no support for the MPI_Alltoall collective operation used by the
benchmark. Though it would be possible to re-write the benchmark to use point to point
communication the network model is very simple (having no concept of network
topology) and would not be able to capture network contention.

The basic Dimemas simulator does support MPI_Alltoall but only through a simple
analytic model for collective communications so simulation via this tool would provide
no additional insights beyond an analytic analysis. The Dimemas/Venus simulation

© CRESTA Consortium Partners 2011 Page 13 of 16

environment would not have been much more capable but this was not available for
evaluation.

The SSTmacro simulator proved to be a good fit for this problem. It uses a fairly
detailed network model that could be capable of modeling network contention. It also
provides good support for MPI_Alltoall

A trace of the benchmark was generated using 128 processor nodes of the Hector XE6
system. S single MPI-process/thread was used per node. In this configuration there are
8 possible 1 and 2 dimensional decompositions that result in a balanced
decomposition, all of which were run within the benchmark.

This trace was then re-simulated using sst-macro configured to simulate an
approximation of the Hector system. This simulation was then re-run multiple times
varying the network_bandwidth_link and packetswitch_bandwidth_n2r parameters
in the network model. The results of these simulations are shown in Figure 4 Simulated
performance of FFT benchmark.

Figure 4 Simulated performance of FFT benchmark

The “ref.data” point shows the simulation corresponding to the network parameters of
the original XE6 system. The simulation shows that for this example, when only a
single core per node is used this point is within the region that is not limited by either of
the network parameters.

6.1 Conclusions	 from	 the	 case-‐study	
In the case of the FFT the DAG representation of the algorithm does form a useful
model of the algorithm that can provide insights into the fundamental limits on possible
parallel implementations. Even very simple and regular operations like the FFT can
have quite complex DAG structures with many possible mappings onto compute
nodes. The only practical way of generating these is via a program. This can naturally
be mapped onto the skeleton driven approach to simulation.

All of the available simulation packages have limitations in terms of the operations they
support and the sophistication of their network models.

The sst-macro simulator seems able to capture useful details about the interaction
between the application and the network. This is primarily intended for skeleton driven

© CRESTA Consortium Partners 2011 Page 14 of 16

simulation and the support for trace driven simulation is still somewhat limited. Though
the network model is quite detailed it is quite difficult to extract useful statistics from
trace driven simulations in the current version of the code. Though the dumpi trace
library successfully generates traces for all MPI calls not all of these are fully supported
by the trace reader.

© CRESTA Consortium Partners 2011 Page 15 of 16

7 Conclusions	
 As part of the development process of exascale systems it is important that we
develop behavioral models of our designs in order to be able to evaluate their
effectiveness. Models of the software components of the systems are at least as
important as models of the hardware.

These models have to evolve together with the designs, becoming more detailed and
more complex as the designs become more detailed and more complex.

As the designs/models become more complex we need to simulate the models in order
to evaluate the designs.

The energy consumption of exascale systems is at least as important as their
performance so our models will need to capture both aspects of their behavior.

Available parallelism and intrinsic communication requirements are two of the key
aspects of an algorithm that we should try to capture in our models. Modeling an
algorithm using directed acyclic graphs seems to be a useful and informative way of
capturing this information.

The skeleton driven approach to simulation appears to provide a route to performing
simulations of exascale systems at relatively modest cost in terms of development time
and simulations resources. It also seems to be a practical way of progressing from a
DAG based model to a model that is capable of being simulated.

© CRESTA Consortium Partners 2011 Page 16 of 16

8 References	
	

[1] vampir, “vampir,” 2012. [Online]. Available: http://www.vampir.eu/. [Accessed 12
07 2012].

[2] BSC, “Paraver,” 2012. [Online]. Available: http://www.bsc.es/computer-
sciences/performance-tools/paraver/. [Accessed 12 07 2012].

[3] University of Oregon, “Tau,” [Online]. Available:
http://www.cs.uoregon.edu/Research/tau/home.php. [Accessed 12 07 2012].

[4] fz-juelich, “scalasca,” [Online]. Available: http://www.scalasca.org/start.html.
[Accessed 12 07 2012].

[5] BSC, “Dimemas,” [Online]. Available: http://www.bsc.es/computer-
sciences/performance-tools/dimemas. [Accessed 12 07 2012].

[6] Sandia National Laboratories, “SST macro,” [Online]. Available:
http://sst.sandia.gov/about_sstmacro.html. [Accessed 12 07 2012].

[7] “Venus - Interconnection Network Simulation,” IBM, [Online]. Available:
http://researcher.watson.ibm.com/researcher/view_project.php?id=1071.
[Accessed 23 August 2012].

[8] “Omnest,” [Online]. Available: http://www.omnest.com/. [Accessed 23 August
2012].

[9] UIUC, “Runtime Systems and Tools: BigSim - Simulating PetaFLOPS
Supercomputers,” [Online]. Available: http://charm.cs.uiuc.edu/research/bigsim.
[Accessed 14 09 2012].

[10] S. Bohm, “xSim: The extreme-scale simulator,” in High Performance Computing
and Simulation, 2011.

[11] K. Perumalla, “µπ,” 08 06 2009. [Online]. Available:
http://www.ornl.gov/~2ip/mupi/index.htm. [Accessed 14 09 2012].

	

