

Copyright © CRESTA Consortium Partners 2011

D2.3.1	
 –	
 Operating	
 systems	
 at	
 the	

extreme	
 scale	

WP2:	
 Underpinning	
 and	
 cross-­‐cutting	

technologies	

Due date: M18

Submission date: 31/03/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization UEDIN

Version: 1.0

Status Final

Author(s): Dan Holmes (UEDIN)

Reviewer(s) Erwin Laure (KTH), Lorna Smith (UEDIN)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 27/02/2013 Draft version of the deliverable Dan Holmes (UEDIN)

0.2 19/03/2013 Small revisions following review Dan Holmes (UEDIN)

1.0 20/03/2013 Final version of the deliverable Dan Holmes (UEDIN)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 PURPOSE	
 ..	
 2	

2.2	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 3	

3	
 THE	
 CAUSES	
 OF	
 POOR	
 OS	
 SCALING	
 ..	
 4	

3.1	
 SYSTEM	
 CALLS	
 ...	
 4	

3.2	
 INTERRUPTS	
 ..	
 4	

3.3	
 SYSTEM	
 SERVICES	
 ..	
 4	

3.3.1	
 Virtual	
 Memory	
 ...	
 4	

3.3.2	
 Scheduling	
 ..	
 5	

4	
 PAST	
 AND	
 PRESENT	
 HPC	
 OPERATING	
 SYSTEM	
 DEVELOPMENTS	
 ...	
 6	

4.1	
 SINGLE	
 LIGHT-­‐WEIGHT	
 KERNEL	
 ..	
 6	

4.2	
 SINGLE	
 FULL-­‐WEIGHT	
 KERNEL	
 ...	
 8	

4.3	
 MULTIPLE	
 KERNELS	
 ...	
 9	

4.4	
 DISRUPTIVE	
 TECHNOLOGIES	
 ...	
 10	

5	
 LINKS	
 TO	
 OTHER	
 AREAS	
 WITHIN	
 CRESTA	
 ..	
 12	

6	
 CONCLUSIONS	
 ...	
 13	

7	
 ACKNOWLEDGEMENTS	
 ..	
 14	

8	
 REFERENCES	
 ..	
 15	

Index	
 of	
 Figures	

Figure 1: Overview of CNK Architecture in BG/P [19] .. 7	

Figure 2: Overview of system call forwarding in BG/P [19] .. 8	

Figure 3: FusedOS architecture (left) and PEC management interface (right) [24] 10	

Figure 4: Performance of FTQ benchmark in different operating environments [24] ... 10	

Index	
 of	
 Tables	

Table 1: Efficiency of Machines in the November 2012 Top 500 List 2	

© CRESTA Consortium Partners 2011 Page 1 of 17

1 Executive	
 Summary	

Standard commodity operating systems have evolved to serve the needs of desktop
users and business application servers, which have very different requirements to HPC
systems and applications. In general, commodity operating systems are not fit-for-
purpose, even for current petascale machines, without extensive customisation.

The impact of operating system activities on application performance is not fully
understood and is hard to predict. Many HPC systems are configured or customised by
a trial-and-error approach, dealing with particular performance problems as they occur,
rather than by applying a systematic method.

Specialised operating systems, developed specifically for HPC machines, trade rich
functionality for high performance. Scalability is achieved by only implementing a
subset of “normal” operating system services, which impairs the usability of the system
by application programmers.

Design decisions for specialised HPC operating systems are often influenced by, and
sometimes compromised by, design decisions for novel HPC hardware. One example
is that the BlueGene/L hardware did not provide cache-coherency between the two
processing cores in a node, which prevented the operating system from supporting
shared-memory.

The desire to make specialised systems more usable encourages the re-introduction of
functionality that can have a negative effect on performance and scalability. Thread
scheduling was not supported by the BlueGene/P operating system but has been re-
introduced in the BlueGene/Q operating system. This increases usability for application
programmers but introduces a source of unpredictable load-imbalance that could
reduce scalability, especially at extreme scale.

Specialised HPC operating systems have been continuously researched and
developed for at least 20 years, driven (at least in part) by emergent trends in hardware
design. Current systems demonstrate that excellent operating system scalability up to
petascale is achievable. Although it is possible for major advances to be made in
operating system development via disruptive technologies, currently there is no
consensus on the direction required.

© CRESTA Consortium Partners 2011 Page 2 of 17

2 Introduction	

The majority of systems in the most recent Top 500 list use the Linux operating system
(OS); the most recent Top 500 list [1] includes 469 entries with OS family of Linux. As
shown in Table 1, the average efficiency of the Linux systems is 66.6% (varying from
27.1% to 95.7%) whereas the average efficiency of all the non-Linux systems is 80.2%
(varying from 58.9% to 93.4%).

OS Family Average Efficiency
(inclusive)

Average Efficiency
(exclusive)

Count
(inclusive)

Count
(exclusive)

BSD Based 93.4% 67.4% 1 499

Linux 66.6% 80.2% 469 31

Mixed 83.1% 67.2% 7 493

Unix 79.3% 67.0% 20 480

Windows 75.5% 67.4% 3 497

All 67.5%

500

Table 1: Efficiency of Machines in the November 2012 Top 500 List

Linux can be classified as a Full-Weight-Kernel (FWK) operating system. The variability
in the efficiency of Linux systems reflects the wide range of customisations that are
possible, from disabling some unneeded system services to modifications in the kernel
code itself. It is reasonable to assume that customisations are only applied to an
operating system if they improve performance (or improve usability without impairing
performance) so the systems with very low efficiency (27%-50%) are likely to be
standard distributions of Linux with minimal changes, or no changes at all.

All 7 of the systems with a “Mixed” OS family use Computer Node Kernel (CNK), which
is a Light-Weight-Kernel (LWK) operating system that was developed by IBM
specifically for Blue Gene machines. The “Unix” and “Windows” systems have similar
average efficiency (79.3% and 75.5% respectively, see Table 1), which is higher than
the average efficiency for Linux systems but lower than the average efficiency for CNK
systems. The choice of a non-Linux OS for a Top 500 system is unusual and suggests
that either the system designers or the system administrators have particular
knowledge or expertise with the alternative OS, which means that the system is likely
to be highly customised, possibly for a specific workload.

The operating systems on existing Top 500 machines are either standard (not heavily
customised commodity products) – with low efficiency at scale – or non-standard
(highly customised or designed specifically for that machine) – with much higher
efficiency at scale. Various studies (e.g. [2], [3] and [4]) have shown that standard
commodity operating systems do not allow scalable applications to scale well, even up
to current system sizes, e.g. up to 10,000 nodes.

Section 3 of this document discusses and quantifies possible causes of poor scalability
of applications that are due to the operating system.

Section 4 evaluates past and current developments in operating systems, highlighting
scaling issues and attempts to address them.

Section 5 links HPC operating system issues to other areas within CRESTA.

Section 6 presents some concluding remarks.

2.1 Purpose	

The purposes of this document are as follows:

• Quantify the potential impact of the operating system on applications at scale
• Evaluate and drive developments in operating systems to address scaling issues

© CRESTA Consortium Partners 2011 Page 3 of 17

2.2 Glossary	
 of	
 Acronyms	

ABI Application Binary Interface
ANL Argonne National Laboratory
API Application Programming Interface
BG BlueGene
BGL BlueGene/L
BGP BlueGene/P
BGQ BlueGene/Q
BSD Berkeley Software Distribution
CIOD Control and I/O Daemon
CL Compute Library
CLE Cray Linux Environment
CMT Co-operative Multi-Threading
CNK Compute Node Kernel
CNL Compute Node Linux
CPU Central Processing Unit
DMA Direct Memory Access
FTQ Fixed Time Quantum
FWK Full-Weight Kernel
Gbps Gigabit per second
GLIBC GNU C Library
GPFS General Parallel File System
GPGPU General Purpose GPU
GPU Graphics Processing Unit
HPC High-Performance Computing
I/O Input/Output
INK I/O Node Kernel
IPC Inter-Process Communication
LWK Light-Weight Kernel
MPI Message-Passing Interface
NFS Network File System
OpenFOAM Open source Field Operation And Manipulation
OpenMP Open Multi-Processing
OS Operating System
PEC Power-Efficient Core
POP Parallel Ocean Program
POSIX Portable Operating System Interface [for Unix]
pthreads POSIX Threads
QCDOC Quantum Chromo-Dynamics On a Chip
QOS QCDOC Operating System
SAGE SAIC’s Adaptive Grid Eulerian
SIP Software Isolated Process
SLES SUSE Linux Enterprise Server
SMP Symmetric Multi-Processor
SPI System Programming Interface
SSH Secure Shell
STOC Single-Thread-Optimized Core
TLB Translation Look-aside Buffer
UDP/IP User Datagram Protocol/Internet Protocol

© CRESTA Consortium Partners 2011 Page 4 of 17

3 The	
 Causes	
 of	
 Poor	
 OS	
 Scaling	

All operating system activities introduce some overhead to the execution time of
applications. The noise or overhead generated by operating system activities can be
amplified or absorbed by application activities in ways that are not fully understood and
are difficult to predict.

3.1 System	
 Calls	

Some operating system activities are instigated by user applications and are necessary
for their correct execution, e.g. system calls that control hardware resources such as a
network card for communication between nodes. Here the overhead is a fixed cost per
system call due to the context switch from user-code to kernel-code, which involves
storing all CPU registers, trapping to the kernel, handling the system call, restoring the
registers and waking-up the user process. Further overheads will occur when the
system call causes the contents of the TLB or memory caches to be altered or
‘polluted’ with information that is not relevant to the application.

3.2 Interrupts	

Other operating system activities are necessary to maintain system health and
responsiveness, e.g. hardware interrupts will be generated by devices whenever an
event occurs that cannot be handled without the help of a CPU. Here the overhead is a
regular or irregular interruption for a fixed or variable length of time, depending on the
type of event.

Each type of event produces an overhead with a particular noise signature, e.g. a timer
interrupt may cause 2.5% overhead by responding to events at 1000Hz that take 25
microseconds for each response. The measured effects of various noise signatures
can be much greater at scale than expected. Recent investigations [5] to characterise
the sensitivity of representative applications to noise originating in the operating system
kernel have measured a 30% slow-down for Parallel Ocean Program (POP) [6], caused
by a 2.5% noise overhead (25 microseconds at 1000Hz), and a 50% slow-down for
SAGE [7], caused by a 2.5% noise overhead (2500 microseconds at 10Hz).

This work also demonstrates that some codes are sensitive to the frequency of
interruptions but relatively insensitive to the duration of those interruptions. It is
suggested that this may be because the application activities ‘resonate’ with the OS
kernel activities causing their effects to be ‘amplified’. In addition, it is possible for
applications to ‘absorb’ some of the noise, such as when some of the interrupts can be
handled when the system would otherwise have been waiting for messages from other
application nodes.

3.3 System	
 Services	

At present, the best way to deal with the effects of kernel noise in a FWK is to remove
or minimise the sources of noise, i.e. by disabling system services that are infrequently
used or unnecessary. Obvious examples from Linux are the print spooler daemon
(because there is no printer attached to the compute nodes) and the mailer daemon
(because the compute nodes will not send or receive email messages). It is also
common practice to restrict or regulate the demands on key operating system services,
such as virtual memory and scheduling, while an application is executing, by modifying
the application code or by setting process parameters. Another approach is core
specialisation where one or more cores are reserved for operating system services.

3.3.1 Virtual	
 Memory	

Frequent use of virtual memory by an application is undesirable because swapping
pages of data between physical memory and permanent storage (e.g. a hard disk) is
very slow. This can be avoided by the application not requesting more memory than is
physically present and available in the node. However, the overhead of translating
virtual memory addresses to physical memory addresses using the TLB cache cannot

© CRESTA Consortium Partners 2011 Page 5 of 17

be avoided by modifying application code (although some applications can be modified
to make better use of TLB locality in a similar manner to optimising data-cache use).

3.3.2 Scheduling	

Scheduling allows multiple processes to gain “fair” access to CPU resources. In
desktop or server computers, there are typically many more processes than physical
CPU cores. Complex algorithms are employed to determine which processes should
be allocated time on which processors, depending on the process priority, its current
state (e.g. waiting, busy or handling an interrupt), its recent activity, and many other
factors. Frequently, a single busy process in a multi-core computer will be shifted
between CPU cores by the scheduling algorithm to balance the load across all CPU
cores. Generally, this causes poor use of memory caches and reduces the efficiency of
the application. This can be avoided by setting an affinity mask for each application
process (and thread, if used): a restriction that only allows the scheduling algorithm to
consider certain CPU cores (e.g. a single core) for that particular process (or thread).
However, the overhead of only allocating short time-slices and re-scheduling the
process between each time-slice cannot be avoided by modifying the process
parameters or the application code.

© CRESTA Consortium Partners 2011 Page 6 of 17

4 Past	
 and	
 Present	
 HPC	
 Operating	
 System	
 Developments	

Currently, there are three approaches to producing an operating system for large-scale
HPC machines:

1. Start with a standard operating system – a full-weight kernel (FWK) – and strip it
down by removing unnecessary system activities and services.

2. Build a new minimal operating system – a light-weight kernel (LWK) – with limited
functionality, usually for specific hardware.

3. Start with two existing operating systems – a FWK and a LWK – and merge them
by modifying both so that they can inter-operate.

A fourth approach, based on a micro-kernel design combined with verifiably safe code,
offers a potentially disruptive technology.

4.1 Single	
 light-­‐weight	
 kernel	

Development of light-weight kernels at Sandia National Laboratories began in 1991
with SUNMOS. Previous work in this field, e.g. Amoeba, Mach and Chorus [8], referred
to the OS as a micro-kernel. In 1994, SUNMOS [9] was enhanced by Sandia Labs and
renamed Puma [10], which included the first implementation of the Portals
communication architecture. In 1996, Intel marketed Puma as a product called Cougar
[9]. In 1997, the Portals communication was separated from Puma and became an
independent component. In 2002, Sandia Labs created Catamount LWK [11] by porting
Cougar to Red Storm (a prototype of Cray’s XT series of machines). Catamount LWK
has since led to Catamount N-Way (CNW) [12], which has support for multi-core CPUs
and was licensed to Cray, and to OpenCatamount [13], which is a free open-source
version released by Sandia Labs. A further LWK, called Kitten [14], is currently being
developed at Sandia National Laboratories to aid research into how to better use multi-
core processors and hardware virtualisation.

The LWKs from Sandia statically allocate main memory with a large page size such
that the TLB entries are fixed addresses and the majority of them fit into the TLB
cache. This reduces the overhead of a virtual address space by reducing the number of
TLB cache misses, which would normally cause a ‘page-fault’, i.e. a significant but
unpredictable delay in accessing the requested memory location. There is also no
support for virtual memory, which eliminates the overhead of paging to and from disk.
Another advantage of static allocation of main memory is that the operating system will
not move any memory pages – each virtual address will always translate to the same
physical address. This means hardware devices that require physical memory
addresses (e.g. an Infiniband device requires the physical address for the input and
output buffers) do not require the memory page to be ‘registered’ or ‘pinned’.

Until the development of Catamount N-Way in 2008, the LWKs from Sandia did not
include multi-core support; they supported only one single-threaded user-mode
application process per node at a time. CNW introduced SMARTMAP [15], a
mechanism for implementing shared-memory by using fixed virtual address offsets to
directly access the memory of other processes. This is similar to how memory is
shared between threads within a single process. In that case, the virtual address space
for the process is inherited by all threads within that process so that all process
memory is accessible by all process threads. With SMARTMAP, the physical memory
location of the virtual address space of all processes is known by all processes. The
entire system memory is accessible to all processes although there is a distinction in
each process between the memory allocated to that process and memory that is
allocated to other processes. The similarity to multi-threaded processes extends to
both the advantage that direct memory access can be faster and the disadvantage that
code must be ‘thread-safe’, i.e. it must avoid race-conditions and simultaneous
conflicting memory accesses. Using SMARTMAP is optional so that codes, or parts of
codes, that are not thread-safe can still execute without errors.

© CRESTA Consortium Partners 2011 Page 7 of 17

The work on SUNMOS, Puma and Catamount by Sandia Labs influenced IBM’s design
and creation of a light-weight kernel, Compute Node Kernel (CNK), for the BlueGene
series of machines. The BlueGene/L (BG/L) was a successor to the QCDOC [16]
machines, for which a custom operating system, called QOS, was created. There are
many similarities between QOS [17] and current light-weight kernels, including CNK.
The QCDOC machines and its QOS operating system were designed specifically to run
a single physics application from the field of computational quantum field theory. The
operating system was deliberately restricted to support for a single process with a
POSIX-like interface with UDP/IP network connections and NFS file-system. This
model was also adopted for CNK on the BG/L (general availability 2004) [18] where all
processes are single-threaded supporting only a subset of the full POSIX interface. The
compute nodes on BG/L operate either in co-processor mode or in virtual mode,
running either one or two single-threaded processes, respectively. The two cores in
each BG/L node are not cache-coherent: all communication between processes is via
MPI, which is implemented using communication facilities provided by CNK for the
specific customised hardware networks. Multi-threading requires manual scheduling by
user code.

The design for the BlueGene/P machine (general availability 2007) [19] included a
quad-core CPU with cache-coherency that can act as a 4-way symmetric
multiprocessor (SMP) in addition to the virtual node mode and dual mode, which are
similar to virtual and coprocessor modes from the BG/L. Support was added for multi-
threaded processes, using a POSIX thread library (pthreads) or via OpenMP. Although
the “fork()” system call is not supported the “clone()” system call can be used to create
a limited number of new threads, depending on the operating mode of the compute
node.

Figure 1: Overview of CNK Architecture in BG/P [19]

The CNK for BG/P (see Figure 1) directly supports the same system calls as the CNK
for BG/L but additionally supports a large subset of standard Linux system calls,
including file I/O, sockets and signals, by forwarding these requests from compute
nodes to I/O nodes that run a full Linux operating system kernel (see Figure 2).
Dynamic linking, whilst not supported for BG/L, is allowed for BG/P applications.

© CRESTA Consortium Partners 2011 Page 8 of 17

Figure 2: Overview of system call forwarding in BG/P [19]

Some potential customers saw the restricted functionality of CNK on BG/P as too
limiting because it was difficult to re-engineer general applications that required the rich
functionality of a full-weight kernel. Project Kittyhawk [20] at IBM Research explored
the use of a micro-kernel, L4 [21], to support virtual machine instances capable of
hosting general scalable applications. The application, the Linux operating system
kernel and the required dependencies (system software and libraries) are captured in a
system image. The image can be seen as a software appliance that is duplicated and
deployed to as many compute nodes as needed to handle demand for the services
provided by the application.

The most recent version of CNK was developed for the BG/Q machines (general
availability 2012) [22]. The compute nodes in BG/Q contain 18 processor cores, each
of which supports 4 hardware execution threads via Simultaneous Multi-Threading
(SMT). Only 17 of these cores are active – the 18th is disabled and reserved to aid
fault-tolerance (if one of the 17 cores fails, the 18th core is enabled and replaces the
failed core). One of the active 17 cores is reserved for the CNK leaving 64 hardware
threads on 16 active cores for user-level applications per compute node. Shared-
memory and cache-coherency is available, enabling each node to act as a 64-way
SMP. As with BG/P, system calls that cannot be directly handled by the CNK are
forwarded to I/O nodes that run a full Linux operating system. However, more operating
system functionality has been included in the CNK for BG/Q. Threading (hardware
thread over-subscription) is now supported in CNK by a thread scheduler component.
There is no time-slicing or time-quantum-based pre-emption; threads of the same
priority are scheduled using a form of Cooperative Multi-Threading (CMT) with a
“round-robin” ordering. Higher priority threads can cause pre-emption of lower priority
threads and hardware interrupts may result in unbalanced dispatching of threads so
that there is no guarantee that all threads of the same priority will make equal progress.
This has the potential to re-introduce some of the problems normally associated with
full-weight kernels including load-imbalance, kernel-induced noise and the amplification
of these overheads for large-scale applications.

4.2 Single	
 full-­‐weight	
 kernel	

Four of the machines in the current Top 500 list use a Microsoft Windows operating
system. Two entries list the OS as Windows HPC 2008 (ranks 132 and 183), one lists
the OS as Windows Azure (rank 165) and one entry includes “Linux/Windows” in the

© CRESTA Consortium Partners 2011 Page 9 of 17

description of the machine – although the OS is listed as Linux (rank 17). Microsoft
operating systems have a significant market share in some sectors and the HPC and
Azure versions of Windows are therefore a natural choice for some supercomputer
owners. However, being closed-source and proprietary software, manufacturers cannot
enhance it to take advantage of novel hardware nor can system developers adapt it to
better support a particular application or programming model. More customisation
options are provided in the recently released Windows Server 2012 than were available
in the previous version, Windows Server 2008.

Linux has displaced UNIX and, subsequently, all other operating systems to become
the dominant choice for machines in the Top 500 list. It can be deployed almost entirely
unchanged or it can be extensively customised. It has many advantages but, from a
scaling point-of-view, it is challenging to achieve performance results commensurate
with light-weight kernels. Of particular note is Cray Compute Node Linux (CNL), which
is part of Cray Linux Environment (CLE) – the operating system for the top-ranked
system in the current Top 500 list (as well as 17 other entries). This offers the
programmer a familiar Linux environment, based on SUSE Linux Enterprise Server
(SLES), with a stripped-down, low-noise Linux kernel on the compute nodes.

ZeptoOS [23] is a HPC operating system research project at the Argonne National
Laboratory with a working implementation for BG/P. It is intended to be “the small Linux
for big computers” and is based on an optimised compute node kernel derived from a
standard Linux kernel combined with a kernel for I/O nodes derived from the I/O Node
Kernel (INK) for BG/P. ZeptoOS enables more of the features of standard Linux, e.g.
the SSH daemon is enabled on I/O nodes and a user can connect from an I/O node to
compute nodes via telnet, requiring a telnet daemon in the compute node kernel. This
increases the risk that background kernel activities will cause a noise signature that is
amplified at scale by some applications. The telnet connection can be used to attach a
debugger to one or more executing compute node processes. However, if the support
and use of telnet in the compute node kernel causes amplified noise that slows the
application execution by a factor of 20 or more (as in the POP application example in
section 3.2), then the information gathered by the debugger may be rendered useless.

4.3 Multiple	
 kernels	

FusedOS [24] is a new HPC operating system currently under development by IBM
with a prototype for BG/Q machines. It combines the two traditional approaches to HPC
operating system development by fusing a LWK and a FWK (the architecture is shown
on the left of Figure 3). IBM has created a user-level LWK, called Compute Library
(CL), which is a port of CNK that is suitable for execution in user-mode rather than
supervisor-mode. This is fused with a standard Linux kernel that is slightly modified to
support the interaction of CL and Linux. FusedOS distinguishes two types of processor:
a Single-Threaded-Optimised Core (STOC), which has the full capability of a modern
CPU core, and a Power-Efficient Core (PEC), which may have restricted capability
(such as a GPGPU core) and therefore may not be able to support a fully functional
operating system. The execution model on PECs (shown on the right of Figure 3) is
similar to normal compute nodes on BG/Q using CNK: the application code runs with
full access to the hardware and no interference from the kernel or other application
processes until it makes a system call. All system calls from an application running on
a PEC are forwarded to a CL running as a user-mode process in Linux on a STOC,
which handles the system call and returns execution back to the PEC. This closely
resembles the model of a system call on a BG/Q compute node being forwarded by the
CNK to the INK on an I/O node, which handles the system call and returns control back
to the compute node.

© CRESTA Consortium Partners 2011 Page 10 of 17

Figure 3: FusedOS architecture (left) and PEC management interface (right) [24]

The results (presented in Figure 4) from the Fixed Time Quantum (FTQ), or Selfish
Benchmark [25], demonstrate that application processes running on PEC processors in
FusedOS are given a higher proportion of compute cycles than processes running on
the same hardware but in a customised HPC-ready Linux. As expected, code running
on PEC processors experiences no interference from kernel activities, which eliminates
the possibility of kernel noise being amplified at scale.

Figure 4: Performance of FTQ benchmark in different operating environments [24]

4.4 Disruptive	
 Technologies	

Microsoft are currently developing Singularity [26], a research operating system that
may replace the NT kernel in future releases of the Windows product-line. The source-
code for several different variations of this OS has been released under a shared-
source license. Singularity is written pre-dominantly in safe managed-code (using
multiple .Net languages [27][28]) and requires that all applications are also written in
safe managed-code. This increases the reliability and verifiability of the kernel, drivers
and all application binaries both at installation and at runtime. However, from the point
of view of the HPC community, this requirement represents a major shift in both
programming language and programming paradigm.

© CRESTA Consortium Partners 2011 Page 11 of 17

Using code that is verifiably safe at compile-time allows Singularity to rely on software-
isolated processes (SIPs) rather than hardware protection for process isolation. This
can reduce the cost of system calls and all other inter-process communication by up to
33% [29]).

Singularity is not currently intended to be an operating system for a distributed-memory
HPC machine – although many of design goals overlap with current goals in exascale
HPC research, in particular fault-tolerance and efficient support for multi-core, many-
core and hybrid hardware architectures.

Singularity can be configured as a true micro-kernel (similar to MINIX 3 [30]), a mono-
lithic kernel (similar to the current Windows NT kernel or the Linux kernel) or as a
modular kernel (where some trusted services are allowed to execute in the same
protection domain as the core kernel). The configurable nature of the kernel allows
deployment as either a LWK or a FWK. The micro-kernel design means the multiple
kernel SIPs could be run on dedicated, specialised processor cores (like the 17th core
in a BG/Q machine). This provides a potential use for spare cores in “fat nodes” [31].
Alternatively, each node could dynamically load and unload parts of the OS, adapting
to the needs of each phase of an application, e.g. by transforming from a LWK to a
FWK and back again. Rather than treating GPGPU processors as functional units of a
CPU, Singularity research is exploring their use as first-class OS-schedulable
processing units.

It should be possible to extend the IPC mechanism in Singularity (contract-based
message-passing channels) to support distributed-memory inter-node messaging and
thereby provide an efficient route to implement MPI. An MPI library for Singularity
would need to be written entirely in a .Net language using safe managed-code, such as
the research project called McMPI [32].

© CRESTA Consortium Partners 2011 Page 12 of 17

5 Links	
 to	
 Other	
 Areas	
 within	
 CRESTA	

At least one of the CRESTA co-design applications, OpenFOAM [33], requires dynamic
library linking but the "dlopen()" system call is not supported in many LWKs, i.e.
Catamount and CNK (before BG/Q). The CNK for BG/Q compute nodes supports
dynamic linking, with some restrictions, by enlisting the help of the full Linux kernel on
the I/O nodes. This functionality may be supported in future LWKs, in particular
FusedOS.

All of the CRESTA co-design applications (as well as most HPC codes that scale well
on distributed-memory systems) use the message-passing programming model and
therefore require efficient inter-process communication via a high-performance MPI
library. Efficiently implementing MPI messaging for local messages, i.e. between
processes within a shared memory node, requires an efficient synchronisation
mechanism. However, OpenMP performance is reported to be poor on FusedOS [24]
because thread synchronisation is performed by a system call, which is handled by
delegation to a processor that is running a full-weight kernel. This performance issue
may be fixed in future by handling the synchronisation system calls locally, i.e. without
the costly delegation.

Asynchronous algorithms use non-blocking MPI communications and repeatedly call
the MPI_Test function to discover when new messages arrive, rather than using the
MPI_Wait function. This programming approach assumes that progress is made by
MPI, as required by the MPI standard [34], despite there being no function call that is
obviously expected to be time-consuming. Implementing MPI so that it makes progress
in this scenario is possible even when the operating system supports only single-
threaded processes with a form of CMT for system calls. However, this requires that,
whenever possible, some progress is made during all MPI calls, which means that the
precise timing of the work-load is less predictable. It is possible that this unpredictability
adversely affects the performance of asynchronous algorithms, especially at scale –
although this hypothesis is difficult to test.

Extending OS functionality, e.g. with a power-management API/ABI/SPI [35], must be
done carefully to avoid it becoming a new source of kernel interference. Dynamically
varying processor clock-speed during application execution for power-management
reasons may introduce load-imbalance that adversely impacts application performance,
especially at scale.

The IESP Roadmap calls identifies the need to develop a framework for an exascale
OS. There is currently no consensus on which of the approaches described in
section 4, if any, is the correct one. However, the present trend is to maintain backward
compatibility for existing application codes by supporting well-established APIs whilst
re-implementing the functionality in novel ways. Work towards the goals expressed in
the IESP Roadmap includes the static memory maps in Catamount and BG CNK,
which facilitate explicit management of the memory hierarchy, and the power-
management work in CRESTA, (e.g. deliverable D2.6.3), which researches strategies
and mechanisms for power/energy management in exascale systems.

© CRESTA Consortium Partners 2011 Page 13 of 17

6 Conclusions	

The current trend in operating system research and development of re-implementing
existing APIs is likely to continue. However, this approach is incremental and driven by
developments in hardware as well as the necessity to improve the operating system to
make full use of current technologies. Unfortunately, improvements that enhance
scalability of the operating system often reduce usability.

This method of operating system development will provide scalability for the immediate
future but it is likely to be limited by the original design decisions of modern HPC
technology. Developments in hardware, operating systems, programming models and
programming languages are all interdependent, which leads to cyclical improvements
rather than novel approaches. The abstractions that have held true for hardware for
several decades are no longer adequate to describe modern hardware. For example,
procedural languages such as C and FORTRAN, assume single-threaded, sequential
processing and memory isolation enforced by hardware protection. Operating systems
now depend on this hardware protection mechanism to isolate the memory spaces for
different processes, which requires an expensive context-switch when transferring
control from one process to another. This cannot be avoided unless a disruptive
technology breaks the dependency by introducing a novel way to protect process
memory spaces.

Similarly, disruptive technologies may be needed to solve other scalability and
performance issues, in operating systems and hardware, without sacrificing usability.

© CRESTA Consortium Partners 2011 Page 14 of 17

7 Acknowledgements	

The author would like to thank Jeff Hammond (IBM), Brian Barrett (Sandia National
Laboratories) and Kevin Pedretti (Sandia National Laboratories) for their invaluable
contributions to this report.

© CRESTA Consortium Partners 2011 Page 15 of 17

8 References	

[1] TOP500.Org, “Top500 List - November 2012,” November 2012. [Online].

Available: http://www.top500.org/list/2012/11/. [Accessed 28 February 2013].
[2] K. B. Ferreira, R. Brightwell, K. Pedretti and P. Bridges, "The Impact of

System Design Parameters on Application Noise Sensitivity," 2010. [Online].
Available: http://www.cluster2010.org/presentations/session%206/ferreira.pdf.
[Accessed 2013].

[3] D. Pradipta and M. Vijay, "jitSim: A Simulator for Predicting Scalability of
Parallel Applications in Presence of OS Jitter," Lecture Notes in Computer
Science, Euro-Par 2010 - Parallel Processing, pp. 117-130, 2010.

[4] A. Nataraj, A. Morris, A. D. Malony, M. Sottile and P. Beckman, "The ghost in
the machine: observing the effects of kernel operation on parallel application
performance," in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, Reno, Nevada, 2007.

[5] K. B. Ferreira, P. Bridges and R. Brightwell, “Characterizing application
sensitivity to OS interference using kernel-level noise injection,” in In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08,
Piscataway, NJ, USA, 2008.

[6] D. J. Kerbyson and P. W. Jones, “A performance model of the parallel ocean
program,” International Journal of High Performance Computing Applications,
vol. 19, p. 261–276, 2005.

[7] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman and M.
Gittings, “Predictive performance and scalability modeling of a large-scale
application,” in Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), Denver, Colorado, 2001.

[8] A. S. Tanenbaum, "A comparison of three microkernels," The Journal of
Supercomputing, vol. 9, no. 1-2, pp. 7-22, 1995.

[9] R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson, A. B. Maccabe, P. M.
Widener and K. Ferreira, “Designing and implementing lightweight kernels for
capability computing,” Concurrency and Computation: Practice and
Experience, vol. 21, pp. 793-817, 2009.

[10] R. Brightwell, “The Puma Lightweight Kernel,” 1 September 2006. [Online].
Available: http://www.sandia.gov/~rbbrigh/slides/invited/puma-acl-seminar-
slides.pdf. [Accessed 28 February 2013].

[11] S. M. Kelly and R. Brightwell, “Software architecture of the light weight kernel,
Catamount,” in In Proceedings of the 2005 Cray User Group Annual Technical
Conference, 2005.

[12] R. Brightwell, K. Ferreira, J. Laros, S. Kelly, C. Vaughan, K. Pedretti, R.
Ballance, J. Tomkins, T. Hudson and J. VanDyke, “Catamount N-Way
Lightweight Kernel,” 2009. [Online]. Available:
http://www.sandia.gov/research/research_development_100_awards/_assets/
documents/2009_winners/CNWFinal_SAND2009-1490P.pdf. [Accessed 28
February 2013].

[13] R. Brightwell, “Sandia OpenCatamount Home Page,” Sandia National
Laboratories, 2005. [Online]. Available:
http://www.cs.sandia.gov/~rbbrigh/OpenCatamount/. [Accessed 28 February
2013].

[14] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A.
Gocke, S. Jaconette, M. Levenhagen and R. Brightwell, “Palacios and Kitten:
New high performance operating systems for scalable virtualized and native
supercomputing,” in Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, 2010.

[15] R. Brightwell, K. Pedretti and T. Hudson, “SMARTMAP: Operating system
support for efficient data sharing among processes on a multi-core processor,”
in High Performance Computing, Networking, Storage and Analysis, 2008. SC
2008. International Conference for, 2008.

© CRESTA Consortium Partners 2011 Page 16 of 17

[16] P. Boyle, D. Chen, N. Christ, M. Clark, S. Cohen, C. Cristian, Z. Dong, A.
Gara, B. Joó, C. Jung, C. Kim, L. Levkova, X. Liao, G. Liu, S. Li, H. Lin, R.
Mawhinney, S. Ohta, K. Petrov, T. Wettig and A. Yamaguchi, “The QCDOC
Project,” Nuclear Physics B - Proceedings Supplements, vol. 140, pp. 169-
175, 2005.

[17] P. Boyle, D. Chen, N. Christ, M. Clark, S. Cohen, C. Cristian, Z. Dong, A.
Gara, B. Joó, C. Jung, C. Kim, L. Levkova, X. Liao, G. Liu, R. Mawhinney, S.
Ohta, K. Petrov, T. Wettig and A. Yamaguchi, “Hardware and software status
of QCDOC,” Nuclear Physics B - Proceedings Supplements, Vols. 129-130,
pp. 838-843, 2004.

[18] J. Moreira, M. Brutman, J. Castaños, T. Engelsiepen, M. Giampapa, T.
Gooding, R. Haskin, T. Inglett, D. Lieber, P. McCarthy, M. Mundy, J. Parker
and B. Wallenfelt, “Designing a highly-scalable operating system: the Blue
Gene/L story,” in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, Tampa, Florida, 2006.

[19] IBM Corporation, “IBM Redbooks | IBM System Blue Gene Solution: Blue
Gene/P Application Development,” 2009. [Online]. Available:
http://www.redbooks.ibm.com/abstracts/sg247287.html. [Accessed 28
February 2013].

[20] J. Appavoo, V. Uhlig and A. Waterland, “Project Kittyhawk: building a global-
scale computer: Blue Gene/P as a generic computing platform,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 1, pp. 77-84, 2008.

[21] J. Liedtke, “Toward real microkernels,” Communications of the ACM, vol. 39,
pp. 70-77, 1996.

[22] IBM Corporation, “IBM Redbooks | IBM System Blue Gene Solution: Blue
Gene/Q Application Development - Update,” 2013. [Online]. Available:
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html. [Accessed
28 February 2013].

[23] Argonne National Laboratory and the University of Oregon, “ZeptoOS: The
Small Linux for Big Computers,” Argonne National Laboratory, [Online].
Available: http://www.mcs.anl.gov/research/projects/zeptoos/. [Accessed 28
February 2013].

[24] Y. Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg, K. Ryu
and R. Wisniewski, “FusedOS: Fusing LWK Performance with FWK
Functionality in a Heterogeneous Environment,” in Computer Architecture and
High Performance Computing (SBAC-PAD), 2012 IEEE 24th International
Symposium on, 2012.

[25] P. Beckman, S. Coghlan, B. Gropp, R. Lusk, K. Yoshii, A. Malony, S. Shende
and S. Suthikulpanit, “ZeptoOS: Small Linux for Big Computers,” 2005.
[Online]. Available: http://www.cs.unm.edu/~fastos/05meeting/ZeptoOS-
Beckman.pdf. [Accessed 28 February 2013].

[26] Microsoft Research, “Singularity,” 2013. [Online]. Available:
http://research.microsoft.com/en-us/projects/singularity/. [Accessed 28
February 2013].

[27] ISO, “ISO/IEC 23270:2006 Programming Languages C#,” 26 January 2012.
[Online]. Available:
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csn
umber=42926. [Accessed 28 February 2013].

[28] M. Fähndrich, M. Aiken, C. Hawblizel, O. Hodson, G. Hunt, J. R. Larus and S.
Levi, “Language Support for Fast and Reliable Message-based
Communication in Singularity OS,” Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006, vol. 40,
no. 4, pp. 177-190, October 2006.

[29] G. C. Hunt and J. R. Larus, “Singularity: rethinking the software stack,” ACM
SIGOPS Operating Systems Review - Systems work at Microsoft Research,
vol. 41, no. 2, pp. 37-49, April 2007.

[30] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and
Implementation, 3rd Edition ed., Pearson, 2006.

© CRESTA Consortium Partners 2011 Page 17 of 17

[31] CRESTA, “D2.4.1 Alternative use of fat nodes,” 2013.
[32] D. J. Holmes, McMPI: A managed code message passing interface,

Edinburgh: University of Edinburgh, 2012.
[33] OpenCFD Ltd, “OpenFOAM - The Open Source Computational Fluid

Dynamics (CFD) Toolbox,” 2013. [Online]. Available:
http://www.openfoam.com/. [Accessed 28 February 2013].

[34] MPI Forum, “MPI Standard,” 2012 September 2012. [Online]. Available:
http://www.mpi-forum.org/docs/docs.html. [Accessed 28 February 2013].

[35] CRESTA, “D2.6.3 Power measurement across algorithms,” CRESTA, 2013.

