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1 Executive	
  Summary	
  
Standard commodity operating systems have evolved to serve the needs of desktop 
users and business application servers, which have very different requirements to HPC 
systems and applications. In general, commodity operating systems are not fit-for-
purpose, even for current petascale machines, without extensive customisation. 

The impact of operating system activities on application performance is not fully 
understood and is hard to predict. Many HPC systems are configured or customised by 
a trial-and-error approach, dealing with particular performance problems as they occur, 
rather than by applying a systematic method. 

Specialised operating systems, developed specifically for HPC machines, trade rich 
functionality for high performance. Scalability is achieved by only implementing a 
subset of “normal” operating system services, which impairs the usability of the system 
by application programmers. 

Design decisions for specialised HPC operating systems are often influenced by, and 
sometimes compromised by, design decisions for novel HPC hardware. One example 
is that the BlueGene/L hardware did not provide cache-coherency between the two 
processing cores in a node, which prevented the operating system from supporting 
shared-memory. 

The desire to make specialised systems more usable encourages the re-introduction of 
functionality that can have a negative effect on performance and scalability. Thread 
scheduling was not supported by the BlueGene/P operating system but has been re-
introduced in the BlueGene/Q operating system. This increases usability for application 
programmers but introduces a source of unpredictable load-imbalance that could 
reduce scalability, especially at extreme scale. 

Specialised HPC operating systems have been continuously researched and 
developed for at least 20 years, driven (at least in part) by emergent trends in hardware 
design. Current systems demonstrate that excellent operating system scalability up to 
petascale is achievable. Although it is possible for major advances to be made in 
operating system development via disruptive technologies, currently there is no 
consensus on the direction required. 
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2 Introduction	
  
The majority of systems in the most recent Top 500 list use the Linux operating system 
(OS); the most recent Top 500 list [1] includes 469 entries with OS family of Linux. As 
shown in Table 1, the average efficiency of the Linux systems is 66.6% (varying from 
27.1% to 95.7%) whereas the average efficiency of all the non-Linux systems is 80.2% 
(varying from 58.9% to 93.4%). 

OS Family Average Efficiency 
(inclusive) 

Average Efficiency 
(exclusive) 

Count 
(inclusive) 

Count 
(exclusive) 

BSD Based 93.4% 67.4% 1 499 

Linux 66.6% 80.2% 469 31 

Mixed 83.1% 67.2% 7 493 

Unix 79.3% 67.0% 20 480 

Windows 75.5% 67.4% 3 497 

All 67.5% 
 

500 
 

Table 1: Efficiency of Machines in the November 2012 Top 500 List 

Linux can be classified as a Full-Weight-Kernel (FWK) operating system. The variability 
in the efficiency of Linux systems reflects the wide range of customisations that are 
possible, from disabling some unneeded system services to modifications in the kernel 
code itself. It is reasonable to assume that customisations are only applied to an 
operating system if they improve performance (or improve usability without impairing 
performance) so the systems with very low efficiency (27%-50%) are likely to be 
standard distributions of Linux with minimal changes, or no changes at all. 

All 7 of the systems with a “Mixed” OS family use Computer Node Kernel (CNK), which 
is a Light-Weight-Kernel (LWK) operating system that was developed by IBM 
specifically for Blue Gene machines. The “Unix” and “Windows” systems have similar 
average efficiency (79.3% and 75.5% respectively, see Table 1), which is higher than 
the average efficiency for Linux systems but lower than the average efficiency for CNK 
systems. The choice of a non-Linux OS for a Top 500 system is unusual and suggests 
that either the system designers or the system administrators have particular 
knowledge or expertise with the alternative OS, which means that the system is likely 
to be highly customised, possibly for a specific workload. 

The operating systems on existing Top 500 machines are either standard (not heavily 
customised commodity products) – with low efficiency at scale – or non-standard 
(highly customised or designed specifically for that machine) – with much higher 
efficiency at scale. Various studies (e.g. [2], [3] and [4]) have shown that standard 
commodity operating systems do not allow scalable applications to scale well, even up 
to current system sizes, e.g. up to 10,000 nodes. 

Section 3 of this document discusses and quantifies possible causes of poor scalability 
of applications that are due to the operating system. 

Section 4 evaluates past and current developments in operating systems, highlighting 
scaling issues and attempts to address them. 

Section 5 links HPC operating system issues to other areas within CRESTA. 

Section 6 presents some concluding remarks. 

2.1 Purpose	
  
The purposes of this document are as follows: 

• Quantify the potential impact of the operating system on applications at scale 
• Evaluate and drive developments in operating systems to address scaling issues  
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2.2 Glossary	
  of	
  Acronyms	
  
  
ABI Application Binary Interface 
ANL Argonne National Laboratory 
API Application Programming Interface 
BG BlueGene 
BGL BlueGene/L 
BGP BlueGene/P 
BGQ BlueGene/Q 
BSD Berkeley Software Distribution 
CIOD Control and I/O Daemon 
CL Compute Library 
CLE Cray Linux Environment 
CMT Co-operative Multi-Threading 
CNK Compute Node Kernel 
CNL Compute Node Linux 
CPU Central Processing Unit 
DMA Direct Memory Access 
FTQ Fixed Time Quantum 
FWK Full-Weight Kernel 
Gbps Gigabit per second 
GLIBC GNU C Library 
GPFS General Parallel File System 
GPGPU General Purpose GPU 
GPU Graphics Processing Unit 
HPC High-Performance Computing 
I/O Input/Output 
INK I/O Node Kernel 
IPC Inter-Process Communication 
LWK Light-Weight Kernel 
MPI Message-Passing Interface 
NFS Network File System 
OpenFOAM Open source Field Operation And Manipulation 
OpenMP Open Multi-Processing 
OS Operating System 
PEC Power-Efficient Core 
POP Parallel Ocean Program 
POSIX Portable Operating System Interface [for Unix] 
pthreads POSIX Threads 
QCDOC Quantum Chromo-Dynamics On a Chip 
QOS QCDOC Operating System 
SAGE SAIC’s Adaptive Grid Eulerian 
SIP Software Isolated Process 
SLES SUSE Linux Enterprise Server 
SMP Symmetric Multi-Processor 
SPI System Programming Interface 
SSH Secure Shell 
STOC Single-Thread-Optimized Core 
TLB Translation Look-aside Buffer 
UDP/IP User Datagram Protocol/Internet Protocol 
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3 The	
  Causes	
  of	
  Poor	
  OS	
  Scaling	
  
All operating system activities introduce some overhead to the execution time of 
applications. The noise or overhead generated by operating system activities can be 
amplified or absorbed by application activities in ways that are not fully understood and 
are difficult to predict. 

3.1 System	
  Calls	
  
Some operating system activities are instigated by user applications and are necessary 
for their correct execution, e.g. system calls that control hardware resources such as a 
network card for communication between nodes. Here the overhead is a fixed cost per 
system call due to the context switch from user-code to kernel-code, which involves 
storing all CPU registers, trapping to the kernel, handling the system call, restoring the 
registers and waking-up the user process. Further overheads will occur when the 
system call causes the contents of the TLB or memory caches to be altered or 
‘polluted’ with information that is not relevant to the application. 

3.2 Interrupts	
  
Other operating system activities are necessary to maintain system health and 
responsiveness, e.g. hardware interrupts will be generated by devices whenever an 
event occurs that cannot be handled without the help of a CPU. Here the overhead is a 
regular or irregular interruption for a fixed or variable length of time, depending on the 
type of event. 

Each type of event produces an overhead with a particular noise signature, e.g. a timer 
interrupt may cause 2.5% overhead by responding to events at 1000Hz that take 25 
microseconds for each response. The measured effects of various noise signatures 
can be much greater at scale than expected. Recent investigations [5] to characterise 
the sensitivity of representative applications to noise originating in the operating system 
kernel have measured a 30% slow-down for Parallel Ocean Program (POP) [6], caused 
by a 2.5% noise overhead (25 microseconds at 1000Hz), and a 50% slow-down for 
SAGE [7], caused by a 2.5% noise overhead (2500 microseconds at 10Hz). 

This work also demonstrates that some codes are sensitive to the frequency of 
interruptions but relatively insensitive to the duration of those interruptions. It is 
suggested that this may be because the application activities ‘resonate’ with the OS 
kernel activities causing their effects to be ‘amplified’. In addition, it is possible for 
applications to ‘absorb’ some of the noise, such as when some of the interrupts can be 
handled when the system would otherwise have been waiting for messages from other 
application nodes. 

3.3 System	
  Services	
  
At present, the best way to deal with the effects of kernel noise in a FWK is to remove 
or minimise the sources of noise, i.e. by disabling system services that are infrequently 
used or unnecessary. Obvious examples from Linux are the print spooler daemon 
(because there is no printer attached to the compute nodes) and the mailer daemon 
(because the compute nodes will not send or receive email messages). It is also 
common practice to restrict or regulate the demands on key operating system services, 
such as virtual memory and scheduling, while an application is executing, by modifying 
the application code or by setting process parameters. Another approach is core 
specialisation where one or more cores are reserved for operating system services. 

3.3.1 Virtual	
  Memory	
  
Frequent use of virtual memory by an application is undesirable because swapping 
pages of data between physical memory and permanent storage (e.g. a hard disk) is 
very slow. This can be avoided by the application not requesting more memory than is 
physically present and available in the node. However, the overhead of translating 
virtual memory addresses to physical memory addresses using the TLB cache cannot 
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be avoided by modifying application code (although some applications can be modified 
to make better use of TLB locality in a similar manner to optimising data-cache use). 

3.3.2 Scheduling	
  
Scheduling allows multiple processes to gain “fair” access to CPU resources. In 
desktop or server computers, there are typically many more processes than physical 
CPU cores. Complex algorithms are employed to determine which processes should 
be allocated time on which processors, depending on the process priority, its current 
state (e.g. waiting, busy or handling an interrupt), its recent activity, and many other 
factors. Frequently, a single busy process in a multi-core computer will be shifted 
between CPU cores by the scheduling algorithm to balance the load across all CPU 
cores. Generally, this causes poor use of memory caches and reduces the efficiency of 
the application. This can be avoided by setting an affinity mask for each application 
process (and thread, if used): a restriction that only allows the scheduling algorithm to 
consider certain CPU cores (e.g. a single core) for that particular process (or thread). 
However, the overhead of only allocating short time-slices and re-scheduling the 
process between each time-slice cannot be avoided by modifying the process 
parameters or the application code. 
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4 Past	
  and	
  Present	
  HPC	
  Operating	
  System	
  Developments	
  
Currently, there are three approaches to producing an operating system for large-scale 
HPC machines:  

1. Start with a standard operating system – a full-weight kernel (FWK) – and strip it 
down by removing unnecessary system activities and services. 

2. Build a new minimal operating system – a light-weight kernel (LWK) – with limited 
functionality, usually for specific hardware. 

3. Start with two existing operating systems – a FWK and a LWK – and merge them 
by modifying both so that they can inter-operate. 

A fourth approach, based on a micro-kernel design combined with verifiably safe code, 
offers a potentially disruptive technology. 

4.1 Single	
  light-­‐weight	
  kernel	
  
Development of light-weight kernels at Sandia National Laboratories began in 1991 
with SUNMOS. Previous work in this field, e.g. Amoeba, Mach and Chorus [8], referred 
to the OS as a micro-kernel. In 1994, SUNMOS [9] was enhanced by Sandia Labs and 
renamed Puma [10], which included the first implementation of the Portals 
communication architecture. In 1996, Intel marketed Puma as a product called Cougar 
[9]. In 1997, the Portals communication was separated from Puma and became an 
independent component. In 2002, Sandia Labs created Catamount LWK [11] by porting 
Cougar to Red Storm (a prototype of Cray’s XT series of machines). Catamount LWK 
has since led to Catamount N-Way (CNW) [12], which has support for multi-core CPUs 
and was licensed to Cray, and to OpenCatamount [13], which is a free open-source 
version released by Sandia Labs. A further LWK, called Kitten [14], is currently being 
developed at Sandia National Laboratories to aid research into how to better use multi-
core processors and hardware virtualisation. 

The LWKs from Sandia statically allocate main memory with a large page size such 
that the TLB entries are fixed addresses and the majority of them fit into the TLB 
cache. This reduces the overhead of a virtual address space by reducing the number of 
TLB cache misses, which would normally cause a ‘page-fault’, i.e. a significant but 
unpredictable delay in accessing the requested memory location. There is also no 
support for virtual memory, which eliminates the overhead of paging to and from disk. 
Another advantage of static allocation of main memory is that the operating system will 
not move any memory pages – each virtual address will always translate to the same 
physical address. This means hardware devices that require physical memory 
addresses (e.g. an Infiniband device requires the physical address for the input and 
output buffers) do not require the memory page to be ‘registered’ or ‘pinned’. 

Until the development of Catamount N-Way in 2008, the LWKs from Sandia did not 
include multi-core support; they supported only one single-threaded user-mode 
application process per node at a time. CNW introduced SMARTMAP [15], a 
mechanism for implementing shared-memory by using fixed virtual address offsets to 
directly access the memory of other processes. This is similar to how memory is 
shared between threads within a single process. In that case, the virtual address space 
for the process is inherited by all threads within that process so that all process 
memory is accessible by all process threads. With SMARTMAP, the physical memory 
location of the virtual address space of all processes is known by all processes. The 
entire system memory is accessible to all processes although there is a distinction in 
each process between the memory allocated to that process and memory that is 
allocated to other processes. The similarity to multi-threaded processes extends to 
both the advantage that direct memory access can be faster and the disadvantage that 
code must be ‘thread-safe’, i.e. it must avoid race-conditions and simultaneous 
conflicting memory accesses. Using SMARTMAP is optional so that codes, or parts of 
codes, that are not thread-safe can still execute without errors. 
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The work on SUNMOS, Puma and Catamount by Sandia Labs influenced IBM’s design 
and creation of a light-weight kernel, Compute Node Kernel (CNK), for the BlueGene 
series of machines. The BlueGene/L (BG/L) was a successor to the QCDOC [16] 
machines, for which a custom operating system, called QOS, was created. There are 
many similarities between QOS [17] and current light-weight kernels, including CNK. 
The QCDOC machines and its QOS operating system were designed specifically to run 
a single physics application from the field of computational quantum field theory. The 
operating system was deliberately restricted to support for a single process with a 
POSIX-like interface with UDP/IP network connections and NFS file-system. This 
model was also adopted for CNK on the BG/L (general availability 2004) [18] where all 
processes are single-threaded supporting only a subset of the full POSIX interface. The 
compute nodes on BG/L operate either in co-processor mode or in virtual mode, 
running either one or two single-threaded processes, respectively. The two cores in 
each BG/L node are not cache-coherent: all communication between processes is via 
MPI, which is implemented using communication facilities provided by CNK for the 
specific customised hardware networks. Multi-threading requires manual scheduling by 
user code. 

The design for the BlueGene/P machine (general availability 2007) [19] included a 
quad-core CPU with cache-coherency that can act as a 4-way symmetric 
multiprocessor (SMP) in addition to the virtual node mode and dual mode, which are 
similar to virtual and coprocessor modes from the BG/L. Support was added for multi-
threaded processes, using a POSIX thread library (pthreads) or via OpenMP. Although 
the “fork()” system call is not supported the “clone()” system call can be used to create 
a limited number of new threads, depending on the operating mode of the compute 
node. 

 
Figure 1: Overview of CNK Architecture in BG/P [19] 

The CNK for BG/P (see Figure 1) directly supports the same system calls as the CNK 
for BG/L but additionally supports a large subset of standard Linux system calls, 
including file I/O, sockets and signals, by forwarding these requests from compute 
nodes to I/O nodes that run a full Linux operating system kernel (see Figure 2). 
Dynamic linking, whilst not supported for BG/L, is allowed for BG/P applications. 
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Figure 2: Overview of system call forwarding in BG/P [19] 

Some potential customers saw the restricted functionality of CNK on BG/P as too 
limiting because it was difficult to re-engineer general applications that required the rich 
functionality of a full-weight kernel. Project Kittyhawk [20] at IBM Research explored 
the use of a micro-kernel, L4 [21], to support virtual machine instances capable of 
hosting general scalable applications. The application, the Linux operating system 
kernel and the required dependencies (system software and libraries) are captured in a 
system image. The image can be seen as a software appliance that is duplicated and 
deployed to as many compute nodes as needed to handle demand for the services 
provided by the application. 

The most recent version of CNK was developed for the BG/Q machines (general 
availability 2012) [22]. The compute nodes in BG/Q contain 18 processor cores, each 
of which supports 4 hardware execution threads via Simultaneous Multi-Threading 
(SMT). Only 17 of these cores are active – the 18th is disabled and reserved to aid 
fault-tolerance (if one of the 17 cores fails, the 18th core is enabled and replaces the 
failed core). One of the active 17 cores is reserved for the CNK leaving 64 hardware 
threads on 16 active cores for user-level applications per compute node. Shared-
memory and cache-coherency is available, enabling each node to act as a 64-way 
SMP. As with BG/P, system calls that cannot be directly handled by the CNK are 
forwarded to I/O nodes that run a full Linux operating system. However, more operating 
system functionality has been included in the CNK for BG/Q. Threading (hardware 
thread over-subscription) is now supported in CNK by a thread scheduler component. 
There is no time-slicing or time-quantum-based pre-emption; threads of the same 
priority are scheduled using a form of Cooperative Multi-Threading (CMT) with a 
“round-robin” ordering. Higher priority threads can cause pre-emption of lower priority 
threads and hardware interrupts may result in unbalanced dispatching of threads so 
that there is no guarantee that all threads of the same priority will make equal progress. 
This has the potential to re-introduce some of the problems normally associated with 
full-weight kernels including load-imbalance, kernel-induced noise and the amplification 
of these overheads for large-scale applications. 

4.2 Single	
  full-­‐weight	
  kernel	
  
Four of the machines in the current Top 500 list use a Microsoft Windows operating 
system. Two entries list the OS as Windows HPC 2008 (ranks 132 and 183), one lists 
the OS as Windows Azure (rank 165) and one entry includes “Linux/Windows” in the 
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description of the machine – although the OS is listed as Linux (rank 17). Microsoft 
operating systems have a significant market share in some sectors and the HPC and 
Azure versions of Windows are therefore a natural choice for some supercomputer 
owners. However, being closed-source and proprietary software, manufacturers cannot 
enhance it to take advantage of novel hardware nor can system developers adapt it to 
better support a particular application or programming model. More customisation 
options are provided in the recently released Windows Server 2012 than were available 
in the previous version, Windows Server 2008. 

Linux has displaced UNIX and, subsequently, all other operating systems to become 
the dominant choice for machines in the Top 500 list. It can be deployed almost entirely 
unchanged or it can be extensively customised. It has many advantages but, from a 
scaling point-of-view, it is challenging to achieve performance results commensurate 
with light-weight kernels. Of particular note is Cray Compute Node Linux (CNL), which 
is part of Cray Linux Environment (CLE) – the operating system for the top-ranked 
system in the current Top 500 list (as well as 17 other entries). This offers the 
programmer a familiar Linux environment, based on SUSE Linux Enterprise Server 
(SLES), with a stripped-down, low-noise Linux kernel on the compute nodes. 

ZeptoOS [23] is a HPC operating system research project at the Argonne National 
Laboratory with a working implementation for BG/P. It is intended to be “the small Linux 
for big computers” and is based on an optimised compute node kernel derived from a 
standard Linux kernel combined with a kernel for I/O nodes derived from the I/O Node 
Kernel (INK) for BG/P. ZeptoOS enables more of the features of standard Linux, e.g. 
the SSH daemon is enabled on I/O nodes and a user can connect from an I/O node to 
compute nodes via telnet, requiring a telnet daemon in the compute node kernel. This 
increases the risk that background kernel activities will cause a noise signature that is 
amplified at scale by some applications. The telnet connection can be used to attach a 
debugger to one or more executing compute node processes. However, if the support 
and use of telnet in the compute node kernel causes amplified noise that slows the 
application execution by a factor of 20 or more (as in the POP application example in 
section 3.2), then the information gathered by the debugger may be rendered useless. 

4.3 Multiple	
  kernels	
  
FusedOS [24] is a new HPC operating system currently under development by IBM 
with a prototype for BG/Q machines. It combines the two traditional approaches to HPC 
operating system development by fusing a LWK and a FWK (the architecture is shown 
on the left of Figure 3). IBM has created a user-level LWK, called Compute Library 
(CL), which is a port of CNK that is suitable for execution in user-mode rather than 
supervisor-mode. This is fused with a standard Linux kernel that is slightly modified to 
support the interaction of CL and Linux. FusedOS distinguishes two types of processor: 
a Single-Threaded-Optimised Core (STOC), which has the full capability of a modern 
CPU core, and a Power-Efficient Core (PEC), which may have restricted capability 
(such as a GPGPU core) and therefore may not be able to support a fully functional 
operating system. The execution model on PECs (shown on the right of Figure 3) is 
similar to normal compute nodes on BG/Q using CNK: the application code runs with 
full access to the hardware and no interference from the kernel or other application 
processes until it makes a system call. All system calls from an application running on 
a PEC are forwarded to a CL running as a user-mode process in Linux on a STOC, 
which handles the system call and returns execution back to the PEC. This closely 
resembles the model of a system call on a BG/Q compute node being forwarded by the 
CNK to the INK on an I/O node, which handles the system call and returns control back 
to the compute node. 
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Figure 3: FusedOS architecture (left) and PEC management interface (right) [24] 

The results (presented in Figure 4) from the Fixed Time Quantum (FTQ), or Selfish 
Benchmark [25], demonstrate that application processes running on PEC processors in 
FusedOS are given a higher proportion of compute cycles than processes running on 
the same hardware but in a customised HPC-ready Linux. As expected, code running 
on PEC processors experiences no interference from kernel activities, which eliminates 
the possibility of kernel noise being amplified at scale. 

 
Figure 4: Performance of FTQ benchmark in different operating environments [24] 

4.4 Disruptive	
  Technologies	
  
Microsoft are currently developing Singularity [26], a research operating system that 
may replace the NT kernel in future releases of the Windows product-line. The source-
code for several different variations of this OS has been released under a shared-
source license. Singularity is written pre-dominantly in safe managed-code (using 
multiple .Net languages [27][28]) and requires that all applications are also written in 
safe managed-code. This increases the reliability and verifiability of the kernel, drivers 
and all application binaries both at installation and at runtime. However, from the point 
of view of the HPC community, this requirement represents a major shift in both 
programming language and programming paradigm. 
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Using code that is verifiably safe at compile-time allows Singularity to rely on software-
isolated processes (SIPs) rather than hardware protection for process isolation. This 
can reduce the cost of system calls and all other inter-process communication by up to 
33% [29]). 

Singularity is not currently intended to be an operating system for a distributed-memory 
HPC machine – although many of design goals overlap with current goals in exascale 
HPC research, in particular fault-tolerance and efficient support for multi-core, many-
core and hybrid hardware architectures. 

Singularity can be configured as a true micro-kernel (similar to MINIX 3 [30]), a mono-
lithic kernel (similar to the current Windows NT kernel or the Linux kernel) or as a 
modular kernel (where some trusted services are allowed to execute in the same 
protection domain as the core kernel). The configurable nature of the kernel allows 
deployment as either a LWK or a FWK. The micro-kernel design means the multiple 
kernel SIPs could be run on dedicated, specialised processor cores (like the 17th core 
in a BG/Q machine). This provides a potential use for spare cores in “fat nodes” [31]. 
Alternatively, each node could dynamically load and unload parts of the OS, adapting 
to the needs of each phase of an application, e.g. by transforming from a LWK to a 
FWK and back again. Rather than treating GPGPU processors as functional units of a 
CPU, Singularity research is exploring their use as first-class OS-schedulable 
processing units. 

It should be possible to extend the IPC mechanism in Singularity (contract-based 
message-passing channels) to support distributed-memory inter-node messaging and 
thereby provide an efficient route to implement MPI. An MPI library for Singularity 
would need to be written entirely in a .Net language using safe managed-code, such as 
the research project called McMPI [32]. 
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5 Links	
  to	
  Other	
  Areas	
  within	
  CRESTA	
  
At least one of the CRESTA co-design applications, OpenFOAM [33], requires dynamic 
library linking but the "dlopen()" system call is not supported in many LWKs, i.e. 
Catamount and CNK (before BG/Q). The CNK for BG/Q compute nodes supports 
dynamic linking, with some restrictions, by enlisting the help of the full Linux kernel on 
the I/O nodes. This functionality may be supported in future LWKs, in particular 
FusedOS. 

All of the CRESTA co-design applications (as well as most HPC codes that scale well 
on distributed-memory systems) use the message-passing programming model and 
therefore require efficient inter-process communication via a high-performance MPI 
library. Efficiently implementing MPI messaging for local messages, i.e. between 
processes within a shared memory node, requires an efficient synchronisation 
mechanism. However, OpenMP performance is reported to be poor on FusedOS [24] 
because thread synchronisation is performed by a system call, which is handled by 
delegation to a processor that is running a full-weight kernel. This performance issue 
may be fixed in future by handling the synchronisation system calls locally, i.e. without 
the costly delegation. 

Asynchronous algorithms use non-blocking MPI communications and repeatedly call 
the MPI_Test function to discover when new messages arrive, rather than using the 
MPI_Wait function. This programming approach assumes that progress is made by 
MPI, as required by the MPI standard [34], despite there being no function call that is 
obviously expected to be time-consuming. Implementing MPI so that it makes progress 
in this scenario is possible even when the operating system supports only single-
threaded processes with a form of CMT for system calls. However, this requires that, 
whenever possible, some progress is made during all MPI calls, which means that the 
precise timing of the work-load is less predictable. It is possible that this unpredictability 
adversely affects the performance of asynchronous algorithms, especially at scale – 
although this hypothesis is difficult to test. 

Extending OS functionality, e.g. with a power-management API/ABI/SPI [35], must be 
done carefully to avoid it becoming a new source of kernel interference. Dynamically 
varying processor clock-speed during application execution for power-management 
reasons may introduce load-imbalance that adversely impacts application performance, 
especially at scale. 

The IESP Roadmap calls identifies the need to develop a framework for an exascale 
OS. There is currently no consensus on which of the approaches described in 
section 4, if any, is the correct one. However, the present trend is to maintain backward 
compatibility for existing application codes by supporting well-established APIs whilst 
re-implementing the functionality in novel ways. Work towards the goals expressed in 
the IESP Roadmap includes the static memory maps in Catamount and BG CNK, 
which facilitate explicit management of the memory hierarchy, and the power-
management work in CRESTA, (e.g. deliverable D2.6.3), which researches strategies 
and mechanisms for power/energy management in exascale systems. 
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6 Conclusions	
  
The current trend in operating system research and development of re-implementing 
existing APIs is likely to continue. However, this approach is incremental and driven by 
developments in hardware as well as the necessity to improve the operating system to 
make full use of current technologies. Unfortunately, improvements that enhance 
scalability of the operating system often reduce usability. 

This method of operating system development will provide scalability for the immediate 
future but it is likely to be limited by the original design decisions of modern HPC 
technology. Developments in hardware, operating systems, programming models and 
programming languages are all interdependent, which leads to cyclical improvements 
rather than novel approaches. The abstractions that have held true for hardware for 
several decades are no longer adequate to describe modern hardware. For example, 
procedural languages such as C and FORTRAN, assume single-threaded, sequential 
processing and memory isolation enforced by hardware protection. Operating systems 
now depend on this hardware protection mechanism to isolate the memory spaces for 
different processes, which requires an expensive context-switch when transferring 
control from one process to another. This cannot be avoided unless a disruptive 
technology breaks the dependency by introducing a novel way to protect process 
memory spaces. 

Similarly, disruptive technologies may be needed to solve other scalability and 
performance issues, in operating systems and hardware, without sacrificing usability. 
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