

Copyright © CRESTA Consortium Partners 2013

D2.4.1	 –	 Alternative	 use	 of	 fat	
nodes	

WP2:	 Underpinning	 and	 cross-‐cutting	
technologies	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization UEDIN

Version: 1.0

Status Final

Author(s): Alistair Hart (CRAY), Harvey Richardson (CRAY), Dan Holmes
(UEDIN), Pekka Manninen (CRAY), Michèle Weiland (UEDIN)

Reviewer(s) Andreas Gerndt (DLR) and Mats Aspnas (ABO)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2013

Version	 History	
Version Date Comments, Changes, Status Authors,

contributors,
reviewers

0.1 16/08/2013 Prepared deliverable outline Michèle Weiland
(UEDIN)

0.2 27/08/2013 Adding contributions on co-location,
microkernels and asynchronous progress
engine

Michèle Weiland
(UEDIN)

0.3 28/08/2013 Adding Offload Servers Section, plus
Exec Summary, Intro and Conclusions

Michèle Weiland
(UEDIN)

0.4 29/08/2013 Integrated updates by Harvey & Dan Michèle Weiland
(UEDIN)

0.5 30/08/2013 Final draft for internal review Michèle Weiland
(UEDIN)

1.0 25/09/2013 Final version for submission after internal
review

Michèle Weiland
(UEDIN)

Copyright © CRESTA Consortium Partners 2013

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 PURPOSE	 ...	 2	
2.2	 GLOSSARY	 OF	 ACRONYMS	 ...	 2	

3	 BACKGROUND	 AND	 MOTIVATION	 ...	 3	
4	 CO-‐LOCATION	 OF	 HPC	 WORKLOADS	 ..	 5	

4.1	 INTRODUCTION	 ...	 5	
4.2	 METHODS	 ..	 6	

4.2.1	 Benchmark	 codes	 ..	 6	
4.2.2	 Hardware	 used	 ..	 6	
4.2.3	 Running	 the	 single	 applications	 ..	 7	
4.2.4	 Application	 characterisation	 ...	 7	
4.2.5	 Co-‐location	 ..	 8	
4.2.6	 Co-‐location	 metrics	 ...	 10	

4.3	 RESULTS	 ..	 10	
4.3.1	 Effect	 of	 varying	 node	 speeds	 ...	 12	
4.3.2	 Comparing	 CPU	 architectures	 ...	 13	

4.4	 CONCLUSIONS	 AND	 FURTHER	 WORK	 ..	 13	
5	 OFFLOAD	 SERVERS	 ...	 16	

5.1	 SERVER	 LOCATION	 ...	 16	
5.2	 SOFTWARE	 IMPLEMENTATION	 OPTIONS	 ...	 17	

5.2.1	 Standard	 API	 approach	 ...	 17	
5.2.2	 Generic	 Offload	 approach	 ...	 17	

5.3	 OFFLOAD	 SERVER	 DEMONSTRATOR	 IMPLEMENTATION	 ..	 17	
5.3.1	 The	 offload	 server	 API	 ...	 18	
5.3.2	 Implementation	 details	 ...	 19	
5.3.3	 An	 example	 ...	 20	

5.4	 OTHER	 USES	 OF	 OFFLOAD	 SERVERS	 ..	 21	
5.5	 CONCLUSIONS	 ..	 21	

6	 BACKGROUND	 PROCESSING	 OF	 MPI	 COMMUNICATION	 ..	 23	
6.1	 BEHIND	 THE	 SCENES:	 MPI	 MESSAGE	 PROTOCOLS	 AND	 OVERLAPPING	 COMPUTATION	 AND	 COMMUNICATION	 	 23	
6.2	 PERFORMANCE	 OF	 THE	 ASYNCHRONOUS	 PROGRESS	 ENGINE	 ..	 25	

7	 MICRO-‐KERNELS	 ..	 27	
7.1	 MOTIVATION	 ..	 27	

7.1.1	 Core-‐specialisation	 with	 Monolithic	 Kernel	 OS	 ...	 27	
7.1.2	 Asynchronous	 Progress	 Engine	 with	 Non-‐Blocking	 MPI	 Communication	 	 27	
7.1.3	 Motivating	 Scenario	 for	 Separate	 OS	 Module	 for	 Disk	 I/O	 ...	 28	
7.1.4	 Motivating	 Scenario	 for	 Locality-‐Aware	 Memory	 Management	 OS	 Module	 	 29	

7.2	 METHODS	 ..	 29	
7.2.1	 Customisation	 of	 a	 Standard	 Monolithic	 Kernel	 ...	 29	
7.2.2	 Micro-‐kernel	 Operating	 Systems	 ...	 29	

7.3	 CONCLUSIONS	 ..	 31	
8	 FUTURE	 WORK	 ..	 32	
9	 CONCLUSIONS	 ...	 34	
10	 REFERENCES	 ..	 35	

Copyright © CRESTA Consortium Partners 2013

Index	 of	 Figures	
Figure 1: Kernel benchmark characterisation, running on 2.1 GHz processors with 1600
MT/s memory speed. .. 9	
Figure 2: Application client/server distinction ... 18	
Figure 3: The non-blocking communication feature of MPI allows in principle
overlapping communication with other work. .. 23	
Figure 4: The eager messaging protocol potentially allows overlapping. The case of
blocking point-to-point communication is shown on the left, the non-blocking case is
shown on the right. ... 24	
Figure 5: For larger messages the overlap is not available. The case of blocking point-
to-point communication is shown on the left, the non-blocking case is shown on the
right. .. 24	
Figure 6: The Cray Asynchronous Progress Engine uses specific communication
threads for more complete overlap. .. 25	
Figure 7: Overlap availabilities of non-blocking point-to-point and collective
communication. .. 26	
Figure 8: Schematic of operating system components in a typical monolithic kernel and
microkernel [8] .. 30	
Figure 9: Comparison of Compartmentalisation in a Monolithic Kernel, a Microkernel
and a Hybrid Kernel [9] ... 31	

Index	 of	 Tables	
Table 1: List of Cray XE6 node hardware configurations considered. 6	
Table 2. Co-location metrics M1 for the CLASS=C problem running on increasing
number of nodes with Hardware Configuration 2. Results are colour-coded, with green
showing good co-location and red denoting poor co-location. 11	

© CRESTA Consortium Partners 2011 Page 1 of 35

1 Executive	 Summary	
This report summarises the work that was undertaken in Task 2.4 “Alternative use of
fat nodes” as part of CRESTA’s WP2 on “Underpinning and cross-cutting
technologies”. More specifically, the report presents research into different ideas for the
use of fat nodes on future systems, ranging from practical to more speculative
approaches:

• Co-location of workloads;
• Offload servers;
• Background processing of MPI communication;
• Micro-kernels.

After an introduction that provides further detail on the purpose of both the Task and
the report, the following points are addressed in turn:

• A background Section motivates the research into alternative uses for fat nodes
and provides information on the evolution of hardware that has led to current
system architectures, where core counts per node increase and the memory
per core decreases.

• Following this, the report looks in detail at the co-location of HPC workloads on
tightly coupled HPC systems, evaluating both the performance impact and the
practical issues related to multiple applications sharing the same hardware
resources. The performance tests were done using the NAS Parallel
Benchmarks, which consist of kernels that are representative of a CFD
application.

• The report then outlines the idea of using spare cores on a fat node as offload
servers with dedicated tasks, thus freeing up compute cores. The example that
is given in this report is that of IO servers. We also describe an RPC-like API to
explicitly offload tasks.

• The following chapter describes how spare cores can also be used to actively
progress asynchronous communication of MPI applications, thus overlapping
communication and computation, focussing in particular on Cray’s latest MPI
implementation. This Section also introduces a metric to quantify the amount of
overlap that can be achieved.

• The report then moves on to describe the idea of micro-kernels. Unlike
monolithic operating systems, micro-kernels consist of separate task entities,
which can be scheduled independently and thus use spare cores for OS
operations.

• The final two Sections describe possible future work continuing on from the
research presented in this deliverable, as well as some conclusions that we can
draw. The future work is largely concerned with how the approaches presented
here could be applied to the CRESTA co-design vehicles as well as to power
management issues.

© CRESTA Consortium Partners 2011 Page 2 of 35

2 Introduction	
The purpose of this deliverable is to summarise the research that was undertaken as
part of Task 2.4 “Alternative use of fat nodes” inside WP2 of CRESTA. Fat nodes are
already a reality in modern HPC systems, and the reduced amount of memory per core
on these nodes means that some applications are already at the stage where they
cannot exploit all the cores on a node. Under-populating nodes is a common technique
used to increase memory per process (and more efficiently use available memory
bandwidth) and can be optimal for performance.

This deliverable investigates how we can use spare cores on a fat node in a useful and
productive manner. Four different avenues are explored and described in subsequent
Sections. The ideas outlined in this document (which vary in maturity and feasibility)
will be shared and discussed with the owners of the CRESTA co-design vehicles.

2.1 Purpose	
The purpose of this public deliverable is to gather and present the results from Task 2.4
of WP2 of the CRESTA project.

2.2 Glossary	 of	 Acronyms	
API Application Programming Interface
CFD Computational Fluid Dynamics
CG Conjugate Gradient
CPU Central Processing Unit
CRESTA Collaborative Research Into Exascale Systemware, Tools and

Applications
D Deliverable
DRAM Dynamic Random Access Memory
ECC Error Correcting Code
EP Embarrassingly Parallel
FT Fourier Transform
GPU Graphics Processing Unit
GROMACS Groningen Machine for Chemical Simulations
HPC High-Performance Computing
IFS Integrated Forecast System
I/O Input/Output
MG Multi-grid
MPI Message-Passing Interface
NUMA Non-Uniform Memory Architecture
OS Operating System
PCI Peripheral Component Interconnect
PE Processing Element
RPC Remote Procedure Call
TLB Translation Lookaside Buffer
WP Work Package

© CRESTA Consortium Partners 2011 Page 3 of 35

3 Background	 and	 motivation	
Over the last decade, the number of floating-point units ("cores") per physical CPU die
has increased dramatically. This has been driven by the so-called "power wall":
previously, increasing the clock speed delivered improved computational performance
per CPU. However this also raised the power consumption and introduced a new
engineering challenge of cooling the CPU so that the heat generated could be
dissipated. Eventually, this meant that designers looked for alternatives to making
further significant increases in the clock speed. Additional performance gains instead
came from building CPUs with more, lower-frequency floating-point cores. Recent
improvements in CPU design have improved their power efficiency so that clock
speeds have once more shown a modest increase, but this will not offset the trend
towards multiple cores. All of this has contributed to the continued trend of Moore's
Law, with transistor counts doubling every two years, and House's variant of overall
CPU performance doubling every 18 months. Modern (as of 2013) multi-core CPUs
have 8 or more cores per CPU, whilst many-core GPU accelerators and coprocessors
extend this trend even further.

This rapid increase in the number of computational cores has not, however, been
matched by a commensurate increases in the shared node resources used to support
the potential floating-point calculation rate, viz. total on-node memory size (typically 32
or 64GB per node); memory bandwidth used to pull data from the main memory into
the fast, on-die caches; and the network bandwidth. Memory bandwidth is particularly
important for many applications: like CPU floating-point performance, DRAM speeds
have also shown exponential growth over the last 15-20 years, but with a doubling time
of 3 years rather than 18 months [1] [2]. As a consequence, memory bandwidth has
become an increasingly significant limiter of application performance, and this trend is
likely to continue. Network performance will show some improvements over the next
decade, but the gains will not be exponential. Large message transfer rates are limited
by the bandwidth of the bus (e.g. PCI Express) connecting CPU and NIC, which will not
improve dramatically. Smaller messages (arguably more important as we strongly
scale1 fixed-size problems to run on Exascale machines) are more sensitive to the
latency of the interconnect, and this has long remained around 1µs and is unlikely to
decrease further.

Given these limitations, it is clear that for many codes we can achieve the same overall
performance per node with fewer "active" cores per node running a portion of the
calculation. We will generically refer to such a portion as a Processing Element (PE),
the precise meaning of which depends on the programming model used. A PE could be
an MPI rank, a Fortran coarray image, or an OpenMP thread associated with a rank or
image or similar. With current CPUs, some codes see similar (or even improved)
performance when running on 50-75% of the available cores per CPU. As hardware
trends continue, this proportion is likely to decrease, as limited shared resources limit
the accessible floating-point performance. Currently, inactive cores automatically go
into a sleep state, consuming less power. Future Exascale-era CPUs may take this
further, allowing the hardware, OS, runtime or application to completely power down
these cores (so-called "dark silicon"). With power constraints paramount in an
Exascale-class supercomputer, this is an attractive option.

A relevant, but complicating, factor here is the increasingly deep hierarchy of boost and
sleep states available in modern CPUs. The hardware can detect idle cores and reduce
their clock speed (and thus power consumption). When sufficient cores are in these
sleep states (and the environment permits), the active cores can then have their clock
speeds temporarily boosted within the same overall CPU power envelope. With current

1 By strong scaling, we mean dividing a fixed-size global problem over increasing
numbers of PEs, with the local problem size per PE decreasing accordingly. This is in
contrast to weak scaling, where the local problem-size remains fixed.

© CRESTA Consortium Partners 2011 Page 4 of 35

CPUs, this can amount to as much as 500MHz of additional performance for the active
cores. For this reason, we can actually surpass the "all cores active" performance per
node with a "half-dark" version. It is not obvious to what extent this boost factor will
feature in the Exascale era, where the aim of idle cores is to limit the overall power
consumption, rather than to enable boosting of other cores.

Boosting aside, switching cores off will undoubtedly save power, but it is not
necessarily the most productive thing to do. Supercomputing systems have base-line
power consumption regardless of the CPU activity, and even sending half the cores
"dark" will not halve the power consumption of the system. It is therefore reasonable to
consider whether idle cores could be productively used, rather than simply powered
down.

It is important here to clarify what we mean by "productive use". We take the view here
that an Exascale supercomputer will focus on computational problems that demand
such a capability resource. We focus, therefore, on three specific scenarios: using the
spare cores to improve the performance of the application running on these nodes at
the OS and runtime level; improving single-application performance through PE
placement; and improving ensemble-based simulation throughput through co-location.
This deliverable discusses different potential scenarios for the productive use of fat
nodes, looking at options which are feasible today as well as more speculative future
developments.

© CRESTA Consortium Partners 2011 Page 5 of 35

4 Co-‐location	 of	 HPC	 workloads	
Application co-location is the simultaneous running of two or more HPC applications on
a set of nodes, such that each application gets a partial share of the resources
available to each node. The goal of such an approach is to improve the combined
performance of the applications, by reducing the overall runtime and/or energy
consumption. Architectural trends suggest this may become an increasingly promising
method for improving application performance as we approach Exascale computing. In
this Section, we explore application co-location for tightly coupled HPC
supercomputers. By considering the runtime performance when pairs of codes are co-
located on a variety of node architectures, we show that co-location can be beneficial
and indicate in which real-world situations it can improve performance.

4.1 Introduction	
Co-location of two or more independent simulations on a set of nodes may improve
overall throughput. In addition, many Exascale-potential applications can be regarded
as coupled simulations of two or more interacting physical systems, each using a
distinct set of PEs. Co-locating PEs from these different simulations on a node can also
improve application performance.

The argument for why this may be a sensible thing to do is simple: if different sets of
PEs on the node are doing different things and accessing different shared node
resources, then each resource is less likely to be saturated and less likely to hinder
overall performance. For coupled simulations, it is very likely to be true that different
sets of PEs are behaving independently and not competing for the same resources at
the same time. For ensembles, it is possible that the two sets of PEs are actually doing
the same thing. But, with no barriers between the independent sets, they can
spontaneously get sufficiently "out-of-step" that the same situation occurs.

Of course, there are complications. Most real algorithms use all the shared resources
to some degree, so seemingly independent computational tasks are not actually that
different in terms of resource usage, so co-location can be less successful than
expected. Likewise, even if the tasks do make independent usage of shared resources,
the success of co-location will depend on how much time is spent on each task and the
frequency and pattern of the tasks in the application timeline.

Nonetheless, it is reasonable to investigate whether there are any circumstances in
which application co-location can be successful on current tightly-coupled HPC
systems and, if so, to see whether any guidelines can be given to indicate when co-
location might be a productive thing to try for a particular code. Application co-location
has been investigated in the past [3][4]; in this report we consider a number of new
angles on this issue.

First, most studies concentrate on generic cluster architectures, rather than the tightly
coupled architectures that are more typical of likely Exascale architectures. This point
should not be underestimated: systems with a tightly coupled design are generally
designed to allow only one application at a time to use node resources and without
interference. As a result this can make it difficult to investigate co-located workloads.
Here we concentrate on the Cray XE6 supercomputers. In particular, the faster
interconnect used in these systems changes the balance of network communication
time compared to computation.

The range of systems used is shown in Table 1. The systems used are company-
owned systems used to investigate customer issues, and consequently contain a wide
variety of CPUs. We also take advantage of this heterogeneity to compare
performance on a wide variety of processor architectures and clock speeds, coupled
with different memory speeds. It is unusual to have access to such a wide variety in
one study. Being able to directly compare this range of node configurations allows us to
understand and model the effect of these hardware parameters on code performance.

© CRESTA Consortium Partners 2011 Page 6 of 35

Based on the expected hardware trends, we can therefore extrapolate our findings
towards expected Exascale supercomputer designs.

Ref. CPU Memory

Manufacturer and model Codename Part Clock
(GHz)

Size
(GB)

Speed
(MT/s)

1 AMD Opteron Interlagos 6272 2.1 32 1333

2 AMD Opteron Interlagos 6272 2.1 64 1600

3 AMD Opteron Interlagos 6272 2.1 128 1600

4 AMD Opteron Interlagos 6274 2.2 32 1333

5 AMD Opteron Interlagos 6276 2.3 32 1333

6 AMD Opteron Interlagos 6281 2.5 64 1600

7 AMD Opteron Abu Dhabi 6380 2.5 32 1333

8 AMD Opteron Abu Dhabi 6380 2.5 64 1600

9 AMD Opteron Fangio 6275 2.3 32 1600
Table 1: List of Cray XE6 node hardware configurations considered.

4.2 Methods	
It is very difficult to analyse the co-location properties of real applications, which
typically feature a number of phases in their execution, with each phase relying on the
node resources in different ways. It is therefore better to focus on smaller, kernel
benchmarks that typify the individual phases.

4.2.1 Benchmark	 codes	
We use the well-established NAS Parallel Benchmarks v3.32, and concentrate on the
kernel benchmarks: CG (conjugate gradient), EP (embarrassingly parallel), FT (Fourier
transform) and MG (multigrid), which we compile with the latest released version of the
Cray Compilation Environment (CCE), version 8.1.

The codes were compiled using the provided Makefile. The build allows us to define a
global problem size using the build option CLASS=<size>, where <size> is encoded by
a letter. We considered CLASS=A,B,C and D for this study, but mainly concentrate on
CLASS=C for the quoted results. The number of MPI ranks is fixed at compile time using
the NPROCS=<ranks> build option.

4.2.2 Hardware	 used	
We begin by briefly describing the hardware used for the tests. It is important to do this
first, as it informs some of the co-location decisions that will be made following.

All tests were done on Cray XE6 supercomputers located in the Cray Data Center at
Chippewa Falls, Minnesota, USA. The Cray XE6 is a tightly coupled supercomputer,
coupling compute nodes together via the low-latency, high-bandwidth Cray Gemini
interconnect. Each node contains two 16-core AMD Opteron processors, giving 32
cores per node. The two CPUs on each node are generally identical, but there are a
range of options from the 6200-series "Interlagos" and 6300-series "Abu Dhabi"
processors. Each node shares banks of DDR3 memory (usually totalling 32 or 64GB
per node), with the DIMMs supporting a maximum transfer rate of 1333 or 1600 MT/s.

 The downside of this variety node designs is that the number of nodes with a given
hardware configuration is more limited; in this study we used up to either 16 or 32
nodes, depending on availability.

2 Available from: http://www.nas.nasa.gov/publications/npb.html

© CRESTA Consortium Partners 2011 Page 7 of 35

The AMD Opteron CPUs are based around eight dual-core "modules", called
"Bulldozer" for the 6200-series Interlagos Opterons and "Piledriver" for the 6300-series
Abu Dhabi CPUs. In each case, a module couples two x86 out-of-order processing
cores, which share some structures including higher-level memory caches and, more
importantly here, floating-point units (FPU). Each FPU can separately process one
128-bit instruction (e.g. SSE) or they can be unified to process a single 256-bit-wide
AVX instruction. This is an important feature, as it means that certain compute-
intensive codes can give the same performance per node using one core per module
(8 cores per CPU, or 16 cores per node, sometimes known as "single stream mode")
as when using both cores in the module (16 cores per CPU, or 32 cores per node and
"dual stream mode"). In certain circumstances, single stream mode can even lead to
higher performance as, when half the cores on a CPU are idle, the hardware may take
advantage of this to temporarily boost the clock speed of the active cores (whilst
remaining within the CPU's designed power envelope).

It is very difficult to predict a priori whether a given code, even if computationally-
intensive, will give better performance per node in single stream mode. The answer
may even depend on how the code is run.

4.2.3 Running	 the	 single	 applications	
The benchmarks were executed on the compute nodes using the Cray ALPS library
command aprun. Two modes of running were considered. Firstly, each code was
compiled using K MPI ranks (i.e. K PEs, as the codes are pure MPI), and then run in
dual stream mode, using all the floating point cores on the node (with flag "-‐N32	 -‐j2"
for aprun). Each code internally reports correctness and relevant runtime, which it
converts to a performance figure. It is this runtime that we consider in the results in this
report. Secondly, we recompile with K/2 ranks and then run again using single stream
mode (flags "-‐N16	 -‐j1" for aprun).

On AMD CPUs on the Cray XE6, the CG, EP and FT benchmarks performed best in
dual stream mode. MG is more complicated, as single stream mode is faster in some,
but not all cases. For instance, for CLASS=C, we find single stream mode to be faster
when running with 1 node (using 16 ranks), 4 nodes (64 ranks) or 8 nodes (128 ranks),
but dual stream gives better performance with 2 nodes (also 64 ranks) or 16 nodes
(512 ranks). The precise reasons for this oscillating behaviour are hard to establish, but
it does have bearing on the co-location results that follow. It is interesting to note that
where single stream mode is better, the advantage over dual stream mode is generally
only a few per cent, but where single stream mode is worse, it is typically 20% slower.
This suggests that we should perhaps look at this as single stream mode being
especially inefficient in these cases, rather than the other way round.

4.2.4 Application	 characterisation	
To understand why co-location of two kernels might be advantageous, we need to
characterise how each application makes use of the shared resources of the node by
attempting to model the application runtime in terms of time spent on: floating-point
computation, waiting for data from memory and network transfers. To do this, we
profiled the codes using the Cray Performance Analysis Tool (CrayPAT), selecting to
trace all user routines and MPI (options "-‐u	 -‐gmpi" for the pat_build command). The
CrayPAT API was used to restrict profiling to the timed region of the benchmarks. We
then run the instrumented code and generate the profile. The network time is reported
under "MPI" in the main profile, while the "USER" time consists of time spent in the
different computational routines. The "ETC" heading reports time spent in lower-level
operations, which was consistently extremely small and can be ignored. None of the
benchmarks does any significant I/O, so we do not need to consider this here.

The next step is to separate the USER time into two parts; that constrained by floating-
point calculation speed; and that constrained by memory bandwidth. If the CPU clock-
speed is C MHz, and the DDR3 memory DIMMs have a transfer rate of M MT/s (mega
Transfers per second), we can most simply model the user time U for a given code at a
given node count by:

© CRESTA Consortium Partners 2011 Page 8 of 35

𝑈 =
𝐴
𝐶
 +

𝐵
𝑀

where A and B are constants. To find A and B most simply, we took advantage of the
diverse range of Cray XE6 nodes available in the Cray Data Center. We ran (and
profiled) the benchmarks on five different Cray XE6 variants, all with AMD Interlagos
CPUs, as listed in entries 1 to 5 of Table 1.

We then performed a least squares minimisation to estimate A and B from these 5
values of U. To estimate the error on A and B, we did the following crude analysis.
Given the best-fit A and B, we can predict a value of U for each of the 5 architectures,
and calculate the percentage error based on the actual values of U. We then take the
maximum percentage deviation across the 5 data points as the overall error on the fit,
and ascribe this same fractional uncertainty to A and B.

Clearly this is an overly simplistic model. We are assuming that any hardware-
controlled boosting of the CPU clock speed is done in proportion to the base clock
speed and that all 5 hardware combinations boost in exactly the same amounts.
Similarly memory-caching effects are only accommodated if we make similar
assumptions regarding cache bandwidth. Nonetheless, we find this model works
surprisingly well, with the percentage errors at the level of a few per cent, and we can
then use it to estimate the fractions of U that are clock- and memory-bound.

In Figure 1 we show the application characterisations for each benchmark as we
strong-scale a particular problem size (NPB	 CLASS=C) across increasing numbers of
cores. In many ways the results are as expected given an understanding of the
applications: EP is extremely clock-bound; FT makes greatest use of the network; as
we strong-scale to higher numbers of PEs, the network becomes more important. What
is more surprising is that the characterisations of the benchmark kernels are more
similar that we might expect, despite the very different computational tasks carried out.
This is significant; the success of co-location relies on subsets of PEs on each node
stressing different shared resources at any given times. It is already clear here that co-
locating seemingly different computational algorithms is no simple guarantee of this
and any success will depend on when resources are accessed in each PE's timeline.

4.2.5 Co-‐location	
We are studying co-location to understand how shared resources on the node can be
more-smoothly utilised by a mixed workload. Given the compute module architecture of
the AMD CPUs, we therefore opt to co-locate pairs of applications on a node such that
they each take one core of each module. We also tried an alternative approach, where
we located PEs for the two applications on different CPUs on the node. As the results
were extremely similar, we do not discuss this case explicitly in this report. For Intel
CPUs, we take a similar approach, co-locating applications so each uses one of the
two hyper-threads running on a physical core.

Co-locating codes on the cores of a tightly coupled supercomputer such as the Cray
XE6 or Cray XC30 is not easy. Users typically demand the optimal and reproducible
performance that comes from having exclusive access to a compute node and the
system software reflects this. The Cray ALPS library does permit the running of two or
more binaries together in MPMD mode (Multi-Program, Multi Data) sharing, for
instance, a common MPI_COMM_WORLD communicator, but only if all the cores on a
given node host PEs from the same binary. To investigate co-location, we need to go
beyond this and mix PEs from different applications on the same nodes. There is (at
least currently) no simple way to do this beyond editing the two applications to become
part of a single binary. For the NPB kernel benchmarks, we did this as follows.

© CRESTA Consortium Partners 2011 Page 9 of 35

Figure 1: Kernel benchmark characterisation, running on 2.1 GHz processors with 1600 MT/s
memory speed.

Two MPI applications can be combined into one by using a common main program that
initialises the MPI library, and then splits the default MPI_COMM_WORLD communicator
and runs each application in one of the sub-communicators, before calling
MPI_Finalize() when all called applications finish. The applications themselves are
modified by changing their main program into a subroutine which takes an argument
that is the MPI sub-communicator handle to be used by that application (and stored in
an appropriate shared data structure. Calls to MPI_Init() and MPI_Finalize() in the
application are removed, and references to MPI_COMM_WORLD are replaced by the
appropriate sub-communicator handle. This modification to an application is easily
tested using a separate, three-line main program that calls: MPI_Init(); followed by
the subroutine that is the previous main program, with argument MPI_COMM_WORLD; and
then MPI_Finalize(). The code should then execute exactly as before.

The complication comes if there is a symbol clash in the two sets of object files (usually
because both contain subprograms with the same name). Possible solutions here are
to rename subprograms in the source code, modify the object files to remove clashes
or to somehow restrict the objects in each application to separate namespaces. For the
Fortran codes we considered, namespacing was most easily done by textually inlining
(via INCLUDE statements) the existing source files into an application-specific
MODULE, defined in a separate file and then in the main program exposing only the
top-level subprograms with "USE..ONLY" statements.

This modification was made for all the kernels, allowing any combination of two
applications to be run. An additional change was that the top-level subroutine returns
as an argument the time taken to run the benchmark portion of the application. This
allows the driver program to (optionally) repeatedly run the benchmark until a specified
time has been spent (plus benchmark initialisation time for each instance). This is
helpful when co-locating applications with different execution times. It is also important
here because we are not interested in the co-location performance of the NPB kernels
per se, but rather because we hold them to be representative of different parallel
computational tasks in a more-realistic application (recall that they are representative of

© CRESTA Consortium Partners 2011 Page 10 of 35

components of a CFD application). As such tasks are likely to be repeated many times,
this repeated-run mode of kernel execution gives a better picture of the success of co-
location in the real case.

Clearly this manual fusing of application codebases is feasible for the limited kernel
benchmark suite we consider here. For more realistic applications, a more user-
transparent method would almost certainly be needed if co-location is to be widely
exploited.

The combined binary is then executed on the compute node using the aprun command
in single-stream mode ("-‐N32	 -‐j2"), ensuring that the rank placement is such that
each compute module hosts one rank from each of the original applications, and each
node runs 16 ranks from each code. Effectively we are overlapping the two codes,
each running in single stream mode, as a single dual stream job.

Having run each code multiple times are part of this co-location job, we average the
benchmark runtimes as reported by the code. We found these runtimes to be very
consistent, so we did not need to worry about outlying results biasing the mean.

4.2.6 Co-‐location	 metrics	
Having run binary combinations of the benchmarks, we need to define a metric to
assess the success of the co-location approach. In the general case, this metric would
probably be an appropriate function of both the application runtimes and the energy
consumed in running these codes. As we are not considering energy usage in this
report, the metric is based solely on application runtime as follows.

Assume that we co-locate applications X and Y. Running solo and taking full advantage
of the node (in the better of single or dual stream modes) they take times SX and SY
respectively. When co-located and each using half the cores on each node, they take
times TX and TY. There are two obvious ways to measure success. If, as we do here,
we envisage these benchmarks as being part of larger applications, we will be co-
locating the benchmarks multiple times. In this case, the best metric for co-location
success is:

𝑀! =
𝑆!
𝑇!
+
𝑆!
𝑇!
 .

Alternatively, if we view our benchmarks as complete applications that are only going to
be run once, then we need to compare the times for running the applications separately
in sequence, to the time of the slower of the pair when co-located:

𝑀! =
𝑆! + 𝑆!

max (𝑇! ,𝑇!)
.

In either case, values greater than unity indicate a net benefit from co-location. As
justified previously, we will confine our discussion to metric M1 in what follows.

4.3 Results	
In Table 2 we show the M1 co-location metrics for pairs of NPB kernel benchmarks
calculating the CLASS=C-sized problem on increasing numbers of Cray XE6 nodes on
Hardware Configuration 1 (see Table 1). The cells of the Table are shaded such that
the well-co-locating combinations are coloured green and poorly-co-locating pairs are
red. For each node-count, we display the result of co-locating a given pair of
benchmarks in a (necessarily symmetric) co-location metric matrix.

What is immediately clear is that there are many cases where co-location is successful
at the level of 10-15%, and occasionally more. The cases where it is successful also
outnumber those where co-location is detrimental. This in itself is encouraging. If no
other clear predictions are possible, the results do suggest that it is worth trying co-
location if at all possible.

There is also a general trend that poor co-location tends to disappear as we strongly
scale to more cores. This is as expected; the local problem sizes are smaller in these

© CRESTA Consortium Partners 2011 Page 11 of 35

cases and the computation therefore places less stress on the various shared node
resources, leading to less opportunities for contention. The network becomes
increasingly important relatively as we strong scale to smaller local problem sizes, but it
is the absolute amount of data transferred that leads to contention, and this is
decreasing.

1	 node	 CG	 EP	 FT	 MG	

CG	 1.07	 1.11	 1.05	 0.98	

EP	 1.11	 0.88	 1.11	 1.22	

FT	 1.05	 1.11	 1.09	 1.08	

MG	 0.98	 1.22	 1.08	 0.89	

	 	 	 	 	 2	 nodes	 CG	 EP	 FT	 MG	

CG	 1.17	 1.12	 1.14	 0.95	

EP	 1.12	 0.90	 0.98	 0.80	

FT	 1.14	 0.98	 1.10	 0.91	

MG	 0.95	 0.80	 0.91	 0.73	

	 	 	 	 	 4	 nodes	 CG	 EP	 FT	 MG	

CG	 1.12	 1.11	 1.18	 1.08	

EP	 1.11	 1.01	 1.13	 1.02	

FT	 1.18	 1.13	 1.25	 1.14	

MG	 1.08	 1.02	 1.14	 1.04	

	 	 	 	 	 8	 nodes	 CG	 EP	 FT	 MG	

CG	 1.24	 1.17	 1.43	 1.16	

EP	 1.17	 1.01	 1.31	 1.04	

FT	 1.43	 1.31	 1.61	 1.34	

MG	 1.16	 1.04	 1.34	 1.07	

	 	 	 	 	 16	 nodes	 CG	 EP	 FT	 MG	

CG	 1.18	 1.11	 1.27	 0.99	

EP	 1.11	 1.02	 1.29	 0.99	

FT	 1.27	 1.29	 1.52	 1.08	

MG	 0.99	 0.99	 1.08	 0.98	

Table 2. Co-location metrics M1 for the CLASS=C problem running on increasing number of nodes
with Hardware Configuration 2. Results are colour-coded, with green showing good co-location
and red denoting poor co-location.

The worst co-location performance tends to be when codes are paired with MG. We
saw previously that MG performed better in single stream mode than when using all
cores on the CPU. This suggests it is particularly sensitive to node resource contention.

© CRESTA Consortium Partners 2011 Page 12 of 35

Given MG's characterisation above, this is likely to be due to sharing the memory
bandwidth. This sensitivity is probably preventing co-location from being successful.

Apart from MG, benchmarks CG and FT tend to co-locate well with themselves and
other benchmarks. EP can show a minor negative effect when co-locating. This may
well be a consequence of EP being very clock-bound, whilst CG and EP have more
dependence on the memory speed and network.

The main conclusion we can draw from these results is that there is often a modest co-
location advantage, except where we are co-locating very clock-bound, floating-point
intensive codes or codes that have particular problems running in single stream mode.
The overall advantage may not (currently) be enough to justify merging distinct
applications to increase workload throughput. For coupled simulations, however, it is
almost certainly worth exploring whether PEs from different subsets should be co-
located on the node. This can usually be done without modifying the code; a runtime
file (typically MPICH_RANK_REORDER) can be used to change the placement of the PEs
on the cores of the various nodes without recompiling the code. A 5-10% improvement
in application performance is not insignificant and (if parts of the code are network-
bound) should improve application scalability.

4.3.1 Effect	 of	 varying	 node	 speeds	
Given the range of Cray XE6 node configurations available in this study, it is interesting
to investigate how the co-location metrics change as we vary either the CPU clock
speed or the memory bandwidth. Whilst the range over which these can be varied is
modest and we are fixed with the AMD Interlagos CPU architecture, understanding the
trends in the values of the co-location metric may give some indication as to whether
any advantage is likely to persist as CPU architectures evolve towards the Exascale.

We first look at the effects of varying the CPU clock speed, comparing the co-location
metric results for the CLASS=C-sized problems running on Hardware Configurations 2
and 6. This changes the clock speed from 2.1 GHz to 2.5 GHz, whilst fixing the
memory speed at 1600 MT/s.

Surprisingly, the co-location metric results are nearly identical for all the co-location
pairs and node counts considered. EP shows a slight increase in co-location advantage
when paired with itself, but only at certain node counts. Other than that the co-location
metrics agree to within a couple of percent.

The conclusion here is that clock speed does not strongly influence co-location
success if we are primarily interested in runtime. It may, of course, be more interesting
if we instead measure energy consumption as part of our co-location metric.

Varying memory speed does have a bigger effect. If we compare Hardware
Configurations 1 and 2, which both have clock speeds of 2.1 GHz but change the
memory speed from 1333 MT/s to 1600 MT/s.

We find a clear pattern emerge here. At small node counts (1 or 2 nodes) we see a
strong improvement when co-locating any code with EP, with co-location metrics
improving as we increase memory speed, by 5-10% for heterogeneous pairs and as
much as 30% when EP is co-located by itself. Other metric values remain essentially
unchanged. This may seem surprising, as EP is the least memory bound of the codes,
but this allows the other code in the co-location pair to take full advantage of the
increased memory bandwidth. This effect decreases at higher node counts when less
memory bandwidth is needed.

More striking at higher node counts (8 or 16 nodes) is that the co-location metric for
any co-location pair including FT shows a decrease of around 20% when we increase
the memory speed. The current trend is for memory speed to increase more slowly
than the floating-point performance of a CPU, so it is likely that memory bandwidth will
become a more serious limitation as we move towards the Exascale. The results in this
Section reinforce that there is a good argument for using co-location, especially where

© CRESTA Consortium Partners 2011 Page 13 of 35

an application has compute-heavy parts of the code that allow the memory bandwidth
to be used almost exclusively by other, co-located tasks.

4.3.2 Comparing	 CPU	 architectures	
Thus far, we have focused on Hardware Configurations using Interlagos CPUs. It is
interesting to see what effect changing the CPU type has on co-location. We consider
two different AMD CPU versions. The first is the next-generation Abu Dhabi processor.
This uses the “Piledriver” compute module that offers some incremental improvements
on the Bulldozer module used in the Interlagos CPU, which should improve application
performance, especially for clock-bound codes.

The other is a special purpose variant of the Interlagos CPU known as "Fangio". Each
standard Bulldozer module can process 8 double precision floating-point operations per
clock cycle. In the Fangio processor, this is capped to 2 double precision operations
per clock. The peak performance of the CPU is thus reduced by a factor of four, but
with the same memory bandwidth etc. Floating-point-bound codes will be sensitive to
this loss of peak performance, but more memory-bound codes (including many CFD
applications) may perform as well on Fangio as on Interlagos [5]. As reduced floating-
point performance should translate to lower power consumption, Fangio is a very
useful prototype for future CPU architectures used in Exascale systems.

The exact node configurations are shown as Hardware Configurations 7 to 9.

The co-location experiments were carried out in the same way as before. As with
Interlagos, we find that varying the clock speed of the Abu Dhabi CPUs does not
noticeable affect the co-location metrics.

When comparing co-location metrics on Abu Dhabi to Interlagos (Hardware
Configurations 8 and 6), the differences are small, with variations at around the 5%
level and with few clear patterns. Application pairs involving CG perform marginally
better on Abu Dhabi CPUs at small node counts. Co-locating EP with itself also
degrades the co-location advantage, possibly because EP can best exploit the
improved floating point performance in the newer CPU, which then increases the
code's reliance on unchanged factors, notably memory bandwidth.

Only small numbers of Fangio nodes were available in the Cray XE6 systems, but on
these the only significant change is for co-location pairs including EP. Running on
Hardware configurations 9 and 5, we find that when EP is paired with CG, itself or FT
we see a reduction in the co-location metric of 5-10%. It is hard to draw definitive,
partly because of the modest node counts available and also because Hardware
Configurations differ not only in CPU architecture but also in memory speed.

In general, given the relatively minor architecture differences between AMD Interlagos,
Abu Dhabi and Fangio CPUs, it is hard to identify underlying trends that indicate what
may happen at the Exascale.

4.4 Conclusions	 and	 further	 work	
As reported in the previous Subsections, we have measured how well the NAS Parallel
kernel benchmarks perform when run in tandem on nodes of a tightly coupled
supercomputer, the Cray XE6 with various node configurations. The measure of
success considered here is based purely on execution time.

Taking advantage of the wide range of node architectures available within a single
HPC system, we examined the effects of CPU clock speed and memory bandwidth on
the co-location and also how changing the CPU architecture altered the co-location
properties. We used a simple performance model to characterise the codes, dividing
their runtime into clock-bound computation, memory bandwidth bound execution and
network-bound time.

The main conclusion is that co-location was successful, increasing runtime throughput
for a wide range of pairs of kernels by around 10%. This effect was most striking when
the local problem size was relatively large (i.e. small node counts in our strong scaling

© CRESTA Consortium Partners 2011 Page 14 of 35

studies). This is as expected, when the greatest strain is being placed on the shared
node resources.

It is difficult to extract general principles to predict co-location success from this study.
This is partly because the interaction of the code with the hardware is complicated, but
also because a real-world application will contain a number of different tasks stressing
different components of the hardware. Whilst a given task might be characterised by
one of the kernels used in this study, the co-location success will depend on how long
is spent in each task and the sequence and frequency in which the various tasks are
called.

It is clear, however, that if a code prefers to run in single stream mode (one core per
module on AMD CPUs, or one hyper-thread per code on Intel CPUs), it is unlikely to
co-locate well.

We saw that the clock speed has a relatively minor effect on the co-location metric, but
memory speed is more important. As the rate of increase of CPU performance is
outstripping that of memory bandwidth, this suggests that co-location will indeed be
more important as we approach the Exascale. This is compounded by fact that the
increase of CPU performance is largely coming from increased core count rather than
inflated performance per core. With more cores there is greater scope for co-location.

We studied three (admittedly similar) AMD CPU architectures in an attempt to further
identify hardware trends affecting co-location success as we progress towards the
Exascale. The architectural similarity, however, made it hard to see definitive, long-
term trends that could be extended this far into the future. The comparisons did,
however, underline that there are opportunities for co-location success on all the CPU
architectures considered.

What was clear from this study was that the complications of launching two codes in a
co-located fashion are currently considerable on many tightly coupled HPC systems,
and simpler mechanisms would be needed if this procedure were to be more widely
adopted.

We considered co-location to CPU resources, but coprocessors and GPUs are widely
regarded as being important in this area; not only do they increase floating point
performance on the node, but they also (potentially) do this with reduced energy
consumption compared to a CPU. Such accelerators are increasingly being added to
supercomputer node architectures such as the Cray XK7, which replaces one of the
AMD CPUs per node with an Nvidia Kepler K20X GPU. The execution model of the
GPU requires the main program (at least) to reside on the CPU, with computational
kernels being offloaded to the GPU. Typical GPU codes only use one core of the CPU
for this, with the remainder sitting idle. There is clearly a good case here for co-
location, running a CPU code on the 15 idle cores.

As before, the measure of success here could be based either on execution time or
energy consumed. It would be interesting to compare these approaches, as hardware
becomes available.

We considered the co-location potential of the CRESTA co-design vehicles.
GROMACS and IFS are good candidates for full-application co-location investigations.
The GROMACS algorithm is quite task-based and science calculations typically require
an ensemble of similar simulations that could be co-located. IFS couples a number of
physics models in a simulation and there may be advantages to co-locating PEs
involved in different models on the same node.

Looking forward towards the Exascale, we expect the trend of fat nodes getting fatter
makes co-location a more interesting proposition. Comparing co-location results on
Interlagos CPUs with those on Abu Dhabi and, especially, Fangio, it appears that the
benefits of co-location are relatively robust against architecture changes and we are
perhaps therefore justified in believing they will persist as CPU architectures evolve
towards those needed for an Exascale supercomputer. What is also clear from this
study is that CPU architectures are already very complicated, and that it is difficult to

© CRESTA Consortium Partners 2011 Page 15 of 35

make sweeping generalisations about which codes might benefit from co-location and
by how much. CPUs will undoubtedly get more complicated, if only to satisfy the widely
quoted power cap of 20MW for an Exascale supercomputer. We therefore believe that
co-location studies such as this should be revisited as processors change, to track
whether the benefits suggested here will truly remain in the Exascale timeframe.

© CRESTA Consortium Partners 2011 Page 16 of 35

5 Offload	 servers	
In this Section we will consider the potential for using spare cores on a fat node to run
offload servers. This should allow us to use spare compute and network capacity to
progress aspects of an application at the same time as the application continues with
computational phases. The most obvious practical example of this approach (and one
we use as motivation and demonstrator) is that of I/O servers.

An I/O server implementation can offload filesystem activity (which can be time
consuming) in a way that brings performance benefits for the following reasons:

1. There is opportunity for overlap of the I/O with application computation
either due to faster communication between the application data space and
the I/O server than direct application I/O or because of explicit
asynchronous communication with the I/O server

2. I/O from a (limited) set of I/O servers to the filesystem may be more efficient
than from all application processes.

We need look no further than the CRESTA co-design vehicles to find that I/O is a
challenge to scalability. For example:

• GROMACS
GROMACS is the major open source and free software package for
biomolecular simulation developed as an international collaboration steered
from KTH, Sweden. This application can achieve exceptional efficiency due to
a combination of algorithm choice and tuning. However the I/O implementation,
which gathers a large amount of data to one node, is becoming a bottleneck.

• OpenFOAM
OpenFOAM is an open-source software package for computational fluid
dynamics (CFD). It has a scalability challenge due to its output scheme where
many files are written per process. This is not efficient as the number of
processes increases and the application makes more demands on the
filesystem [6][7].

Two approaches to address these I/O challenges are to use a more coordinated
approach (for example MPI-I/O) or to perhaps use an I/O server implementation to limit
filesystem activity to a small set of processes (note that MPI-I/O does aggregation
already).

Although I/O servers are not a new idea, the increasing trend towards fatter nodes and
access to systems with both fat-nodes (24-32 cores) and the capability for fast single-
sided communication means that now is the ideal time to revisit this concept.

In the following Subsections we consider how offload servers might be placed and
which APIs should or could be supported. We also introduce a new API, which we
believe would be a good method for incorporating the use of offload servers into an
application in the most general way.

5.1 Server	 Location	
We will consider a multi-process application and choose to define the “client” as an
application routine or possibly a progress thread. The offload server is a process that
can send and receive data to and from the application clients. The server executes as
part of the application (one of the processes forming the application) and, in the case
where it is an I/O server, the server has access to the filesystem.

Various location strategies are possible for the offload server:

1. It can be co-located with the application as progress thread(s);
2. It can be a separate process located on nodes only used for offload servers;
3. It can be a separate process co-located on a node with standard application

processes.

Here, we will concentrate on the case of separate processes forming offload servers.

© CRESTA Consortium Partners 2011 Page 17 of 35

5.2 Software	 Implementation	 options	
Enabling an application to take advantage of offload servers with minimal programming
effort would be the ideal scenario. There are two approaches that can fulfil this
requirement:

1. An API that performs a standard function (for example I/O to a file) which uses
offload servers transparently.

2. An API that allows the application to start and interact explicitly with an offload
server implementation. Within this context a more standard API could be
provided.

We now consider these cases in more detail.

5.2.1 Standard	 API	 approach	
An example of how the standard API could work would be through a proxy of a
standard API such as POSIX I/O or MPI-I/O. Calls to that API would then operate via
the offload servers. There is a major difficulty with this approach in that we need some
mechanism to start up the application along with the offload servers in a way that is not
visible to the application. For example, with MPI it may be possible to start multiple
binaries, with some of these binaries starting in a context with a fake MPI_COMM_WORLD
and an extra known communicator that includes the offload servers. Such a solution is
very system specific, but minimally invasive.

If we can proxy MPI-I/O, it would be worth considering having the I/O server located on
the same node as the MPI-I/O aggregators, which may offer an extra performance
advantage.

5.2.2 Generic	 Offload	 approach	
In this generic approach the offload framework is made explicit to the application at the
expense of some extra coding in the application. For an MPI application, it is necessary
that the application can progress using a new communicator for its computation ranks.
We chose this more generic approach, as outlined in the following Section.

5.3 Offload	 server	 demonstrator	 implementation	
We have developed a demonstrator implementation for offload servers for MPI
applications. The goals of this implementation were as follows:

1. Simplicity of use;
2. Flexibility in operations supported by the offload server;
3. Support for MPI applications;
4. Allow asynchronous progress of offload server operations.

Our approach was to develop a generic API that looks like an RPC API. This is
described in more detail below.

We decided to start with a Fortran implementation for the following reasons: firstly to
see how easy it was to have a complete Fortran stack; secondly because we wanted to
make sure that we could use function pointers (something more familiar to C
programmers); and finally because we could use standard Fortran coarray syntax for
single-sided data communication and control. Having the capability for single-sided
operation is fundamental to supporting asynchronous data movement.

The implementation segments the application processes into two sets as illustrated
below:

© CRESTA Consortium Partners 2011 Page 18 of 35

Figure 2: Application client/server distinction

In this example the application is split between 6 compute processes (clients) with two
processes reserved for use as offload servers, which have been placed at the highest
ranks of the MPI application.

Our implementation works as follows:

The application registers a callback function, which is to be used later when the
application wants to make use of the offload servers. It then calls an initialisation
routine that allows the application to split into compute processes/ranks and offload
servers. From that point on, the application should continue by only using the compute
processes and the programmer should keep in mind the distinction as per Figure 2.
The application can make a call to the offload server implementation to asynchronously
start the callback function. The function will be executed on both the compute node and
on an offload server. The function can provide or reference data, which is
communicated behind the scenes by the implementation. For example, an array could
be provided to be written to a file from an offload server.

The next Sections describe the API and the implementation in more detail.

5.3.1 The	 offload	 server	 API	
Applications using the offload server implementation must include the module os.

A callback function is registered using the os_register subroutine call

Name: OS_REGISTER(FUNC,HANDLE,SERVER_USAGE,DIRECTION)
Description: Register function for later use as callback
Arguments:
FUNC Function to be registered
HANDLE Integer handle returned by call
SERVER_ USAGE Optional. Integer used to define which server can be used to
 handle requests, must have one of the following values
 SERVER_SAME (use same server)
 SERVER_ANY (use any server)
 n (User virtual server number n – starting with 1)
DIRECTION Optional. Integer used to define direction of transfer to or from server.
 Currently ignored (direction is TO the server) but must be supplied in
 the case that the implementation will move the data.

The handle it returns is used later. Note that this procedure must be called on all
processes. The function passed in must match one of the following prototypes:

SUBROUTINE FUNC(key,data,flag)
or SUBROUTINE (key,flag)
Arguments:
KEY An integer key (or tag)
DATA Variable of type os_data used to point at user data to be moved
FLAG logical variable set to false if the executing rank is an
 offload server

To start up the server infrastructure the os_start procedure must be executed and it is
defined as follows:

Name: OS_START(COMM,COMM_COMPUTE,NSERVERS,FLAG)
Description: Starts up the server infrastructure
Arguments:
COMM MPI Communicator of processes that call OS_START
COMM_COMPUTE (out) MPI Communicator for compute ranks

client processes server processes

© CRESTA Consortium Partners 2011 Page 19 of 35

NSERVERS (in/out) Number of servers requested/provided
FLAG Logical flag, value true denotes a server rank

On return, this routine either returns a communicator for the computation (clients) or it
returns MPI_COMM_NULL. Note that on the server the call enters a request-handling loop
so will only return when all work is done. The application should continue and use the
returned comm_compute where MPI_COMM_WORLD may have been used before. If the
flag argument is not present then the requested number of servers will be placed at the
highest ranks in MPI_COMM_WORLD. If the flag is present then any rank making the
call with the flag set to .true. will become an offload server.

As the application progresses it can now use the server infrastructure by initiating the
function callback using the os_func_start call.

Name: OS_FUNC_START(HANDLE,TAG,REQUEST)
Description: Start the function callback and data movement related to handle HANDLE
Arguments:
HANDLE Integer handle of previously registered function
TAG Integer tag that will be passed on function callbacks
REQUEST (out) Integer request number

Calling this subroutine will cause the implementation to call the handler callback
function on the client, collect any data to be transferred, move it to the server and then
call the same registered function on the server providing it with the data. Note that data
is only moved by the implementation behind the scenes if the “data” form of the
function was registered. The os_data datatype includes various pointers as shown
below.
 type os_data
 integer, dimension(:), pointer :: i => null()
 real, dimension(:), pointer :: r => null()
 double precision, dimension(:), pointer :: d => null()
 character*(:), pointer :: c => null()
 type(os_data), pointer :: p => null()
 end type os_data

The provided function should associate these pointers with data that needs to be
transferred. Note that the key (tag) can be used to help differentiate multiple calls.

In the case where the programmer wants to move the data then the
get_active_client_rank() routine may be called on the server to return the rank
of the active client.

The program can test that the calls have completed (on both ends) with the
os_func_wait call:

Name: OS_FUNC_WAIT(HANDLE,REQUEST)
Description: Waits until a request has completed
Arguments:
HANDLE Integer handle of previously registered function
REQUEST Integer request matching previously started function

When all work is complete for a client the os_finalise call must be called. This call
will terminate the offload servers.

5.3.2 Implementation	 details	
We chose to start with a pure Fortran/MPI implementation but wanted to have the
ability to overlap the communication and the function execution on the server with
computation on the clients. We decided to use Fortran coarray syntax to achieve this.

The function register calls are made both on clients and servers and hence there is
global knowledge of the handle-to-function relationships. A data structure is kept on
each server with details of client request states. The clients write into this structure
when there is work to do and this work is done during the server loop. When a request
is completed the most recently completed request number is written back to the client.
Both client and server data structures use locks for coordination.

© CRESTA Consortium Partners 2011 Page 20 of 35

Coarray put and get operations are used to move status and data information. In the
case where the os_data structure is used, the server can directly request data from the
client using coarray syntax.

5.3.2.1 Possible	 Future	 Work	 on	 the	 API	
Some restrictions of the current implementation are that only one request can be active
at any time per server and that there is no collective support (multiple clients mapped
to a single function call on the server). The former limitation is easy to lift if we keep
state for multiple requests at a time. We will also investigate adding specific domain
APIs that can be handled transparently by the infrastructure.

Also, data movement is currently only supported from client to server. Extending this to
data movement in both directions is a small change.

Another feature that we have not yet implemented is a combination of a data mover
API and advice on use of coarray primitives that can be used directly in client- and
server-executed functions to move data without setting or accessing the pointers in the
os_data structure.

Our implementation is Fortran with MPI. To support applications written in C a version
using either MPI single-sided or OpenSHMEM could be created.

5.3.3 An	 example	
The following example shows how the API could be used to copy array data to a
server, and have the server write the data to a file.
 program test
 use mpi
 use os
 implicit none
 integer :: rank,size,comm,ier,nservers,handle
 integer :: newrank,newsize,i,key,request
 integer,target :: int_data(100)
 type(os_data) :: data
 integer :: server_usage

 int_data=[(i,i=1,100)]

 call MPI_init(ier)
 call MPI_Comm_rank(MPI_COMM_WORLD,rank,ier)
 call MPI_Comm_size(MPI_COMM_WORLD,size,ier)

 int_data=[rank,0,0,(i,i=4,size(int_data))]

 server_usage=SERVER_SAME
 call os_register(data_handler,handle,server_usage,1)
 nservers=1
 call os_start(MPI_COMM_WORLD,comm,nservers)

 if (comm != MPI_COMM_NULL) then

 call MPI_Comm_rank(comm,newrank,ier)
 call MPI_Comm_size(comm,newsize,ier)
 print *, "rank",rank," new rank and size",newrank, newsize
 key=100+rank
 call os_func_start(1,key,request)
 call os_func_wait(1,request)
 end if

 call os_finalise
 call MPI_Finalize(ier)

© CRESTA Consortium Partners 2011 Page 21 of 35

 contains

 subroutine data_handler(tag,data,am_computer)
 integer, intent(in) :: tag
 type(os_data) :: data
 integer, dimension(:), pointer :: int_arr
 logical, intent(in) :: am_computer
 character*30 fname
 integer, save :: call_no
 integer unit

 if (am_computer) then
 data%i => int_data
 else
 int_data = data%i
 ! We have the data from the client

 call_no = call_no + 1
 write(fname,”(’A’,i4.4)”)call_no
 open(file=fname, newunit=unit, form=”UNFORMATTED”)
 write(unit)int_data
 close(unit)
 end if

 end subroutine data_handler
 end program test

The program starts by initializing the int_data array which will eventually be written
to disk via the offload server. It then registers a data handler routine (data_handler)
using the form with an argument of type os_data which will be used to move the data.
The program then calls os_start to split into compute and server processes. The
compute processes then call os_func_start to initiate the client and server
callbacks. After waiting for this to complete all processes call os_finalise() When
os_func_start is called the implementation calls the callback function
(data_handler) on the client, moves the data and then calls the function on the
server. This routine both provides the data (by associating the data%i pointer) and
sends it to a file on the server using the same pointer associated by the
implementation.

5.4 Other	 uses	 of	 offload	 servers	
An obvious application for offload servers is to handle I/O. An area that may be of
interest would be to implement user checkpointing on top of the existing infrastructure.
Furthermore, we could add two new features:

• Checkpointing to multiple servers using ECC across servers in order to be able
to recover from failure;

• Checkpointing to memory.

This could be extremely useful if delivered as part of a fault tolerant MPI solution.

5.5 Conclusions	
We have developed a new API which we think is the simplest way to experiment with
an offload server architecture for an MPI application but is designed to allow
asynchronous usage and allow overlap with computation. It is minimally invasive for the
application requiring that a callback function be registered, that the application can

© CRESTA Consortium Partners 2011 Page 22 of 35

continue with a new communicator and that data to be moved can be associated with a
provided data structure or communicated directly during the callback.

© CRESTA Consortium Partners 2011 Page 23 of 35

6 Background	 processing	 of	 MPI	 communication	
In this Section we consider how extra cores on a node might be used to improve the
performance of asynchronous message-passing communication libraries. In the case
where extra cores are available and there is opportunity for communication overlap,
there is a good case for using spare cores to progress the communication
asynchronously with the application’s computation. As we started this work, Cray
released a new version of the MPI library that supports an asynchronous progress
thread. We have used this implementation to validate our approach using simple
examples.

6.1 Behind	 the	 scenes:	 MPI	 message	 protocols	 and	 overlapping	
computation	 and	 communication	

The MPI API provides many functions that allow point-to-point messages (and with MPI
3.0, also collective communication) to be performed asynchronously. Ideally,
applications should be able to overlap communication and computation and hide all
data transfer behind useful computation. Unfortunately, this is not always possible at
the application level, and further, not always possible at the library implementation
level.

Figure 3: The non-blocking communication feature of MPI allows in principle overlapping
communication with other work.

In reality, even though the MPI library has asynchronous API calls, overlap of
computation and communication is not always possible. This is usually because the
sending process does not know where to put messages on the destination, as this is
part of MPI_Recv, but not MPI_Send.

As an example, let us consider the different interconnects of the Cray XE and XC
product series, referred to as Gemini and Aries respectively. On these networks,
complex tasks, such as matching message tags with the sender and receiver, are
performed by the host CPU. This means that message-matching is always performed
by one fast CPU per rank. Therefore, messages can usually only be progressed when
the program is inside an MPI function. Some applications insert extra MPI_Probe calls
to make this happen, however without a separate progress “thread” it is difficult to do
this in practice. Furthermore, it is not ideal to have that progress thread share the CPU
resources that are being used for computation.

Smaller messages can circumvent this issue when using the “eager” message transfer
protocol: if the sender does not know where to put a message, it can be buffered until
the receiver is ready to take it. When MPI_Recv is called, the library fetches the
message data from the remote buffer and into the appropriate location (or potentially
local buffer), and the sender can proceed as soon as data has been copied to the
buffer. The sender will block if there are no free buffers.

© CRESTA Consortium Partners 2011 Page 24 of 35

In the case of non-blocking communication, data is copied from the buffer into the real
receive destination when MPI_Wait or MPI_Waitall are called. This approach involves
an extra memory copy, but features much greater opportunity for overlap of
computation and communication.

Figure 4: The eager messaging protocol potentially allows overlapping. The case of blocking point-
to-point communication is shown on the left, the non-blocking case is shown on the right.

However, for larger amounts of data the communication uses the rendezvous data
transfer protocol. With this protocol, no similar temporary buffers are being used and
data transfer often only occurs during the MPI_Wait or MPI_Waitall statement. When
the message arrives at the destination, the host CPU is busy doing computation, so is
unable to do any message matching. Control only enters the MPI library when
MPI_Waitall occurs and does not return to the application until all the message data
is transferred. In other words, there has been no overlap of computation and
communication.

Figure 5: For larger messages the overlap is not available. The case of blocking point-to-point
communication is shown on the left, the non-blocking case is shown on the right.

The MPI libraries that progress eager and rendezvous messages differently usually
also allow for controlling the threshold for a message to become eager. However,
sending more messages via the eager protocol places more demands on buffers on
receiver, and if the buffers are full, transfer will wait until space is available or until the
MPI_Wait.

On the Cray XC and XE systems, there is also an opportunity to spawn additional
threads that allow progress of messages while computation occurs in the background.
Each MPI rank starts a “helper thread” during MPI_Init. These threads may run on

© CRESTA Consortium Partners 2011 Page 25 of 35

cores especially allocated for this purpose, or they can utilise core oversubscription
(e.g. “hyper-threading” on Intel CPUs). These threads progress MPI operations
(performing message matching and initiating the transfers) while the application
computes. Consequently, data has already arrived by the time Waitall is called, so
overlap between compute and communication has occurred. The Cray Asynchronous
Progress Engine operates only on inter-node rendezvous messages, since eager
messages already have a possibility for overlap. On real-world applications,
performance improvements of 10% or more have been reported.

Figure 6: The Cray Asynchronous Progress Engine uses specific communication threads for more
complete overlap.

6.2 Performance	 of	 the	 Asynchronous	 Progress	 Engine	
Let us define an “overlap availability time” O as

𝑂 = 𝐶 + 𝑁 − 𝑇

where

• T: a time required for completing a communication operation and an overlapped
computational task

• C (computation time): time required for performing the computational task alone
• N (network time): time required for completing the communication operation

alone.

Further, by defining

ovl% =
𝐶 + 𝑁 − 𝑇

𝐶 + 𝑁 −max (𝐶,𝑁)
∗ 100 =

𝑂
min (𝐶,𝑁)

∗ 100

ovl%(overlap availability %) would be zero in case of no overlap (the case with blocking
MPI communication) and 100 in case where the communication overhead has
completely been hidden (T being equal to either the computation or network time,
whichever is larger). Negative value would mean performance penalty from trying the
overlap.

In Figure 7 (left), the overlap availability of a “message chain” communication pattern,
realized with MPI_Irecv, MPI_Isend and MPI_Waitall, with and without using the
Asynchronous Progress Engine is presented. The platform is a Cray XC30, and we use
256 MPI tasks (occupying 16 nodes each having 16 Intel Sandy Bridge cores). The
computational task is a matrix-multiply of size yielding a computational time roughly
similar order of magnitude with the communication time. Without the Asynchronous
Progress Engine, overlapping is in fact causing performance degradation.

© CRESTA Consortium Partners 2011 Page 26 of 35

The non-blocking collective operations as introduced in the 3.0 version of the MPI
standard have also potential for overlap. This is an important asset, since especially
the all-to-all collectives are a typical scalability bottleneck in supercomputing
applications. The overlap availability of the non-blocking all-to-all data exchange as
implemented in MPI_Ialltoall on Cray XC30 is presented in Figure 7 (right). The
MPI_Ialltoall operation does not overlap properly, and some performance benefit
from overlapping can be expected only with small message sizes and when using the
Asynchronous Progress Engine.

Figure 7: Overlap availabilities of non-blocking point-to-point and collective communication.

© CRESTA Consortium Partners 2011 Page 27 of 35

7 Micro-‐kernels	
7.1 Motivation	
7.1.1 Core-‐specialisation	 with	 Monolithic	 Kernel	 OS	
On some HPC systems that employ a monolithic kernel operating system (such a
standard Linux distribution, or a customised derivative of a standard Linux distribution),
it is possible to separate the OS and the application processes on to different hardware
processors. For example, in a Cray XC30, this feature is called core-specialisation. The
user can reserve one (or more) processor core(s) for the OS kernel by inserting
commands into the job-launch script. The application processes cannot use these
reserved core(s), which means that more nodes will be needed to support the same
number of application processes. However, the application processes should benefit
from reduced OS jitter, i.e. reduced interference caused by the OS handling hardware
interrupts, which requires context-switching and possibly disrupts memory caches and
the TLB cache. A possible disadvantage of core-specialisation is that it introduces
locality issues in NUMA systems. Passing a memory pointer from the application to the
OS kernel may invalidate the associated cache entries in the application processor
core when the OS kernel processor core accesses memory using that pointer. Some
OS kernel functions and services should therefore benefit from co-location with the
application processes that use them. A further possible disadvantage is that the
reserved core may be overloaded and become a performance bottleneck if OS system
calls are made by application processes too frequently or if hardware interrupts occur
too frequently.

The disadvantages of core-specialisation suggest that a better option would be to split
the OS into separate services that execute in different physical locations within each
node (to address locality issues) and to replicate some OS services adding dynamic
load-balancing between the replicas (to address bottle-neck issues).

7.1.2 Asynchronous	 Progress	 Engine	 with	 Non-‐Blocking	 MPI	 Communication	
An asynchronous MPI progress engine, as described in Section 6, achieves the goals
of core-specialisation for a single OS service, namely network I/O.

The intention is that the application is written to make efficient use of MPI non-blocking
communication functions for all communication. When each non-blocking
communication operation is started, the MPI library returns control to the application
immediately. The MPI library progresses the communication in a separate thread or a
separate process (the asynchronous progress engine). Meanwhile, the application
does some useful computation work that does not depend on the result of the
communication. At a later point, the application verifies that the communication
operation is complete. When the asynchronous progress engine is scheduled on a
dedicated processor core, this coding style overlaps communication and computation
to achieve speed-up.

From the point-of-view of the operating system, this coding style means that the
network I/O intensive portion of the application code (and therefore network I/O related
system calls to the OS kernel) can be scheduled separately from the rest of the
application. This allows one core to continue intensive computation, e.g. floating-point
operations, whilst another core simultaneously handles the communication, i.e. network
I/O, hardware interrupts from the network interface card and memory copies between
user data buffers and network interface buffers.

One disadvantage of this approach is that it only benefits MPI communication. Other
communications, such as direct socket connections to a client machine for interactive
visualisation or steering of the application (as seen in HemeLB, for example), make
network I/O system calls directly to the OS kernel from the application processor core
rather than the processor core dedicated to the MPI progress engine.

© CRESTA Consortium Partners 2011 Page 28 of 35

This suggests that it may be better to extract the network I/O system calls from the OS
kernel and create a separate network I/O service that can run on a dedicated processor
core. In this manner, all network related system calls will be offloaded from the
application processor cores to a dedicated processor core. This reduces the adverse
effects of handling hardware interrupts generated by the network interface card(s);
although it does require an efficient inter-process communication mechanism as all
application system calls for network services necessitate at least one IPC message.

Further development of this idea indicates it may be beneficial to replicate the network
I/O service process so that, for example, there is one such process for each physical
network interface card in the node. At full line-speed data-rate, a single Gigabit
Ethernet network connection with standard 1500-byte network packets requires a per-
packet processing time no greater than 12µs. With multiple physical network interface
cards operating at full line-speed data-rate, this processing time limit is proportionally
reduced, e.g. 6µs for 2 NICs, 4µs for 3 NICs, etc. If each incoming packet on each NIC
generates a hardware-interrupt then this per-packet processing time limit can be
difficult to maintain. A common technique to mitigate this issue is interrupt coalescing,
which reduces the frequency of interrupts by combining multiple network events when
they occur with a short time-span of each other. An interrupt is then only generated
when a certain number of network events have been combined or a timer expires.
Inevitably, this results in a compromise between providing the lowest possible latency
(which requires an immediate interrupt for each network event) and providing the
highest possible bandwidth (which requires a limit on the maximum frequency of
interrupts). Similar arguments apply to other network interconnection fabrics, such as
Infiniband. Potentially, replicating the network I/O service module so that each replica is
scheduled on a different processor core and deals with a single NIC would permit a
lower latency without compromising the maximum achievable bandwidth even with
multiple NICs per node.

7.1.3 Motivating	 Scenario	 for	 Separate	 OS	 Module	 for	 Disk	 I/O	
The creation of node-local I/O servers achieves the goals of core-specialisation for
another OS service, namely disk I/O.

The general concept of offload servers and the special case of I/O servers are
described in Section 5. In that Section, it is envisioned that the offload or I/O servers
are implemented as separate processes or threads in user-space, i.e. not within the OS
kernel. However, the disk I/O service is ultimately provided by the operating system,
usually as a system-level driver. The option of creating and exposing a new API for I/O
servers is explored in Section 5.3 as a demonstration of a new general API proposed
for all offload servers. This Section examines an alternative option: implementing I/O
servers by transparently intercepting I/O system calls.

In general, (non-volatile) disks operate much slower than other (non-volatile) storage
hardware, such as main memory, and much slower than computational hardware, such
as a CPU or GPU. If application processes wait for disk I/O then overall performance is
likely to very poor. Therefore disk I/O must be exposed to HPC applications via a non-
blocking API and must be implemented in a manner that allows overlap with application
computation.

For current operating systems, there are two approaches for non-blocking disk I/O: the
data from all write operations is buffered in the kernel (e.g. normal POSIX I/O in Linux)
or a non-blocking API is provided by the operating system (e.g. “OVERLAPPED” I/O in
Windows). In both cases the data is actually written to disk after the I/O system call has
completed and returned control to the application. This is normally implemented via a
separate kernel thread or process, which inherently suits the design principles for a
microkernel.

The messaging interface of a module in a microkernel operating system is very well-
defined and completely isolates that module from the all other modules in the system.
This should make interception of I/O system calls simpler than for a monolithic kernel.

© CRESTA Consortium Partners 2011 Page 29 of 35

The possibility of replicating the disk I/O module, e.g. one instance for each physical
disk, is unlikely to increase performance because disk hardware is so slow. However,
there is potential benefit to co-locating the disk I/O module with one or more network
I/O modules in order to aggregate data within a small subset of (possibly remote)
nodes before writing data to disk.

7.1.4 Motivating	 Scenario	 for	 Locality-‐Aware	 Memory	 Management	 OS	 Module	
A well-written HPC program should minimise the frequency of memory allocation
system calls during the majority of its execution. However, for some codes the amount
of memory needed by each processor core will vary throughout the execution of the
program in response to the needs of the algorithm and the distribution of data and
work. In systems with Non-Uniform Memory Access (NUMA), memory allocation and
management by the operating system must be locality-aware in order to make best use
of fast cache memory. Even when no new memory is allocated, the access-pattern for
existing memory allocations may change, for example to achieve load-balance
between processor cores.

Memory pages can be migrated by the operating system to make them local to the
processor core that is currently most frequently accessing them. A page-fault exception
is generated whenever a processor core requests a memory page that is not present in
locally accessible memory (either in processor caches or in the portion of main memory
that is directly connected to the processor). The memory management module in the
operating system handles the exception by interrupting the application, fetching the
memory page (possibly involving communication with other processors) and then re-
starting the application. Therefore, memory management is an OS service that requires
locality-awareness and cannot usefully be centralised to a single processor core.

7.2 Methods	
7.2.1 Customisation	 of	 a	 Standard	 Monolithic	 Kernel	
A standard monolithic kernel operating system is usually split into many separate
kernel processes (sometimes also called system daemons or background services),
with each kernel process performing a different task or providing a different service.
This provides an opportunity to move certain operating system services to dedicated
hardware simply by influencing the scheduling decisions made by the operating
system. Most operating systems support the concept of ‘affinity’ for all processes –
effectively this is done by specifying a list (called a mask) of processor cores on which
the process is allowed to be scheduled. Setting this affinity list, or mask, to a single
processor core for a particular process (e.g. the network I/O system daemon) prevents
the operating system from moving that process to another processor core during
execution. Setting this affinity list to all cores except one for other processes (e.g.
application processes) prevents those processes from interfering with the exceptional
processor core.

The major advantage of this approach is that changes to the standard OS kernel are
restricted to code that handles scheduling decisions: the affinity mask for system
processes must be set to include only the reserved processor core(s) and the affinity
mask for application processes must exclude the reserved processor core(s). A
disadvantage is that this simple approach only works if the OS kernel functionality is
already a separate process in the standard OS. This may be true for services such as
network I/O but is less likely to be true for memory management. Even for OS services
that are primarily handled by separate system processes, some of the functionality is
likely to rely on central OS kernel functions. For example, if the network I/O system
daemon process is forced to execute on a different processor core to a system process
that provides dependent functionality, this may increase the amount of inter-processor
communication and reduce the overall effectiveness of using dedicated hardware.

7.2.2 Micro-‐kernel	 Operating	 Systems	
The defining characteristic of a micro-kernel operating system is that it is as small as
possible whilst still being functional. All non-essential functionality is removed from the

© CRESTA Consortium Partners 2011 Page 30 of 35

operating system and is instead provided by non-OS processes. Figure 8 shows a
schematic representation of a typical monolithic and a typical micro-kernel. The
essential functionality, which remains in the operating system microkernel, includes an
efficient mechanism for inter-process communication and some low-level memory
management and process (or thread) scheduling ability. The non-OS processes that
provide OS-like functionality are typically modules that are as self-contained as
possible but may nevertheless depend on other non-OS processes. Thus, each
process can be scheduled independently of all the others with little or no impact on
performance due to frequent interaction. Commonly in a microkernel operating system,
those modules that are not required are not loaded into memory reducing the memory
usage compared to a monolithic kernel.

The OS services provided by a microkernel can often easily accommodate replicated
or hierarchical modules. All dependencies between processes (whether application
processes or system service processes) require explicit inter-process communication
via the microkernel itself. This enables the re-direction of requests to the correct
module or sub-module on a per-request basis. For example, two network I/O service
processes may exist in a particular node, one for each physical network interface card
installed in the node. When a request is made to communicate across the network, the
inter-process message can be directed to the network I/O process that controls the
appropriate hardware resource for that request.

One disadvantage of microkernels is that they generally do not provide a familiar
programming interface (such as the full set of Linux system calls or the POSIX process
model) to applications. Another disadvantage is that the inter-process communication
can become a performance issue. A “hybrid kernel” design re-absorbs some
performance-critical components into the microkernel module of the operating system,
as depicted in Figure 9. This compromises the programmability benefits in the low-level
code for system services but can achieve a more practically useful OS. The Windows
NT kernel and Mac OS X are considered to be hybrid operating systems.

Figure 8: Schematic of operating system components in a typical monolithic kernel and
microkernel [8]

© CRESTA Consortium Partners 2011 Page 31 of 35

Figure 9: Comparison of Compartmentalisation in a Monolithic Kernel, a Microkernel and a Hybrid
Kernel [9]

7.3 Conclusions	
The microkernel concept has been a subject of practical research efforts for many
decades. There have been some useful insights for operating system design and
implementation. In particular, currently popular operating systems, such as Windows
and Mac OS X, make use of the principles of microkernel design. However, there are
significant difficulties for continuing efforts in this area. There is a significant knowledge
hurdle requiring a steep learning curve for new participants in this research field.
Furthermore, both in HPC and in the wider context of mass-market consumer systems,
established operating systems are ubiquitous and entrenched in the mind-set of
application programmers as well as the designers and purchasers of these systems.
Therefore, new developments in the HPC OS space are often seen, and judged, as
disruptive technologies.

Enhancing the ability of a “fat node” to accelerate a single application, or a small
number of co-located applications, does not align well with mainstream requirements
for consumer computers. A typical desktop or laptop computer must be more focused
on fairly sharing available hardware resources to achieve high through-put despite
over-subscription of those limited resources by dozens of disparate independent
processes. An Exascale-capable method of efficiently exploiting fat nodes, within an
increasingly restrictive power-budget, will necessarily diverge from the mainstream
solutions available today and will probably become a niche product only used for a few
of the largest machines in the world.

© CRESTA Consortium Partners 2011 Page 32 of 35

8 Future	 work	
The research presented in this reports opens up a number of strands for future work.
We have shown that co-location of HPC workloads is a feasible option for fat nodes,
however there are still a number of hurdles to be overcome before this will be a
generally applicable approach.

In terms of CRESTA, two different areas of investigation are relevant:

• Power management: we will continue our work on co-location of applications
as part of Task 2.6.3 in CRESTA WP2. The basic idea is that using resources
that would otherwise be idle should increase the scientific output without
increasing power consumption significantly. Runtime is currently the most
interesting metric for codes running on supercomputer architectures, as this is
what is used in the charging models. However looking forward, users may
instead be billed for the energy usage. The Cray XE6 has limited power
measurement facilities but, with access to suitable counters on a future
architecture, it will be interesting to revisit this study, redefining the co-location
metric in terms of energy consumed rather than time elapsed and seeing
whether this affects the conclusions drawn here. Many HPC systems have high
base-line power consumption, even if all the cores are in their lowest sleep
state; activating the cores does increase the power drawn, but the increase is
small compared to the base power consumption. With such hardware,
minimising energy consumption is exactly linked to minimising application
runtime. On future HPC architectures, however, the base power requirement
will be much lower and in this case there is more flexibility in constructing a co-
location metric that reflects improved energy consumption and not minimised
runtime.

• Ensemble modelling and coupled simulations: for co-design vehicles such
as GROMACS, IFS and HemeLB, co-location could be a viable way to improve
resource usage when running very large ensemble models or coupled
simulations. More work is however needed in order to facilitate launching
multiple binaries on shared resources.

Offload servers, in particular I/O servers, can be integrated into I/O intensive
applications and evaluated as an alternative to MPI-IO. It may be possible to do this
directly in applications such as OpenFOAM or Elmfire, or via benchmarks, which
simulate the I/O behaviour. Similarly, using spare cores to host the asynchronous
progress threads for non-blocking MPI needs to be evaluated in the context of one of
the co-design vehicles. Again, OpenFOAM is a good example here because it has the
option to transparently switch between blocking and non-blocking MPI calls.

One area we have not investigated is the use of one-per-node offload servers to
manage data transfers between the separate memory spaces of CPU and attached
accelerator(s). (We have, however, given this some consideration based on our
experience with accelerators.) The argument for doing this is that data transfers are a
significant overhead in such hybrid calculations and that a typical way of using such
hybrid nodes is currently to use one MPI rank per accelerator on the CPU, leaving
many cores idle. With current hardware, it is not clear how useful this approach would
be. For accelerator hardware or runtimes that support asynchronous data transfers
(e.g. to Nvidia GPUs), this is probably not useful. The CPU initiates data transfers, but
these operations are non-blocking. If an offload server were employed to manage data
transfers, the overheads of communicating with the server would be at least as large as
having the main "compute" core doing the data transfers itself. In addition, the latest
Nvidia Kepler GPUs support multiple MPI ranks sharing a single GPU (via the so-called
HyperQ and CUDA proxy facilities). This allows more of the CPU to be effectively used
for computation.

For accelerators that do not allow asynchronous data transfers, it may make more
sense to consider using an offload server on a "spare" core on each node/process to

© CRESTA Consortium Partners 2011 Page 33 of 35

manage data traffic to and from the CPU, whilst the "active" CPU cores are used for
productive computation. Given the tightly coupled nature typical of applications using
GPUs a threaded implementation would probably be required. We did not, however,
have access to such hardware during the period of this study to pursue this.

Longer term, as we approach the Exascale, the industry trend appears to be towards
closer integration of CPU and accelerator hardware. Even if the memory spaces are
not completely unified, they will be much more closely linked. In the ARM Mali GPU, for
instance, the memory space is shared between CPU and GPU but is not cache
coherent, so data transfers are essentially reduced to cache flushes. As such, the
overhead of data movement in a hybrid application becomes less onerous and it is not
clear that an offload server model is then necessary. A related example is the Intel
Xeon Phi coprocessor. Whilst this can be used as an offload accelerator, most users
currently take the approach of running the entire application on the coprocessor and,
again, there is no need for an offload server.

So whilst we will track the hardware development trends, we do not intend to pursue
the use of offload servers for accelerator data transfers during the remainder of the
CRESTA project.

© CRESTA Consortium Partners 2011 Page 34 of 35

9 Conclusions	
Current and projected trends in system architecture imply that fat nodes in HPC are
here to stay. Single applications often cannot fully exploit these fat nodes because of
limitations imposed by the memory and communications systems, and thus a number
of cores on these fat nodes can sit idle. This deliverable has investigated a range of
different ways in which any spare (or empty) cores on fat nodes can be exploited
usefully, with an emphasis on improving the science throughput.

The approaches we have explored here range from co-locating HPC workloads on
shared resources to offloading specific tasks to empty cores. Although some of these
approaches are conceptually simple, their implementations on tightly coupled HPC
systems are complex and, as highlighted in Section 8, more research in this area is
needed. A positive side-effect of an improved exploitation of fat nodes may be that of
increasing energy efficiency. Again, this issue needs to be explored in further research.

Overall, this deliverable describes how we can progress beyond the current state-of-
the-art in the use of fat nodes and makes clear suggestions for how the different
approaches can be used with the CRESTA co-design vehicles.

© CRESTA Consortium Partners 2011 Page 35 of 35

10 References	
[1] CRESTA deliverable D2.1.1 “Architectural developments towards Exascale”.

[2] Dean A. Klein, “The Future of Memory and Storage: Closing the Gap”. Presentation
at the Windows Hardware Engineering Conference 2007, Los Angeles, USA. Talk
slides available online at:
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-
b4085a80e34e/sys-t308_wh07.pptx
[last accessed 27th August 2013]

[3] Koop, Matthew J., Miao Luo, and Dhabaleswar K. Panda. "Reducing network
contention with mixed workloads on modern multicore clusters." IEEE International
Conference on Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE,
2009.

[4] Breslow, A. D. et al., "The Case for Co-location of HPC Workloads", Concurrency
and Computation: Practice and Experience (in press), 2013.

[5] Joshua Mora, “Do theoretical FLOPs matter for real application's performance?”.
Presentation at the HPC Advisory Council Conference 2012 in Malaga, Spain. Talk
slides available online at:
http://www.hpcadvisorycouncil.com/events/2012/Spain-Workshop/pres/6_AMD.pdf
[last accessed 27th August 2013]

[6] P. Dagna: „OpenFOAM on BG/Q porting and performance“,
http://www.hpc.cineca.it/sites/default/files/4_OpenFOAM_on_BGQ_porting_and_pe
rformance_Dagna.pdf

[7] B. Lindi: “I/O-profiling with Darshan”,
http://www.prace-ri.eu/IMG/pdf/IO-profiling_with_Darshan-2.pdf

[8] From Wikipedia page: http://en.wikipedia.org/wiki/Microkernel URL:
http://upload.wikimedia.org/wikipedia/commons/thumb/6/67/OS-
structure.svg/1000px-OS-structure.svg.png

[9] From Wikipedia page:
http://en.wikibooks.org/wiki/Operating_System_Design/Print_Version URL:
http://upload.wikimedia.org/wikipedia/commons/thumb/d/d0/OS-
structure2.svg/1000px-OS-structure2.svg.png

