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1 Executive	  Summary	  
This report summarises the work that was undertaken in Task 2.4 “Alternative use of 
fat nodes” as part of CRESTA’s WP2 on “Underpinning and cross-cutting 
technologies”. More specifically, the report presents research into different ideas for the 
use of fat nodes on future systems, ranging from practical to more speculative 
approaches: 

• Co-location of workloads; 
• Offload servers; 
• Background processing of MPI communication; 
• Micro-kernels. 

After an introduction that provides further detail on the purpose of both the Task and 
the report, the following points are addressed in turn: 

• A background Section motivates the research into alternative uses for fat nodes 
and provides information on the evolution of hardware that has led to current 
system architectures, where core counts per node increase and the memory 
per core decreases. 

• Following this, the report looks in detail at the co-location of HPC workloads on 
tightly coupled HPC systems, evaluating both the performance impact and the 
practical issues related to multiple applications sharing the same hardware 
resources. The performance tests were done using the NAS Parallel 
Benchmarks, which consist of kernels that are representative of a CFD 
application. 

• The report then outlines the idea of using spare cores on a fat node as offload 
servers with dedicated tasks, thus freeing up compute cores. The example that 
is given in this report is that of IO servers. We also describe an RPC-like API to 
explicitly offload tasks. 

• The following chapter describes how spare cores can also be used to actively 
progress asynchronous communication of MPI applications, thus overlapping 
communication and computation, focussing in particular on Cray’s latest MPI 
implementation. This Section also introduces a metric to quantify the amount of 
overlap that can be achieved. 

• The report then moves on to describe the idea of micro-kernels. Unlike 
monolithic operating systems, micro-kernels consist of separate task entities, 
which can be scheduled independently and thus use spare cores for OS 
operations. 

• The final two Sections describe possible future work continuing on from the 
research presented in this deliverable, as well as some conclusions that we can 
draw. The future work is largely concerned with how the approaches presented 
here could be applied to the CRESTA co-design vehicles as well as to power 
management issues. 
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2 Introduction	  
The purpose of this deliverable is to summarise the research that was undertaken as 
part of Task 2.4 “Alternative use of fat nodes” inside WP2 of CRESTA. Fat nodes are 
already a reality in modern HPC systems, and the reduced amount of memory per core 
on these nodes means that some applications are already at the stage where they 
cannot exploit all the cores on a node. Under-populating nodes is a common technique 
used to increase memory per process (and more efficiently use available memory 
bandwidth) and can be optimal for performance. 

This deliverable investigates how we can use spare cores on a fat node in a useful and 
productive manner. Four different avenues are explored and described in subsequent 
Sections. The ideas outlined in this document (which vary in maturity and feasibility) 
will be shared and discussed with the owners of the CRESTA co-design vehicles. 

2.1 Purpose	  
The purpose of this public deliverable is to gather and present the results from Task 2.4 
of WP2 of the CRESTA project. 

2.2 Glossary	  of	  Acronyms	  
API Application Programming Interface 
CFD Computational Fluid Dynamics 
CG Conjugate Gradient 
CPU Central Processing Unit 
CRESTA Collaborative Research Into Exascale Systemware, Tools and 

Applications 
D Deliverable 
DRAM Dynamic Random Access Memory 
ECC Error Correcting Code 
EP Embarrassingly Parallel 
FT Fourier Transform 
GPU Graphics Processing Unit 
GROMACS Groningen Machine for Chemical Simulations 
HPC High-Performance Computing 
IFS Integrated Forecast System 
I/O Input/Output 
MG Multi-grid 
MPI Message-Passing Interface 
NUMA Non-Uniform Memory Architecture 
OS Operating System 
PCI Peripheral Component Interconnect 
PE  Processing Element 
RPC Remote Procedure Call 
TLB Translation Lookaside Buffer 
WP Work Package 



 

© CRESTA Consortium Partners 2011  Page 3 of 35 

  

3 Background	  and	  motivation	  
Over the last decade, the number of floating-point units ("cores") per physical CPU die 
has increased dramatically. This has been driven by the so-called "power wall": 
previously, increasing the clock speed delivered improved computational performance 
per CPU. However this also raised the power consumption and introduced a new 
engineering challenge of cooling the CPU so that the heat generated could be 
dissipated. Eventually, this meant that designers looked for alternatives to making 
further significant increases in the clock speed. Additional performance gains instead 
came from building CPUs with more, lower-frequency floating-point cores. Recent 
improvements in CPU design have improved their power efficiency so that clock 
speeds have once more shown a modest increase, but this will not offset the trend 
towards multiple cores. All of this has contributed to the continued trend of Moore's 
Law, with transistor counts doubling every two years, and House's variant of overall 
CPU performance doubling every 18 months. Modern (as of 2013) multi-core CPUs 
have 8 or more cores per CPU, whilst many-core GPU accelerators and coprocessors 
extend this trend even further. 

This rapid increase in the number of computational cores has not, however, been 
matched by a commensurate increases in the shared node resources used to support 
the potential floating-point calculation rate, viz. total on-node memory size (typically 32 
or 64GB per node); memory bandwidth used to pull data from the main memory into 
the fast, on-die caches; and the network bandwidth. Memory bandwidth is particularly 
important for many applications: like CPU floating-point performance, DRAM speeds 
have also shown exponential growth over the last 15-20 years, but with a doubling time 
of 3 years rather than 18 months [1] [2]. As a consequence, memory bandwidth has 
become an increasingly significant limiter of application performance, and this trend is 
likely to continue. Network performance will show some improvements over the next 
decade, but the gains will not be exponential. Large message transfer rates are limited 
by the bandwidth of the bus (e.g. PCI Express) connecting CPU and NIC, which will not 
improve dramatically. Smaller messages (arguably more important as we strongly 
scale1 fixed-size problems to run on Exascale machines) are more sensitive to the 
latency of the interconnect, and this has long remained around 1µs and is unlikely to 
decrease further. 

Given these limitations, it is clear that for many codes we can achieve the same overall 
performance per node with fewer "active" cores per node running a portion of the 
calculation. We will generically refer to such a portion as a Processing Element (PE), 
the precise meaning of which depends on the programming model used. A PE could be 
an MPI rank, a Fortran coarray image, or an OpenMP thread associated with a rank or 
image or similar. With current CPUs, some codes see similar (or even improved) 
performance when running on 50-75% of the available cores per CPU. As hardware 
trends continue, this proportion is likely to decrease, as limited shared resources limit 
the accessible floating-point performance. Currently, inactive cores automatically go 
into a sleep state, consuming less power. Future Exascale-era CPUs may take this 
further, allowing the hardware, OS, runtime or application to completely power down 
these cores (so-called "dark silicon"). With power constraints paramount in an 
Exascale-class supercomputer, this is an attractive option. 

A relevant, but complicating, factor here is the increasingly deep hierarchy of boost and 
sleep states available in modern CPUs. The hardware can detect idle cores and reduce 
their clock speed (and thus power consumption). When sufficient cores are in these 
sleep states (and the environment permits), the active cores can then have their clock 
speeds temporarily boosted within the same overall CPU power envelope. With current 
                                                
1 By strong scaling, we mean dividing a fixed-size global problem over increasing 
numbers of PEs, with the local problem size per PE decreasing accordingly. This is in 
contrast to weak scaling, where the local problem-size remains fixed. 
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CPUs, this can amount to as much as 500MHz of additional performance for the active 
cores. For this reason, we can actually surpass the "all cores active" performance per 
node with a "half-dark" version. It is not obvious to what extent this boost factor will 
feature in the Exascale era, where the aim of idle cores is to limit the overall power 
consumption, rather than to enable boosting of other cores. 

Boosting aside, switching cores off will undoubtedly save power, but it is not 
necessarily the most productive thing to do. Supercomputing systems have base-line 
power consumption regardless of the CPU activity, and even sending half the cores 
"dark" will not halve the power consumption of the system. It is therefore reasonable to 
consider whether idle cores could be productively used, rather than simply powered 
down.  

It is important here to clarify what we mean by "productive use". We take the view here 
that an Exascale supercomputer will focus on computational problems that demand 
such a capability resource. We focus, therefore, on three specific scenarios: using the 
spare cores to improve the performance of the application running on these nodes at 
the OS and runtime level; improving single-application performance through PE 
placement; and improving ensemble-based simulation throughput through co-location. 
This deliverable discusses different potential scenarios for the productive use of fat 
nodes, looking at options which are feasible today as well as more speculative future 
developments. 
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4 Co-‐location	  of	  HPC	  workloads	  
Application co-location is the simultaneous running of two or more HPC applications on 
a set of nodes, such that each application gets a partial share of the resources 
available to each node. The goal of such an approach is to improve the combined 
performance of the applications, by reducing the overall runtime and/or energy 
consumption. Architectural trends suggest this may become an increasingly promising 
method for improving application performance as we approach Exascale computing. In 
this Section, we explore application co-location for tightly coupled HPC 
supercomputers. By considering the runtime performance when pairs of codes are co-
located on a variety of node architectures, we show that co-location can be beneficial 
and indicate in which real-world situations it can improve performance. 

4.1 Introduction	  
Co-location of two or more independent simulations on a set of nodes may improve 
overall throughput. In addition, many Exascale-potential applications can be regarded 
as coupled simulations of two or more interacting physical systems, each using a 
distinct set of PEs. Co-locating PEs from these different simulations on a node can also 
improve application performance. 

The argument for why this may be a sensible thing to do is simple: if different sets of 
PEs on the node are doing different things and accessing different shared node 
resources, then each resource is less likely to be saturated and less likely to hinder 
overall performance. For coupled simulations, it is very likely to be true that different 
sets of PEs are behaving independently and not competing for the same resources at 
the same time. For ensembles, it is possible that the two sets of PEs are actually doing 
the same thing. But, with no barriers between the independent sets, they can 
spontaneously get sufficiently "out-of-step" that the same situation occurs.  

Of course, there are complications. Most real algorithms use all the shared resources 
to some degree, so seemingly independent computational tasks are not actually that 
different in terms of resource usage, so co-location can be less successful than 
expected. Likewise, even if the tasks do make independent usage of shared resources, 
the success of co-location will depend on how much time is spent on each task and the 
frequency and pattern of the tasks in the application timeline. 

Nonetheless, it is reasonable to investigate whether there are any circumstances in 
which application co-location can be successful on current tightly-coupled HPC 
systems and, if so, to see whether any guidelines can be given to indicate when co-
location might be a productive thing to try for a particular code. Application co-location 
has been investigated in the past [3][4]; in this report we consider a number of new 
angles on this issue.  

First, most studies concentrate on generic cluster architectures, rather than the tightly 
coupled architectures that are more typical of likely Exascale architectures. This point 
should not be underestimated: systems with a tightly coupled design are generally 
designed to allow only one application at a time to use node resources and without 
interference. As a result this can make it difficult to investigate co-located workloads. 
Here we concentrate on the Cray XE6 supercomputers. In particular, the faster 
interconnect used in these systems changes the balance of network communication 
time compared to computation.  

The range of systems used is shown in Table 1. The systems used are company-
owned systems used to investigate customer issues, and consequently contain a wide 
variety of CPUs. We also take advantage of this heterogeneity to compare 
performance on a wide variety of processor architectures and clock speeds, coupled 
with different memory speeds. It is unusual to have access to such a wide variety in 
one study. Being able to directly compare this range of node configurations allows us to 
understand and model the effect of these hardware parameters on code performance. 
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Based on the expected hardware trends, we can therefore extrapolate our findings 
towards expected Exascale supercomputer designs. 

 

Ref. CPU Memory 

Manufacturer and model Codename Part Clock 
(GHz) 

Size 
(GB) 

Speed 
(MT/s) 

1 AMD Opteron Interlagos 6272 2.1 32 1333 

2 AMD Opteron Interlagos 6272 2.1 64 1600 

3 AMD Opteron Interlagos 6272 2.1 128 1600 

4 AMD Opteron Interlagos 6274 2.2 32 1333 

5 AMD Opteron Interlagos 6276 2.3 32 1333 

6 AMD Opteron Interlagos 6281 2.5 64 1600 

7 AMD Opteron Abu Dhabi 6380 2.5 32 1333 

8 AMD Opteron Abu Dhabi 6380 2.5 64 1600 

9 AMD Opteron Fangio 6275 2.3 32 1600 
Table 1: List of Cray XE6 node hardware configurations considered. 

4.2 Methods	  
It is very difficult to analyse the co-location properties of real applications, which 
typically feature a number of phases in their execution, with each phase relying on the 
node resources in different ways. It is therefore better to focus on smaller, kernel 
benchmarks that typify the individual phases. 

4.2.1 Benchmark	  codes	  
We use the well-established NAS Parallel Benchmarks v3.32, and concentrate on the 
kernel benchmarks: CG (conjugate gradient), EP (embarrassingly parallel), FT (Fourier 
transform) and MG (multigrid), which we compile with the latest released version of the 
Cray Compilation Environment (CCE), version 8.1. 

The codes were compiled using the provided Makefile. The build allows us to define a 
global problem size using the build option CLASS=<size>, where <size> is encoded by 
a letter. We considered CLASS=A,B,C and D for this study, but mainly concentrate on 
CLASS=C for the quoted results. The number of MPI ranks is fixed at compile time using 
the NPROCS=<ranks> build option. 

4.2.2 Hardware	  used	  
We begin by briefly describing the hardware used for the tests. It is important to do this 
first, as it informs some of the co-location decisions that will be made following. 

All tests were done on Cray XE6 supercomputers located in the Cray Data Center at 
Chippewa Falls, Minnesota, USA. The Cray XE6 is a tightly coupled supercomputer, 
coupling compute nodes together via the low-latency, high-bandwidth Cray Gemini 
interconnect. Each node contains two 16-core AMD Opteron processors, giving 32 
cores per node. The two CPUs on each node are generally identical, but there are a 
range of options from the 6200-series "Interlagos" and 6300-series "Abu Dhabi" 
processors. Each node shares banks of DDR3 memory (usually totalling 32 or 64GB 
per node), with the DIMMs supporting a maximum transfer rate of 1333 or 1600 MT/s. 

 The downside of this variety node designs is that the number of nodes with a given 
hardware configuration is more limited; in this study we used up to either 16 or 32 
nodes, depending on availability. 
                                                
2 Available from: http://www.nas.nasa.gov/publications/npb.html 
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The AMD Opteron CPUs are based around eight dual-core "modules", called 
"Bulldozer" for the 6200-series Interlagos Opterons and "Piledriver" for the 6300-series 
Abu Dhabi CPUs. In each case, a module couples two x86 out-of-order processing 
cores, which share some structures including higher-level memory caches and, more 
importantly here, floating-point units (FPU). Each FPU can separately process one 
128-bit instruction (e.g. SSE) or they can be unified to process a single 256-bit-wide 
AVX instruction. This is an important feature, as it means that certain compute-
intensive codes can give the same performance per node using one core per module 
(8 cores per CPU, or 16 cores per node, sometimes known as "single stream mode") 
as when using both cores in the module (16 cores per CPU, or 32 cores per node and 
"dual stream mode"). In certain circumstances, single stream mode can even lead to 
higher performance as, when half the cores on a CPU are idle, the hardware may take 
advantage of this to temporarily boost the clock speed of the active cores (whilst 
remaining within the CPU's designed power envelope). 

It is very difficult to predict a priori whether a given code, even if computationally-
intensive, will give better performance per node in single stream mode. The answer 
may even depend on how the code is run. 

4.2.3 Running	  the	  single	  applications	  
The benchmarks were executed on the compute nodes using the Cray ALPS library 
command aprun. Two modes of running were considered. Firstly, each code was 
compiled using K MPI ranks (i.e. K PEs, as the codes are pure MPI), and then run in 
dual stream mode, using all the floating point cores on the node (with flag "-‐N32	  -‐j2" 
for aprun). Each code internally reports correctness and relevant runtime, which it 
converts to a performance figure. It is this runtime that we consider in the results in this 
report. Secondly, we recompile with K/2 ranks and then run again using single stream 
mode (flags "-‐N16	  -‐j1" for aprun).  

On AMD CPUs on the Cray XE6, the CG, EP and FT benchmarks performed best in 
dual stream mode. MG is more complicated, as single stream mode is faster in some, 
but not all cases. For instance, for CLASS=C, we find single stream mode to be faster 
when running with 1 node (using 16 ranks), 4 nodes (64 ranks) or 8 nodes (128 ranks), 
but dual stream gives better performance with 2 nodes (also 64 ranks) or 16 nodes 
(512 ranks). The precise reasons for this oscillating behaviour are hard to establish, but 
it does have bearing on the co-location results that follow. It is interesting to note that 
where single stream mode is better, the advantage over dual stream mode is generally 
only a few per cent, but where single stream mode is worse, it is typically 20% slower. 
This suggests that we should perhaps look at this as single stream mode being 
especially inefficient in these cases, rather than the other way round. 

4.2.4 Application	  characterisation	  
To understand why co-location of two kernels might be advantageous, we need to 
characterise how each application makes use of the shared resources of the node by 
attempting to model the application runtime in terms of time spent on: floating-point 
computation, waiting for data from memory and network transfers. To do this, we 
profiled the codes using the Cray Performance Analysis Tool (CrayPAT), selecting to 
trace all user routines and MPI (options "-‐u	  -‐gmpi" for the pat_build command). The 
CrayPAT API was used to restrict profiling to the timed region of the benchmarks. We 
then run the instrumented code and generate the profile. The network time is reported 
under "MPI" in the main profile, while the "USER" time consists of time spent in the 
different computational routines. The "ETC" heading reports time spent in lower-level 
operations, which was consistently extremely small and can be ignored. None of the 
benchmarks does any significant I/O, so we do not need to consider this here. 

The next step is to separate the USER time into two parts; that constrained by floating-
point calculation speed; and that constrained by memory bandwidth. If the CPU clock-
speed is C MHz, and the DDR3 memory DIMMs have a transfer rate of M MT/s (mega 
Transfers per second), we can most simply model the user time U for a given code at a 
given node count by: 
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𝑈   =   
𝐴
𝐶
  +   

𝐵
𝑀

 

where A and B are constants. To find A and B most simply, we took advantage of the 
diverse range of Cray XE6 nodes available in the Cray Data Center. We ran (and 
profiled) the benchmarks on five different Cray XE6 variants, all with AMD Interlagos 
CPUs, as listed in entries 1 to 5 of Table 1. 

We then performed a least squares minimisation to estimate A and B from these 5 
values of U. To estimate the error on A and B, we did the following crude analysis. 
Given the best-fit A and B, we can predict a value of U for each of the 5 architectures, 
and calculate the percentage error based on the actual values of U. We then take the 
maximum percentage deviation across the 5 data points as the overall error on the fit, 
and ascribe this same fractional uncertainty to A and B. 

Clearly this is an overly simplistic model. We are assuming that any hardware-
controlled boosting of the CPU clock speed is done in proportion to the base clock 
speed and that all 5 hardware combinations boost in exactly the same amounts. 
Similarly memory-caching effects are only accommodated if we make similar 
assumptions regarding cache bandwidth. Nonetheless, we find this model works 
surprisingly well, with the percentage errors at the level of a few per cent, and we can 
then use it to estimate the fractions of U that are clock- and memory-bound. 

In Figure 1 we show the application characterisations for each benchmark as we 
strong-scale a particular problem size (NPB	   CLASS=C) across increasing numbers of 
cores. In many ways the results are as expected given an understanding of the 
applications: EP is extremely clock-bound; FT makes greatest use of the network; as 
we strong-scale to higher numbers of PEs, the network becomes more important. What 
is more surprising is that the characterisations of the benchmark kernels are more 
similar that we might expect, despite the very different computational tasks carried out. 
This is significant; the success of co-location relies on subsets of PEs on each node 
stressing different shared resources at any given times. It is already clear here that co-
locating seemingly different computational algorithms is no simple guarantee of this 
and any success will depend on when resources are accessed in each PE's timeline. 

4.2.5 Co-‐location	  
We are studying co-location to understand how shared resources on the node can be 
more-smoothly utilised by a mixed workload. Given the compute module architecture of 
the AMD CPUs, we therefore opt to co-locate pairs of applications on a node such that 
they each take one core of each module. We also tried an alternative approach, where 
we located PEs for the two applications on different CPUs on the node. As the results 
were extremely similar, we do not discuss this case explicitly in this report. For Intel 
CPUs, we take a similar approach, co-locating applications so each uses one of the 
two hyper-threads running on a physical core.  

Co-locating codes on the cores of a tightly coupled supercomputer such as the Cray 
XE6 or Cray XC30 is not easy. Users typically demand the optimal and reproducible 
performance that comes from having exclusive access to a compute node and the 
system software reflects this. The Cray ALPS library does permit the running of two or 
more binaries together in MPMD mode (Multi-Program, Multi Data) sharing, for 
instance, a common MPI_COMM_WORLD communicator, but only if all the cores on a 
given node host PEs from the same binary. To investigate co-location, we need to go 
beyond this and mix PEs from different applications on the same nodes. There is (at 
least currently) no simple way to do this beyond editing the two applications to become 
part of a single binary. For the NPB kernel benchmarks, we did this as follows. 
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Figure 1: Kernel benchmark characterisation, running on 2.1 GHz processors with 1600 MT/s 
memory speed. 

Two MPI applications can be combined into one by using a common main program that 
initialises the MPI library, and then splits the default MPI_COMM_WORLD communicator 
and runs each application in one of the sub-communicators, before calling 
MPI_Finalize() when all called applications finish. The applications themselves are 
modified by changing their main program into a subroutine which takes an argument 
that is the MPI sub-communicator handle to be used by that application (and stored in 
an appropriate shared data structure. Calls to MPI_Init() and MPI_Finalize() in the 
application are removed, and references to MPI_COMM_WORLD are replaced by the 
appropriate sub-communicator handle. This modification to an application is easily 
tested using a separate, three-line main program that calls: MPI_Init(); followed by 
the subroutine that is the previous main program, with argument MPI_COMM_WORLD; and 
then MPI_Finalize(). The code should then execute exactly as before. 

The complication comes if there is a symbol clash in the two sets of object files (usually 
because both contain subprograms with the same name). Possible solutions here are 
to rename subprograms in the source code, modify the object files to remove clashes 
or to somehow restrict the objects in each application to separate namespaces. For the 
Fortran codes we considered, namespacing was most easily done by textually inlining 
(via INCLUDE statements) the existing source files into an application-specific 
MODULE, defined in a separate file and then in the main program exposing only the 
top-level subprograms with "USE..ONLY" statements. 

This modification was made for all the kernels, allowing any combination of two 
applications to be run. An additional change was that the top-level subroutine returns 
as an argument the time taken to run the benchmark portion of the application. This 
allows the driver program to (optionally) repeatedly run the benchmark until a specified 
time has been spent (plus benchmark initialisation time for each instance). This is 
helpful when co-locating applications with different execution times. It is also important 
here because we are not interested in the co-location performance of the NPB kernels 
per se, but rather because we hold them to be representative of different parallel 
computational tasks in a more-realistic application (recall that they are representative of 
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components of a CFD application). As such tasks are likely to be repeated many times, 
this repeated-run mode of kernel execution gives a better picture of the success of co-
location in the real case. 

Clearly this manual fusing of application codebases is feasible for the limited kernel 
benchmark suite we consider here. For more realistic applications, a more user-
transparent method would almost certainly be needed if co-location is to be widely 
exploited. 

The combined binary is then executed on the compute node using the aprun command 
in single-stream mode ("-‐N32	   -‐j2"), ensuring that the rank placement is such that 
each compute module hosts one rank from each of the original applications, and each 
node runs 16 ranks from each code. Effectively we are overlapping the two codes, 
each running in single stream mode, as a single dual stream job. 

Having run each code multiple times are part of this co-location job, we average the 
benchmark runtimes as reported by the code. We found these runtimes to be very 
consistent, so we did not need to worry about outlying results biasing the mean. 

4.2.6 Co-‐location	  metrics	  
Having run binary combinations of the benchmarks, we need to define a metric to 
assess the success of the co-location approach. In the general case, this metric would 
probably be an appropriate function of both the application runtimes and the energy 
consumed in running these codes. As we are not considering energy usage in this 
report, the metric is based solely on application runtime as follows. 

Assume that we co-locate applications X and Y. Running solo and taking full advantage 
of the node (in the better of single or dual stream modes) they take times SX and SY 
respectively. When co-located and each using half the cores on each node, they take 
times TX and TY. There are two obvious ways to measure success. If, as we do here, 
we envisage these benchmarks as being part of larger applications, we will be co-
locating the benchmarks multiple times. In this case, the best metric for co-location 
success is: 

𝑀! =
𝑆!
𝑇!
+
𝑆!
𝑇!
  . 

Alternatively, if we view our benchmarks as complete applications that are only going to 
be run once, then we need to compare the times for running the applications separately 
in sequence, to the time of the slower of the pair when co-located: 

𝑀! =
𝑆! + 𝑆!

max  (𝑇! ,𝑇!)
.  

In either case, values greater than unity indicate a net benefit from co-location. As 
justified previously, we will confine our discussion to metric M1 in what follows. 

4.3 Results	  
In Table 2 we show the M1 co-location metrics for pairs of NPB kernel benchmarks 
calculating the CLASS=C-sized problem on increasing numbers of Cray XE6 nodes on 
Hardware Configuration 1 (see Table 1). The cells of the Table are shaded such that 
the well-co-locating combinations are coloured green and poorly-co-locating pairs are 
red. For each node-count, we display the result of co-locating a given pair of 
benchmarks in a (necessarily symmetric) co-location metric matrix. 

What is immediately clear is that there are many cases where co-location is successful 
at the level of 10-15%, and occasionally more. The cases where it is successful also 
outnumber those where co-location is detrimental. This in itself is encouraging. If no 
other clear predictions are possible, the results do suggest that it is worth trying co-
location if at all possible.  

There is also a general trend that poor co-location tends to disappear as we strongly 
scale to more cores. This is as expected; the local problem sizes are smaller in these 
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cases and the computation therefore places less stress on the various shared node 
resources, leading to less opportunities for contention. The network becomes 
increasingly important relatively as we strong scale to smaller local problem sizes, but it 
is the absolute amount of data transferred that leads to contention, and this is 
decreasing. 

 

1	  node	   CG	   EP	   FT	   MG	  

CG	   1.07	   1.11	   1.05	   0.98	  

EP	   1.11	   0.88	   1.11	   1.22	  

FT	   1.05	   1.11	   1.09	   1.08	  

MG	   0.98	   1.22	   1.08	   0.89	  

	   	   	   	   	  2	  nodes	   CG	   EP	   FT	   MG	  

CG	   1.17	   1.12	   1.14	   0.95	  

EP	   1.12	   0.90	   0.98	   0.80	  

FT	   1.14	   0.98	   1.10	   0.91	  

MG	   0.95	   0.80	   0.91	   0.73	  

	   	   	   	   	  4	  nodes	   CG	   EP	   FT	   MG	  

CG	   1.12	   1.11	   1.18	   1.08	  

EP	   1.11	   1.01	   1.13	   1.02	  

FT	   1.18	   1.13	   1.25	   1.14	  

MG	   1.08	   1.02	   1.14	   1.04	  

	   	   	   	   	  8	  nodes	   CG	   EP	   FT	   MG	  

CG	   1.24	   1.17	   1.43	   1.16	  

EP	   1.17	   1.01	   1.31	   1.04	  

FT	   1.43	   1.31	   1.61	   1.34	  

MG	   1.16	   1.04	   1.34	   1.07	  

	   	   	   	   	  16	  nodes	   CG	   EP	   FT	   MG	  

CG	   1.18	   1.11	   1.27	   0.99	  

EP	   1.11	   1.02	   1.29	   0.99	  

FT	   1.27	   1.29	   1.52	   1.08	  

MG	   0.99	   0.99	   1.08	   0.98	  

     
Table 2. Co-location metrics M1 for the CLASS=C problem running on increasing number of nodes 
with Hardware Configuration 2. Results are colour-coded, with green showing good co-location 
and red denoting poor co-location. 

The worst co-location performance tends to be when codes are paired with MG. We 
saw previously that MG performed better in single stream mode than when using all 
cores on the CPU. This suggests it is particularly sensitive to node resource contention. 
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Given MG's characterisation above, this is likely to be due to sharing the memory 
bandwidth. This sensitivity is probably preventing co-location from being successful. 

Apart from MG, benchmarks CG and FT tend to co-locate well with themselves and 
other benchmarks. EP can show a minor negative effect when co-locating. This may 
well be a consequence of EP being very clock-bound, whilst CG and EP have more 
dependence on the memory speed and network. 

The main conclusion we can draw from these results is that there is often a modest co-
location advantage, except where we are co-locating very clock-bound, floating-point 
intensive codes or codes that have particular problems running in single stream mode. 
The overall advantage may not (currently) be enough to justify merging distinct 
applications to increase workload throughput. For coupled simulations, however, it is 
almost certainly worth exploring whether PEs from different subsets should be co-
located on the node. This can usually be done without modifying the code; a runtime 
file (typically MPICH_RANK_REORDER) can be used to change the placement of the PEs 
on the cores of the various nodes without recompiling the code. A 5-10% improvement 
in application performance is not insignificant and (if parts of the code are network-
bound) should improve application scalability. 

4.3.1 Effect	  of	  varying	  node	  speeds	  
Given the range of Cray XE6 node configurations available in this study, it is interesting 
to investigate how the co-location metrics change as we vary either the CPU clock 
speed or the memory bandwidth. Whilst the range over which these can be varied is 
modest and we are fixed with the AMD Interlagos CPU architecture, understanding the 
trends in the values of the co-location metric may give some indication as to whether 
any advantage is likely to persist as CPU architectures evolve towards the Exascale. 

We first look at the effects of varying the CPU clock speed, comparing the co-location 
metric results for the CLASS=C-sized problems running on Hardware Configurations 2 
and 6. This changes the clock speed from 2.1 GHz to 2.5 GHz, whilst fixing the 
memory speed at 1600 MT/s. 

Surprisingly, the co-location metric results are nearly identical for all the co-location 
pairs and node counts considered. EP shows a slight increase in co-location advantage 
when paired with itself, but only at certain node counts. Other than that the co-location 
metrics agree to within a couple of percent. 

The conclusion here is that clock speed does not strongly influence co-location 
success if we are primarily interested in runtime. It may, of course, be more interesting 
if we instead measure energy consumption as part of our co-location metric. 

Varying memory speed does have a bigger effect. If we compare Hardware 
Configurations 1 and 2, which both have clock speeds of 2.1 GHz but change the 
memory speed from 1333 MT/s to 1600 MT/s. 

We find a clear pattern emerge here. At small node counts (1 or 2 nodes) we see a 
strong improvement when co-locating any code with EP, with co-location metrics 
improving as we increase memory speed, by 5-10% for heterogeneous pairs and as 
much as 30% when EP is co-located by itself. Other metric values remain essentially 
unchanged. This may seem surprising, as EP is the least memory bound of the codes, 
but this allows the other code in the co-location pair to take full advantage of the 
increased memory bandwidth. This effect decreases at higher node counts when less 
memory bandwidth is needed.  

More striking at higher node counts (8 or 16 nodes) is that the co-location metric for 
any co-location pair including FT shows a decrease of around 20% when we increase 
the memory speed. The current trend is for memory speed to increase more slowly 
than the floating-point performance of a CPU, so it is likely that memory bandwidth will 
become a more serious limitation as we move towards the Exascale. The results in this 
Section reinforce that there is a good argument for using co-location, especially where 
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an application has compute-heavy parts of the code that allow the memory bandwidth 
to be used almost exclusively by other, co-located tasks. 

4.3.2 Comparing	  CPU	  architectures	  
Thus far, we have focused on Hardware Configurations using Interlagos CPUs. It is 
interesting to see what effect changing the CPU type has on co-location. We consider 
two different AMD CPU versions. The first is the next-generation Abu Dhabi processor. 
This uses the “Piledriver” compute module that offers some incremental improvements 
on the Bulldozer module used in the Interlagos CPU, which should improve application 
performance, especially for clock-bound codes. 

The other is a special purpose variant of the Interlagos CPU known as "Fangio". Each 
standard Bulldozer module can process 8 double precision floating-point operations per 
clock cycle. In the Fangio processor, this is capped to 2 double precision operations 
per clock. The peak performance of the CPU is thus reduced by a factor of four, but 
with the same memory bandwidth etc. Floating-point-bound codes will be sensitive to 
this loss of peak performance, but more memory-bound codes (including many CFD 
applications) may perform as well on Fangio as on Interlagos [5]. As reduced floating-
point performance should translate to lower power consumption, Fangio is a very 
useful prototype for future CPU architectures used in Exascale systems. 

The exact node configurations are shown as Hardware Configurations 7 to 9.  

The co-location experiments were carried out in the same way as before. As with 
Interlagos, we find that varying the clock speed of the Abu Dhabi CPUs does not 
noticeable affect the co-location metrics. 

When comparing co-location metrics on Abu Dhabi to Interlagos (Hardware 
Configurations 8 and 6), the differences are small, with variations at around the 5% 
level and with few clear patterns. Application pairs involving CG perform marginally 
better on Abu Dhabi CPUs at small node counts. Co-locating EP with itself also 
degrades the co-location advantage, possibly because EP can best exploit the 
improved floating point performance in the newer CPU, which then increases the 
code's reliance on unchanged factors, notably memory bandwidth. 

Only small numbers of Fangio nodes were available in the Cray XE6 systems, but on 
these the only significant change is for co-location pairs including EP. Running on 
Hardware configurations 9 and 5, we find that when EP is paired with CG, itself or FT 
we see a reduction in the co-location metric of 5-10%. It is hard to draw definitive, 
partly because of the modest node counts available and also because Hardware 
Configurations differ not only in CPU architecture but also in memory speed. 

In general, given the relatively minor architecture differences between AMD Interlagos, 
Abu Dhabi and Fangio CPUs, it is hard to identify underlying trends that indicate what 
may happen at the Exascale. 

4.4 Conclusions	  and	  further	  work	  
As reported in the previous Subsections, we have measured how well the NAS Parallel 
kernel benchmarks perform when run in tandem on nodes of a tightly coupled 
supercomputer, the Cray XE6 with various node configurations. The measure of 
success considered here is based purely on execution time. 

Taking advantage of the wide range of node architectures available within a single 
HPC system, we examined the effects of CPU clock speed and memory bandwidth on 
the co-location and also how changing the CPU architecture altered the co-location 
properties. We used a simple performance model to characterise the codes, dividing 
their runtime into clock-bound computation, memory bandwidth bound execution and 
network-bound time. 

The main conclusion is that co-location was successful, increasing runtime throughput 
for a wide range of pairs of kernels by around 10%. This effect was most striking when 
the local problem size was relatively large (i.e. small node counts in our strong scaling 
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studies). This is as expected, when the greatest strain is being placed on the shared 
node resources. 

It is difficult to extract general principles to predict co-location success from this study. 
This is partly because the interaction of the code with the hardware is complicated, but 
also because a real-world application will contain a number of different tasks stressing 
different components of the hardware. Whilst a given task might be characterised by 
one of the kernels used in this study, the co-location success will depend on how long 
is spent in each task and the sequence and frequency in which the various tasks are 
called. 

It is clear, however, that if a code prefers to run in single stream mode (one core per 
module on AMD CPUs, or one hyper-thread per code on Intel CPUs), it is unlikely to 
co-locate well. 

We saw that the clock speed has a relatively minor effect on the co-location metric, but 
memory speed is more important. As the rate of increase of CPU performance is 
outstripping that of memory bandwidth, this suggests that co-location will indeed be 
more important as we approach the Exascale. This is compounded by fact that the 
increase of CPU performance is largely coming from increased core count rather than 
inflated performance per core. With more cores there is greater scope for co-location. 

We studied three (admittedly similar) AMD CPU architectures in an attempt to further 
identify hardware trends affecting co-location success as we progress towards the 
Exascale. The architectural similarity, however, made it hard to see definitive, long-
term trends that could be extended this far into the future. The comparisons did, 
however, underline that there are opportunities for co-location success on all the CPU 
architectures considered. 

What was clear from this study was that the complications of launching two codes in a 
co-located fashion are currently considerable on many tightly coupled HPC systems, 
and simpler mechanisms would be needed if this procedure were to be more widely 
adopted. 

We considered co-location to CPU resources, but coprocessors and GPUs are widely 
regarded as being important in this area; not only do they increase floating point 
performance on the node, but they also (potentially) do this with reduced energy 
consumption compared to a CPU. Such accelerators are increasingly being added to 
supercomputer node architectures such as the Cray XK7, which replaces one of the 
AMD CPUs per node with an Nvidia Kepler K20X GPU. The execution model of the 
GPU requires the main program (at least) to reside on the CPU, with computational 
kernels being offloaded to the GPU. Typical GPU codes only use one core of the CPU 
for this, with the remainder sitting idle. There is clearly a good case here for co-
location, running a CPU code on the 15 idle cores. 

As before, the measure of success here could be based either on execution time or 
energy consumed. It would be interesting to compare these approaches, as hardware 
becomes available. 

We considered the co-location potential of the CRESTA co-design vehicles. 
GROMACS and IFS are good candidates for full-application co-location investigations. 
The GROMACS algorithm is quite task-based and science calculations typically require 
an ensemble of similar simulations that could be co-located. IFS couples a number of 
physics models in a simulation and there may be advantages to co-locating PEs 
involved in different models on the same node. 

Looking forward towards the Exascale, we expect the trend of fat nodes getting fatter 
makes co-location a more interesting proposition. Comparing co-location results on 
Interlagos CPUs with those on Abu Dhabi and, especially, Fangio, it appears that the 
benefits of co-location are relatively robust against architecture changes and we are 
perhaps therefore justified in believing they will persist as CPU architectures evolve 
towards those needed for an Exascale supercomputer. What is also clear from this 
study is that CPU architectures are already very complicated, and that it is difficult to 



 

© CRESTA Consortium Partners 2011  Page 15 of 35 

 

make sweeping generalisations about which codes might benefit from co-location and 
by how much. CPUs will undoubtedly get more complicated, if only to satisfy the widely 
quoted power cap of 20MW for an Exascale supercomputer. We therefore believe that 
co-location studies such as this should be revisited as processors change, to track 
whether the benefits suggested here will truly remain in the Exascale timeframe. 
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5 Offload	  servers	  
In this Section we will consider the potential for using spare cores on a fat node to run 
offload servers. This should allow us to use spare compute and network capacity to 
progress aspects of an application at the same time as the application continues with 
computational phases. The most obvious practical example of this approach (and one 
we use as motivation and demonstrator) is that of I/O servers. 

An I/O server implementation can offload filesystem activity (which can be time 
consuming) in a way that brings performance benefits for the following reasons: 

1. There is opportunity for overlap of the I/O with application computation 
either due to faster communication between the application data space and 
the I/O server than direct application I/O or because of explicit 
asynchronous communication with the I/O server 

2. I/O from a (limited) set of I/O servers to the filesystem may be more efficient 
than from all application processes. 

We need look no further than the CRESTA co-design vehicles to find that I/O is a 
challenge to scalability. For example: 

• GROMACS 
GROMACS is the major open source and free software package for 
biomolecular simulation developed as an international collaboration steered 
from KTH, Sweden.  This application can achieve exceptional efficiency due to 
a combination of algorithm choice and tuning.  However the I/O implementation, 
which gathers a large amount of data to one node, is becoming a bottleneck. 

• OpenFOAM 
OpenFOAM is an open-source software package for computational fluid 
dynamics (CFD).  It has a scalability challenge due to its output scheme where 
many files are written per process. This is not efficient as the number of 
processes increases and the application makes more demands on the 
filesystem [6][7].  

Two approaches to address these I/O challenges are to use a more coordinated 
approach (for example MPI-I/O) or to perhaps use an I/O server implementation to limit 
filesystem activity to a small set of processes (note that MPI-I/O does aggregation 
already).  

Although I/O servers are not a new idea, the increasing trend towards fatter nodes and 
access to systems with both fat-nodes (24-32 cores) and the capability for fast single-
sided communication means that now is the ideal time to revisit this concept. 

In the following Subsections we consider how offload servers might be placed and 
which APIs should or could be supported. We also introduce a new API, which we 
believe would be a good method for incorporating the use of offload servers into an 
application in the most general way. 

5.1 Server	  Location	  
We will consider a multi-process application and choose to define the “client” as an 
application routine or possibly a progress thread. The offload server is a process that 
can send and receive data to and from the application clients. The server executes as 
part of the application (one of the processes forming the application) and, in the case 
where it is an I/O server, the server has access to the filesystem. 

Various location strategies are possible for the offload server: 

1. It can be co-located with the application as progress thread(s); 
2. It can be a separate process located on nodes only used for offload servers; 
3. It can be a separate process co-located on a node with standard application 

processes. 

Here, we will concentrate on the case of separate processes forming offload servers. 
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5.2 Software	  Implementation	  options	  
Enabling an application to take advantage of offload servers with minimal programming 
effort would be the ideal scenario. There are two approaches that can fulfil this 
requirement: 

1. An API that performs a standard function (for example I/O to a file) which uses 
offload servers transparently.  

2. An API that allows the application to start and interact explicitly with an offload 
server implementation. Within this context a more standard API could be 
provided. 

We now consider these cases in more detail. 

5.2.1 Standard	  API	  approach	  
An example of how the standard API could work would be through a proxy of a 
standard API such as POSIX I/O or MPI-I/O. Calls to that API would then operate via 
the offload servers. There is a major difficulty with this approach in that we need some 
mechanism to start up the application along with the offload servers in a way that is not 
visible to the application. For example, with MPI it may be possible to start multiple 
binaries, with some of these binaries starting in a context with a fake MPI_COMM_WORLD 
and an extra known communicator that includes the offload servers. Such a solution is 
very system specific, but minimally invasive. 

If we can proxy MPI-I/O, it would be worth considering having the I/O server located on 
the same node as the MPI-I/O aggregators, which may offer an extra performance 
advantage. 

5.2.2 Generic	  Offload	  approach	  
In this generic approach the offload framework is made explicit to the application at the 
expense of some extra coding in the application. For an MPI application, it is necessary 
that the application can progress using a new communicator for its computation ranks. 
We chose this more generic approach, as outlined in the following Section. 

5.3 Offload	  server	  demonstrator	  implementation	  
We have developed a demonstrator implementation for offload servers for MPI 
applications. The goals of this implementation were as follows: 

1. Simplicity of use; 
2. Flexibility in operations supported by the offload server; 
3. Support for MPI applications; 
4. Allow asynchronous progress of offload server operations. 

Our approach was to develop a generic API that looks like an RPC API. This is 
described in more detail below. 

We decided to start with a Fortran implementation for the following reasons: firstly to 
see how easy it was to have a complete Fortran stack; secondly because we wanted to 
make sure that we could use function pointers (something more familiar to C 
programmers); and finally because we could use standard Fortran coarray syntax for 
single-sided data communication and control. Having the capability for single-sided 
operation is fundamental to supporting asynchronous data movement. 

The implementation segments the application processes into two sets as illustrated 
below: 
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Figure 2: Application client/server distinction 

In this example the application is split between 6 compute processes (clients) with two 
processes reserved for use as offload servers, which have been placed at the highest 
ranks of the MPI application. 

Our implementation works as follows: 

The application registers a callback function, which is to be used later when the 
application wants to make use of the offload servers. It then calls an initialisation 
routine that allows the application to split into compute processes/ranks and offload 
servers. From that point on, the application should continue by only using the compute 
processes and the programmer should keep in mind the distinction as per Figure 2. 
The application can make a call to the offload server implementation to asynchronously 
start the callback function. The function will be executed on both the compute node and 
on an offload server. The function can provide or reference data, which is 
communicated behind the scenes by the implementation. For example, an array could 
be provided to be written to a file from an offload server. 

The next Sections describe the API and the implementation in more detail. 

5.3.1 The	  offload	  server	  API	  
Applications using the offload server implementation must include the module os. 

A callback function is registered using the os_register subroutine call 

Name: OS_REGISTER(FUNC,HANDLE,SERVER_USAGE,DIRECTION) 
Description: Register function for later use as callback 
Arguments:  
FUNC  Function to be registered 
HANDLE  Integer handle returned by call 
SERVER_ USAGE Optional. Integer used to define which server can be used to  
    handle requests, must have one of the following values 
   SERVER_SAME (use same server) 
   SERVER_ANY (use any server) 
   n (User virtual server number n – starting with 1) 
DIRECTION   Optional. Integer used to define direction of transfer to or from server. 
   Currently ignored (direction is TO the server) but must be supplied in 
   the case that the implementation will move the data. 

The handle it returns is used later. Note that this procedure must be called on all 
processes. The function passed in must match one of the following prototypes: 

SUBROUTINE FUNC(key,data,flag)  
or SUBROUTINE (key,flag) 
Arguments: 
KEY  An integer key (or tag) 
DATA Variable of type os_data used to point at user data to be moved 
FLAG logical variable set to false if the executing rank is an 
  offload server 

To start up the server infrastructure the os_start procedure must be executed and it is 
defined as follows: 

Name: OS_START(COMM,COMM_COMPUTE,NSERVERS,FLAG) 
Description: Starts up the server infrastructure 
Arguments: 
COMM   MPI Communicator of processes that call OS_START 
COMM_COMPUTE   (out) MPI Communicator for compute ranks 

        

client processes server processes 
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NSERVERS   (in/out) Number of servers requested/provided 
FLAG   Logical flag, value true denotes a server rank 

On return, this routine either returns a communicator for the computation (clients) or it 
returns MPI_COMM_NULL. Note that on the server the call enters a request-handling loop 
so will only return when all work is done. The application should continue and use the 
returned comm_compute where MPI_COMM_WORLD may have been used before. If the 
flag argument is not present then the requested number of servers will be placed at the 
highest ranks in MPI_COMM_WORLD.  If the flag is present then any rank making the 
call with the flag set to .true. will become an offload server. 

As the application progresses it can now use the server infrastructure by initiating the 
function callback using the os_func_start call. 

Name: OS_FUNC_START(HANDLE,TAG,REQUEST) 
Description: Start the function callback and data movement related to handle HANDLE 
Arguments: 
HANDLE  Integer handle of previously registered function 
TAG   Integer tag that will be passed on function callbacks 
REQUEST  (out) Integer request number 

Calling this subroutine will cause the implementation to call the handler callback 
function on the client, collect any data to be transferred, move it to the server and then 
call the same registered function on the server providing it with the data. Note that data 
is only moved by the implementation behind the scenes if the “data” form of the 
function was registered. The os_data datatype includes various pointers as shown 
below. 
  type os_data 
    integer,          dimension(:), pointer :: i => null() 
    real,             dimension(:), pointer :: r => null() 
    double precision, dimension(:), pointer :: d => null() 
    character*(:),    pointer :: c => null() 
    type(os_data),    pointer :: p => null() 
  end type os_data 

The provided function should associate these pointers with data that needs to be 
transferred. Note that the key (tag) can be used to help differentiate multiple calls. 

In the case where the programmer wants to move the data then the 
get_active_client_rank() routine may be called on the server to return the rank 
of the active client. 

The program can test that the calls have completed (on both ends) with the 
os_func_wait call: 

Name: OS_FUNC_WAIT(HANDLE,REQUEST) 
Description: Waits until a request has completed 
Arguments: 
HANDLE   Integer handle of previously registered function 
REQUEST  Integer request matching previously started function 

When all work is complete for a client the os_finalise call must be called. This call 
will terminate the offload servers. 

5.3.2 Implementation	  details	  
We chose to start with a pure Fortran/MPI implementation but wanted to have the 
ability to overlap the communication and the function execution on the server with 
computation on the clients. We decided to use Fortran coarray syntax to achieve this. 

The function register calls are made both on clients and servers and hence there is 
global knowledge of the handle-to-function relationships. A data structure is kept on 
each server with details of client request states. The clients write into this structure 
when there is work to do and this work is done during the server loop. When a request 
is completed the most recently completed request number is written back to the client. 
Both client and server data structures use locks for coordination. 
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Coarray put and get operations are used to move status and data information. In the 
case where the os_data structure is used, the server can directly request data from the 
client using coarray syntax. 

5.3.2.1 Possible	  Future	  Work	  on	  the	  API	  
Some restrictions of the current implementation are that only one request can be active 
at any time per server and that there is no collective support (multiple clients mapped 
to a single function call on the server). The former limitation is easy to lift if we keep 
state for multiple requests at a time. We will also investigate adding specific domain 
APIs that can be handled transparently by the infrastructure. 

Also, data movement is currently only supported from client to server. Extending this to 
data movement in both directions is a small change. 

Another feature that we have not yet implemented is a combination of a data mover 
API and advice on use of coarray primitives that can be used directly in client- and 
server-executed functions to move data without setting or accessing the pointers in the 
os_data structure.  

Our implementation is Fortran with MPI.  To support applications written in C a version 
using either MPI single-sided or OpenSHMEM could be created.   

5.3.3 An	  example	  
The following example shows how the API could be used to copy array data to a 
server, and have the server write the data to a file. 
  program test 
  use mpi 
  use os 
  implicit none 
  integer :: rank,size,comm,ier,nservers,handle 
  integer :: newrank,newsize,i,key,request 
  integer,target :: int_data(100) 
  type(os_data) :: data 
  integer :: server_usage 
 
  int_data=[(i,i=1,100)] 
 
  call MPI_init(ier) 
  call MPI_Comm_rank(MPI_COMM_WORLD,rank,ier) 
  call MPI_Comm_size(MPI_COMM_WORLD,size,ier) 
 
  int_data=[rank,0,0,(i,i=4,size(int_data))] 
 
  server_usage=SERVER_SAME 
  call os_register(data_handler,handle,server_usage,1) 
  nservers=1 
  call os_start(MPI_COMM_WORLD,comm,nservers) 
 
  if (comm != MPI_COMM_NULL) then 
 
   call MPI_Comm_rank(comm,newrank,ier) 
   call MPI_Comm_size(comm,newsize,ier) 
   print *, "rank",rank," new rank and size",newrank, newsize 
   key=100+rank 
   call os_func_start(1,key,request) 
   call os_func_wait(1,request) 
  end if 
 
  call os_finalise 
  call MPI_Finalize(ier) 
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  contains 
 
   subroutine data_handler(tag,data,am_computer) 
   integer, intent(in) :: tag 
   type(os_data) :: data 
   integer, dimension(:), pointer :: int_arr 
   logical, intent(in) :: am_computer 
   character*30 fname 
   integer, save :: call_no 
   integer unit 
 
   if (am_computer) then 
     data%i => int_data 
    else 
     int_data = data%i 
     ! We have the data from the client 
 
     call_no = call_no + 1 
     write(fname,”(’A’,i4.4)”)call_no 
     open(file=fname, newunit=unit, form=”UNFORMATTED”) 
     write(unit)int_data 
     close(unit) 
    end if 
 
   end subroutine data_handler 
  end program test 

 

The program starts by initializing the int_data array which will eventually be written 
to disk via the offload server.  It then registers a data handler routine (data_handler) 
using the form with an argument of type os_data which will be used to move the data.  
The program then calls os_start to split into compute and server processes.  The 
compute processes then call os_func_start to initiate the client and server 
callbacks.  After waiting for this to complete all processes call os_finalise()  When 
os_func_start is called the implementation calls the callback function 
(data_handler) on the client, moves the data and then calls the function on the 
server.  This routine both provides the data (by associating the data%i pointer) and 
sends it to a file on the server using the same pointer associated by the 
implementation. 

5.4 Other	  uses	  of	  offload	  servers	  
An obvious application for offload servers is to handle I/O. An area that may be of 
interest would be to implement user checkpointing on top of the existing infrastructure. 
Furthermore, we could add two new features: 

• Checkpointing to multiple servers using ECC across servers in order to be able 
to recover from failure; 

• Checkpointing to memory. 

This could be extremely useful if delivered as part of a fault tolerant MPI solution. 

5.5 Conclusions	  
We have developed a new API which we think is the simplest way to experiment with 
an offload server architecture for an MPI application but is designed to allow 
asynchronous usage and allow overlap with computation. It is minimally invasive for the 
application requiring that a callback function be registered, that the application can 
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continue with a new communicator and that data to be moved can be associated with a 
provided data structure or communicated directly during the callback. 
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6 Background	  processing	  of	  MPI	  communication	  
In this Section we consider how extra cores on a node might be used to improve the 
performance of asynchronous message-passing communication libraries. In the case 
where extra cores are available and there is opportunity for communication overlap, 
there is a good case for using spare cores to progress the communication 
asynchronously with the application’s computation. As we started this work, Cray 
released a new version of the MPI library that supports an asynchronous progress 
thread. We have used this implementation to validate our approach using simple 
examples. 

6.1 Behind	   the	   scenes:	   MPI	  message	   protocols	   and	   overlapping	  
computation	  and	  communication	  

The MPI API provides many functions that allow point-to-point messages (and with MPI 
3.0, also collective communication) to be performed asynchronously. Ideally, 
applications should be able to overlap communication and computation and hide all 
data transfer behind useful computation. Unfortunately, this is not always possible at 
the application level, and further, not always possible at the library implementation 
level.  

 
Figure 3: The non-blocking communication feature of MPI allows in principle overlapping 
communication with other work. 

In reality, even though the MPI library has asynchronous API calls, overlap of 
computation and communication is not always possible. This is usually because the 
sending process does not know where to put messages on the destination, as this is 
part of MPI_Recv, but not MPI_Send. 

As an example, let us consider the different interconnects of the Cray XE and XC 
product series, referred to as Gemini and Aries respectively. On these networks, 
complex tasks, such as matching message tags with the sender and receiver, are 
performed by the host CPU. This means that message-matching is always performed 
by one fast CPU per rank. Therefore, messages can usually only be progressed when 
the program is inside an MPI function. Some applications insert extra MPI_Probe calls 
to make this happen, however without a separate progress “thread” it is difficult to do 
this in practice. Furthermore, it is not ideal to have that progress thread share the CPU 
resources that are being used for computation. 

Smaller messages can circumvent this issue when using the “eager” message transfer 
protocol: if the sender does not know where to put a message, it can be buffered until 
the receiver is ready to take it. When MPI_Recv is called, the library fetches the 
message data from the remote buffer and into the appropriate location (or potentially 
local buffer), and the sender can proceed as soon as data has been copied to the 
buffer. The sender will block if there are no free buffers.  
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In the case of non-blocking communication, data is copied from the buffer into the real 
receive destination when MPI_Wait or MPI_Waitall are called. This approach involves 
an extra memory copy, but features much greater opportunity for overlap of 
computation and communication. 

 
Figure 4: The eager messaging protocol potentially allows overlapping. The case of blocking point-
to-point communication is shown on the left, the non-blocking case is shown on the right. 

However, for larger amounts of data the communication uses the rendezvous data 
transfer protocol. With this protocol, no similar temporary buffers are being used and 
data transfer often only occurs during the MPI_Wait or MPI_Waitall statement. When 
the message arrives at the destination, the host CPU is busy doing computation, so is 
unable to do any message matching. Control only enters the MPI library when 
MPI_Waitall occurs and does not return to the application until all the message data 
is transferred. In other words, there has been no overlap of computation and 
communication. 

 
Figure 5: For larger messages the overlap is not available. The case of blocking point-to-point 
communication is shown on the left, the non-blocking case is shown on the right. 

The MPI libraries that progress eager and rendezvous messages differently usually 
also allow for controlling the threshold for a message to become eager. However, 
sending more messages via the eager protocol places more demands on buffers on 
receiver, and if the buffers are full, transfer will wait until space is available or until the 
MPI_Wait. 

On the Cray XC and XE systems, there is also an opportunity to spawn additional 
threads that allow progress of messages while computation occurs in the background. 
Each MPI rank starts a “helper thread” during MPI_Init. These threads may run on 
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cores especially allocated for this purpose, or they can utilise core oversubscription 
(e.g. “hyper-threading” on Intel CPUs). These threads progress MPI operations 
(performing message matching and initiating the transfers) while the application 
computes. Consequently, data has already arrived by the time Waitall is called, so 
overlap between compute and communication has occurred. The Cray Asynchronous 
Progress Engine operates only on inter-node rendezvous messages, since eager 
messages already have a possibility for overlap. On real-world applications, 
performance improvements of 10% or more have been reported. 

 

 
Figure 6: The Cray Asynchronous Progress Engine uses specific communication threads for more 
complete overlap. 

6.2 Performance	  of	  the	  Asynchronous	  Progress	  Engine	  
Let us define an “overlap availability time” O as 

𝑂 = 𝐶 + 𝑁 − 𝑇 

where 

• T: a time required for completing a communication operation and an overlapped 
computational task 

• C (computation time): time required for performing the computational task alone 
• N (network time): time required for completing the communication operation 

alone. 

Further, by defining 

ovl% =
𝐶 + 𝑁 − 𝑇

𝐶 + 𝑁 −max  (𝐶,𝑁)
∗ 100 =

𝑂
min  (𝐶,𝑁)

∗ 100 

ovl%(overlap availability %) would be zero in case of no overlap (the case with blocking 
MPI communication) and 100 in case where the communication overhead has 
completely been hidden (T being equal to either the computation or network time, 
whichever is larger). Negative value would mean performance penalty from trying the 
overlap. 

In Figure 7 (left), the overlap availability of a “message chain” communication pattern, 
realized with MPI_Irecv, MPI_Isend and MPI_Waitall, with and without using the 
Asynchronous Progress Engine is presented. The platform is a Cray XC30, and we use 
256 MPI tasks (occupying 16 nodes each having 16 Intel Sandy Bridge cores). The 
computational task is a matrix-multiply of size yielding a computational time roughly 
similar order of magnitude with the communication time. Without the Asynchronous 
Progress Engine, overlapping is in fact causing performance degradation.  
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The non-blocking collective operations as introduced in the 3.0 version of the MPI 
standard have also potential for overlap. This is an important asset, since especially 
the all-to-all collectives are a typical scalability bottleneck in supercomputing 
applications. The overlap availability of the non-blocking all-to-all data exchange as 
implemented in MPI_Ialltoall on Cray XC30 is presented in Figure 7 (right). The 
MPI_Ialltoall operation does not overlap properly, and some performance benefit 
from overlapping can be expected only with small message sizes and when using the 
Asynchronous Progress Engine. 

 
Figure 7: Overlap availabilities of non-blocking point-to-point and collective communication. 

 



 

© CRESTA Consortium Partners 2011  Page 27 of 35 

 

7 Micro-‐kernels	  
7.1 Motivation	  
7.1.1 Core-‐specialisation	  with	  Monolithic	  Kernel	  OS	  
On some HPC systems that employ a monolithic kernel operating system (such a 
standard Linux distribution, or a customised derivative of a standard Linux distribution), 
it is possible to separate the OS and the application processes on to different hardware 
processors. For example, in a Cray XC30, this feature is called core-specialisation. The 
user can reserve one (or more) processor core(s) for the OS kernel by inserting 
commands into the job-launch script. The application processes cannot use these 
reserved core(s), which means that more nodes will be needed to support the same 
number of application processes. However, the application processes should benefit 
from reduced OS jitter, i.e. reduced interference caused by the OS handling hardware 
interrupts, which requires context-switching and possibly disrupts memory caches and 
the TLB cache. A possible disadvantage of core-specialisation is that it introduces 
locality issues in NUMA systems. Passing a memory pointer from the application to the 
OS kernel may invalidate the associated cache entries in the application processor 
core when the OS kernel processor core accesses memory using that pointer. Some 
OS kernel functions and services should therefore benefit from co-location with the 
application processes that use them. A further possible disadvantage is that the 
reserved core may be overloaded and become a performance bottleneck if OS system 
calls are made by application processes too frequently or if hardware interrupts occur 
too frequently. 

The disadvantages of core-specialisation suggest that a better option would be to split 
the OS into separate services that execute in different physical locations within each 
node (to address locality issues) and to replicate some OS services adding dynamic 
load-balancing between the replicas (to address bottle-neck issues).  

7.1.2 Asynchronous	  Progress	  Engine	  with	  Non-‐Blocking	  MPI	  Communication	  
An asynchronous MPI progress engine, as described in Section 6, achieves the goals 
of core-specialisation for a single OS service, namely network I/O. 

The intention is that the application is written to make efficient use of MPI non-blocking 
communication functions for all communication. When each non-blocking 
communication operation is started, the MPI library returns control to the application 
immediately. The MPI library progresses the communication in a separate thread or a 
separate process (the asynchronous progress engine). Meanwhile, the application 
does some useful computation work that does not depend on the result of the 
communication. At a later point, the application verifies that the communication 
operation is complete. When the asynchronous progress engine is scheduled on a 
dedicated processor core, this coding style overlaps communication and computation 
to achieve speed-up. 

From the point-of-view of the operating system, this coding style means that the 
network I/O intensive portion of the application code (and therefore network I/O related 
system calls to the OS kernel) can be scheduled separately from the rest of the 
application. This allows one core to continue intensive computation, e.g. floating-point 
operations, whilst another core simultaneously handles the communication, i.e. network 
I/O, hardware interrupts from the network interface card and memory copies between 
user data buffers and network interface buffers. 

One disadvantage of this approach is that it only benefits MPI communication. Other 
communications, such as direct socket connections to a client machine for interactive 
visualisation or steering of the application (as seen in HemeLB, for example), make 
network I/O system calls directly to the OS kernel from the application processor core 
rather than the processor core dedicated to the MPI progress engine. 
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This suggests that it may be better to extract the network I/O system calls from the OS 
kernel and create a separate network I/O service that can run on a dedicated processor 
core. In this manner, all network related system calls will be offloaded from the 
application processor cores to a dedicated processor core. This reduces the adverse 
effects of handling hardware interrupts generated by the network interface card(s); 
although it does require an efficient inter-process communication mechanism as all 
application system calls for network services necessitate at least one IPC message. 

Further development of this idea indicates it may be beneficial to replicate the network 
I/O service process so that, for example, there is one such process for each physical 
network interface card in the node. At full line-speed data-rate, a single Gigabit 
Ethernet network connection with standard 1500-byte network packets requires a per-
packet processing time no greater than 12µs. With multiple physical network interface 
cards operating at full line-speed data-rate, this processing time limit is proportionally 
reduced, e.g. 6µs for 2 NICs, 4µs for 3 NICs, etc. If each incoming packet on each NIC 
generates a hardware-interrupt then this per-packet processing time limit can be 
difficult to maintain. A common technique to mitigate this issue is interrupt coalescing, 
which reduces the frequency of interrupts by combining multiple network events when 
they occur with a short time-span of each other. An interrupt is then only generated 
when a certain number of network events have been combined or a timer expires. 
Inevitably, this results in a compromise between providing the lowest possible latency 
(which requires an immediate interrupt for each network event) and providing the 
highest possible bandwidth (which requires a limit on the maximum frequency of 
interrupts). Similar arguments apply to other network interconnection fabrics, such as 
Infiniband. Potentially, replicating the network I/O service module so that each replica is 
scheduled on a different processor core and deals with a single NIC would permit a 
lower latency without compromising the maximum achievable bandwidth even with 
multiple NICs per node. 

7.1.3 Motivating	  Scenario	  for	  Separate	  OS	  Module	  for	  Disk	  I/O	  
The creation of node-local I/O servers achieves the goals of core-specialisation for 
another OS service, namely disk I/O. 

The general concept of offload servers and the special case of I/O servers are 
described in Section 5. In that Section, it is envisioned that the offload or I/O servers 
are implemented as separate processes or threads in user-space, i.e. not within the OS 
kernel. However, the disk I/O service is ultimately provided by the operating system, 
usually as a system-level driver. The option of creating and exposing a new API for I/O 
servers is explored in Section 5.3 as a demonstration of a new general API proposed 
for all offload servers. This Section examines an alternative option: implementing I/O 
servers by transparently intercepting I/O system calls. 

In general, (non-volatile) disks operate much slower than other (non-volatile) storage 
hardware, such as main memory, and much slower than computational hardware, such 
as a CPU or GPU. If application processes wait for disk I/O then overall performance is 
likely to very poor. Therefore disk I/O must be exposed to HPC applications via a non-
blocking API and must be implemented in a manner that allows overlap with application 
computation. 

For current operating systems, there are two approaches for non-blocking disk I/O: the 
data from all write operations is buffered in the kernel (e.g. normal POSIX I/O in Linux) 
or a non-blocking API is provided by the operating system (e.g. “OVERLAPPED” I/O in 
Windows). In both cases the data is actually written to disk after the I/O system call has 
completed and returned control to the application. This is normally implemented via a 
separate kernel thread or process, which inherently suits the design principles for a 
microkernel. 

The messaging interface of a module in a microkernel operating system is very well-
defined and completely isolates that module from the all other modules in the system. 
This should make interception of I/O system calls simpler than for a monolithic kernel. 
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The possibility of replicating the disk I/O module, e.g. one instance for each physical 
disk, is unlikely to increase performance because disk hardware is so slow. However, 
there is potential benefit to co-locating the disk I/O module with one or more network 
I/O modules in order to aggregate data within a small subset of (possibly remote) 
nodes before writing data to disk. 

7.1.4 Motivating	  Scenario	  for	  Locality-‐Aware	  Memory	  Management	  OS	  Module	  
A well-written HPC program should minimise the frequency of memory allocation 
system calls during the majority of its execution. However, for some codes the amount 
of memory needed by each processor core will vary throughout the execution of the 
program in response to the needs of the algorithm and the distribution of data and 
work. In systems with Non-Uniform Memory Access (NUMA), memory allocation and 
management by the operating system must be locality-aware in order to make best use 
of fast cache memory. Even when no new memory is allocated, the access-pattern for 
existing memory allocations may change, for example to achieve load-balance 
between processor cores. 

Memory pages can be migrated by the operating system to make them local to the 
processor core that is currently most frequently accessing them. A page-fault exception 
is generated whenever a processor core requests a memory page that is not present in 
locally accessible memory (either in processor caches or in the portion of main memory 
that is directly connected to the processor). The memory management module in the 
operating system handles the exception by interrupting the application, fetching the 
memory page (possibly involving communication with other processors) and then re-
starting the application. Therefore, memory management is an OS service that requires 
locality-awareness and cannot usefully be centralised to a single processor core. 

7.2 Methods	  
7.2.1 Customisation	  of	  a	  Standard	  Monolithic	  Kernel	  
A standard monolithic kernel operating system is usually split into many separate 
kernel processes (sometimes also called system daemons or background services), 
with each kernel process performing a different task or providing a different service. 
This provides an opportunity to move certain operating system services to dedicated 
hardware simply by influencing the scheduling decisions made by the operating 
system. Most operating systems support the concept of ‘affinity’ for all processes – 
effectively this is done by specifying a list (called a mask) of processor cores on which 
the process is allowed to be scheduled. Setting this affinity list, or mask, to a single 
processor core for a particular process (e.g. the network I/O system daemon) prevents 
the operating system from moving that process to another processor core during 
execution. Setting this affinity list to all cores except one for other processes (e.g. 
application processes) prevents those processes from interfering with the exceptional 
processor core. 

The major advantage of this approach is that changes to the standard OS kernel are 
restricted to code that handles scheduling decisions: the affinity mask for system 
processes must be set to include only the reserved processor core(s) and the affinity 
mask for application processes must exclude the reserved processor core(s). A 
disadvantage is that this simple approach only works if the OS kernel functionality is 
already a separate process in the standard OS. This may be true for services such as 
network I/O but is less likely to be true for memory management. Even for OS services 
that are primarily handled by separate system processes, some of the functionality is 
likely to rely on central OS kernel functions. For example, if the network I/O system 
daemon process is forced to execute on a different processor core to a system process 
that provides dependent functionality, this may increase the amount of inter-processor 
communication and reduce the overall effectiveness of using dedicated hardware. 

7.2.2 Micro-‐kernel	  Operating	  Systems	  
The defining characteristic of a micro-kernel operating system is that it is as small as 
possible whilst still being functional. All non-essential functionality is removed from the 
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operating system and is instead provided by non-OS processes. Figure 8 shows a 
schematic representation of a typical monolithic and a typical micro-kernel. The 
essential functionality, which remains in the operating system microkernel, includes an 
efficient mechanism for inter-process communication and some low-level memory 
management and process (or thread) scheduling ability. The non-OS processes that 
provide OS-like functionality are typically modules that are as self-contained as 
possible but may nevertheless depend on other non-OS processes. Thus, each 
process can be scheduled independently of all the others with little or no impact on 
performance due to frequent interaction. Commonly in a microkernel operating system, 
those modules that are not required are not loaded into memory reducing the memory 
usage compared to a monolithic kernel. 

The OS services provided by a microkernel can often easily accommodate replicated 
or hierarchical modules. All dependencies between processes (whether application 
processes or system service processes) require explicit inter-process communication 
via the microkernel itself. This enables the re-direction of requests to the correct 
module or sub-module on a per-request basis. For example, two network I/O service 
processes may exist in a particular node, one for each physical network interface card 
installed in the node. When a request is made to communicate across the network, the 
inter-process message can be directed to the network I/O process that controls the 
appropriate hardware resource for that request. 

One disadvantage of microkernels is that they generally do not provide a familiar 
programming interface (such as the full set of Linux system calls or the POSIX process 
model) to applications. Another disadvantage is that the inter-process communication 
can become a performance issue. A “hybrid kernel” design re-absorbs some 
performance-critical components into the microkernel module of the operating system, 
as depicted in Figure 9. This compromises the programmability benefits in the low-level 
code for system services but can achieve a more practically useful OS. The Windows 
NT kernel and Mac OS X are considered to be hybrid operating systems. 

 

 
Figure 8: Schematic of operating system components in a typical monolithic kernel and 
microkernel [8] 
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Figure 9: Comparison of Compartmentalisation in a Monolithic Kernel, a Microkernel and a Hybrid 
Kernel [9] 

7.3 Conclusions	  
The microkernel concept has been a subject of practical research efforts for many 
decades. There have been some useful insights for operating system design and 
implementation. In particular, currently popular operating systems, such as Windows 
and Mac OS X, make use of the principles of microkernel design. However, there are 
significant difficulties for continuing efforts in this area. There is a significant knowledge 
hurdle requiring a steep learning curve for new participants in this research field. 
Furthermore, both in HPC and in the wider context of mass-market consumer systems, 
established operating systems are ubiquitous and entrenched in the mind-set of 
application programmers as well as the designers and purchasers of these systems. 
Therefore, new developments in the HPC OS space are often seen, and judged, as 
disruptive technologies. 

Enhancing the ability of a “fat node” to accelerate a single application, or a small 
number of co-located applications, does not align well with mainstream requirements 
for consumer computers. A typical desktop or laptop computer must be more focused 
on fairly sharing available hardware resources to achieve high through-put despite 
over-subscription of those limited resources by dozens of disparate independent 
processes. An Exascale-capable method of efficiently exploiting fat nodes, within an 
increasingly restrictive power-budget, will necessarily diverge from the mainstream 
solutions available today and will probably become a niche product only used for a few 
of the largest machines in the world. 
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8 Future	  work	  
The research presented in this reports opens up a number of strands for future work. 
We have shown that co-location of HPC workloads is a feasible option for fat nodes, 
however there are still a number of hurdles to be overcome before this will be a 
generally applicable approach.  

In terms of CRESTA, two different areas of investigation are relevant: 

• Power management: we will continue our work on co-location of applications 
as part of Task 2.6.3 in CRESTA WP2. The basic idea is that using resources 
that would otherwise be idle should increase the scientific output without 
increasing power consumption significantly. Runtime is currently the most 
interesting metric for codes running on supercomputer architectures, as this is 
what is used in the charging models. However looking forward, users may 
instead be billed for the energy usage. The Cray XE6 has limited power 
measurement facilities but, with access to suitable counters on a future 
architecture, it will be interesting to revisit this study, redefining the co-location 
metric in terms of energy consumed rather than time elapsed and seeing 
whether this affects the conclusions drawn here. Many HPC systems have high 
base-line power consumption, even if all the cores are in their lowest sleep 
state; activating the cores does increase the power drawn, but the increase is 
small compared to the base power consumption. With such hardware, 
minimising energy consumption is exactly linked to minimising application 
runtime. On future HPC architectures, however, the base power requirement 
will be much lower and in this case there is more flexibility in constructing a co-
location metric that reflects improved energy consumption and not minimised 
runtime. 

• Ensemble modelling and coupled simulations: for co-design vehicles such 
as GROMACS, IFS and HemeLB, co-location could be a viable way to improve 
resource usage when running very large ensemble models or coupled 
simulations. More work is however needed in order to facilitate launching 
multiple binaries on shared resources. 

Offload servers, in particular I/O servers, can be integrated into I/O intensive 
applications and evaluated as an alternative to MPI-IO. It may be possible to do this 
directly in applications such as OpenFOAM or Elmfire, or via benchmarks, which 
simulate the I/O behaviour. Similarly, using spare cores to host the asynchronous 
progress threads for non-blocking MPI needs to be evaluated in the context of one of 
the co-design vehicles. Again, OpenFOAM is a good example here because it has the 
option to transparently switch between blocking and non-blocking MPI calls. 

One area we have not investigated is the use of one-per-node offload servers to 
manage data transfers between the separate memory spaces of CPU and attached 
accelerator(s). (We have, however, given this some consideration based on our 
experience with accelerators.)  The argument for doing this is that data transfers are a 
significant overhead in such hybrid calculations and that a typical way of using such 
hybrid nodes is currently to use one MPI rank per accelerator on the CPU, leaving 
many cores idle. With current hardware, it is not clear how useful this approach would 
be. For accelerator hardware or runtimes that support asynchronous data transfers 
(e.g. to Nvidia GPUs), this is probably not useful. The CPU initiates data transfers, but 
these operations are non-blocking. If an offload server were employed to manage data 
transfers, the overheads of communicating with the server would be at least as large as 
having the main "compute" core doing the data transfers itself. In addition, the latest 
Nvidia Kepler GPUs support multiple MPI ranks sharing a single GPU (via the so-called 
HyperQ and CUDA proxy facilities). This allows more of the CPU to be effectively used 
for computation. 

For accelerators that do not allow asynchronous data transfers, it may make more 
sense to consider using an offload server on a "spare" core on each node/process to 
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manage data traffic to and from the CPU, whilst the "active" CPU cores are used for 
productive computation. Given the tightly coupled nature typical of applications using 
GPUs a threaded implementation would probably be required. We did not, however, 
have access to such hardware during the period of this study to pursue this.  

Longer term, as we approach the Exascale, the industry trend appears to be towards 
closer integration of CPU and accelerator hardware. Even if the memory spaces are 
not completely unified, they will be much more closely linked. In the ARM Mali GPU, for 
instance, the memory space is shared between CPU and GPU but is not cache 
coherent, so data transfers are essentially reduced to cache flushes. As such, the 
overhead of data movement in a hybrid application becomes less onerous and it is not 
clear that an offload server model is then necessary. A related example is the Intel 
Xeon Phi coprocessor. Whilst this can be used as an offload accelerator, most users 
currently take the approach of running the entire application on the coprocessor and, 
again, there is no need for an offload server. 

So whilst we will track the hardware development trends, we do not intend to pursue 
the use of offload servers for accelerator data transfers during the remainder of the 
CRESTA project. 
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9 Conclusions	  
Current and projected trends in system architecture imply that fat nodes in HPC are 
here to stay. Single applications often cannot fully exploit these fat nodes because of 
limitations imposed by the memory and communications systems, and thus a number 
of cores on these fat nodes can sit idle. This deliverable has investigated a range of 
different ways in which any spare (or empty) cores on fat nodes can be exploited 
usefully, with an emphasis on improving the science throughput. 

The approaches we have explored here range from co-locating HPC workloads on 
shared resources to offloading specific tasks to empty cores. Although some of these 
approaches are conceptually simple, their implementations on tightly coupled HPC 
systems are complex and, as highlighted in Section 8, more research in this area is 
needed. A positive side-effect of an improved exploitation of fat nodes may be that of 
increasing energy efficiency. Again, this issue needs to be explored in further research. 

Overall, this deliverable describes how we can progress beyond the current state-of-
the-art in the use of fat nodes and makes clear suggestions for how the different 
approaches can be used with the CRESTA co-design vehicles. 
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