

© CRESTA Consortium Partners 2011 Page 1 of 20

D2.5.1	 –Fault	 agnostic	 and	
asynchronous	 algorithms	 at	 exascale	

WP2:	 Underpinning	 and	 cross-‐cutting	
technologies	

Due date: M21

Submission date: 30/06/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization UEDIN

Version: 1.0

Status Final

 Author(s): Mark Bull (UEDIN), Jeremy Nowell (UEDIN)

Reviewer(s) Jens Doleschal (TUD), Frédéric Magoulès (CRSA)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

© CRESTA Consortium Partners 2011 Page 2 of 20

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 31/05/2013 Initial draft for review Mark Bull (UEDIN)

0.2 20/06/2013 Revised draft after internal review Mark Bull (UEDIN)

1.0 26/06/2013 Final document for submission to EC Mark Bull (UEDIN)

© CRESTA Consortium Partners 2011 Page 3 of 20

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 4	
2	 INTRODUCTION	 ...	 5	

2.1	 PURPOSE	 ...	 5	
2.2	 ASYNCHRONOUS	 ALGORITHMS	 FOR	 SPARSE	 LINEAR	 ALGEBRA	 ..	 5	
2.3	 PERFORMANCE	 FAULTS	 ...	 5	
2.4	 RELEVANCE	 TO	 CRESTA	 APPLICATIONS	 ...	 6	
2.5	 GLOSSARY	 OF	 ACRONYMS	 ...	 6	

3	 ASYNCHRONOUS	 JACOBI	 AND	 BLOCK	 JACOBI	 ALGORITHMS	 ..	 7	
3.1	 JACOBI	 ALGORITHM	 ...	 7	
3.2	 BLOCK	 JACOBI	 ..	 9	

4	 SIMULATING	 PERFORMANCE	 FAULTS	 ..	 11	
4.1	 SLOW	 CORES	 ..	 11	
4.2	 SLOW	 LINKS	 ...	 11	

5	 RESULTS	 ..	 12	
5.1	 SLOW	 CORES	 ..	 12	

5.1.1	 Jacobi	 algorithm	 ..	 12	
5.1.2	 Block	 Jacobi	 ...	 14	

5.2	 SLOW	 LINKS	 ...	 16	
6	 CONCLUSIONS	 AND	 FUTURE	 WORK	 ...	 19	
7	 REFERENCES	 ..	 20	

Index	 of	 Figures	
Figure 1 Pseudocode for parallel Jacobi .. 8	
Figure 2 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 12	
Figure 3 Execution time for Jacobi algorithm on 128 nodes of a Cray XE6 13	
Figure 4 Residue vs. time for Jacobi algorithm on 1024 nodes (32768 cores) of a Cray
XE6 ... 14	
Figure 5 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using
32 blocks .. 14	
Figure 6 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using
32 blocks and conservative residual estimation ... 15	
Figure 7 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 8
blocks and conservative residual estimation .. 16	
Figure 8 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 2
blocks and conservative residual estimation .. 16	
Figure 6 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 with one slow
link .. 17	
Figure 7 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 with all slow
links .. 18	

	

© CRESTA Consortium Partners 2011 Page 4 of 20

1 Executive	 Summary	
The number of parts in HPC systems is set to increase significantly as their
performance approaches the Exascale. This means that fault tolerance in an
increasingly important aspect of the design of these systems. However it is also
possible to consider software-hardware co-design as a solution to these problems. On
the software side, this includes the development of fault tolerant algorithms. In general,
this is a difficult problem, especially if faults are considered where part of the current
state of a computation is lost. Other types of fault, however, do not involve such state
loss: these include performance faults where a component (e.g. a processor or network
link) does not fail, but performs at a slower rate than intended. Such faults are less
catastrophic, but may be harder to detect.

Performance faults may not cause the computation to fail, but, for many algorithms, the
synchronisation patterns mean that the whole computation can run at the speed of the
slowest component. Asynchronous algorithms, which are often derived from
synchronous counterparts by relaxing some or all of the synchronisation requirements,
have the possibility of being much more tolerant to performance faults, though likely at
the expense of poorer convergence rates.

In this deliverable, we select two asynchronous algorithms for the solution of large
sparse linear systems (Jacobi and block Jacobi), and, using simulated slow cores and
slow links on a real HPC system, quantify their ability to maintain performance in the
presence of such faults by comparing them to their synchronous counterparts.

Our findings do indeed show that the algorithms have strong resilience to such faults,
even when the loss of component performance reaches an order of magnitude.
However, in some cases we observe that the asynchronous algorithms can exhibit
undesirable convergence behaviour, and that care needs to be taken to avoid this.
Finally, we discuss how such algorithms may be of interest in the contexts of
alternative uses of fat nodes and power management.

© CRESTA Consortium Partners 2011 Page 5 of 20

2 Introduction	
2.1 Purpose	
The purpose of this deliverable is to explore the ability of asynchronous algorithms for
solving large sparse linear systems to tolerate performance faults such as slow running
cores and slow running network links. The rest of the document is organised as follows:
The remainder of this section introduces asynchronous algorithms and performance
faults, and discusses the relevance of this work to the CRESTA applications. Section 3
gives details of the two asynchronous algorithms we use for this investigation, and
Section 4 describes the techniques used to simulate performance faults. Section 5
presents and discusses the experimental results, and finally Section 6 draws some
conclusions and points to future work.

2.2 Asynchronous	 algorithms	 for	 sparse	 linear	 algebra	
Modern high performance computing systems are typically composed of many
thousands of cores linked together by high bandwidth and low latency interconnects.
Over the coming decade core counts will continue to grow as efforts are made to reach
Exaflop performance. In order to continue to exploit these resources efficiently, new
software algorithms and implementations will be required that avoid tightly-coupled
synchronisation between participating cores and that are resilient in the event of failure.

In this deliverable we investigate one such class of algorithms. The solution of sets of
linear equations 𝐴𝒙 = 𝒃, where 𝐴 is a large, sparse 𝑛×𝑛 matrix and 𝒙 and 𝒃 are
vectors, lies at the heart of a large number of scientific computing kernels, and so
efficient solution implementations are crucial. Existing iterative techniques for solving
such systems in parallel are typically highly synchronous, in that all processors must
exchange updated vector information at the end of every iteration, and the algorithm
may require scalar reductions. This creates barriers beyond which computation cannot
proceed until all participating processors have reached that point, i.e. the computation
is globally synchronised at each iteration. Such approaches are unlikely to scale to
millions of cores, and are highly sensitive to performance faults or glitches: a delay in
one processor or in one communication link may delay the entire computation.

Asynchronous algorithms avoid this blocking behaviour by permitting processors to
operate on whatever data they have, even if new data has not yet arrived from other
processors. Note that the term asynchronous is used here in a strong sense: the
convergence behaviour of the algorithms can differ from their synchronous
counterparts: it is not just a question of relaxing the order of computation and
communication and still respecting data dependencies. To date there has been work
on both the theoretical [1], [2], [3] and the practical [4], [5], [6] aspects of such
algorithms. The use of asynchronous techniques in large, tightly coupled parallel
systems of relevance to Exascale computing has been the subject of recent work in [7]
[8] and [9]. Asynchronous methods have been shown to work well in distributed
heterogeneous environments [10]: in this study we are considering the question of how
they behave in a homogeneous system with performance faults, which can be
considered a special case of a heterogeneous system.

2.3 Performance	 faults	
Recent work on fault tolerant algorithms for scientific computing focuses on the
relevant, but difficult, case of total component failure with accompanying data loss.
While some useful progress has been made, for example in the field of dense matrix
computations [11], applicability is not widespread and the solutions may still rely in part
on some form of checkpointing. It is also not clear how asynchronous algorithms might
be exploited in this scenario, since the notion of the last known good state may not be
well defined.

In this study, we consider the case of performance faults. In this case, no data is lost,
but components may fail to deliver their intended performance. For example, a CPU

© CRESTA Consortium Partners 2011 Page 6 of 20

core, or an entire node, may still be working, but compute at slower rate than all the
others in the system. This can occur not only due to hardware problems, but also to
software issues such as rogue threads or processes. Alternatively, processes from
different applications may be deliberately co-scheduled on the same node to maximise
the use of resources, but the impact of this on the timing behaviour of applications may
vary from one node to another.

Increasingly, modern processors have power-saving features that alter the clock-rate,
for example if the device overheats, and mis-operation of these can be source of such
faults. If such power-saving features are deliberately enabled, it may be difficult to
synchronise their behaviour across multiple nodes. Performance faults can also occur
in networks, where a link may deliver higher latency and/or lower bandwidth than
normal.

As is the case with component failure, performance faults are likely to become more
common as the size of systems increases. They are, in general, difficult to detect and
therefore studying algorithmic approaches that can tolerate them is a useful area of
research.

2.4 Relevance	 to	 CRESTA	 applications	
Sparse linear solvers are widely used in a variety of HPC applications. A recent
PRACE report highlighted its importance to the European HPC community reports the
usage of computational paradigms across application areas. Sparse linear algebra was
found to be used across the whole range of HPC applications areas, but is particularly
heavily used in the Astronomy and Cosmology community, Computational Chemistry
and Computational Fluid Dynamics.

Within CRESTA, sparse linear algebra is important in two of the co-design applications.
The first, ELMFIRE, is a full-f gyrokinetic plasma simulation code, which at exascale is
looking to simulate plasmas in the next generation fusion reactors such as ITER. The
second, OpenFOAM, is an open-source computational fluid dynamics application,
widely used in both academia and industry to study a large range of problems.
Exascale problems under consideration include Large Eddy Simulations of turbulence
in moving turbomachinery. It is clear therefore that any improvements to the solvers
within these codes will have a direct impact on helping their goal of running at the
exascale.

2.5 Glossary	 of	 Acronyms	
Cronym Definition
AIAC Asynchronous Iterations Asynchronous Communications
D Deliverable
EC European Commission
HPC High Performance Computing
MPI Message Passing Interface
NUMA Non-Uniform Memory Access
SISC Synchronous Iterations Synchronous Communications

© CRESTA Consortium Partners 2011 Page 7 of 20

3 Asynchronous	 Jacobi	 and	 block	 Jacobi	 algorithms	
3.1 Jacobi	 algorithm	
Jacobi's method for the system of linear equations 𝐴𝒙 = 𝒃, where 𝐴 is assumed to have
nonzero diagonal, computes the sequence of vectors 𝑥!, where

𝑥!! =
1
𝑎!!

𝑏! − 𝑎!"
!!!

𝑥!!!! 𝑖 = 1,… , 𝑛

The 𝑥!! , 𝑖 = 1,… , 𝑛 are independent, which means that vector element updates can be
performed in parallel. Jacobi's method is also amenable to an asynchronous parallel
implementation in which newly-computed vector updates are exchanged when they
become available rather than by all processors at the end of each iteration. This
asynchronous scheme is known to converge if the spectral radius 𝜌 𝑀 < 1 with
𝑀 = −𝐷!! 𝐿 + 𝑈 where 𝐷, 𝐿 and 𝑈 are the diagonal and strictly lower and upper
triangular parts of 𝐴. In contrast, the synchronous version of Jacobi's method
converges if 𝜌 𝑀 < 1 [3].

To investigate the behaviour of Jacobi's method in the presence of performance faults,
we have implemented both synchronous and asynchronous variants of the algorithm.
The synchronous version falls into the SISC (Synchronous Iterations Synchronous
Communications) classification proposed by Bahi et al. [12], i.e. all processes carry out
the same number of iterations in lock-step, and communication does not overlap
computation, but takes place in a block at the start of each iteration. The
asynchronous version is AIAC (Asynchronous Iterations Asynchronous
Communications), since processes proceed through the iterative algorithm without
synchronisation, and so may iterate at different rates depending on a variety of factors.
Communication may take place at each iteration, but is overlapped with computation,
and crucially, the receiving process will continue iterating with the data it has,
incorporating new data as it is received. We note that these schemes are more
general than simply overlapping communication and computation within a single
iteration (e.g. using MPI non-blocking communication) as messages may be (and in
general, will be) received at a different iteration to which they are sent, removing all
synchronisation between processes. In the asynchronous version we ensure that a
process only reads the most recently received complete set of data from another
process, i.e., for each element 𝑥!! received from a particular process we ensure that all
such 𝑥! read during a single iteration were generated at the same iteration on the
sender. This restriction could be relaxed, allowing processes to read elements 𝑥!
potentially from multiple different iterations. As is shown in [7], this reduces
communication overhead, but relies on the atomic delivery of data elements to the
receiving process, so that every element we read existed at some point in the past on a
remote process.

Instead of a general Jacobi solver with explicit 𝐴 matrix, we have chosen to solve the
3D diffusion problem ∇!u = 0 using a 6-point stencil over a 3D grid. This greatly
simplifies the implementation, since there is no load-imbalance, nor are complex
communication patterns needed, and it allowed us to easily develop multiple versions
of our test code. In all cases, we have fixed the grid size for each process at 50!, and
so as we increase the number of participating processes the global problem size is
weak-scaled to match. The boundary conditions for the problem are set to zero, with
the exception of a circular region on the bottom of the global grid defined by
𝑒!(!.!!! !! !.!!! !), where the global domain is 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1 . Physically, this can be
thought of as a region of concentrated pollutant entering a volume of liquid or gas, and
we solve for the steady state solution as the pollution diffuses over the region. The
interior of the grid is initialised to zero at the start of the iteration, and convergence is
declared when the ℒ!-norm of the residual (normalised by the source) is less than
10!!. In practice a smaller error tolerance might be chosen to stop the calculation, but

© CRESTA Consortium Partners 2011 Page 8 of 20

this allows us to clearly see trends in performance without the calculation taking
excessively long. For our system, the iteration matrix 𝑀 ≥ 0 so 𝜌 𝑀 = 𝜌 𝑀 . The
spectral radius is strictly less than one, so both the synchronous and asynchronous
versions of Jacobi's algorithm are guaranteed to converge.

In common with many grid-based applications, when implemented using a distributed
memory model a `halo swap' operation is required, since the update of a local grid
point requires the data from each of the 6 neighbouring points in 3D. If a point lies on
the boundary of a process' local grid, then data is required from a neighbouring
process. To achieve this, each process stores a single-element `halo' surrounding its
own local grid, and this is updated with new data from the neighbouring processes'
boundary regions at each iteration (in the synchronous case), and vice versa, hence
`swap'.

The overall structure of the program is shown in Figure 1, which is common between
both versions of the algorithm.

do

 swap a one-element-thick halo with each neighbouring process

 every 100 steps

 calculate local residual

 sum global residual

 if global residual < 10^-3 then stop

 for all local points

 u_new(i,j,k)=1/6*(u(i+1,j,k)+u(i-1,j,k)

 +u(i,j+1,k)+u(i,j-1,k)+u(i,j,k+1)+u(i,j,k-1))

 for all local points

 u(i,j,k) = u_new(i,j,k)

end do

Figure 1 Pseudocode for parallel Jacobi

However, the implementation of the halo swap and the global residual calculation vary
as follows:

In the synchronous version, halo swaps are performed using MPI_Issend and
MPI_Irecv followed by a single MPI_Waitall for all the sends and receives. Once all
halo swap communication has completed, a process may proceed. Global summation
of the residual is done every 100 iterations via MPI_Allreduce, which is a blocking
collective operation. In this implementation, all processes are synchronised by
communication, and therefore proceed in lockstep.

The asynchronous implementation allows multiple halo swaps to be `in flight' at any
one time (up to R between each pair of processes). This is done by means of a
circular buffer storing MPI_Requests. When a process wishes to send halo data it
uses up one of the R MPI requests and sends the halo data to a corresponding receive
buffer on the neighbouring process. If all R MPI requests are active (i.e., messages
have been sent but not yet received) it will simply skip the halo send for that iteration
and carry on with the computation, until one or more of the outstanding sends has
completed. We chose R=100 for our experiments. On the receiving side, a process
will check for arrival of messages and, if new data has arrived, copy the newest data
from the receive buffer into the halo cells of its u array (discarding any older data which
may also have arrived). If no new data was received during that iteration, the
calculation continues using whatever data was already in the halos. By using multiple

© CRESTA Consortium Partners 2011 Page 9 of 20

receive buffers (one for each message in-flight) we ensure that the data in the u array
halos on each process is a consistent image of halo data that was sent at some
iteration in the past by the neighbouring process.

In addition, since non-blocking collectives do not exist in the widely-implemented MPI
2.1 standard (although they exist in MPI 3.0) we also replace the blocking reduction
with an asynchronous binary-tree based scheme, where each process calculates its
local residual and inputs this value into the reduction tree. These local contributions are
summed and sent on up the tree until reaching the root, at which point the global
residual is broadcast (asynchronously) down the same reduction tree. Since the
reduction takes place over a number of iterations (the minimum number being 2log!𝑃),
as soon as a process receives the global residual it immediately starts another
reduction. In fact, even on 32768 cores, this asynchronous reduction takes only
around 50 iterations to complete. Compared with the synchronous reduction (every
100 iterations), this gives the asynchronous implementations a slight advantage in
potentially being able to terminate sooner after convergence is reached. This could of
course also be achieved in the synchronous case, but at a higher communication cost.

One side-effect of the asynchronous reduction is that by the time processes receive a
value for the global residual indicating that convergence is reached, they will have
performed some number of further iterations. Since convergence in the asynchronous
case is not necessarily monotonic, it is possible that the calculation may stop in an
unconverged state. In addition, since the residual is calculated piecewise locally, with
respect to current halo data, rather than the data instantaneously on a neighbouring
process, the converged solution may have discontinuities along process' grid
boundaries. To overcome this we propose that on reaching asychronous convergence
a small number of synchronous iterations could then be performed to guarantee true
global convergence, but we have not implemented this extension to the algorithm.

3.2 Block	 Jacobi	
In [7] it was noted that, as the core count increased, the asynchronous communication
involved in the point Jacobi algorithm became more beneficial. However, pointwise
Jacobi is a very basic and slowly convergent algorithm and far better ones, such as
those based upon Krylov subspace methods are available. The benefits gained from
using asynchronous communication are far outweighed by the slowness of the
convergence of the algorithm. It is possible to rewrite the Jacobi algorithm, not in terms
of points but instead of blocks, where each block 𝒙! is made up of a number of
individual elements, and the matrix 𝐴 is also split into blocks. The block Jacobi iterative
algorithm can then be written as:

𝒙!! = 𝐴!!!! 𝒃! − 𝐴!"
!!!

𝒙!!!! 𝑖 = 1,… , 𝑛!

where 𝑛! is the number of blocks. Note that computing the 𝒙!! requires the solution of a
smaller linear system involving the diagonal block of 𝐴. This can be done using a
conventional Krylov subspace solver (such as CG or GMRES), though convergence
theory for this hybrid method is not well developed. The block size does not have to be
chosen such than one block consists of the data on a single processor: we can choose
much larger block sizes and use a parallel version of a Krylov subspace method to
solve the inner linear systems. As with point Jacobi, the communication between
blocks after each block Jacobi iteration can be done asynchronously. This interblock
communication is implemented on a processor to processor basis rather than directing
all communications via a master and has the same pattern as in the point Jacobi case.
If new data is available after an asynchronous halo swap then this will be used in the
next inner block solve. If no new data is available then we continue using existing data
from a previous iteration. Global residual checking can be again be done using an
asynchronous reduction where processes have an estimate of the global residual,
which might be some number of iterations old.

© CRESTA Consortium Partners 2011 Page 10 of 20

Multisplitting can be thought of as a generalisation of block Jacobi, where instead of
splitting the solution vector 𝑥 into disjoint blocks, we allow the blocks to overlap. For a
3D stencil problem, the natural choice is to use domains that overlap by a fixed number
of gridpoints in each dimension, and to communicate all the points in the overlap with
the neighbouring processors (as a deep halo). For points in the overlaps, where more
than one processor calculates the new elements of 𝒙, a weighted average of the values
is used to form the solution at the next step. The expectation is that multisplitting
enables faster convergence, at the expense of additional computation and
communication. For the 3D Laplace problem, it has been found that overlapping by
between one and five elements in each dimension can improve convergence, but in the
experiments in Section 5 we have used the simpler block Jacobi algorithm with no
overlapping.

Another important issue in block Jacobi (or multisplitting) is deciding when the inner
solves should be terminated, which is an active topic of our ongoing research. In the
experiments reported here we use a fixed number of inner iterations for the entire run,
where the value is chosen to minimise the overall execution time.

We have built our block multisplitting implementation using a GMRES solver from the
PETSc suite as the inner solver. PETSc [13] is a suite of data structures and routines
for the scalable, parallel solution of scientific applications modeled by partial differential
equations. Using this existing suite we can easily select between different inner
solution methods.

© CRESTA Consortium Partners 2011 Page 11 of 20

4 Simulating	 performance	 faults	
4.1 Slow	 cores	
To simulate slow cores, we simply add some code to the computational part of the
Jacobi algorithm (the two loops over local points in Figure 1) that does nothing useful,
but consumes CPU time. We make the delays as fine-grained as possible, taking into
account the resolution and overheads of calling the timer routine: for each iteration of
the outermost of the triple nested loops over the local domain we measure the time
taken 𝑡 and then add a delay of 𝑠×𝑡, where 𝑠 is the slowdown factor. We consider the
three possible scenarios which we consider to be the most likely in practice: a single
core running slowly, all the cores attached to one block of main memory (i.e. a NUMA
domain) running slow, and all cores in a node running slow.

In the case of the block Jacobi implementation, we add the delay after each iteration of
the GMRES solver: the PETSc library allows a user-defined routine to be called
between iterations. As above, we measure the time taken 𝑡 for each iteration, and then
add a delay of 𝑠×𝑡, where 𝑠 is the slowdown factor.

4.2 Slow	 links	
To simulate a slow link in the synchronous version of the Jacobi algorithm, we replace
the MPI_Waitall call with a loop over six calls to MPI_Wait (one for each neighbour).
Immediately before each MPI_Wait call we add a delay of a fixed length which occurs
with a fixed probability between 0 and 1.

For the asynchronous version, simulating delays is a little more difficult. Whenever a
new message is received from a neighbouring process, with fixed probability between 0
and 1 we ignore it (by not copying the contents of the receive buffer in the u array
halos), and also ignore any subsequent messages that arrive from the same neighbour
within a fixed time interval. This has the same effect on the progress of the algorithm as
if the link were blocked for a fixed period of time. Note that the cost of actually receiving
the messages in the MPI library is not avoided, but this is unlikely to make a significant
difference if the delay interval is sufficiently long.

We have not attempted here to simulate slow links in the block Jacobi code, since the
MPI communication within the inner solver is spread across a number of different MPI
routines, including collectives, called inside the PETSc library.

© CRESTA Consortium Partners 2011 Page 12 of 20

5 Results	
5.1 Slow	 cores	
In this section we report the results of our experiments that simulate slow running
cores.

5.1.1 Jacobi	 algorithm	
All our experiments are run on a Cray XE6 system. Each node of the system contains
two 16-core AMD Interlagos processors, running at 2.3 GHz. Each 16-core processor
consists of two 8-core NUMA domains, each with a shared L3 cache and 8GB of main
memory. We solve the 3D Laplace problem on 1024 MPI processes using a local grid
size of 50!, which a global tolerance of 10!!. We consider three cases:

• A single core running slowly (nslow=1)
• All eight cores in a NUMA domain running slowly (nslow =8)
• All 32 cores in a node running slowly (nslow=32)

In each case, we slow down the computational part of the algorithm by a factor which is
varied from zero to 10. The slow core, or set of cores, is selected at random, and the
results shown are an average of 10 runs.

Figure 2 shows the results of running these experiments using 32 nodes (1024 cores).

Figure 2 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6

We observe that the performance of the synchronous version of the algorithm is
strongly affected by slow cores, whereas that of the asynchronous version is almost
entirely unaffected. One surprising feature here is that the synchronous version with
just one slow core is unaffected by a slowdown factor of up to 2. The reason for this is
that the algorithm is very memory bandwidth dominated, with little re-use of data. With
no slowdown, the computational phase of each timestep takes place at more-or-less
the same time on all cores, followed by the communication phase, and a high degree of
contention for memory bandwidth takes place. If one process suffers a modest delay,
the processes with which it communicates are forced to start the next computation
phase late, while others are free to begin theirs earlier. The computational phases in
processes on the same NUMA domain no longer take place at more-or-less the same

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

0" 2" 4" 6" 8" 10"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Slowdown)factor)

Sync"nslow=1"

Async"nslow=1"

Sync"nslow=8"

Async"nslow=8"

Sync"nslow=32"

Async"nslow=32"

© CRESTA Consortium Partners 2011 Page 13 of 20

time: this reduces bandwidth contention, and all processes (including the delayed
ones) execute their computational phases faster (by almost a factor of two), which
compensates for the slow core. When more than one core is slowed down, the
proportion processes delayed increases, and the effect is less marked.

Since this effect is somewhat peculiar to this code, and is unlikely to occur in real
applications, we also ran the same experiment using 1024 MPI processes, but on 128
nodes, with just two MPI processes per NUMA domain (i.e. 8 MPI processes per node).
This reduces the bandwidth contention significantly. In this case the number of slow
cores simulated is one, two (on a NUMA domain) or eight (on a node). The results of
this experiment are shown in Figure 3.

Figure 3 Execution time for Jacobi algorithm on 128 nodes of a Cray XE6

Now, as expected, the execution time of the synchronous version increases linearly
with the slowdown factor, but again the execution time of the asynchronous version is
barely affected by slow cores.

In the course of earlier work, we observed a real case of a slow running core
performance fault on the Cray XE6. This fault triggered no hardware diagnostics, and
could only be observed by its effect on application performance. Figure 4 shows the
convergence behaviour of the synchronous and asynchronous versions of the code
running on 32768 cores (1024 nodes). For the synchronous version, we also show the
behaviour after the slow core was replaced. Unfortunately we did not re-run the
asynchronous version under the same conditions with the replaced core, but other
tests show that its convergence behaviour was unaffected. We can see that the slow
core caused the synchronous version of the algorithm to converge at about half the
rate, whereas the asynchronous version converges at a similar rate with the slow core
as does the synchronous version after it was replaced.

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Slowdown)factor)

Sync"nslow"=1"

Async"nslow=1"

Sync"nslow=2"

Async"nslow=2"

Sync"nslow=8"

Async"nslow=8"

© CRESTA Consortium Partners 2011 Page 14 of 20

Figure 4 Residue vs. time for Jacobi algorithm on 1024 nodes (32768 cores) of a Cray XE6

5.1.2 Block	 Jacobi	
In this section we report the effect of a slow core on the block Jacobi algorithm
described in Section 3.2. Figure 5 shows the performance of the synchronous and
asynchronous versions against the slowdown factor when running with on 1024 MPI
processes (on 32 nodes) using a local grid size of 50!, with a global tolerance of 10!!.
There are 32 blocks, four each in the x- and y-dimensions and two in the z-dimension.
We fixed the number of inner iterations in the GMRES solver to 10.

Figure 5 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 32 blocks

0.0001$

0.001$

0.01$

0.1$

0$ 50$ 100$ 150$ 200$ 250$ 300$ 350$ 400$

Re
si
du

e'

Time'(s)'

Sync$slow$core$

Syncnoslow$core$

Async$slow$core$

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 2" 4" 6" 8" 10"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Slowdown)factor)

Sync"nslow=1"

Async"nslow=1"

© CRESTA Consortium Partners 2011 Page 15 of 20

We observe similar behaviour as with the simple Jacobi algorithm when bandwidth
effects were eliminated: the execution time for the synchronous version grows almost
linearly with the slowdown factor, but that for the asynchronous version is unaffected.

We have also experimented with using fewer blocks, in which case the synchronous
algorithm converges in fewer outer iterations. However, for small block counts, the
convergence behaviour of the asynchronous version became erratic, with a tendency
for the convergence test to be passed too early. Further investigation showed that the
reason for this is that our asynchronous reduction scheme for tracking the residual can
underestimate the true residual. If we have solved the local systems within each block
quite accurately, then the majority of the contribution to the global residual comes from
points on the boundaries between the blocks. If the processors handling the
boundaries have not received messages from their neighbours in other blocks since
the start of the current outer iteration, the contribution to the residual from this in-flight
data will be lost. This problem becomes especially severe when there are only a small
number of blocks. We therefore modified our asynchronous residual tracking scheme
to use the previous value of the residual on processors that have not recently a halo
update since the start of their most recent inner solve.

The results of using this more conservative estimate are shown in Figure 6 to Figure 8
for 32, 8 and 2 blocks respectively.

Figure 6 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 32 blocks and

conservative residual estimation

We see that for 32 blocks, some of the ability of the asynchronous version to tolerate
large slowdown factors has been lost: the execution time starts to grow for slowdown
factors above 2.

With 8 blocks (Figure 7), early termination is avoided, and the asynchronous still shows
better performance than the synchronous version at high slowdown factors. However,
with only 2 blocks (Figure 8), the asynchronous version is always slower than the
synchronous version.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 2" 4" 6" 8" 10"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Slowdown)factor)

Sync"nslow=1"

Async"nslow=1"

© CRESTA Consortium Partners 2011 Page 16 of 20

 Figure 7 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 8 blocks and

conservative residual estimation

Figure 8 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 2 blocks and

conservative residual estimation

5.2 Slow	 links	
In this section we report the effects of slow links on the performance of the
synchronous and asynchronous versions of the Jacobi algorithm. Our first experiment
shows the results of delaying a single, randomly chosen link. At each iteration of the
algorithm, a delay of a fixed length is introduced with a given probability, as described
in Section 4.2. Once again, we solve the 3D Laplace problem on 1024 MPI processes
using a local grid size of 50!, with a global tolerance of 10!!, and the results are shown

0"

200"

400"

600"

800"

1000"

1200"

1400"

0" 2" 4" 6" 8" 10"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Slowdown)factor)

Sync"nslow=1"

Async"nslow=1"

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

0" 2" 4" 6" 8" 10"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Slowdown)factor)

Sync"nslow=1"

Async"nslow=1"

© CRESTA Consortium Partners 2011 Page 17 of 20

in Figure 9. Note that the time taken for a single iteration in the synchronous version is
approximately 3.6×10!! seconds. Once the delay time becomes comparable with the
length of an iteration, the performance of synchronous version of the algorithm is
degraded, and the degradation increases as the probability of the delay occurring
increases. In contrast, the asynchronous algorithm is unaffected by the simulated link
delays.

In the final experiment, all links are subject to delays with the given probability, rather
than just one. The synchronous version is again affected by the link delays once they
are on order the length of an iteration, but the asynchronous version tolerates the
delays almost perfectly. However, when we ran this experiment with the delay
probability equal to 1 (results not shown), and with sufficiently long delays, the
asynchronous version failed to give the correct results, because the convergence test
succeeds prematurely. Additional tests would need to be put in place to safeguard
against this occurring.

Figure 9 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 with one slow link

20#

30#

40#

50#

60#

70#

80#

1.E-04# 1.E-03# 1.E-02#

Ex
ec
u&

on
)&
m
e)
(s
))

)

Delay)length)(s))

Sync#prob=0.2#

Async#prob=0.2#

Sync#prob=0.5#

Async#prob=0.5#

Sync#prob=1.0#

Async#prob=1.0#

© CRESTA Consortium Partners 2011 Page 18 of 20

Figure 10 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 with all slow links

0"

50"

100"

150"

200"

250"

300"

1.E)04" 1.E)03" 1.E)02"

Ex
ec
u&

on
)&
m
e)
(s
))

)

Delay)length)(s))

Sync"prob=0.001"

Async"prob=0.001"

Sync"prob=0.01"

Async"prob=0.01"

Sync"prob=0.1"

Async"prob=0.1"

Sync"prob=0.5"

Async"prob=0.5"

© CRESTA Consortium Partners 2011 Page 19 of 20

6 Conclusions	 and	 Future	 Work	

We have undertaken some experiments to assess the ability of two algorithms for
solving large sparse linear systems (asynchronous Jacobi and asynchronous block
Jacobi) to tolerate performance faults. We have simulated the effects of slow running
cores and slow running links, and the results suggest that these algorithms are indeed
highly insensitive to such faults compared to their synchronous counterparts, even
when the degree of component performance loss is quite large. However, in the block
Jacobi case, the performance faults can induce erratic convergence behaviour in the
asynchronous algorithm. This can be avoided by using a more conservative way of
estimating the global residual, but this comes at the expense of a reduced ability of the
asynchronous version to tolerate slow cores.

Future work in this area includes applying these algorithms to more interesting real-
world problems, and undertaking further studies to improve convergence detection. It
would also be interesting to apply the same performance fault simulation methodology
to other asynchronous algorithms, such as asynchronous Schwartz methods for solving
PDEs.

Although our asynchronous solvers are not yet mature nor general enough to be used
in a full application, there are other areas within the CRESTA project where
asynchronous algorithms, and their abilities to tolerate performance faults and
heterogeneity are of interest. Task 2.4 is investigating the alternative uses of fat nodes,
which includes the possibility of co-locating applications that do not compete for the
same hardware resources on the same nodes. One of the difficulties here is that any
resource contention which does occur may do so in ways which are not well
synchronised between the nodes, and asynchronous methods could tolerate this better
than synchronous ones. An important theme in the rest of Task 2.5 is power
management. Attempts to reduce power consumption by reducing the clock rate of
CPUs when they are idle, for example, is also difficult to synchronise across nodes,
and may result in load imbalance in highly synchronous codes. Once again the ability
of asynchronous methods to tolerate differences in CPU clock rates can be of interest.

© CRESTA Consortium Partners 2011 Page 20 of 20

7 References	
[1] G.M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of

the Association for Computing Machinery, vol 25, no. 2, pp 226-244, 1978.

[2] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall,1989

[3] D. Chazan and W. Miranker, Chaotic Relaxation, Linear Algebra and Its
Applications, vol. 2, pp. 199-222, 1960.

[4] J.M. Bull and T.L. Freeman, Numerical Performance of an Asynchronous Jacobi
Iteration, Proceedings of the Second Joint International Conference on Vector
and Parallel Processing (CONPAR}'92), pp. 361-366, 1992.

[5] D.V. de Jager and J.T. Bradley, Extracting state-based performance metrics
using asynchronous iterative techniques, Performance Evaluation, vol. 67, no.
12, pp. 1353-1372, 2010.

[6] J. M. Bahi, M. Jacques, S. Contassot-Vivier, and R. Couturier, Performance
Comparison of Parallel Programming Environments for Implementing AIAC
Algorithms, J. Supercomput, vol. 35, no. 3, pp. 227-244, 2006.

[7] I. Bethune, J.M. Bull, N. Dingle and N. Higham, Performance analysis of
asynchronous Jacobi's method implemented in MPI, SHMEM and OpenMP,
International Journal of High Performance Computing Applications, to appear.

[8] N. Brown, J.M. Bull and I.Bethune, A hybrid approach for extreme scalability
when solving linear systems, to appear in Proc. of EASC2013: Solving Software
Challenges for Exascale, Edinburgh, April 2013.

[9] F. Magoulés and C. Venet, Asynchronous Parallel Algorithms for Petaflop and
Exaflop Computation, Chapman Hall, to appear.

[10] F. Jézéquel, R. Couturier, and C. Denis, Solving large sparse linear systems in
a grid environment: the GREMLINS code versus the PETSc library, in Journal
of Supercomputing vol. 59, no.3, pp. 1517-1532, 2012

[11] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, Algorithm-based
fault tolerance for dense matrix factorizations. SIGPLAN Not. vol. 47, no. 8, pp.
225-234, 2012.

[12] J. Bahi, S. Contassot-Vivier and R. Couturier, Coupling Dynamic Load
Balancing with Asynchronism in Iterative Algorithms on the Computational Grid,
in 17th IEEE and ACM int. conf. on International Parallel and Distributed
Processing Symposium, IPDPS 2003, Nice, France, pp. 40-49, IEEE computer
Society Press, 2003.

[13] D. O’Leary and R. White, Multi-splittings of matrices and parallel solution of
linear systems”, SIAM J. Alg. Disc. Meth., vol. 6, pp. 630-640, 1985.

[14] S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knep- ley, L.
Curfman, B. Smith and H. Zhang. PETSc Users Manual, ANL-95/11 Revision
2.3.2, Argonne National Laboratory, 2006.

	

