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1 Executive	  Summary	  
The number of parts in HPC systems is set to increase significantly as their 
performance approaches the Exascale. This means that fault tolerance in an 
increasingly important aspect of the design of these systems. However it is also 
possible to consider software-hardware co-design as a solution to these problems. On 
the software side, this includes the development of fault tolerant algorithms. In general, 
this is a difficult problem, especially if faults are considered where part of the current 
state of a computation is lost. Other types of fault, however, do not involve such state 
loss: these include performance faults where a component (e.g. a processor or network 
link) does not fail, but performs at a slower rate than intended. Such faults are less 
catastrophic, but may be harder to detect. 

Performance faults may not cause the computation to fail, but, for many algorithms, the 
synchronisation patterns mean that the whole computation can run at the speed of the 
slowest component. Asynchronous algorithms, which are often derived from 
synchronous counterparts by relaxing some or all of the synchronisation requirements, 
have the possibility of being much more tolerant to performance faults, though likely at 
the expense of poorer convergence rates.  

In this deliverable, we select two asynchronous algorithms for the solution of large 
sparse linear systems (Jacobi and block Jacobi), and, using simulated slow cores and 
slow links on a real HPC system, quantify their ability to maintain performance in the 
presence of such faults by comparing them to their synchronous counterparts.  

Our findings do indeed show that the algorithms have strong resilience to such faults, 
even when the loss of component performance reaches an order of magnitude. 
However, in some cases we observe that the asynchronous algorithms can exhibit 
undesirable convergence behaviour, and that care needs to be taken to avoid this. 
Finally, we discuss how such algorithms may be of interest in the contexts of 
alternative uses of fat nodes and power management. 
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2 Introduction	  
2.1 Purpose	  
The purpose of this deliverable is to explore the ability of asynchronous algorithms for 
solving large sparse linear systems to tolerate performance faults such as slow running 
cores and slow running network links. The rest of the document is organised as follows: 
The remainder of this section introduces asynchronous algorithms and performance 
faults, and discusses the relevance of this work to the CRESTA applications. Section 3 
gives details of the two asynchronous algorithms we use for this investigation, and 
Section 4 describes the techniques used to simulate performance faults. Section 5 
presents and discusses the experimental results, and finally Section 6 draws some 
conclusions and points to future work.  

2.2 Asynchronous	  algorithms	  for	  sparse	  linear	  algebra	  
Modern high performance computing systems are typically composed of many 
thousands of cores linked together by high bandwidth and low latency interconnects. 
Over the coming decade core counts will continue to grow as efforts are made to reach 
Exaflop performance. In order to continue to exploit these resources efficiently, new 
software algorithms and implementations will be required that avoid tightly-coupled 
synchronisation between participating cores and that are resilient in the event of failure.  

In this deliverable we investigate one such class of algorithms. The solution of sets of 
linear equations 𝐴𝒙 = 𝒃, where 𝐴 is a large, sparse 𝑛×𝑛    matrix and 𝒙 and 𝒃 are 
vectors, lies at the heart of a large number of scientific computing kernels, and so 
efficient solution implementations are crucial. Existing iterative techniques for solving 
such systems in parallel are typically highly synchronous, in that all processors must 
exchange updated vector information at the end of every iteration, and the algorithm 
may require scalar reductions. This creates barriers beyond which computation cannot 
proceed until all participating processors have reached that point, i.e. the computation 
is globally synchronised at each iteration. Such approaches are unlikely to scale to 
millions of cores, and are highly sensitive to performance faults or glitches: a delay in 
one processor or in one communication link may delay the entire computation. 

Asynchronous algorithms avoid this blocking behaviour by permitting processors to 
operate on whatever data they have, even if new data has not yet arrived from other 
processors. Note that the term asynchronous is used here in a strong sense: the 
convergence behaviour of the algorithms can differ from their synchronous 
counterparts: it is not just a question of relaxing the order of computation and 
communication and still respecting data dependencies. To date there has been work 
on both the theoretical [1], [2], [3] and the practical [4], [5], [6] aspects of such 
algorithms. The use of asynchronous techniques in large, tightly coupled parallel 
systems of relevance to Exascale computing has been the subject of recent work in [7]  
[8] and [9]. Asynchronous methods have been shown to work well in distributed 
heterogeneous environments [10]: in this study we are considering the question of how 
they behave in a homogeneous system with performance faults, which can be 
considered a special case of a heterogeneous system.  

2.3 Performance	  faults	  
Recent work on fault tolerant algorithms for scientific computing focuses on the 
relevant, but difficult, case of total component failure with accompanying data loss. 
While some useful progress has been made, for example in the field of dense matrix 
computations [11], applicability is not widespread and the solutions may still rely in part 
on some form of checkpointing. It is also not clear how asynchronous algorithms might 
be exploited in this scenario, since the notion of the last known good state may not be 
well defined.  

In this study, we consider the case of performance faults. In this case, no data is lost, 
but components may fail to deliver their intended performance. For example, a CPU 
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core, or an entire node, may still be working, but compute at slower rate than all the 
others in the system. This can occur not only due to hardware problems, but also to 
software issues such as rogue threads or processes. Alternatively, processes from 
different applications may be deliberately co-scheduled on the same node to maximise 
the use of resources, but the impact of this on the timing behaviour of applications may 
vary from one node to another.  

Increasingly, modern processors have power-saving features that alter the clock-rate, 
for example if the device overheats, and mis-operation of these can be source of such 
faults. If such power-saving features are deliberately enabled, it may be difficult to 
synchronise their behaviour across multiple nodes. Performance faults can also occur 
in networks, where a link may deliver higher latency and/or lower bandwidth than 
normal.  

As is the case with component failure, performance faults are likely to become more 
common as the size of systems increases. They are, in general, difficult to detect and 
therefore studying algorithmic approaches that can tolerate them is a useful area of 
research.  

2.4 Relevance	  to	  CRESTA	  applications	  
Sparse linear solvers are widely used in a variety of HPC applications. A recent 
PRACE report highlighted its importance to the European HPC community reports the 
usage of computational paradigms across application areas. Sparse linear algebra was 
found to be used across the whole range of HPC applications areas, but is particularly 
heavily used in the Astronomy and Cosmology community, Computational Chemistry 
and Computational Fluid Dynamics. 

Within CRESTA, sparse linear algebra is important in two of the co-design applications. 
The first, ELMFIRE, is a full-f gyrokinetic plasma simulation code, which at exascale is 
looking to simulate plasmas in the next generation fusion reactors such as ITER. The 
second, OpenFOAM, is an open-source computational fluid dynamics application, 
widely used in both academia and industry to study a large range of problems. 
Exascale problems under consideration include Large Eddy Simulations of turbulence 
in moving turbomachinery. It is clear therefore that any improvements to the solvers 
within these codes will have a direct impact on helping their goal of running at the 
exascale. 

2.5 Glossary	  of	  Acronyms	  
Cronym Definition 
AIAC Asynchronous Iterations Asynchronous Communications 
D Deliverable 
EC European Commission 
HPC High Performance Computing 
MPI  Message Passing Interface 
NUMA  Non-Uniform Memory Access 
SISC Synchronous Iterations Synchronous Communications 
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3 Asynchronous	  Jacobi	  and	  block	  Jacobi	  algorithms	  
3.1 Jacobi	  algorithm	  
Jacobi's method for the system of linear equations 𝐴𝒙 = 𝒃, where 𝐴  is assumed to have 
nonzero diagonal, computes the sequence of vectors 𝑥!, where 

𝑥!! =
1
𝑎!!

𝑏! − 𝑎!"
!!!

𝑥!!!!       𝑖 = 1,… , 𝑛 

The 𝑥!! , 𝑖 = 1,… , 𝑛  are independent, which means that vector element updates can be 
performed in parallel. Jacobi's method is also amenable to an asynchronous parallel 
implementation in which newly-computed vector updates are exchanged when they 
become available rather than by all processors at the end of each iteration. This 
asynchronous scheme is known to converge if the spectral radius 𝜌 𝑀 < 1 with 
𝑀 =   −𝐷!! 𝐿 + 𝑈  where 𝐷, 𝐿 and 𝑈  are the diagonal and strictly lower and upper 
triangular parts of 𝐴. In contrast, the synchronous version of Jacobi's method 
converges if 𝜌 𝑀 < 1 [3]. 

To investigate the behaviour of Jacobi's method in the presence of performance faults, 
we have implemented both synchronous and asynchronous variants of the algorithm.  
The synchronous version falls into the SISC (Synchronous Iterations Synchronous 
Communications) classification proposed by Bahi et al. [12], i.e. all processes carry out 
the same number of iterations in lock-step, and communication does not overlap 
computation, but takes place in a block at the start of each iteration.  The 
asynchronous version is AIAC (Asynchronous Iterations Asynchronous 
Communications), since processes proceed through the iterative algorithm without 
synchronisation, and so may iterate at different rates depending on a variety of factors. 
Communication may take place at each iteration, but is overlapped with computation, 
and crucially, the receiving process will continue iterating with the data it has, 
incorporating new data as it is received.  We note that these schemes are more 
general than simply overlapping communication and computation within a single 
iteration (e.g. using MPI non-blocking communication) as messages may be (and in 
general, will be) received at a different iteration to which they are sent, removing all 
synchronisation between processes. In the asynchronous version we ensure that a 
process only reads the most recently received complete set of data from another 
process, i.e., for each element 𝑥!!   received from a particular process we ensure that all 
such 𝑥! read during a single iteration were generated at the same iteration on the 
sender.  This restriction could be relaxed, allowing processes to read elements 𝑥! 
potentially from multiple different iterations.  As is shown in [7], this reduces 
communication overhead, but relies on the atomic delivery of data elements to the 
receiving process, so that every element we read existed at some point in the past on a 
remote process.   

Instead of a general Jacobi solver with explicit 𝐴  matrix, we have chosen to solve the 
3D diffusion problem ∇!u = 0  using a 6-point stencil over a 3D grid.  This greatly 
simplifies the implementation, since there is no load-imbalance, nor are complex 
communication patterns needed, and it allowed us to easily develop multiple versions 
of our test code.  In all cases, we have fixed the grid size for each process at 50!, and 
so as we increase the number of participating processes the global problem size is 
weak-scaled to match.  The boundary conditions for the problem are set to zero, with 
the exception of a circular region on the bottom of the global grid defined by 
𝑒!( !.!!! !! !.!!! !), where the global domain is 0   ≤ 𝑥, 𝑦, 𝑧   ≤ 1  .  Physically, this can be 
thought of as a region of concentrated pollutant entering a volume of liquid or gas, and 
we solve for the steady state solution as the pollution diffuses over the region.  The 
interior of the grid is initialised to zero at the start of the iteration, and convergence is 
declared when the ℒ!-norm of the residual (normalised by the source) is less than 
10!!.  In practice a smaller error tolerance might be chosen to stop the calculation, but 
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this allows us to clearly see trends in performance without the calculation taking 
excessively long.  For our system, the iteration matrix 𝑀 ≥ 0 so 𝜌 𝑀 =   𝜌 𝑀 . The 
spectral radius is strictly less than one, so both the synchronous and asynchronous 
versions of Jacobi's algorithm are guaranteed to converge. 

In common with many grid-based applications, when implemented using a distributed 
memory model a `halo swap' operation is required, since the update of a local grid 
point requires the data from each of the 6 neighbouring points in 3D.  If a point lies on 
the boundary of a process' local grid, then data is required from a neighbouring 
process.  To achieve this, each process stores a single-element `halo' surrounding its 
own local grid, and this is updated with new data from the neighbouring processes' 
boundary regions at each iteration (in the synchronous case), and vice versa, hence 
`swap'. 

The overall structure of the program is shown in Figure 1, which is common between 
both versions of the algorithm.   

 
do 

   swap a one-element-thick halo with each neighbouring process 

   every 100 steps 

      calculate local residual 

      sum global residual 

      if global residual < 10^-3 then stop 

      for all local points 

         u_new(i,j,k)=1/6*(u(i+1,j,k)+u(i-1,j,k) 

           +u(i,j+1,k)+u(i,j-1,k)+u(i,j,k+1)+u(i,j,k-1)) 

      for all local points 

         u(i,j,k) = u_new(i,j,k) 

end do 

Figure 1 Pseudocode for parallel Jacobi  

 

However, the implementation of the halo swap and the global residual calculation vary 
as follows: 

In the synchronous version, halo swaps are performed using MPI_Issend and 
MPI_Irecv followed by a single MPI_Waitall for all the sends and receives.  Once all 
halo swap communication has completed, a process may proceed.  Global summation 
of the residual is done every 100 iterations via MPI_Allreduce, which is a blocking 
collective operation.  In this implementation, all processes are synchronised by 
communication, and therefore proceed in lockstep. 

The asynchronous implementation allows multiple halo swaps to be `in flight' at any 
one time (up to R between each pair of processes).  This is done by means of a 
circular buffer storing MPI_Requests.  When a process wishes to send halo data it 
uses up one of the R MPI requests and sends the halo data to a corresponding receive 
buffer on the neighbouring process.  If all R MPI requests are active (i.e., messages 
have been sent but not yet received) it will simply skip the halo send for that iteration 
and carry on with the computation, until one or more of the outstanding sends has 
completed.  We chose R=100 for our experiments.  On the receiving side, a process 
will check for arrival of messages and, if new data has arrived, copy the newest data 
from the receive buffer into the halo cells of its u array (discarding any older data which 
may also have arrived). If no new data was received during that iteration, the 
calculation continues using whatever data was already in the halos. By using multiple 
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receive buffers (one for each message in-flight) we ensure that the data in the u array 
halos on each process is a consistent image of halo data that was sent at some 
iteration in the past by the neighbouring process. 

In addition, since non-blocking collectives do not exist in the widely-implemented MPI 
2.1 standard (although they exist in MPI 3.0) we also replace the blocking reduction 
with an asynchronous binary-tree based scheme, where each process calculates its 
local residual and inputs this value into the reduction tree. These local contributions are 
summed and sent on up the tree until reaching the root, at which point the global 
residual is broadcast (asynchronously) down the same reduction tree.  Since the 
reduction takes place over a number of iterations (the minimum number being 2log!𝑃), 
as soon as a process receives the global residual it immediately starts another 
reduction.  In fact, even on 32768 cores, this asynchronous reduction takes only 
around 50 iterations to complete.  Compared with the synchronous reduction (every 
100 iterations), this gives the asynchronous implementations a slight advantage in 
potentially being able to terminate sooner after convergence is reached.  This could of 
course also be achieved in the synchronous case, but at a higher communication cost. 

One side-effect of the asynchronous reduction is that by the time processes receive a 
value for the global residual indicating that convergence is reached, they will have 
performed some number of further iterations.  Since convergence in the asynchronous 
case is not necessarily monotonic, it is possible that the calculation may stop in an 
unconverged state. In addition, since the residual is calculated piecewise locally, with 
respect to current halo data, rather than the data instantaneously on a neighbouring 
process, the converged solution may have discontinuities along process' grid 
boundaries.  To overcome this we propose that on reaching asychronous convergence 
a small number of synchronous iterations could then be performed to guarantee true 
global convergence, but we have not implemented this extension to the algorithm. 

3.2 Block	  Jacobi	  
In [7] it was noted that, as the core count increased, the asynchronous communication 
involved in the point Jacobi algorithm became more beneficial. However, pointwise 
Jacobi is a very basic and slowly convergent algorithm and far better ones, such as 
those based upon Krylov subspace methods are available. The benefits gained from 
using asynchronous communication are far outweighed by the slowness of the 
convergence of the algorithm. It is possible to rewrite the Jacobi algorithm, not in terms 
of points but instead of blocks, where each block 𝒙! is made up of a number of 
individual elements, and the matrix 𝐴  is also split into blocks. The block Jacobi iterative 
algorithm can then be written as: 

𝒙!! = 𝐴!!!! 𝒃! − 𝐴!"
!!!

𝒙!!!!       𝑖 = 1,… , 𝑛! 

where 𝑛!   is the number of blocks. Note that computing the 𝒙!! requires the solution of a 
smaller linear system involving the diagonal block of 𝐴. This can be done using a 
conventional Krylov subspace solver (such as CG or GMRES), though convergence 
theory for this hybrid method is not well developed. The block size does not have to be 
chosen such than one block consists of the data on a single processor: we can choose 
much larger block sizes and use a parallel version of a Krylov subspace method to 
solve the inner linear systems. As with point Jacobi, the communication between 
blocks after each block Jacobi iteration can be done asynchronously. This interblock 
communication is implemented on a processor to processor basis rather than directing 
all communications via a master and has the same pattern as in the point Jacobi case. 
If new data is available after an asynchronous halo swap then this will be used in the 
next inner block solve. If no new data is available then we continue using existing data 
from a previous iteration. Global residual checking can be again be done using an 
asynchronous reduction where processes have an estimate of the global residual, 
which might be some number of iterations old.  
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Multisplitting can be thought of as a generalisation of block Jacobi, where instead of 
splitting the solution vector 𝑥 into disjoint blocks, we allow the blocks to overlap. For a 
3D stencil problem, the natural choice is to use domains that overlap by a fixed number 
of gridpoints in each dimension, and to communicate all the points in the overlap with 
the neighbouring processors (as a deep halo). For points in the overlaps, where more 
than one processor calculates the new elements of 𝒙, a weighted average of the values 
is used to form the solution at the next step. The expectation is that multisplitting 
enables faster convergence, at the expense of additional computation and 
communication. For the 3D Laplace problem, it has been found that overlapping by 
between one and five elements in each dimension can improve convergence, but in the 
experiments in Section 5 we have used the simpler block Jacobi algorithm with no 
overlapping. 

Another important issue in block Jacobi (or multisplitting) is deciding when the inner 
solves should be terminated, which is an active topic of our ongoing research. In the 
experiments reported here we use a fixed number of inner iterations for the entire run, 
where the value is chosen to minimise the overall execution time.  

We have built our block multisplitting implementation using a GMRES solver from the 
PETSc suite as the inner solver. PETSc [13] is a suite of data structures and routines 
for the scalable, parallel solution of scientific applications modeled by partial differential 
equations. Using this existing suite we can easily select between different inner 
solution methods. 
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4 Simulating	  performance	  faults	  
4.1 Slow	  cores	  
To simulate slow cores, we simply add some code to the computational part of the 
Jacobi algorithm (the two loops over local points in Figure 1) that does nothing useful, 
but consumes CPU time. We make the delays as fine-grained as possible, taking into 
account the resolution and overheads of calling the timer routine: for each iteration of 
the outermost of the triple nested loops over the local domain we measure the time 
taken  𝑡 and then add a delay of 𝑠×𝑡, where 𝑠 is the slowdown factor. We consider the 
three possible scenarios which we consider to be the most likely in practice: a single 
core running slowly, all the cores attached to one block of main memory (i.e. a NUMA 
domain) running slow, and all cores in a node running slow.  

In the case of the block Jacobi implementation, we add the delay after each iteration of 
the GMRES solver: the PETSc library allows a user-defined routine to be called 
between iterations. As above, we measure the time taken  𝑡 for each iteration, and then 
add a delay of 𝑠×𝑡, where 𝑠 is the slowdown factor. 

4.2 Slow	  links	  
To simulate a slow link in the synchronous version of the Jacobi algorithm, we replace 
the MPI_Waitall call with a loop over six calls to MPI_Wait (one for each neighbour). 
Immediately before each MPI_Wait call we add a delay of a fixed length which occurs 
with a fixed probability between 0 and 1.  

For the asynchronous version, simulating delays is a little more difficult. Whenever a 
new message is received from a neighbouring process, with fixed probability between 0 
and 1 we ignore it (by not copying the contents of the receive buffer in the u array 
halos), and also ignore any subsequent messages that arrive from the same neighbour 
within a fixed time interval. This has the same effect on the progress of the algorithm as 
if the link were blocked for a fixed period of time. Note that the cost of actually receiving 
the messages in the MPI library is not avoided, but this is unlikely to make a significant 
difference if the delay interval is sufficiently long.   

We have not attempted here to simulate slow links in the block Jacobi code, since the 
MPI communication within the inner solver is spread across a number of different MPI 
routines, including collectives, called inside the PETSc library.  
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5 Results	  
5.1 Slow	  cores	  
In this section we report the results of our experiments that simulate slow running 
cores. 

5.1.1 Jacobi	  algorithm	  
All our experiments are run on a Cray XE6 system. Each node of the system contains 
two 16-core AMD Interlagos processors, running at 2.3 GHz. Each 16-core processor 
consists of two 8-core NUMA domains, each with a shared L3 cache and 8GB of main 
memory. We solve the 3D Laplace problem on 1024 MPI processes using a local grid 
size of 50!, which a global tolerance of 10!!. We consider three cases:  

• A single core running slowly (nslow=1) 
• All eight cores in a NUMA domain running slowly (nslow =8) 
• All 32 cores in a node running slowly (nslow=32) 

In each case, we slow down the computational part of the algorithm by a factor which is 
varied from zero to 10. The slow core, or set of cores, is selected at random, and the 
results shown are an average of 10 runs.  

Figure 2 shows the results of running these experiments using 32 nodes (1024 cores). 

 
 

Figure 2 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 

We observe that the performance of the synchronous version of the algorithm is 
strongly affected by slow cores, whereas that of the asynchronous version is almost 
entirely unaffected. One surprising feature here is that the synchronous version with 
just one slow core is unaffected by a slowdown factor of up to 2. The reason for this is 
that the algorithm is very memory bandwidth dominated, with little re-use of data. With 
no slowdown, the computational phase of each timestep takes place at more-or-less 
the same time on all cores, followed by the communication phase, and a high degree of 
contention for memory bandwidth takes place. If one process suffers a modest delay, 
the processes with which it communicates are forced to start the next computation 
phase late, while others are free to begin theirs earlier. The computational phases in 
processes on the same NUMA domain no longer take place at more-or-less the same 
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time: this reduces bandwidth contention, and all processes (including the delayed 
ones) execute their computational phases faster (by almost a factor of two), which 
compensates for the slow core.  When more than one core is slowed down, the 
proportion processes delayed increases, and the effect is less marked.  

Since this effect is somewhat peculiar to this code, and is unlikely to occur in real 
applications, we also ran the same experiment using 1024 MPI processes, but on 128 
nodes, with just two MPI processes per NUMA domain (i.e. 8 MPI processes per node). 
This reduces the bandwidth contention significantly. In this case the number of slow 
cores simulated is one, two (on a NUMA domain) or eight (on a node). The results of 
this experiment are shown in Figure 3. 

 
Figure 3 Execution time for Jacobi algorithm on 128 nodes of a Cray XE6 

Now, as expected, the execution time of the synchronous version increases linearly 
with the slowdown factor, but again the execution time of the asynchronous version is 
barely affected by slow cores. 

In the course of earlier work, we observed a real case of a slow running core 
performance fault on the Cray XE6. This fault triggered no hardware diagnostics, and 
could only be observed by its effect on application performance. Figure 4 shows the 
convergence behaviour of the synchronous and asynchronous versions of the code 
running on 32768 cores (1024 nodes). For the synchronous version, we also show the 
behaviour after the slow core was replaced. Unfortunately we did not re-run the 
asynchronous version under the same conditions with the replaced core, but other 
tests show that its convergence behaviour was unaffected. We can see that the slow 
core caused the synchronous version of the algorithm to converge at about half the 
rate, whereas the asynchronous version converges at a similar rate with the slow core 
as does the synchronous version after it was replaced.  
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Figure 4 Residue vs. time for Jacobi algorithm on 1024 nodes (32768 cores) of a Cray XE6 

 

5.1.2 Block	  Jacobi	  
In this section we report the effect of a slow core on the block Jacobi algorithm 
described in Section 3.2.  Figure 5 shows the performance of the synchronous and 
asynchronous versions against the slowdown factor when running with on 1024 MPI 
processes (on 32 nodes) using a local grid size of 50!, with a global tolerance of 10!!.  
There are 32 blocks, four each in the x- and y-dimensions and two in the z-dimension. 
We fixed the number of inner iterations in the GMRES solver to 10.  

 
Figure 5 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 32 blocks 
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We observe similar behaviour as with the simple Jacobi algorithm when bandwidth 
effects were eliminated: the execution time for the synchronous version grows almost 
linearly with the slowdown factor, but that for the asynchronous version is unaffected.  

We have also experimented with using fewer blocks, in which case the synchronous 
algorithm converges in fewer outer iterations. However, for small block counts, the 
convergence behaviour of the asynchronous version became erratic, with a tendency 
for the convergence test to be passed too early. Further investigation showed that the 
reason for this is that our asynchronous reduction scheme for tracking the residual can 
underestimate the true residual. If we have solved the local systems within each block 
quite accurately, then the majority of the contribution to the global residual comes from 
points on the boundaries between the blocks. If the processors handling the 
boundaries have not received messages from their neighbours in other blocks since 
the start of the current outer iteration, the contribution to the residual from this in-flight 
data will be lost. This problem becomes especially severe when there are only a small 
number of blocks. We therefore modified our asynchronous residual tracking scheme 
to use the previous value of the residual on processors that have not recently a halo 
update since the start of their most recent inner solve.  

The results of using this more conservative estimate are shown in Figure 6 to Figure 8 
for 32, 8 and 2 blocks respectively.  

 
Figure 6 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 32 blocks and 

conservative residual estimation 

We see that for 32 blocks, some of the ability of the asynchronous version to tolerate 
large slowdown factors has been lost: the execution time starts to grow for slowdown 
factors above 2.  

With 8 blocks (Figure 7), early termination is avoided, and the asynchronous still shows 
better performance than the synchronous version at high slowdown factors. However, 
with only 2 blocks (Figure 8), the asynchronous version is always slower than the 
synchronous version. 
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 Figure 7 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 8 blocks and 

conservative residual estimation 

 
Figure 8 Execution time for block Jacobi algorithm on 32 nodes of a Cray XE6, using 2 blocks and 

conservative residual estimation 
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in Figure 9. Note that the time taken for a single iteration in the synchronous version is 
approximately 3.6×10!! seconds. Once the delay time becomes comparable with the 
length of an iteration, the performance of synchronous version of the algorithm is 
degraded, and the degradation increases as the probability of the delay occurring 
increases. In contrast, the asynchronous algorithm is unaffected by the simulated link 
delays. 

In the final experiment, all links are subject to delays with the given probability, rather 
than just one. The synchronous version is again affected by the link delays once they 
are on order the length of an iteration, but the asynchronous version tolerates the 
delays almost perfectly. However, when we ran this experiment with the delay 
probability equal to 1 (results not shown), and with sufficiently long delays, the 
asynchronous version failed to give the correct results, because the convergence test 
succeeds prematurely. Additional tests would need to be put in place to safeguard 
against this occurring.  

 
Figure 9 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 with one slow link 

20#

30#

40#

50#

60#

70#

80#

1.E-04# 1.E-03# 1.E-02#

Ex
ec
u&

on
)&
m
e)
(s
))

)

Delay)length)(s))

Sync#prob=0.2#

Async#prob=0.2#

Sync#prob=0.5#

Async#prob=0.5#

Sync#prob=1.0#

Async#prob=1.0#



 

© CRESTA Consortium Partners 2011  Page 18 of 20 

 

 
Figure 10 Execution time for Jacobi algorithm on 32 nodes of a Cray XE6 with all slow links 
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6 Conclusions	  and	  Future	  Work	  
 

We have undertaken some experiments to assess the ability of two algorithms for 
solving large sparse linear systems (asynchronous Jacobi and asynchronous block 
Jacobi) to tolerate performance faults. We have simulated the effects of slow running 
cores and slow running links, and the results suggest that these algorithms are indeed 
highly insensitive to such faults compared to their synchronous counterparts, even 
when the degree of component performance loss is quite large. However, in the block 
Jacobi case, the performance faults can induce erratic convergence behaviour in the 
asynchronous algorithm. This can be avoided by using a more conservative way of 
estimating the global residual, but this comes at the expense of a reduced ability of the 
asynchronous version to tolerate slow cores.  

Future work in this area includes applying these algorithms to more interesting real-
world problems, and undertaking further studies to improve convergence detection. It 
would also be interesting to apply the same performance fault simulation methodology 
to other asynchronous algorithms, such as asynchronous Schwartz methods for solving 
PDEs.  

Although our asynchronous solvers are not yet mature nor general enough to be used 
in a full application, there are other areas within the CRESTA project where 
asynchronous algorithms, and their abilities to tolerate performance faults and 
heterogeneity are of interest. Task 2.4 is investigating the alternative uses of fat nodes, 
which includes the possibility of co-locating applications that do not compete for the 
same hardware resources on the same nodes. One of the difficulties here is that any 
resource contention which does occur may do so in ways which are not well 
synchronised between the nodes, and asynchronous methods could tolerate this better 
than synchronous ones. An important theme in the rest of Task 2.5 is power 
management. Attempts to reduce power consumption by reducing the clock rate of 
CPUs when they are idle, for example, is also difficult to synchronise across nodes, 
and may result in load imbalance in highly synchronous codes. Once again the ability 
of asynchronous methods to tolerate differences in CPU clock rates can be of interest.  
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