

© CRESTA Consortium Partners 2011 Page 2 of 18

!"#$%&'()%$*&#+(

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 24/08/2012 First full version of the deliverable Jens Doleschal (TUD)

0.1 03/09/2012 Review Ben Hall (UCL)

0.1 13/09/2012 Review Adam Carter (EPCC)

0.1.1 17/09/2012 Incorporate review comments from
Adam Carter into document

Jens Doleschal (TUD)

0.1.2 21/09/2012 Incorporate review comments from
Ben Hall into document

Jens Doleschal (TUD)

0.2 24/09/2012 Added section “Score-P measurement
system”

Added subsubsection’s to subsection
4.1 for clarification reasons

Final modifications in all sections

Jens Doleschal (TUD)

1.0 26/09/2012 Final version of the deliverable Jens Doleschal (TUD)

© CRESTA Consortium Partners 2011 Page 3 of 18

,-./"(&0(1&'*"'*$(

!! "#"$%&'(")*%++,-.)///)0!

1! '2&-34%$&'32)///)5!

"#$! %&'%()*!###!+!
"#"! ,-()).'/!(0!.1'(2/3)!###!+!

6! 7"-83-+,2$")+32'&3-'29)&"$:2';%"*)//)<!

4#$! 5.6.!,*2*'.67(2!6*18279&*)!##!:!
!"#"#! $%&'()*+,-%./0123*)435)*+1""16!
!"#"7! 89/*4,-%./0123*)435)*+1"""16!

4#"! %*'0('3.21*!3(276('72,!6*18279&*)!##!;!
!"7"#! :53;)()*+1"""1<!
!"7"7! 89/*41=5%>)*+1""1<!

4#4! 68*!)1('*<%!3*.)&'*3*26!)/)6*3!###!=!

0! 7"-83-+,2$")'**%"*),24)'24'$,&3-*)//)=!

>#$! %*'0('3.21*!7))&*)!72!1(33&271.67(2!###!?!
?"#"#! @3&&A*)>%4)3*1B%)4)*+14)&/1""1C!
?"#"7! D%4/*>E,-3A*0/01>3&&A*)>%4)3*1"""1#F!
?"#"!! G%*0B)04H,-3A*0/01>3&&A*)>%4)3*1""1#F!
?"#"?! I**/>/..%5E1.E*>H53*).%4)3*1""1##!
?"#"J! K3-1)*4/5;/5/*>/1""1##!

>#"! %*'0('3.21*!7))&*)!72!1(3%&6.67(2!###!$$!
>#4! %*'0('3.21*!7))&*)!72!7@(!##!$"!

5! 7"-83-+,2$"),2,>.*'*)?3-@8>3?)//)!6!

<! -"8"-"2$"*)//)!0!

,22"#),/! 4"*$-'7&'32)38)&33>*)///)!5!

2'3"4(&0(5%67#"$(

Figure 1: Overview of the Score-P measurement system. ... 8!

Figure 2: Performance analysis workflow over time with different monitoring and
analysis techniques. ... 13!

Figure 3: Interactive exploration of performance behaviour in Scalasca along the
dimensions performance metric (left), call tree (middle), and process topology (right). 15!

Figure 4: Color-coded visualisation of a parallel application run with timeline and
statistic displays of the Vampir GUI. ... 17!

(

© CRESTA Consortium Partners 2011 Page 4 of 18

8 94":7*%;"(<7==-#+(

This document describes the best practices in performance analysis and optimisation
defined in Task 2.6.2 of WP 2 of the CRESTA project. This document should guide
application developers in the process of tuning and optimising their codes for
performance. It focuses on application performance optimisation and analysis, and
describes which application performance monitoring techniques should be used in
which situation, which performance issues may occur, how the issues can be detected,
and which tools should be used in which order to accomplish common performance
analysis tasks. Furthermore, this document presents the application performance
analysis tools of the CRESTA project Score-P and Vampir. Scalasca, one of the profile
analysis tools of Score-P, is also presented to provide a complete workflow of
performance analysis tools for an application performance analysis. In general, the
application performance optimisation and analysis starts with lightweight monitoring of
the application, either by a job-monitoring tool or by a coarse-grained sample-based
profiling to identify potential problem areas such as communication, memory, or I/O.
Afterwards, a more-detailed call-path profiling should be used to identify phases and
functions of interest, and also to locate the main performance problems. These
functions and regions of interest can be analysed in more detail by using selective
event tracing.

This document does not replace the user guides of individual performance analysis
tools developed within or outside CRESTA.

Our investigations and lessons into auto-tuning and power optimisation are still on
going and will be finished in the further progress of the project. Therefore, they cannot
be addressed in the current version of this document, but when they are available they
will be added within a later version of this document.

© CRESTA Consortium Partners 2011 Page 5 of 18

> 2'*#&37:*%&'(

HPC systems are composed of hundreds of thousands of homogeneous or even
heterogeneous processing elements. Running applications efficiently in such highly
parallel and complex systems requires orchestrating different levels of concurrency
(threads, message passing, I/O, etc.). Therefore, it will be necessary to discover
performance bottlenecks originating from the increase of complexity of each level of
concurrency and to correct them in the application source codes. Furthermore, the
observation of performance problems that originate from the use of shared hardware
(network, file system, etc.) becomes fundamental since a minority of processes or
processing elements can disturb and affect the whole system.

This document should guide application developers in the process of tuning and
optimising their codes for performance. It describes which application performance
monitoring techniques should be used in which situation, which performance issues
may occur, how the issues can be detected, and which tools should be used in which
order to accomplish common application performance analysis tasks.

Section 3 gives a brief overview of common performance monitoring techniques and
recommendations for their use. After that, section 4 describes typical performance
issues and gives hints regarding which monitoring techniques and performance metrics
should be used to identify a certain performance issue. Finally, section 5 presents a
typical application performance analysis workflow.

>?8 @7#A&$"(

This document describes the best practices in performance analysis and optimisation
defined in Task 2.6.2 of WP 2 of the CRESTA project and addresses therefore the
following topics:

• Application performance monitoring and analysis techniques
• Application performance analysis tools workflow

>?> B/&$$-#+(&0(C:#&'+=$(

cronym Definition
CRESTA

D

Collaborative Research Into Exascale Systemware, Tools and
Applications
Deliverable

MPI

OpenMP

OTF2

Message Passing Interface
Open Multi-Processing
Open Trace Format Version 2

WP Work Package

© CRESTA Consortium Partners 2011 Page 6 of 18

D @"#0&#=-':"(E&'%*&#%'6(,":F'%G7"$(

This section gives a brief overview of various application monitoring and performance
data generation techniques and recommendations for the use of these techniques.

D?8 H-*-(B"'"#-*%&'(,":F'%G7"$(

For the observation of the state and the behaviour of an application over runtime two
main approaches basically exist. Information about an application can be generated
either by using instrumentation, i.e. inserting pieces of code into the application source
code or binary for an event based measurement, or by using a sampling approach, i.e.
observing the state of the application frequently, or a combination of both. The
selection of the right technique for a given performance issue is always a trade-off
between intrusion and the level of detail. While intrusion does not just slow down the
process of obtaining the information, it can actually change the application behaviour
and ias a result the measurement information will lose its significance. In contrast, the
level of detail is a significant factor in determinijng if a performance issue can be
detected or not.

The main goal should be to select the best information generation technique for a given
application and situation with emphasis on reducing the intrusiveness while providing
enough information needed to detect different kinds of performance bottlenecks.

#$%$% &'()*+,-./'012"34,+546+,-"

Sampling is a monitoring technique that is used to periodically observe the state of an
application, i.e., which function is executed at observation time, without any need to
modify the application. The sampling frequency is the important steering factor to
control the level of detail and the intrusiveness. A low sampling frequency is ideal to get
an overview of the application since the total amount of samples and their size is
limited, but the detection of the root cause of a performance problem might become
impossible. In contrast, a high sampling frequency will increase the possibility to detect
the cause of a performance problem, but may also increase the intrusion significantly.
As a result, the performance analyst has to choose the optimal sampling frequency
depending on the level of detail, the point of time, and the processing element to be
observed.

An ability of sampling is to dynamically change the sampling frequency during
measurement to address the trade-off between intrusion and the level of detail.
However, steering the sampling frequency without any knowledge about the application
is a challenging task.

Recommendations in use:

• Lightweight monitoring of batch system jobs to get job overview information.
• Probe-based monitoring to gain insight into the application at a specific point in

time

#$%$7 891,5./'012"34,+546+,-"

In contrast to sampling, event-based monitoring records only information if a specific
pre-defined event occurs, e.g. function entry/exit. Therefore, small parts of code have
to be inserted into the application, which requires often a rebuild of the application. The
following are the most commonly-used ways to generate event information:

• Compiler instrumentation inserts user-defined code snippets at the very
beginning and ending of each function;

• Source-to-source instrumentation transforms the original application and
inserts code snippets at points/regions of interest;

• Library instrumentation intercepts public functions of an external shared library
by using a dlopen interception mechanism;

© CRESTA Consortium Partners 2011 Page 7 of 18

• Binary instrumentation modifies the executable either at runtime or before
program execution to insert code snippets at function entries and exits; and

• Manual instrumentation.

The level of detail within event monitoring depends therefore on the events which
should be monitored, their occurrence, and also duration. Using event-based
monitoring can result in detailed information but in the same way the level of detail
increases the intrusion which will become more and more critical, especially when tiny
and often-used functions are monitored, e.g., constructors and static class methods.
For millions of processing elements over a long monitoring period this monitoring
technique can result in huge amounts of information.

Recommendations in use:

• Monitoring of tiny functions or regions with short parts of interest, e.g. OpeMP
regions with implicit barriers.

• Selective monitoring of routines of interest, e.g. if the user is only interested in
the MPI communication event-based MPI monitoring allows to monitor only
these routines.

D?> @"#0&#=-':"(E&'%*&#%'6(,":F'%G7"$(

Basically, there are two main approaches to monitor the performance behaviour of
parallel applications: profiling and tracing.

#7% :64;+*+,-"

Profiling aggregates the measurement information and generates statistics for the
whole application run or for phases of interest. Flat profiles provide statistical
information in a list style with various metrics like inclusive runtime and number of
invocations. For a more detailed analysis, in particular to analyse performance in the
context of caller-callee relationships, call-path and call-graph profiles are scalable
techniques to provide more insight into highly complex and parallel applications.
Profiling with its nature of summarization offers an opportunity to be extremely
scalable, since the reduction of information can be done during the application runtime.
Nevertheless, profiles may lack crucial information about message runtimes and
bandwidth, since message matching is usually infeasible during profiling. Therefore,
analysis of communication-based performance issues is usually only possible by
interpreting the aggregated time spent in the communication routines.

Recommendations in use:

• Profiling should be used to get an overview of the performance behaviour of
highly parallel applications.

• Profiling may also help to identify potential performance problems since these
issues or their effects are usually included in several performance indicators,
e.g., occurrence and runtime information of communication routines can be
used to identify potential communication issues. Identification of functions and
regions of interest can be used to steer the upcoming monitor runs and to focus
only on these parts of interest. For a detailed analysis of functions and parts of
interest tracing should be used afterwards.

#$7$7 891,5"<6'=+,-"

Event tracing records each event of a parallel application in detail. Thus, it allows the
dynamic interaction between thousands of concurrent processing elements to be
captured and it is possible to identify outliers from the regular behaviour. As a result,
tracing will produce an enormous amount of data and with this monitoring of long
running applications is challenging.

Recommendations in use:

• Detailed performance monitoring of functions and regions of interest.

© CRESTA Consortium Partners 2011 Page 9 of 18

J @"#0&#=-':"(2$$7"$(-'3(2'3%:-*&#$(

This section gives a compact overview of potential performance issues that may occur
during the application runtime. In addition, indicators, e.g. performance metrics, are
provided that may help to decide whether an application suffers from an inherent
performance problem or whether application interference may have been at the root of
unsatisfactory behaviour. It also should help to get a first assessment regarding the
nature of a potential performance problem and help to decide on further analysis steps
using the most appropriate monitoring and analysis techniques. In general, it is highly
application-dependent whether a metric is too high or low. Therefore, it is not possible
to define any fixed thresholds and it is up to the user to interpret the data.

The decision as to whether an application behaves inefficiently or not cannot be easily
given. Often it is the sum of a multitude of factors and therefore it is advisable to
identify essential parts of the application and to focus on important components of the
code, e.g. communication, computation and I/O, first. After that, a hypothesis about
potential performance problems can be created and checked. To identify a certain
performance problem it is important to use well-suited monitoring techniques in
combination with appropriate performance metrics to gain insight into the complex
behaviour of the application. Performance issues originating from the interference
between applications, e.g. reduced communication performance due to overall network
saturation, are often only detectable by involving or comparing the global monitoring
information of the entire machine with the application performance information.

J?8 @"#0&#=-':"(2$$7"$(%'(1&==7'%:-*%&'(

In general, communication as opposed to computation does not directly contribute to
the calculation of results. Therefore, communication (which basically depends on the
type and the number of communication routines, the size of the transferred data, and
the communication scheme) should be minimized as much as possible and the fraction
of time spent in communication routines like MPI kept low.

Performance issue: The communication dominates the computation or the
fraction of time spent in communication routines increases linearly or even
worse with the number of processing elements. This usually results in limited
scalability of the application.

Performance metric(s): Exclusive time of communication routines.

Performance technique: To identify this performance issue a profiling
technique should be used first. Initially, a call-path profiling, e.g., from Scalasca
(see A.1), should be used to identify which communication routines in which
calling context are dominating the application runtime. After identification of the
main problem(s) a more detailed analysis of the problem should be followed by
using an event tracing approach that monitors the communication routines and
finally can be analysed for example with Vampir’s (see A.2) master timeline and
function summary displays.

The cause for an increased communication time can have various reasons. These can
vary from load or communication imbalances that result in asymmetric communication
behaviour and in increased waiting times to inefficient and non-scalable communication
schemes and unsuitable communication routines. Also, the number and size of the
data sent within the communication routines influences the communication time
significantly. These problems (which are described in more detail in the following
subsections) usually prevent scaling to larger processor counts and should therefore
be eliminated.

>$%$% ?4((@,+='5+4,"A'+5+,-"5+(1"

Load and communication imbalances typically result in an increased waiting time.
Examples for performance issues for point-to-point messages with increased waiting
time are the late-sender and the late-receiver problem. For each performance problem

© CRESTA Consortium Partners 2011 Page 10 of 18

one communication partner (either the sending or the receiving partner) arrives too late
in the communication so that the other partner has to wait. An overview of
communication performance issues can be found in [7] figure 2. The goal should be to
identify load imbalances and to reduce the overall waiting time of the application either
by using another communication scheme or an improved load balancing mechanism.

Performance issue: Increased communication time due to load or
communication imbalance.

Performance metric(s): Minimum and maximum of the exclusive time spent in
communication routines.

Performance technique: A first indicator of load or communication imbalances
can be identified with call-path profiling by comparing the minimum and
maximum time spent in the several communication routines. Also, the automatic
communication wait-state-analysis of Scalasca (see A.1) or tracing the
application in combination with Vampir’s (see A.2) master timeline can help to
identify load imbalances within the application.

>$%$7 B'51,=C./4@,212"=4((@,+='5+4,"

The communication time of applications that rely on a huge number of small messages
is influenced significantly by the latency of each message. This will limit the lower
bound of the communication and in result also the scalability of the application. It is
advisable to reduce the number of used messages and to pack multiple small
messages into a larger message, if possible.

Performance issue: The communication is dominated by a large number of
small messages; network latency can be a limiting factor of applications
scalability.

Performance metric(s): Number of short messages, minimum message
transfer time, message data rate.

Performance technique: To identify scalability issues caused by a large
number of small messages, a profiling technique, which is able to distinguish
the size of messages can be used or a tracing approach that monitors the
communication in combination with Vampir’s (see A.2) communication matrix
and message summary displays is suited to identify this kind of performance
issue.

>$%$# D',2A+25E./4@,212"=4((@,+='5+4,"

In contrast, if the majority of messages are large, the limiting factor may be network
bandwidth and with this the possibilities to decrease the communication time are
limited. Opportunities are the use of other communication schemes or the reduction of
the overall message data size.

Performance issue: Increased communication time because the majority of
messages are large and network bandwidth is a limiting factor.

Performance metric(s): message data rate, message data volume.

Performance technique: Communication performance issues of the
application caused by the limited bandwidth of the network can be identified
when the user knows the theoretical bandwidth of the network and uses a
profiling technique that is able to provide information about the minimum,
average, and maximum message data rate of a communication function in
combination with the several message data size. Event tracing is also able to
monitor the communication routines and Vampir provides the message data
rates of different message size within its communication and message
summary display.

© CRESTA Consortium Partners 2011 Page 11 of 18

>$%$> F,,1=100'6C"0C,=E64,+0'5+4,"

A further performance issue that increases the communication time and decreases the
scalability is the use of unnecessary consecutive synchronisation routines like barriers.
The goal should be to identify unnecessary communication routines and to remove
them.

Performance issue: The application spent a lot of time in unnecessary
synchronisation routines, e.g. barriers.

Performance metric(s): Number of synchronisation calls, exclusive time spent
in synchronisation routines.

Performance technique: The occurrence of synchronisation routines can be
identified initially with a call-path profiling from Scalasca (see A.1) and can be
analysed in more detail with event tracing in combination with Vampir’s (see
A.2) master timeline and function summary displays.

>$%$G H4/"+,516;161,=1"

Finally, low communication performance may also be caused by application
interference when multiple jobs that run simultaneously compete for the network.
Investigating global monitoring information of the underlying network and comparing
with the communication performance of the application can verify this. Some
measurement infrastructures like Score-P, the monitoring system of Scalasca, Vampir,
TAU and Periscope, allow for the inclusion of global monitoring information of the entire
machine state and as a result this information can be visualized within the counter
displays of Vampir (see A.2).

J?> @"#0&#=-':"(2$$7"$(%'(1&=A7*-*%&'(

Efficient usage of today’s highly complex multi- and many-core processors is a key
component for efficient and highly parallel applications. On one side the application
should utilize the hardware efficiently, i.e. the pipelines of the hardware units should be
almost always busy. On the other side highly complex memory hierarchies have to be
considered. Increasing the efficiency of memory usage, i.e. by decreasing the number
of memory data misses like cache misses, and providing enough instructions per data
location, e.g. by avoiding sparse loops, can reduce performance issues in computation.

Analysing the efficiency of hardware and memory usage can be done by almost every
performance monitoring technique that allows monitoring of hardware performance
counters. The techniques only differ in granularity of information. Most of the
measurement tools use PAPI to request the hardware information. As a result this
hardware performance information can tell how well the hardware and memory
infrastructure of the underlying machine are utilized.

Performance issue: Too many cycles per instruction more than the theoretical
minimum can be caused be pipeline hazards or by the memory access latency.

Performance metric(s): Number of instructions, Cycles per instruction.

Performance issue: Inefficient usage of the memory hierarchy due to low
locality.

Performance metric(s): L1/L2/L3 hit and miss rates, Number of instructions.

Performance issue: Increased computing time due to low floating-point
performance.

Performance metric(s): Floating-point operations per second, Floating-point
instructions.

In addition to the previously mentioned hardware utilization and memory access issues,
an unbalanced computation caused, for example, by serial parts of the computation or

© CRESTA Consortium Partners 2011 Page 12 of 18

processes/threads that take longer to compute their parts (“single late comer”), results
in idle processes and threads that decrease in the end the parallel efficiency of the
computational part and may also affect the waiting time in communication routines.

J?D @"#0&#=-':"(2$$7"$(%'(2KL(

In general, I/O performance of an application highly dependents on the current load of
the I/O subsystem and may change significantly between runs. This means
thatdiagnosing an I/O bottleneck usually requires multiple runs and may affect also the
tuning results. Typical I/O performance issues are I/O bandwidth bounded computation
parts, slow I/O operations, sequential I/O on a single process, which mostly results in
idle time for all other concurrent processing elements, and last but not least I/O load
imbalance may affect the parallel efficiency of an application. Scalasca (see A.1) may
help identify expensive I/O calls, while Vampir (see A.2) can be used to analyse I/O
patterns and their performance in more detail.

Global monitoring with load information of the file system can help to decide whether
an application was disturbed by other applications or not. In the near future, it will be
possible to add this information as external data within an application OTF2 trace file
and finally it can be analysed with Vampir’s (see A.2) counter timeline and performance
radar displays.

© CRESTA Consortium Partners 2011 Page 14 of 18

Q R"0"#"':"$(

[1] D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt, A.

Knüpfer, D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik, C. Rössel, P.
Saviankou, D. Schmidl, S.S. Shende, M. Wagner, B. Wesarg, and F. Wolf:
Score-P: A Unified Performance Measurement System for Petascale
Applications. In Proc. of the CiHPC: Competence in High Performance
Computing, HPC Status Konferenz der Gauß-Allianz e.V., Schwetzingen,
Germany, June 2010, pages 85–97. Gauß-Allianz, Springer, 2012.

[2] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization
and Analysis of MPI Resources. Supercomputer, 12(1):69–80, 1996.

[3] M. Gerndt and M. Ott. Automatic Performance Analysis with Periscope.
Concurrency and Computation: Practice and Experience, 22(6):736–748, 2010.

[4] M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, B. Mohr: The
Scalasca performance toolset architecture. Concurrency and Computation:
Practice and Experience, 22(6):702-719, April 2010.

[5] S. Shende and A. D. Malony. The TAU Parallel Performance System.
International Journal of High Performance Computing Applications, 20(2):287–
331, 2006. SAGE Publications.

[6] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf:
Open Trace Format 2 - The Next Generation of Scalable Trace Formats and
Support Libraries. In Proc. of the Intl. Conference on Parallel Computing
(ParCo), Ghent, Belgium, 2011, volume 22 of Advances in Parallel Computing,
pages 481–490, IOS Press, 2012.

[7] B. Mohr, A. Kühnal, M. Hermanns, and F. Wolf: Performance Analysis of One-
sided Communication Mechanisms. In Proc. of the Conference on Parallel
Computing (ParCo), Malaga, Spain, September 2005, Minisymposium
Performance Analysis.

© CRESTA Consortium Partners 2011 Page 15 of 18

C''"4(C? H"$:#%A*%&'(&0(,&&/$(

C?8 <:-/-$:-(

Scalasca is a free software tool that supports the performance optimisation of parallel
programs by measuring and analysing their runtime behaviour. The tool has been
specifically designed for use on large-scale systems including IBM Blue Gene and Cray
XE, but is also well suited for small- and medium-scale HPC platforms. The analysis
identifies potential performance bottlenecks, in particular those concerning
communication and synchronization. The user of Scalasca can choose between two
different analysis modes: (i) performance overview on the call-path level via profiling
and (ii) the analysis of wait-state formation via event tracing. Wait states often occur in
the wake of load imbalance and are serious obstacles to achieving satisfactory
performance. Performance-analysis results are presented to the user in an interactive
explorer called Cube (Figure 3) that allows the investigation of the performance
behaviour on different levels of granularity along the dimensions performance problem,
call path, and process. The software has been installed at numerous sites in the world
and has been successfully used to optimise academic and industrial simulation codes.

!"#$%&'()*+,-$./,(0%&'&,%&(1+'#,(-.(&/,2+3((

• Which call-paths in my program consume most of the time?
• Why is the time spent in communication or synchronisation higher than

expected?
• Does my program suffer from load imbalance and why?

0*##.3-+4(#3.53&66$/5(6.4+',(

Scalasca supports applications based on the programming interfaces MPI and
OpenMP, including hybrid applications based on a combination of the two.

!
Figure 3: Interactive exploration of performance behaviour in Scalasca along the dimensions

performance metric (left), call tree (middle), and process topology (right).

7/#*-(,.*3%+,(

The analyses offered by Scalasca rest on profiles in the CUBE-4 format and event
traces in the OTF-2 format. Both performance data formats can be generated using
Score-P.

8+39.36&/%+(&/&'",+,(

Summary profile: The summary profile can be used to identify the most resource-
intensive call paths or processes. It tells how the execution time and other performance

© CRESTA Consortium Partners 2011 Page 16 of 18

metrics including hardware counters are distributed across the call tree and the set of
processes or threads.

Time-series profile: The time-series profile can be used to analyse how the
performance behaviour evolves over time – even if the application runs for a longer
period. Essentially, a time-series profile provides a separate summary profile for every
iteration of the main loop.

Wait state analysis: This analysis extracts from event traces the location of wait states.
Detected instances are both classified and quantified. High amounts of wait states
usually indicate load or communication imbalance.

Delay analysis: The delay analysis extends the wait-state analysis in that it identifies
the root causes of wait states. It traces wait states back to the call paths causing them
and determines the amount of waiting time a particular call path is responsible for. It
considers both direct wait states and those created via propagation.

Critical-path analysis: This trace-based analysis determines the effect of imbalance on
program runtime. It calculates a set of compact performance indicators that allow users
to evaluate load balance, identify performance bottlenecks, and determine the
performance impact of load imbalance at first glance. The analysis is applicable to both
SPMD and MPMD-style programs.

7/,-3*6+/-&-$./(

User code is instrumented in source code (automatically by compiler or PDT
instrumentor, or manually with macros or pragmas). OpenMP constructs are
instrumented in source code (automatically by the OPARI2 instrumentation tool). MPI
calls are intercepted automatically through library interposition.

:$%+/,+(6.4+'(

The software is available under the New BSD license.

;*3-1+3(4.%*6+/-&-$./(

• Website: www.scalasca.org
• Support email: scalasca@fz-juelich.de
• Quick reference guide: installation directory under

$SCALASCA_ROOT/doc/manuals/QuickReference.pdf
• Scalasca user guide: installation directory under

$SCALASCA_ROOT/doc/manuals/UserGuide.pdf
• CUBE user guide: installation directory under

$CUBE_ROOT/doc/manuals/cube3.pdf

C?> !-=A%#(

Vampir is a graphical analysis framework that provides a large set of different chart
representations of event-based performance data. These graphical displays, including
timelines and statistics, can be used by developers to obtain a better understanding of
their parallel program's inner working and to subsequently optimise it. See Figure 4 for
a color-coded visualisation of a parallel application with the Vampir GUI.

Vampir is designed to be an intuitive tool, with a GUI that enables developers to quickly
display program behaviour at any level of detail. Different timeline displays show
application activities and communication along a time axis, which can be zoomed and
scrolled. Statistical displays provide quantitative results for the currently selected time
interval. Powerful zooming and scrolling along the timeline and process/thread axis
allows pinpointing the causes of performance problems. All displays have context-
sensitive menus, which provide additional information and customisation options.
Extensive filtering capabilities for processes, functions, messages or collective
operations help to narrow down the information to the interesting spots. Vampir is
based on Qt and is available for all major workstation operation systems as well as on
most parallel production systems. The parallel version of Vampir, VampirServer,
provides fast interactive analysis of ultra large data volumes.

© CRESTA Consortium Partners 2011 Page 17 of 18

!
Figure 4: Color-coded visualisation of a parallel application run with timeline and statistic displays

of the Vampir GUI.

!"#$%&'()*+,-$./,(<&6#$3(1+'#,(-.(&/,2+3((

• What happens in my application execution during a given time in a given
process or thread?

• How do the communication patterns of my application execute on a real
system?

• Are there any imbalances in computation, I/O or memory usage and how do
they affect the parallel execution of my application?

0*##.3-+4(#3.53&66$/5(6.4+',(

Vampir supports applications based on the programming interfaces MPI and OpenMP,
including hybrid applications based on a combination of the two. Furthermore Vampir
also analyses hardware-accelerated applications using CUDA and/or OpenCL.

7/#*-(,.*3%+,(

The analyses offered by Vampir rest on event traces in the OTF/OTF-2 format
generated by the runtime measurement system VampirTrace/Score-P.

8+39.36&/%+(&/&'",$,(=$&(-$6+'$/+(4$,#'&",(

The timeline displays show the sequence of recorded events on a horizontal time axis
that can be zoomed to any level of detail. They allow an in-depth analysis of the
dynamic behaviour of an application. There are several types of timeline displays.

• Master timeline: This display shows the processes of the parallel program on
the vertical axis. Point-to-point messages, global communication, as well as I/O
operations are displayed as arrows. This allows for a very detailed analysis of
the parallel program flow including communication patterns, load imbalances,
and I/O bottlenecks.

• Process timeline: This display focuses on a single process only. Here, the
vertical axis shows the sequence of events on their respective call-stack levels,
allowing a detailed analysis of function calls.

© CRESTA Consortium Partners 2011 Page 18 of 18

• Counter data timeline: This chart displays selected performance counters for
processes aligned to the master timeline or the process timelines. This is useful
to locate anomalies indicating performance problems.

• Performance radar timeline: This chart displays selected performance counters
overall processes of the parallel program over time. This is useful to locate
differences in the performance behaviour between the processes.

8+39.36&/%+(&/&'",$,(=$&(,-&-$,-$%&'(4$,#'&",(

The statistical displays are provided in addition to the timeline displays. They show
summarised information according to the currently selected time interval in the timeline
displays. This is the most interesting advantage over pure profiling data because it
allows specific statistics to be shown for selected parts of an application, e.g.,
initialisation or finalisation, or individual iterations without initialisation and finalisation.
Different statistical displays provide information about various program aspects, such
as execution times of functions or groups, the function call tree, point-to-point
messages, as well as I/O events.

7/,-3*6+/-&-$./(

Application code can be instrumented by the compiler or with source-code modification
(automatically by the PDT instrumentor, or manually using the VampirTrace/Score-P
user API). OpenMP constructs can be instrumented by the OPARI tool using automatic
source-to-source instrumentation. MPI calls are intercepted automatically through
library interposition.

:$%+/,+(6.4+'(

Vampir is a commercial product distributed by GWT-TUD GmbH. For evaluation, a free
demo version is available on the website.

;*3-1+3(4.%*6+/-&-$./(

• Website: www.vampir.eu
• Support email: service@vampir.eu
• Vampir manual: installation directory under $VAMPIR_ROOT/doc/vampir-

manual.pdf

