

Copyright © CRESTA Consortium Partners 2013

D3.2.2	 –	 Adaptive	 runtime	 support	
design	 document	 (Update)	

WP3:	 Development	 Environment	

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Due date: M10

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation Royal Institute of Technology (KTH)

Version: 1.0

Status Final

Author(s): Xavier Aguilar (KTH), Michael Schliephake (KTH)

Reviewer(s) Harvey Richardson (CRAY UK), Michael Gienger (HLRS)

Copyright © CRESTA Consortium Partners 2013

Dissemination level

<PU/PP/RE/CO> PU - Public

Version	 History	

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 05/09/2013 Text draft Xavier Aguilar (KTH)
Michael Schliephake
(KTH)

1.0 24/09/2013 Final version for submission after
review comments addressed

Xavier Aguilar (KTH)
Michael Schliephake
(KTH)

Copyright © CRESTA Consortium Partners 2013

Table	 of	 Contents	

1	 EXECUTIVE	 SUMMARY	 ...	 1	

2	 INTRODUCTION	 ...	 2	

2.1	 GLOSSARY	 OF	 ACRONYMS	 ...	 2	

3	 RATIONALE	 FOR	 SOFTWARE	 DESIGN	 ..	 3	

4	 CONCEPTUAL	 APPROACH	 ...	 4	

4.1	 REQUIREMENTS	 ..	 4	
4.2	 HARDWARE	 AND	 SOFTWARE	 MODELS	 IN	 THE	 RUNTIME-‐SYSTEM	 ..	 4	

5	 SOFTWARE	 ARCHITECTURE	 ..	 7	

5.1	 RUNTIME	 ADMINISTRATION	 COMPONENT	 (RTA-‐C)	 ...	 7	
5.2	 MONITORING	 COMPONENT	 (MON-‐C)	 ..	 9	
5.3	 PERFORMANCE	 ANALYSIS	 COMPONENT	 (PAN-‐C)	 ...	 10	

6	 TEST	 PLAN	 ...	 11	

7	 REFERENCES	 ..	 12	

	 	

© CRESTA Consortium Partners 2011 Page 1 of 13

1 Executive	 Summary	
In Subtask 3.2.2 “Hybrid and adaptive runtime systems” an experimental
runtime system will be developed that will explore the power of adaptive runtime
support for exascale applications”.

In the deliverable D3.1 “State of the art and gap analysis - Development
environment”, CRESTA performed an analysis of existing approaches in the
field as well as technical boundary conditions and requirements.

The deliverable D3.2.1 provided a design of a runtime system that aims to
develop further approaches to adapt simulation applications dynamically in the
best way to computer systems and to extend such approaches to upcoming
exascale architectures. This deliverable therefore proposed an adaptive
runtime-support design where simulation applications based on a task-orientated
programming model with hierarchical tasks are combined with runtime supporting
performance analysis and runtime administration enabling an increased efficiency
of large-scale numerical simulations.

To this updated deliverable D3.2.2 have been added conclusions that could be
drawn from the ongoing implementation of the runtime administration and
monitoring components. It points out that the overhead of the runtime system in
a typical molecular dynamics simulation has to be expected at about 5%
allowing noticeable performance improvements of the overall runtime. A new
performance monitoring API has been developed with the aim to allow the use
of IPM with low overhead in the runtime system.

© CRESTA Consortium Partners 2011 Page 2 of 13

2 Introduction	
This deliverable describes the design of an adaptive runtime-system with the
purpose of improving the match between the software and the hardware used
for its execution in the field of scientific simulations.

We sketch briefly some technological trends and problems of simulation
applications on future exascale computer systems in Section 3. Section 4
specifies requirements on an adaptive runtime-system, whilst the principal
software design based on the requirements and experience from first
implementation activities has been described in Section 5. Finally, Section 6
describes the test plan to be used to measure the achievements from the tool
development.

2.1 Glossary	 of	 Acronyms	

Acronym Definition
API Application Programming Interface
D Deliverable
EC European Commission
HPC High Performance Computing
Mon-C Monitoring Component
Pan-C Performance analysis Component
Rta-C Runtime administration Component
WP Work Package

© CRESTA Consortium Partners 2011 Page 3 of 13

3 Rationale	 for	 Software	 Design	
Massive parallel computing is a major driving force in computational science
and scientific discovery and the systems are getting larger and more complex
day-by-day. Future exascale systems will be composed of hundreds of
thousands of cores and will have complex designs that are likely to use
heterogeneous technologies. It will, therefore, be a challenging task to achieve
good application and system performance. In addition, the increasing
complexity of these machines will also increase the complexity of the
applications and operating systems.

These new kinds of heterogeneous systems pose new challenges in the
development and porting of applications, and require significant effort to achieve
the systems peak capability.[1] Human experts who optimise and port
applications for these systems need to be complemented with intelligent
software tools providing support in a transparent and automated way. These
tools should also help to detect and solve various kinds of performance
problems, not only overall speed-up, but also system-throughput, power
consumption, etc.

In order to achieve good performance, typically highly system specific features
have to be exploited, which often means that best practices in programming and
software development have to be relaxed and the resulting code is difficult to
port to different systems.

We therefore require new tools that ease the task of building portable
applications for a broad range of HPC infrastructures in a modular way.[2] They
should support the reuse of building blocks hiding the different technologies as
well as implementing algorithms in the best way for the selected kind of
technology. In that way, the resulting software would become more robust,
reusable and maintainable.

The design of an adaptive runtime system addressing these challenges is
presented in this deliverable. The runtime system consists of a resource
manager, a library for runtime administration of parallel applications, and a
performance monitoring and analysis tool. The design is based on a task model
that will help programmers to exploit the parallelism of their applications. The
main idea is to have a system capable of reacting automatically to the
application's behaviour, that is, supporting a high parallel efficiency and
improving the performance of the application based on the combined use of
hints provided by the programmer as well as the transparent supervision of the
program execution.

© CRESTA Consortium Partners 2011 Page 4 of 13

4 Conceptual	 Approach	
4.1 Requirements	

One of the hardest requirements in the development of simulation applications
is their adaptation to different computer systems due to the varying technical
parameters that have a huge influence to the numerical performance: cache-
and memory hierarchies, the number of cores per CPU, the number of sockets
per node, and the characteristics of the interconnect network.

Today, optimisations are typically implemented directly in the code causing
limitations in performance portability and higher maintenance costs. Due to the
similar microprocessor architectures primarily used today this problem was not,
up until now, too critical, but with the advent of more heterogeneous
architectures this is increasingly becoming more important. Moreover, different
application classes require different optimisation strategies making the
development of generalised tools difficult. From a software engineering
viewpoint development tools must support the implementation of reusable
software components that help to use the systems efficiently and decouple the
supporting program parts from the numerical algorithm. This requirement
always has to be seen together with the need to introduce only limited runtime
overhead.

An important requirement for a tool development is the reuse of existing
application codes often implemented in Fortran or C. The introduction of new
software tools should allow its incremental adoption, keeping the need for
reimplementation or adaptation of existing code to a minimum. A further
requirement connected to the previous one is the wish that software tools
support an adaptive use of best practices, which otherwise would not be applied
due to prohibitive implementation effort.

4.2 Hardware	 and	 Software	 Models	 in	 the	 Runtime-‐System	

Based on recent hardware developments we can summarise the following
requirements of numerical applications:

• Integration of data and task parallelism,
• Use of multi-level parallelism in the algorithm design,
• Development of algorithms with a high degree of parallel executable

tasks, which have a moderate size, can be created very quickly, and
avoid global communication operations,

• Usage of multi-threading, asynchronous communication and one-sided
communication,

• Consideration of the increasing depth of the memory hierarchy,

© CRESTA Consortium Partners 2011 Page 5 of 13

• Optimised scheduling and mapping taking into account chip-
architectures, memory hierarchies, internal communication abilities, etc.
to provide a higher degree of parallelism and decrease memory and
communication bandwidth usage.

These requirements are tackled in many research efforts and projects. We
analysed these in the CRESTA deliverable D3.1 ‘State of the art and gap
analysis - Development environment’ and only highlight a small number here.
We looked at the runtime-systems StarPU, StarSs, and ForestGOMP. The tool
PerfMiner is one of the starting points for the development of performance
analysis tools. Furthermore, promising approaches to derive valuable
knowledge of the performance behaviour in codes have been analysed. More
information can be found in the deliverable mentioned above as well as in the
original literature [3-14].

The runtime-system developed in CRESTA supports a task-oriented
programming model featuring hierarchical multiprocessor tasks. Such tasks are
computational units that can be also parallel in themselves and can be
subdivided hierarchically again into subtasks. The example in figure 1 shows
which tasks could be defined in a typical algorithm of a molecular dynamic
simulation. The hierarchical nature of the computational tasks and their inner
parallelism that should be supported by the runtime system is clearly visible.
Such a task model matches how programmers typically express parallelism
during algorithm design and in program descriptions. The runtime system
overcomes with its task model the problem that this parallelism is not easily

Figure 1: Examples for an application structure using a coarse-grained hierarchical
task-decomposition. [2]

© CRESTA Consortium Partners 2011 Page 6 of 13

expressible in frequently used programming languages. This design
information is therefore often lost during the implementation phase and has to
be tediously recovered again. The use of hierarchical multiprocessor tasks
makes the parallelism explicitly visible in the source code.

The runtime system uses a hardware performance model of the computer that
has a structure reflecting the hierarchy from cores over nodes up to the
complete system. The combined use of both models allows graph partitioning
and mapping algorithms the selection of the most appropriate system part, i.e. a
hardware model subtree, to run a certain part of the application, i.e. a task
subtree (see figure 2).

The development of simulation applications often happens under conditions
where it is not possible to specify the computational effort and other resource
requirements completely and precisely. The algorithmic complexity of basic
building blocks such as BLAS routines or other fundamental algorithms has
been analysed very deeply and consequently highly optimized implementations
exist on almost all platforms. But the theoretical analysis of more complex
numerical algorithms is a very hard task beyond the possibilities of most
application programmers who are experts in their science field and not in
complexity theory. Furthermore, applications in production often use a
significant superstructure on top of well-known basic libraries to guarantee the
numerical stability of the algorithms for the whole range of input data.

The described environment often provides only vague information about
performance and needs to be considered in the development of the runtime-
system. The same as for the algorithmic side can be said about the resource
provisioning of computer systems. The complex nature of the hardware as well
as of the operating systems makes it very hard to develop complete and precise
performance models. Scheduling algorithms of the runtime system have to be
designed therefore in such a way that they are able to use incomplete and
imprecise estimates.

Figure 2: Usage of the software task model and the hardware model to optimize
the program execution.

© CRESTA Consortium Partners 2011 Page 7 of 13

5 Software	 Architecture	
The runtime system consists of three main components: a runtime
administration component (Rta-C) schedules tasks and monitors their execution
status; a monitoring component (Mon-C) provides information on the hardware
utilisation, which is for scheduling decisions as well as to complement
potentially incomplete or imprecise resource requirement specifications; and
finally a performance analysis component (Pan-C) that analyses recorded
monitoring data to provide more sophisticated hints for application control,
beyond the capabilities of single run monitoring (see figure 3).

5.1 Runtime	 Administration	 Component	 (Rta-‐C)	

Rta-C provides an API that can be used to define computational tasks as
described in Section 4 and to control their execution. Furthermore, the
component accesses a performance model of the computer system used for the
execution of the application. The software model will be mapped onto the
hardware performance model as well as possible. Scheduling algorithms will be
used to calculate it as well as possible.

The definition of computational tasks will be done in the first step by means of
an API provided from a library. Function calls mark, for example, the beginning
and the end of such computational tasks. Developer-provided information can
be given to the runtime system with arguments. Other functions will allow the
transfer of the control flow between the application and the runtime system back

Figure 3: Components of the runtime-system

© CRESTA Consortium Partners 2011 Page 8 of 13

and forth. The integration with compilers or pre-processors in order to reduce
the programming effort will be defined in a second step.

Rta-C moves the data of computational tasks to the processing elements by
means of MPI functionality according to the execution plan provided by the
schedule calculation.

Rta-C sends during the execution of computational tasks status information to
Mon-C as well as receives information on the hardware utilisation during the
program execution from it. The software and hardware models as well as the
monitoring information allow it to recalculate the program schedule on the fly
and to find available processing elements for the execution of subsequent tasks
automatically. Furthermore, the application can also query Rta-C to get
scheduling as well as monitoring information and influence the task execution.

The monitoring information will also be used as input to the scheduling
algorithm for another purpose than to point to the deviations from the execution
plan only. It complements incomplete task specifications and can be used, for
example, to compute resource requirements more precisely using, for example,
correlation analysis between input sizes and used resources in repetitive tasks.

An application kernel implementing a parallel molecular dynamics simulation for
short-range potentials has been used in order to estimate the performance
improvements that can be reached by load balancing and the allowed overhead
for the additional program overhead induced by the runtime system. The
results met expectations two-fold and provide guidance for the further
development and practical application. The example application showed that
noticeable performance improvements could already be achieved with load
balancing based on a simple performance model. We used as metric of the
computational work the number of particles per process and as metric of the
communication the data amount of the MPI communication sent resp. received
in point-to-point resp. collective operations. A process mapping based on these
measurements reduced the execution time per time step by 15% without
changes in the algorithm other than to introduce the marks for the
computational tasks and the hooks to re-map them. Benchmarks of the
communication operations in the application showed reduced costs up to 50%
due to the automatic topology-optimised re-mapping of processes. On-going
research on the load-balancing algorithm that includes also optimisations in the
application algorithms itself reaches in the test-bed nowadays up to 30%.

Secondly the analysis of the application kernel underlines that a performance
improvement depends on many complex interacting factors as known generally.
System parameters, different technologies used for the parallelisation and
specific use cases influence each other in such a way that it can happen that
performance gains provided by a certain approach will be compensated by

© CRESTA Consortium Partners 2011 Page 9 of 13

another factor. We found for example that the same load balancing, which
provides 15% performance gain using MPI_Recv and MPI_Send operations,
allowed only a very small improvement in an implementation that uses
overlapping of computation and communication.

The benchmarking results of the application kernel show that it will be possible
to achieve noticeable accelerations of parallel algorithms compared to the
expected introduction of overhead by the runtime system. The overhead
introduced by the runtime system is expected to be at about 5% of the
execution time as it could be measured during the benchmarks.

These observations guide the further practical implementation of the runtime
system design. A reasonable assumption is that application developers and
users will have implemented the best-known algorithm as well as that they will
setup application runs in the best possible way for a computer system. Starting
from that, the runtime system will observe the execution of the computational
tasks in the program and apply its load-balancing algorithms in order to improve
their performance. However, the runtime system must be deactivated
automatically in the case that it should be impossible to achieve a performance
improvement above a certain threshold in order to cover the computational
costs of the load balancing algorithms.

5.2 Monitoring	 Component	 (Mon-‐C)	

The Monitoring Component (Mon-C) collects performance metrics from the
processes of a given application in a lightweight and scalable manner. It will be
developed in a modular manner and able to use different information sources
and profiling tools to extract the performance data. The Integrated Performance
Monitoring tool IPM will be used in the current implementation.

The performance data is stored in a database for further analysis. The data will
be used for investigations that provide hints to the programmer as well as to
optimise performance in subsequent application runs. We are evaluating if an
embedded database (Berkeley DB) can be used for this purpose. In that way,
the performance data will be also packed within the application, freeing the user
from the burdens of setting an external database. We are comparing the
overhead generated by this embedded database in comparison to a typical
relational database. We are also evaluating if our data can be adapted to fit in
such a simple database.

The collected metrics are typical hardware counters collected through the PAPI
interface such as instructions completed, floating-point operations or cache
misses. MPI information is also gathered through the PMPI interface. The
monitoring component also receives events about the start and termination of
tasks from the Runtime Component. This high-level information about the

© CRESTA Consortium Partners 2011 Page 10 of 13

execution status of the application can be correlated with the profiling
information and thus support the scheduling of tasks.

IPM is now fully working as a monitoring component (Mon-C) for the runtime
system. We have also implemented an API on top of IPM that allows the
runtime component (Rta-C) to communicate in real time with the Mon-C
component. Thus, the Rta-C can ask about the performance of an application
as it runs.

This new API offers two kinds of different data that can be accessed, regions
and activities. Regions are measurement intervals defined within the application
by the Rta-C. These intervals have associated different performance metrics
such as time in MPI, time in computation, number of times executed or
hardware counters selected by the Rta-C. On the other hand, activities are
metrics associated to certain events such as MPI calls, POSIX calls or OpenMP
regions among others. For instance, the Rta-C could access the activity for
MPI_Recv obtaining how many times it has been called, total time inside the
call, maximum and minimum time for that call and amount of bytes received.

The tests performed so far showed that the overhead introduced by the
monitoring component and its API for real time monitoring never exceeded 1 %
of the total application execution time. In the upcoming months we will perform
further testing of this API and its scalability limits.

5.3 Performance	 Analysis	 Component	 (Pan-‐C)	

Nowadays an overwhelming quantity of performance data can be collected and
the handling and analysis of these huge amounts of data is a major challenge,
in fact, it could even become impossible in the near future due to the increased
resource and application sizes. We are therefore in high need of tools capable
of analysing all of the generated performance data, reducing the quantity of
performance information in a meaningful way, as well as behaving like a human
expert who gives solutions to an unskilled user.

The Performance Analysis Component faces these challenges through several
data mining and machine learning techniques. On one hand, it will reduce the
amount of redundant information stored using techniques such as clustering or
principal components analysis (PCA). On the other hand, it will build models
from the data using techniques including Bayesian Networks to help the
Runtime Component to make scheduling decisions. Further research is needed
during the project to extend the early design stage of this component at the
moment.

© CRESTA Consortium Partners 2011 Page 11 of 13

6 Test	 Plan	
The Runtime System will be tested with several different scientific applications
and kernels from different fields such as computational fluid dynamics,
molecular dynamics, or weather prediction.

The starting point will be an application kernel for molecular dynamics
simulations developed at KTH. This application implements basic numerical
algorithms that are widely used in molecular dynamics and has been
parallelized with MPI. Further tests will be performed with the CRESTA
benchmark suite that is developed in WP2 as well as with the co-design
applications of WP6. It is planned to use IFS and NEK5000.

The testing process is defined as follows: first, computational tasks are defined
within the application; afterwards, the application is run in conjunction with the
Runtime System; finally, runs with and without the Runtime System are
compared. This process guarantees two main aspects. On one hand we check
that the runtime does not change the application results, on the other hand, we
have real measures on how much improvement can be gained with the runtime-
system in the application.

This process will be repeated using several scientific kernels from different
fields as mentioned earlier. In that way, we could spot real application needs
that will be useful for further development of the Runtime System.

© CRESTA Consortium Partners 2011 Page 12 of 13

7 References	
[1] State of the art and gap analysis - Development environment, Project CRESTA

Deliverable 3.1 (2012).

[2] Michael Schliephake, Xavier Aguilar, Erwin Laure: Design and Implementation
of a Runtime System for Parallel Numerical Simulations on Large-Scale
Clusters. Procedia Computer Science, Volume 4, Proceedings of the
International Conference on Computational Science, ICCS 2011, 2011, Pages
2105-2114.

[3] C. Augonnet, S. Thibaul, R. Namyst, “StarPU: a Runtime System for Scheduling
Tasks over Accelerator-Based Multicore Machines”, (2010)

[4] StarSS homepage, http://www.bsc.es/computer-sciences/programming-models
(accessed January 2012)

[5] F. Broquedis, N. Furmento B. Goglin, P.A. Wacrenier and Raymond Namys,
“ForestGOMP: An Efficient OpenMP Environment for NUMA Architecture”,
International Journal of Parallel Programming (2010)

[6] L.V. Kale, E. Bohm, C.L. Mendes, T. Wilmarth and G. Zheng, “Programming
petascale applications with Charm++ and AMPI”, Petascale Computing:
Algorithms and Applications (2008)

[7] A.Tabbal, M. Anderson, M. Brodowicz, H. Kaise and T. L. Sterling, “Preliminary
design examination of the ParalleX system from a software and hardware
perspective”, SIGMETRICS Performance Evaluation Review (2011)

[8] P. Mucci, D. Ahlin, J. Danielsson, P. Ekman and L. Malinowski, “PerfMiner:
Cluster-Wide Collection, Storage and Presentation of Application Level
Hardware Performance Data”, Euro-Par 2005 Parallel Processing (2005)

[9] K. Fuerlinger, N.J. Wright, D.Skinner, "Effective Performance Measurement at
Petascale Using IPM", Parallel and Distributed Systems (ICPADS) (2010)

[10] J. Gonzalez, J. Gimenez and J. Labarta, "Automatic detection of parallel
applications computation phases", Parallel & Distributed Processing 2009
IPDPS 2009 (2009)

[11] H. Servat, G. Llort, J. Giménez and J. Labarta, “Detailed Performance
Analysis Using Coarse Grain Sampling”, EURO-PAR 2009 - PARALLEL
PROCESSING WORKSHOPS (2010)

[12] P. C. Roth, D. C. Arnold, and B. P. Miller. “MRNet: A Software-Based
Multicast/Reduction Network for Scalable Tools”, SC 2003, (2003)

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior”, Proceedings of the 10th

© CRESTA Consortium Partners 2011 Page 13 of 13

international conference on Architectural support for programming languages
and operating systems (ASPLOS-X) (2002)

[14] X. Liu, J. Zhan, K. Zhan, W. Shi, L. Yuan, D. Meng, L. Wang, “Automatic
performance debugging of SPMD-style parallel programs”, Journal of Parallel
and Distributed Computing (2011)

