

© CRESTA Consortium Partners 2011 Page 1 of 14

D3.3.1	 –	 Performance	 Analysis	 Tools	
design	 document	

WP3:	 Development	 environment	

Due date: M10

Submission date: 31/07/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation TUD

Version: 1.0

Status Final

Author(s): Jens Doleschal (TUD)

Reviewer(s) Joerg Hertzer (USTUTT), Adam Carter (UEDIN)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

© CRESTA Consortium Partners 2011 Page 2 of 14

	

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 30/05/2012 First version of the deliverable Jens Doleschal (TUD)

0.2 07/06/2012 New structure of the deliverable in
accordance with the information
/suggestions from WP3 telephone
conference from June 5th.

Jens Doleschal (TUD)

0.3 18/06/2012 Created global fault-tolerance section
since detailed information are not
available yet.

Jens Doleschal (TUD)

0.4 30/06/2012 Redesign of Performance Counter
section with the information provided
by Cray.

Jens Doleschal (TUD)

0.5 04/07/2012 Finalising draft Jens Doleschal (TUD)

0.6.1 10/07/2012 Internal Review Joerg Hertzer (USTUTT)

0.6.2 12/07/2012 Internal Review Adam Carter (UEDIN)

1.0 16/07/2012 Finalising deliverable considering
review comments

- Added more publications
- Further explanations
- Correction of typing errors
- Reformatting references
- Extension of the glossary

Jens Doleschal (TUD)

© CRESTA Consortium Partners 2011 Page 3 of 14

Table	 of	 Contents	
1	 INTRODUCTION	 ...	 4	

1.1	 PURPOSE	 ...	 4	
1.2	 GLOSSARY	 OF	 ACRONYMS	 ...	 4	

2	 PERFORMANCE	 MONITORING	 ...	 5	
2.1	 PERFORMANCE	 DATA	 ...	 5	
2.2	 SCALABILITY	 ...	 6	
2.3	 PARADIGMS	 ...	 7	

2.3.1	 Performance	 Monitoring	 of	 Pthreads	 ...	 7	
2.3.2	 Performance	 Monitoring	 of	 Hardware	 Accelerators	 (CUDA/OpenCL)	 	 7	
2.3.3	 Performance	 Monitoring	 of	 PGAS	 Languages	 ...	 8	
2.3.4	 Performance	 Monitoring	 of	 third-‐party	 libraries	 ..	 8	
2.3.5	 Extensions	 ...	 8	

2.4	 FAULT-‐TOLERANCE	 ..	 9	
3	 PERFORMANCE	 ANALYSIS	 AND	 VISUALISATION	 ...	 10	

3.1	 SCALABILITY	 ...	 10	
3.2	 PARADIGMS	 ...	 10	
3.3	 FAULT-‐TOLERANCE	 ..	 10	
3.4	 INTERACTION	 AND	 INTERFACES	 ...	 11	

4	 TESTING	 PLAN	 ...	 12	
4.1	 SCORE-‐P	 ...	 12	
4.2	 VAMPIR	 AND	 VAMPIRSERVER	 ..	 12	

5	 FAULT-‐TOLERANCE	 ..	 13	
6	 REFERENCES	 ..	 14	

Index	 of	 Figures	
Figure 1 Architecture of the Score-P instrumentation and measurement system 5	

	

© CRESTA Consortium Partners 2011 Page 4 of 14

1 	 Introduction	
In this document (“Performance Analysis Design Document, D.3.3.1”) we present
possible designs, planned modifications and extensions to the existing application
performance analysis tools Score-P [1] and Vampir [2] to address scalability and
heterogeneity.

We organised the document as follows: in Section 2 we describe the designs and
extensions for the performance monitoring tool Score-P, i.e. collection of different kinds
of performance counter and integration within the monitoring system, reduction of the
amount of data to address scalability issues identified within the gap analysis (D3.1),
and what extension will be done to address applications’ demands on heterogeneity.
In Section 3 we will specify the designs and extensions in terms of scalability and
heterogeneity of the performance analysis and visualisation tool Vampir. Within
Section 4 we present how to ensure that any extensions that we provide are well-tested
and suitable for productive use. Finally, in Section 5 we address the state of fault-
tolerance.

1.1 Purpose	
This deliverable will specify the ideas and extensions to the application performance
analysis tools Score-P and Vampir to address the following key components to meet
exascale performance analysis requirements:

• Covering relevant performance data by including additional data sources from
the hardware and runtime level (processor, bus, memory subsystem, network,
faults, recovery);

• Pre-selection and automatic reduction of monitoring data to cope with the
limitations of data storage, data visualisation, and last but not least human
perception;

• Automatic data analysis and visualisation processes that guide the user through
the optimisation process.

1.2 Glossary	 of	 Acronyms	
cronym Definition
CAF
CCG
CPU
CUDA
CUPTI
D
DMAPP
GPI
GPU
IOFSL
MPI
NIC
OPARI
OpenCL
OpenMP
OTF
PAPI
PGAS
Pthreads
TAU
TUD
UPC

Co-Array Fortran
Complete Call Graph
Central Processing Unit
Compute Unified Device Architecture
CUDA Profiling Tools Interface
Deliverable
Distributed Shared Memory Application
Global Address Space Programming Interface
Graphics Processing Unit
I/O Forwarding Scalability Layer
Message Passing Interface
Network Interface Controller
OpenMP Pragma and Region Instrumentor
Open Computing Language
Open Multi-Processing
Open Trace Format
Performance API
Partitioned Global Address Space
POSIX threads
Tuning and Analysis Utilities
Technische Universität Dresden
Unified Parallel C

© CRESTA Consortium Partners 2011 Page 5 of 14

2 Performance	 Monitoring	
Driven by the experiences, basically various scalability limitations, gathered from our
predecessor performance measurement systems, e.g. VampirTrace and Scalasca, and
their corresponding file formats OTF and EPILOG, TUD and other partners have
developed a newly designed joint performance measurement system called Score-P
(see Figure 1) [1] and its underlying file format OTF2 [3] with focus on scalability (e.g.,
efficient handling of MPI communicators, and a tree-based reduction for trace
unification), and interoperability with various performance analysis tools for application
performance monitoring and analysis. Within this project we will use Score-P as the
main application monitoring system and will adept and extend it to the needs of
exascale application performance analysis identified within CRESTA.

Monitoring highly parallel applications with Score-P can be easily done by
instrumenting the application with measurement probes and linking against several
runtime libraries. Currently, Score-P provides the following instrumentation techniques:

• Compiler instrumentation,
• MPI library interposition,
• OpenMP source code instrumentation using OPARI2
• Source code instrumentation via the TAU instrumentor, and
• User instrumentation using convenient macros,

to collect performance relevant data on C/C++ and Fortran codes. In addition, it is
possible to record several hardware counters by using the PAPI interface.

Figure 1 Architecture of the Score-P instrumentation and measurement system

2.1 Performance	 Data	
Exascale systems will evolve toward complex, highly parallel and maybe also
heterogeneous architectures that include multi-core or many-core nodes as well as
heterogeneous accelerators such as GPUs. In such complex systems the use of
hardware counters to gain insight into the highly parallel applications has become an
accepted and integral method in the last decade [4].

PAPI (Performance API) and its components provide consistent platform and operating
system-independent access to CPU hardware performance counters and hardware
information of the machine subsystem, e.g. node-local I/O operations, that can be used
in various performance monitoring tools. Traditionally, PAPI measures this information

© CRESTA Consortium Partners 2011 Page 6 of 14

on a per-process or thread basis even on context switches since most of the CPU
hardware performance counters are core-local and exclusive.

Within today’s more and more complex processor architectures the number of shared
resources increases and there are also performance counters (e.g., uncore counter),
which do not belong to a specific core. These counters cannot be measured via PAPI
and also cannot be used as performance information (counter) for a specific process or
thread. All performance information that does not belong to a specific core, like power
of a node, temperature of a node, or on some architectures L3-Cache performance
information have to be recorded separately and mapped to the corresponding process,
and threads. To reduce the redundancy of performance information, to reduce the
perturbation of hardware performance counter monitoring, and to increase the
scalability of the performance monitoring it is advisable to record performance
information of shared resources once and to map this information within the application
monitoring to the corresponding locations.

Besides the hardware performance counters there exists a multitude of performance
information within the machine sub-system. Cray provides for the Gemini network two
categories of performance counters to the users [5]. Counters of the first category are
NIC (Network Interface Controller) performance counters, which record information
about the data moving through the network interface controllers. These counters reflect
the network transfers beginning and ending on the node. The second category is
network router tile counters. These atomic counters provide fine-granular information of
each of the 48 tiles on a chip. Currently, these counters are only accessible via a
proprietary interface and are at the moment from a user-view only available by using
the CrayPat profiler [5][6].

Since there is no common interface for network performance counter like PAPI, we
firstly plan to investigate which counters of the multitude of network counters are
suitable for the application performance monitoring and how to measure them. In
addition, it is advisable to map this information to the network topology of the machine.
Therefore, we want to investigate techniques to detect the machine hardware and
network topology and to include this information within the measurement system. This
can be done either via a vendor topology API or a static machine description file.

In a second step, a proposal for a unique interface for network counters, maybe as a
PAPI component or some other API that can be used within a wide range of monitoring
tools either for global monitoring or application monitoring, would be very helpful.
Because of the limited resources in this project this step will be postponed.

Depending on the latency and perturbation of performance counter requests and the
locality of the performance information, the performance information can be measured
during the application monitoring or can be added afterwards. Since it is at the moment
not advisable to record Cray Gemini network counter within the application monitoring
[5][7], and therefore to reduce the perturbation of the measurement, and network
performance counter are basically not task-related, we want to record this information
simultaneously with the application run and add it afterwards.

We are planning to extend the measurement system so that it is able to record
hierarchical performance counters (if hardware topology information is available) to
address the level of complexity of today’s machine architectures and those of the
future. We also plan to add an interface that allows us to add generic performance
counters to an existing trace file.

2.2 Scalability	
The continuation of the current fine-grained operation mode would produce an
enormous amount of data that would overstress storage, performance analysis, and
visualisation. As a result, for a plausible performance measurement only phases,
events and processing elements of interest should be recorded.

In a first step, we want to identify hot spots, outliers, and irregularities to identify the
regions of interest. In a second step, we want to use this information to steer the

© CRESTA Consortium Partners 2011 Page 7 of 14

instrumentation and measurement system for combined coarse-grained and fine-
grained data collection, i.e. use selective instrumentation for the events of interest in
combination with a dynamic filtering approach that can be used during runtime. The
creation of automatic filtering rules is thereby mandatory.

Furthermore, we want to enable and disable the recording of the measurement to
reduce the amount of data. We also want to be able to measure all phases of an
application, e.g. all iterations of a loop, and only store phases of interest, which
exceeds a predetermined threshold. Phases of non-interest will therefore be neglected.

In conclusion, we will research which steering and filtering decisions can be done at
runtime or should be generated in a post-mortem step to steer the next performance
measurement run.

Another research idea is to reduce the amount of data by combination of coarse-
grained sampling and fine-grained event instrumentation for an optimal insight into the
highly parallel applications. For the beginning we will focus on the previously
mentioned selective instrumentation and dynamic runtime filtering with steering
information from an irregularity analysis and will post-pone this topic.

2.3 Paradigms	
To address the complexity and heterogeneity of exascale architectures new parallel
programming paradigms arise or become more and more popular. To gain insight into
these new dimensions of parallelism, performance measurement systems like Score-P
have to be extended to measure the information of interest. Furthermore, they must be
able to avoid additional communication and synchronisation overheads while setting up
different namespaces to handle these different types of events without any loss of
information. The information generation can be done either by instrumentation or
sampling.

Since Score-P currently only provides an infrastructure for instrumentation techniques
to intercept relevant events we will focus on instrumentation techniques for new parallel
paradigms within the research, but nevertheless sampling is always an alternative.

2.3.1 Performance	 Monitoring	 of	 Pthreads	
Monitoring of POSIX threads (Pthreads) can be easily done by using a classical
function wrapping approach, where all POSIX calls will be renamed to the
corresponding wrapping calls by the pre-processor and the wrapping calls are
responsible to call the measurement system, which creates the corresponding events,
and the original POSIX function.

Since Pthreads are using shared memory segments it is important that the monitoring
system does not mix the events of concurrent threads and therefore must distinguish
the threads from each other to ensure the consistency of the event buffers and
chronology.

We are planning to extend the task identification model within Score-P so that it is able
to handle multiple parallel paradigms used simultaneously within one application.

2.3.2 Performance	 Monitoring	 of	 Hardware	 Accelerators	 (CUDA/OpenCL)	
In the last years CUDA/OpenCL capable devices have become more and more popular
in the High Performance computing area. This is because they promise more floating
point operations per seconds than a typical CPU will ever provide in a user application.

Host-side activities of OpenCL capable devices can be either monitored by
instrumenting the library (if source code is available) or by using a shared library
wrapper approach that uses the LD_PRELOAD mechanism.

Besides the host-based recording, some activities of the kernel can be monitored
directly. For example, kernel execution and data transfers.

Monitoring of CUDA applications can be either done via the CUDA Profiling Tools
Interface (CUPTI) [8] or by the previously mentioned library wrapping approach. CUPTI

© CRESTA Consortium Partners 2011 Page 8 of 14

provides different APIs that can be used to get insight into the CPU and GPU
behaviour of CUDA applications. The benefits of CUPTI in comparison to the library
wrapping approach are the reduced perturbation of the kernel execution and precise
event (kernel) time information.

We plan to extend Score-P to monitor CUDA activities via CUPTI and OpenCL
activities via a shared library wrapping approach. This requires the development of a
generic task identification model, appropriate records, and a hardware accelerator
measurement plug-in for Score-P.

2.3.3 Performance	 Monitoring	 of	 PGAS	 Languages	
PGAS languages are available as library-based paradigms, e.g., GPI, and as language
extensions, e.g., UPC, Co-Array Fortran.

Instrumentation of these language extensions can be done on different levels
depending on how these extensions are implemented on a specific computing platform.

1. On systems where the language constructs are translated into calls to a runtime
library, it is possible to intercept these library calls and record them. This can be
done either by instrumenting the library or using a shared library wrapper
approach that uses the LD_PRELOAD mechanism.

2. On systems where the language constructs are processed in the compiler
runtime like on the Cray systems a library wrapping approach as proposed
before will not work. In these cases it is possible to extend a source-to-source
instrumentor like OPARI to instrument these language extensions [9].

3. Depending on the system implementation of these language extensions it is
sometimes easier to wrap the underlying communication libraries, e.g. the
DMAPP library on the Cray systems [10], and not to focus directly on these
language constructs. The advantage is that this approach focuses on the
network communication but in contrast some detailed information about the
language constructs cannot be captured, e.g. one-sided in-memory
communication of different processes in CAF running on the same node.

Since language extensions like UPC and CAF use very fine-granular operations, and to
reduce perturbation within the measurement, we will focus on the monitoring of the
PGAS network communication.

At the moment there is no primary candidate for PGAS within CRESTA and for the
beginning we will focus on a shared library wrapping approach for the DMAPP library
on Cray systems, which is used within many paradigms as a communication library, to
gain indirect insight into the PGAS paradigms. Therefore, we have to investigate and
develop one-sided communication models and their corresponding records that can be
used for all parallel paradigms, which use remote memory access strategies.

2.3.4 Performance	 Monitoring	 of	 third-‐party	 libraries	
The function call behaviour of third-party libraries, i.e. proprietary vendor libraries,
where the calls are located in a runtime library, can be recorded by using a shared
library wrapper that uses the LD_PRELOAD mechanism. We plan to extend Score-P to
support library wrapping of shared libraries.

2.3.5 Extensions	 	
1. Extension of Score-P to support library wrapping of shared libraries.
2. Research of one-sided communication model and their corresponding records.
3. Extension of Score-P to support hardware accelerators, Pthreads, and maybe

further parallel programming models.
4. Generic task identification model that supports multiple parallel paradigms

together.
5. Extension of Score-P by a counter interface that allows to add counters from

global (shared) resources and also to add counters to existing traces in a
scalable way.

© CRESTA Consortium Partners 2011 Page 9 of 14

2.4 Fault-‐tolerance	
See Section 5 for more general information on fault-tolerance and fault-recovery.

© CRESTA Consortium Partners 2011 Page 10 of 14

3 Performance	 Analysis	 and	 visualisation	
Investigating performance information of millions of concurrent processing elements
will only be applicable for users by using intelligent data mining, data compression and
visualisation strategies. Application performance visualizers like Vampir [2] come with
various displays to gain insight into the highly complex behaviour of parallel
applications in an intuitive way but are struggling with trillions of performance
information. To handle the amounts of data gathered from the application monitoring,
scalable and intelligent data analysis and processing techniques have to be developed.

3.1 Scalability	
Offline performance analysis techniques have to handle amounts of information of a
whole measurement run and usually store this information in its entirety on the parallel
file system. Creating one file per measured location (e.g., process or thread) will no
longer work on future file systems on a POSIX basis, because of the complex
relationships of billions of entities with metadata and object data information organized
on a folder structure. Therefore, we are evaluating different strategies like the use of
the Sionlib [11] or IOFSL [12] to overcome scalability issues with future parallel file
systems.

Bandwidth and capacity of the entire memory hierarchy – including the file system –
are also limiting factors for offline performance analysis, as long as no information
reduction is done. Data compression reduction techniques, such as the data reduction
on the Complete Call Graph (CCG) data structure [13] will become a necessity at
exascale in order to perform on-the-fly information reduction. We will develop a library
that supports the creation of CCGs and investigate different visualisation alternatives
for CCGs within Vampir.

The information of an entire time interval of millions of concurrent processing elements
needs to be transferred and processed. Exascale performance analysis will require
solutions to reduce the amount of data that tools display. One such option is to only
display “interesting” locations that behave differently, which requires an automatic
approach for pre-processing. Therefore, we want to investigate techniques for partial
event trace visualisation. Also, visualisation of millions of different processing elements
on a screen with a limited resolution is challenging and we want to research alternative
visualisation strategies for highly parallel applications.

3.2 Paradigms	
Each of the upcoming parallel paradigms typically comes with its own communication
and synchronisation methods, enter and exit events. In addition, each parallel
paradigm has its own specific performance behaviour where different kinds of
performance issues may occur.

Investigation of all communication and synchronisation events within one view can
result in a misleading view when one paradigm hides the performance behaviour of
another paradigm. Therefore, we want to investigate possibilities in how to filter,
summarise, and visualise performance information of heterogeneous applications,
which use different paradigms concurrently, within Vampir (if Vampir is able to
distinguish between the different event classes derived from the paradigms).

3.3 Fault-‐tolerance	
In the case of hardware failures performance information will be corrupted and
incomplete. Therefore, Vampir has to deal with this data in appropriate way, e.g. even
on corrupted data functionalities like the message matching should work. Therefore, we
want to investigate techniques that allows message matching on incomplete data, i.e.
missing communication events. This can be done either by using piggy-backing
techniques, i.e., extension of the original message by adding additional information to
the message, additional messages, or by additional information provided by the MPI-3
standard.

© CRESTA Consortium Partners 2011 Page 11 of 14

For further information on fault-tolerance and fault-recovery see section 5.

3.4 Interaction	 and	 Interfaces	
Profiling and statistical information can provide in a first step insight into the application.
We intend to highlight these profiling and statistical results and locate outliers,
irregularities and hot spots within Vampir.

© CRESTA Consortium Partners 2011 Page 12 of 14

4 Testing	 plan	
For performance and scalability purposes we will use the benchmark suite from WP 2
D2.6.1 to test the performance monitoring and analysis tools.

Correctness and functionality tests are already implemented in the development flow of
each tool and will be used continuously to ensure the needed quality for each CRESTA
development branch (for each feature a separate branch).

4.1 Score-‐P	
Score-P has its own quality management system and a continuous integration checker
called bitten, a plugin of trac, internal review processes for new extensions and
modifications, and also nightly builds and tests on various platforms provided by the
Score-P partners.

4.2 Vampir	 and	 VampirServer	
Vampir as a commercial product comes with its own quality management workflow and
nightly builds on different platforms.

© CRESTA Consortium Partners 2011 Page 13 of 14

5 Fault-‐tolerance	 	
Expectations for Exascale systems indicate that mean-time-to-failure may be far lower
than a day. As a result, applications, systemware, operating system, and any type of
runtime tool need to be aware of possible failures and may also need to recover from
them. This may include the use of spare nodes or cores to replace failed components.

These effects need to be considered for the development of performance monitoring
and analysis tools for exascale systems. Work package 2 evaluates operating system
and programming model changes to handle such hardware faults in D2.5.2, which will
be released in month 30 of the project. Thus, at the current project state, there is close
to no indication how these mechanism and designs might look like. This includes an
indication of a mean-time-to-failure that is to be expected. Also possible advances in
hardware may render these concerns unnecessary altogether. As an immediate
consequence we will not address any modifications for fault tolerance in this design
document. Our hope is to use the insights that are available around project month 20,
to include them in the second version of this design document (month 24).

© CRESTA Consortium Partners 2011 Page 14 of 14

6 References	
[1] Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,

Geimer, M., Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y.,
Philippen, P., Saviankou, P., Schmidl, D., Shende, S.S., Tschüter, R., Wagner,
M., Wesarg, B., Wolf, F.: Score-P – A Joint Performance Measurement Run-
Time Infrastructure for Periscope, Scalasca, TAU, and Vampir. In Proc. of 5th
Parallel Tools Workshop, 2011.

[2] Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H. Müller,
M.S., Nagel, W.E: The Vampir Performance Analysis Tool-Set, Tools for High
Performance Computing, Part 4, pp. 139-155, Springer Berlin/Heidelberg, 2008.

[3] Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E.: Open Trace
Format 2: The Next Generation of Scalable Trace Formats and Support
Libraries, Vol. 22, Advances in Parallel Computing, pp. 481 - 490, ISBN: 978-1-
61499-040-6, DOI: 10.3233/978-1-61499-041-3-481, 201.

[4] Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting Performance Data
with PAPI-C, Tools for High Performance Computing 2009, Springer Berlin /
Heidelberg, 3rd Parallel Tools Workshop, Dresden, Germany, pp. 157-173,
2009.

[5] Overview of Gemini Hardware Counters, http://docs.cray.com/books/S-0025-10/
(June 2012).

[6] Using Cray Performance Analysis Tools, http://docs.cray.com/books/S-2376-
41/S-2376-41.pdf (July 2012).

[7] Alverson, R., Roweth, D., Kaplan, L., The Gemini System Interconnect, High
Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on
High Performance Interconnects, pp.83-87, 18-20 Aug. 2010.

[8] CUPTI User’s Guide,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUP
TI_Users_Guide.pdf, (June 2012).

[9] Mohr, B., DeRose, L., Vetter, J., A Performance Measurement Infrastructure for
Co-Array Fortran, Proceedings of the International Conference on Parallel and
Distributed Computing (Euro-Par 2005), Lisboa, Portugal, 30.08. - 02.09.2005. -
Berlin, Springer, 2005, pp. 146 – 155.

[10] Using the GNI and DMAPP APIs, http://docs.cray.com/cgi-
bin/craydoc.cgi?mode=Show;q=dmapp;f=books/S-2446-4003/html-S-2446-
4003/S-2446-4003-toc.html#toc, (June 2012).

[11] Frings, W.; Wolf, F.; Petkov, V., Scalable Massively Parallel I/O to Task-
Local File, Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, Portland, Oregon, November 14 - 20, 2009,
SC'09, SESSION: Technical papers, Article No. 17, New York, ACM, 2009.

[12] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert
Latham, Robert Ross, Lee Ward, and P. Sadayappan, Scalable I/O Forwarding
Framework for High-Performance Computing Systems, IEEE International
Conference on Cluster Computing (Cluster 2009), New Orleans, LA, September
2009.

[13] Knüpfer, A., Nagel, W.E., Compressible memory data structures for
event-based trace analysis, Future Generation Computer Systems (2006),
ISSN: 0167-739X.

