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1 	  Introduction	  
In this document (“Performance Analysis Design Document, D.3.3.1”) we present 
possible designs, planned modifications and extensions to the existing application 
performance analysis tools Score-P [1] and Vampir [2] to address scalability and 
heterogeneity.  

We organised the document as follows: in Section 2 we describe the designs and 
extensions for the performance monitoring tool Score-P, i.e. collection of different kinds 
of performance counter and integration within the monitoring system, reduction of the 
amount of data to address scalability issues identified within the gap analysis (D3.1), 
and what extension will be done to address applications’ demands on heterogeneity.  
In Section 3 we will specify the designs and extensions in terms of scalability and 
heterogeneity of the performance analysis and visualisation tool Vampir.  Within 
Section 4 we present how to ensure that any extensions that we provide are well-tested 
and suitable for productive use.  Finally, in Section 5 we address the state of fault-
tolerance. 

1.1 Purpose	  
This deliverable will specify the ideas and extensions to the application performance 
analysis tools Score-P and Vampir to address the following key components to meet 
exascale performance analysis requirements: 

• Covering relevant performance data by including additional data sources from 
the hardware and runtime level (processor, bus, memory subsystem, network, 
faults, recovery); 

• Pre-selection and automatic reduction of monitoring data to cope with the 
limitations of data storage, data visualisation, and last but not least human 
perception; 

• Automatic data analysis and visualisation processes that guide the user through 
the optimisation process. 

1.2 Glossary	  of	  Acronyms	  
cronym Definition 
CAF 
CCG 
CPU 
CUDA 
CUPTI 
D 
DMAPP 
GPI 
GPU 
IOFSL 
MPI 
NIC 
OPARI 
OpenCL 
OpenMP 
OTF 
PAPI 
PGAS 
Pthreads 
TAU 
TUD 
UPC 

Co-Array Fortran 
Complete Call Graph 
Central Processing Unit 
Compute Unified Device Architecture 
CUDA Profiling Tools Interface 
Deliverable 
Distributed Shared Memory Application 
Global Address Space Programming Interface 
Graphics Processing Unit 
I/O Forwarding Scalability Layer 
Message Passing Interface 
Network Interface Controller 
OpenMP Pragma and Region Instrumentor 
Open Computing Language 
Open Multi-Processing 
Open Trace Format 
Performance API 
Partitioned Global Address Space 
POSIX threads 
Tuning and Analysis Utilities 
Technische Universität Dresden 
Unified Parallel C 
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2 Performance	  Monitoring	  
Driven by the experiences, basically various scalability limitations, gathered from our 
predecessor performance measurement systems, e.g. VampirTrace and Scalasca, and 
their corresponding file formats OTF and EPILOG, TUD and other partners have 
developed a newly designed joint performance measurement system called Score-P 
(see Figure 1) [1] and its underlying file format OTF2 [3] with focus on scalability (e.g., 
efficient handling of MPI communicators, and a tree-based reduction for trace 
unification), and interoperability with various performance analysis tools for application 
performance monitoring and analysis. Within this project we will use Score-P as the 
main application monitoring system and will adept and extend it to the needs of 
exascale application performance analysis identified within CRESTA. 

Monitoring highly parallel applications with Score-P can be easily done by 
instrumenting the application with measurement probes and linking against several 
runtime libraries. Currently, Score-P provides the following instrumentation techniques: 

• Compiler instrumentation, 
• MPI library interposition, 
• OpenMP source code instrumentation using OPARI2 
• Source code instrumentation via the TAU instrumentor, and 
• User instrumentation using convenient macros, 

to collect performance relevant data on C/C++ and Fortran codes. In addition, it is 
possible to record several hardware counters by using the PAPI interface. 

 
Figure 1 Architecture of the Score-P instrumentation and measurement system 

2.1 Performance	  Data	  
Exascale systems will evolve toward complex, highly parallel and maybe also 
heterogeneous architectures that include multi-core or many-core nodes as well as 
heterogeneous accelerators such as GPUs. In such complex systems the use of 
hardware counters to gain insight into the highly parallel applications has become an 
accepted and integral method in the last decade [4]. 

PAPI (Performance API) and its components provide consistent platform and operating 
system-independent access to CPU hardware performance counters and hardware 
information of the machine subsystem, e.g. node-local I/O operations, that can be used 
in various performance monitoring tools. Traditionally, PAPI measures this information 
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on a per-process or thread basis even on context switches since most of the CPU 
hardware performance counters are core-local and exclusive.  

Within today’s more and more complex processor architectures the number of shared 
resources increases and there are also performance counters (e.g., uncore counter), 
which do not belong to a specific core. These counters cannot be measured via PAPI 
and also cannot be used as performance information (counter) for a specific process or 
thread. All performance information that does not belong to a specific core, like power 
of a node, temperature of a node, or on some architectures L3-Cache performance 
information have to be recorded separately and mapped to the corresponding process, 
and threads. To reduce the redundancy of performance information, to reduce the 
perturbation of hardware performance counter monitoring, and to increase the 
scalability of the performance monitoring it is advisable to record performance 
information of shared resources once and to map this information within the application 
monitoring to the corresponding locations. 

Besides the hardware performance counters there exists a multitude of performance 
information within the machine sub-system. Cray provides for the Gemini network two 
categories of performance counters to the users [5]. Counters of the first category are 
NIC (Network Interface Controller) performance counters, which record information 
about the data moving through the network interface controllers. These counters reflect 
the network transfers beginning and ending on the node. The second category is 
network router tile counters. These atomic counters provide fine-granular information of 
each of the 48 tiles on a chip. Currently, these counters are only accessible via a 
proprietary interface and are at the moment from a user-view only available by using 
the CrayPat profiler [5][6]. 

Since there is no common interface for network performance counter like PAPI, we 
firstly plan to investigate which counters of the multitude of network counters are 
suitable for the application performance monitoring and how to measure them. In 
addition, it is advisable to map this information to the network topology of the machine. 
Therefore, we want to investigate techniques to detect the machine hardware and 
network topology and to include this information within the measurement system. This 
can be done either via a vendor topology API or a static machine description file. 

In a second step, a proposal for a unique interface for network counters, maybe as a 
PAPI component or some other API that can be used within a wide range of monitoring 
tools either for global monitoring or application monitoring, would be very helpful. 
Because of the limited resources in this project this step will be postponed. 

Depending on the latency and perturbation of performance counter requests and the 
locality of the performance information, the performance information can be measured 
during the application monitoring or can be added afterwards. Since it is at the moment 
not advisable to record Cray Gemini network counter within the application monitoring 
[5][7], and therefore to reduce the perturbation of the measurement, and network 
performance counter are basically not task-related, we want to record this information 
simultaneously with the application run and add it afterwards.   

We are planning to extend the measurement system so that it is able to record 
hierarchical performance counters (if hardware topology information is available) to 
address the level of complexity of today’s machine architectures and those of the 
future.  We also plan to add an interface that allows us to add generic performance 
counters to an existing trace file.  

2.2 Scalability	  
The continuation of the current fine-grained operation mode would produce an 
enormous amount of data that would overstress storage, performance analysis, and 
visualisation. As a result, for a plausible performance measurement only phases, 
events and processing elements of interest should be recorded.  

In a first step, we want to identify hot spots, outliers, and irregularities to identify the 
regions of interest. In a second step, we want to use this information to steer the 
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instrumentation and measurement system for combined coarse-grained and fine-
grained data collection, i.e. use selective instrumentation for the events of interest in 
combination with a dynamic filtering approach that can be used during runtime. The 
creation of automatic filtering rules is thereby mandatory.  

Furthermore, we want to enable and disable the recording of the measurement to 
reduce the amount of data. We also want to be able to measure all phases of an 
application, e.g. all iterations of a loop, and only store phases of interest, which 
exceeds a predetermined threshold. Phases of non-interest will therefore be neglected. 

In conclusion, we will research which steering and filtering decisions can be done at 
runtime or should be generated in a post-mortem step to steer the next performance 
measurement run. 

Another research idea is to reduce the amount of data by combination of coarse-
grained sampling and fine-grained event instrumentation for an optimal insight into the 
highly parallel applications. For the beginning we will focus on the previously 
mentioned selective instrumentation and dynamic runtime filtering with steering 
information from an irregularity analysis and will post-pone this topic. 

2.3 Paradigms	  
To address the complexity and heterogeneity of exascale architectures new parallel 
programming paradigms arise or become more and more popular. To gain insight into 
these new dimensions of parallelism, performance measurement systems like Score-P 
have to be extended to measure the information of interest. Furthermore, they must be 
able to avoid additional communication and synchronisation overheads while setting up 
different namespaces to handle these different types of events without any loss of 
information. The information generation can be done either by instrumentation or 
sampling.  

Since Score-P currently only provides an infrastructure for instrumentation techniques 
to intercept relevant events we will focus on instrumentation techniques for new parallel 
paradigms within the research, but nevertheless sampling is always an alternative. 

2.3.1 Performance	  Monitoring	  of	  Pthreads	  
Monitoring of POSIX threads (Pthreads) can be easily done by using a classical 
function wrapping approach, where all POSIX calls will be renamed to the 
corresponding wrapping calls by the pre-processor and the wrapping calls are 
responsible to call the measurement system, which creates the corresponding events, 
and the original POSIX function.  

Since Pthreads are using shared memory segments it is important that the monitoring 
system does not mix the events of concurrent threads and therefore must distinguish 
the threads from each other to ensure the consistency of the event buffers and 
chronology.  

We are planning to extend the task identification model within Score-P so that it is able 
to handle multiple parallel paradigms used simultaneously within one application. 

2.3.2 Performance	  Monitoring	  of	  Hardware	  Accelerators	  (CUDA/OpenCL)	  
In the last years CUDA/OpenCL capable devices have become more and more popular 
in the High Performance computing area. This is because they promise more floating 
point operations per seconds than a typical CPU will ever provide in a user application. 

Host-side activities of OpenCL capable devices can be either monitored by 
instrumenting the library (if source code is available) or by using a shared library 
wrapper approach that uses the LD_PRELOAD mechanism.  

Besides the host-based recording, some activities of the kernel can be monitored 
directly. For example, kernel execution and data transfers. 

Monitoring of CUDA applications can be either done via the CUDA Profiling Tools 
Interface (CUPTI) [8] or by the previously mentioned library wrapping approach. CUPTI 
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provides different APIs that can be used to get insight into the CPU and GPU 
behaviour of CUDA applications. The benefits of CUPTI in comparison to the library 
wrapping approach are the reduced perturbation of the kernel execution and precise 
event (kernel) time information. 

We plan to extend Score-P to monitor CUDA activities via CUPTI and OpenCL 
activities via a shared library wrapping approach. This requires the development of a 
generic task identification model, appropriate records, and a hardware accelerator 
measurement plug-in for Score-P. 

2.3.3 Performance	  Monitoring	  of	  PGAS	  Languages	  
PGAS languages are available as library-based paradigms, e.g., GPI, and as language 
extensions, e.g., UPC, Co-Array Fortran.  

Instrumentation of these language extensions can be done on different levels 
depending on how these extensions are implemented on a specific computing platform. 

1. On systems where the language constructs are translated into calls to a runtime 
library, it is possible to intercept these library calls and record them. This can be 
done either by instrumenting the library or using a shared library wrapper 
approach that uses the LD_PRELOAD mechanism. 

2. On systems where the language constructs are processed in the compiler 
runtime like on the Cray systems a library wrapping approach as proposed 
before will not work. In these cases it is possible to extend a source-to-source 
instrumentor like OPARI to instrument these language extensions [9]. 

3. Depending on the system implementation of these language extensions it is 
sometimes easier to wrap the underlying communication libraries, e.g. the 
DMAPP library on the Cray systems [10], and not to focus directly on these 
language constructs. The advantage is that this approach focuses on the 
network communication but in contrast some detailed information about the 
language constructs cannot be captured, e.g. one-sided in-memory 
communication of different processes in CAF running on the same node. 

Since language extensions like UPC and CAF use very fine-granular operations, and to 
reduce perturbation within the measurement, we will focus on the monitoring of the 
PGAS network communication.   

At the moment there is no primary candidate for PGAS within CRESTA and for the 
beginning we will focus on a shared library wrapping approach for the DMAPP library 
on Cray systems, which is used within many paradigms as a communication library, to 
gain indirect insight into the PGAS paradigms. Therefore, we have to investigate and 
develop one-sided communication models and their corresponding records that can be 
used for all parallel paradigms, which use remote memory access strategies. 

2.3.4 Performance	  Monitoring	  of	  third-‐party	  libraries	  
The function call behaviour of third-party libraries, i.e. proprietary vendor libraries, 
where the calls are located in a runtime library, can be recorded by using a shared 
library wrapper that uses the LD_PRELOAD mechanism. We plan to extend Score-P to 
support library wrapping of shared libraries. 

2.3.5 Extensions	  	  
1. Extension of Score-P to support library wrapping of shared libraries. 
2. Research of one-sided communication model and their corresponding records. 
3. Extension of Score-P to support hardware accelerators, Pthreads, and maybe 

further parallel programming models. 
4. Generic task identification model that supports multiple parallel paradigms 

together. 
5. Extension of Score-P by a counter interface that allows to add counters from 

global (shared) resources and also to add counters to existing traces in a 
scalable way. 
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2.4 Fault-‐tolerance	  
See Section 5 for more general information on fault-tolerance and fault-recovery. 
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3 Performance	  Analysis	  and	  visualisation	  
Investigating performance information of millions of concurrent processing elements 
will only be applicable for users by using intelligent data mining, data compression and 
visualisation strategies. Application performance visualizers like Vampir [2] come with 
various displays to gain insight into the highly complex behaviour of parallel 
applications in an intuitive way but are struggling with trillions of performance 
information. To handle the amounts of data gathered from the application monitoring, 
scalable and intelligent data analysis and processing techniques have to be developed. 

3.1 Scalability	  
Offline performance analysis techniques have to handle amounts of information of a 
whole measurement run and usually store this information in its entirety on the parallel 
file system. Creating one file per measured location (e.g., process or thread) will no 
longer work on future file systems on a POSIX basis, because of the complex 
relationships of billions of entities with metadata and object data information organized 
on a folder structure. Therefore, we are evaluating different strategies like the use of 
the Sionlib [11] or IOFSL [12] to overcome scalability issues with future parallel file 
systems. 

Bandwidth and capacity of the entire memory hierarchy – including the file system – 
are also limiting factors for offline performance analysis, as long as no information 
reduction is done. Data compression reduction techniques, such as the data reduction 
on the Complete Call Graph (CCG) data structure [13] will become a necessity at 
exascale in order to perform on-the-fly information reduction. We will develop a library 
that supports the creation of CCGs and investigate different visualisation alternatives 
for CCGs within Vampir. 

The information of an entire time interval of millions of concurrent processing elements 
needs to be transferred and processed. Exascale performance analysis will require 
solutions to reduce the amount of data that tools display. One such option is to only 
display “interesting” locations that behave differently, which requires an automatic 
approach for pre-processing. Therefore, we want to investigate techniques for partial 
event trace visualisation. Also, visualisation of millions of different processing elements 
on a screen with a limited resolution is challenging and we want to research alternative 
visualisation strategies for highly parallel applications. 

3.2 Paradigms	  
Each of the upcoming parallel paradigms typically comes with its own communication 
and synchronisation methods, enter and exit events. In addition, each parallel 
paradigm has its own specific performance behaviour where different kinds of 
performance issues may occur.   

Investigation of all communication and synchronisation events within one view can 
result in a misleading view when one paradigm hides the performance behaviour of 
another paradigm. Therefore, we want to investigate possibilities in how to filter, 
summarise, and visualise performance information of heterogeneous applications, 
which use different paradigms concurrently, within Vampir (if Vampir is able to 
distinguish between the different event classes derived from the paradigms). 

3.3 Fault-‐tolerance	  
In the case of hardware failures performance information will be corrupted and 
incomplete. Therefore, Vampir has to deal with this data in appropriate way, e.g. even 
on corrupted data functionalities like the message matching should work. Therefore, we 
want to investigate techniques that allows message matching on incomplete data, i.e. 
missing communication events. This can be done either by using piggy-backing 
techniques, i.e., extension of the original message by adding additional information to 
the message, additional messages, or by additional information provided by the MPI-3 
standard. 
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For further information on fault-tolerance and fault-recovery see section 5. 

3.4 Interaction	  and	  Interfaces	  
Profiling and statistical information can provide in a first step insight into the application.  
We intend to highlight these profiling and statistical results and locate outliers, 
irregularities and hot spots within Vampir. 
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4 Testing	  plan	  
For performance and scalability purposes we will use the benchmark suite from WP 2 
D2.6.1 to test the performance monitoring and analysis tools. 

Correctness and functionality tests are already implemented in the development flow of 
each tool and will be used continuously to ensure the needed quality for each CRESTA 
development branch (for each feature a separate branch). 

4.1 Score-‐P	  
Score-P has its own quality management system and a continuous integration checker 
called bitten, a plugin of trac, internal review processes for new extensions and 
modifications, and also nightly builds and tests on various platforms provided by the 
Score-P partners. 

4.2 Vampir	  and	  VampirServer	  
Vampir as a commercial product comes with its own quality management workflow and 
nightly builds on different platforms. 
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5 Fault-‐tolerance	  	  
Expectations for Exascale systems indicate that mean-time-to-failure may be far lower 
than a day. As a result, applications, systemware, operating system, and any type of 
runtime tool need to be aware of possible failures and may also need to recover from 
them. This may include the use of spare nodes or cores to replace failed components. 

These effects need to be considered for the development of performance monitoring 
and analysis tools for exascale systems. Work package 2 evaluates operating system 
and programming model changes to handle such hardware faults in D2.5.2, which will 
be released in month 30 of the project. Thus, at the current project state, there is close 
to no indication how these mechanism and designs might look like. This includes an 
indication of a mean-time-to-failure that is to be expected. Also possible advances in 
hardware may render these concerns unnecessary altogether. As an immediate 
consequence we will not address any modifications for fault tolerance in this design 
document. Our hope is to use the insights that are available around project month 20, 
to include them in the second version of this design document (month 24). 
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