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1 	
  Introduction	
  
This document (“Performance Analysis Design Document, D.3.3.2”) is an update of the 
previous D3.3.1. to present possible designs, planned modifications and extensions to 
the existing application performance analysis tools Score-P [1] and Vampir [2] to 
address scalability and heterogeneity.  

We organized the document as follows: in section 2 we describe the designs and 
extensions for the performance monitoring tool Score-P, i.e. collection of different kinds 
of performance counter and integration within the monitoring system, reduction of the 
amount of data to address scalability issues identified within the gap analysis (D3.1), 
and what extension will be done to address applications’ demands on heterogeneity. In 
section 3 will specify the designs and extensions in terms of scalability and 
heterogeneity of the performance analysis and visualisation tool Vampir. Within section 
4 we present how to ensure that any extensions that we provide are well-tested and 
suitable for productive use. Finally, in section 5 we address the state of fault-tolerance. 

1.1 Purpose	
  
This deliverable will specify the ideas and extensions to the application performance 
analysis tools Score-P and Vampir to address the following key components to meet 
exascale performance analysis requirements: 

• Covering relevant performance data by including additional data sources from 
the hardware and runtime level (processor, bus, memory subsystem, network, 
faults, recovery); 

• Pre-selection and automatic reduction of monitoring data to cope with the 
limitations of data storage, data visualisation, and last but not least human 
perception; 

• Automatic data analysis and visualisation processes that guide the user through 
the optimisation process. 

1.2 Changes	
  to	
  D3.3.1	
  
Section 2 

• Changed architecture figure of Score-P to current state and added information 
about CUDA instrumentation 

Section 2.1 

• Added part for system topology on Cray systems 
• Added part for metric plugin interface and example for power monitoring on 

Cray XC30 
Section 2.2 

• Added information for fault-tolerant matching scheme 

Section 2.3.2 

• Added information for monitoring CUDA activities via CUPTI and generic one-
sided RMA event model 

Section 2.3.3 

• Extended PGAS section by addressing GASPI, SHMEM, and Chapel 
• Introduced Score-P’s generic one-sided RMA event model 
• Added results from Co-Array-Fortran co-design team 
• Added information for UPC monitoring 
• Added sections 2.3.3.1 – 2.3.3.3 

Section 3.1 

• Added information for partial event analysis of large trace file data with Vampir 
and example with NEK5000 trace file 
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Section 3.2 

• Added selective trace analysis by paradigm, location, name with Vampir and 
usage example with Gromacs  

Section 4 

• Added section 4.3 

1.3 Glossary	
  of	
  Acronyms	
  
cronym Definition 
CAF 
CCG 
CPU 
CUDA 
CUPTI 
D 
DMAPP 
GASPI 
GPU 
IOFSL 
MPI 
NIC 
OPARI 
OpenCL 
OpenMP 
OTF 
PAPI 
PGAS 
Pthreads 
RMA 
TAU 
TUD 
UPC 

Co-Array Fortran 
Complete Call Graph 
Central Processing Unit 
Compute Unified Device Architecture 
CUDA Profiling Tools Interface 
Deliverable 
Distributed Shared Memory Application 
Global Address Space Programming Interface 
Graphics Processing Unit 
I/O Forwarding Scalability Layer 
Message Passing Interface 
Network Interface Controller 
OpenMP Pragma and Region Instrumentor 
Open Computing Language 
Open Multi-Processing 
Open Trace Format 
Performance API 
Partitioned Global Address Space 
POSIX threads 
Remote Memory Access 
Tuning and Analysis Utilities 
Technische Universitaet Dresden 
Unified Parallel C 

  



 

© CRESTA Consortium Partners 2011  Page 7 of 26 

  

2 Performance	
  Monitoring	
  
Driven by the experiences, basically various scalability limitations, gathered from our 
predecessor performance measurement systems, e.g. VampirTrace and Scalasca, and 
their corresponding file formats OTF and EPILOG, TUD and other partners have 
developed a newly designed joint performance measurement system called Score-P 
(see Error! Reference source not found.) [1] and its underlying file format OTF2 [3] 
with focus on scalability (e.g., efficient handling of MPI communicators, and a tree-
based reduction for trace unification), and interoperability with various performance 
analysis tools for application performance monitoring and analysis. Within this project 
we will use Score-P as the main application monitoring system and will adept and 
extend it to the needs of exascale application performance analysis identified within 
CRESTA. 

Monitoring highly parallel applications with Score-P can be easily done by 
instrumenting the application with measurement probes and linking against several 
runtime libraries. Currently, Score-P provides the following instrumentation techniques: 

• Compiler instrumentation, 
• MPI library interposition, 
• OpenMP source code instrumentation using OPARI2, 
• CUDA instrumentation, 
• Source code instrumentation via the TAU instrumentor, and 
• User instrumentation using convenient macros, 

to collect performance relevant data on C/C++ and Fortran codes. In addition, it is 
possible to record several hardware counters by using the PAPI interface. 

 
Figure 1 Architecture of the Score-P instrumentation and measurement system. 

2.1 Performance	
  Data	
  and	
  Topology	
  Information	
  
Exascale systems will evolve toward complex, highly parallel and maybe also 
heterogeneous architectures that include multi-core or many-core nodes as well as 



 

© CRESTA Consortium Partners 2011  Page 8 of 26 

  

heterogeneous accelerators such as GPUs. In such complex systems the use of 
hardware counters to gain insight into the highly parallel applications has become an 
accepted and integral method in the last decade [4]. 

PAPI (Performance API) and its components provide consistent platform and operating 
system-independent access to CPU hardware performance counters and hardware 
information of the machine subsystem, e.g. node-local I/O operations, that can be used 
in various performance monitoring tools. Traditionally, PAPI measures this information 
on a per-process or thread basis even on context switches since most of the CPU 
hardware performance counters are core-local and exclusive.  

Within today’s more and more complex processor architectures the number of shared 
resources increases and there are also performance counters (e.g., uncore counter), 
which do not belong to a specific core. These counters cannot be measured via PAPI 
and also cannot be used as performance information (counter) for a specific process or 
thread. All performance information that does not belong to a specific core, like power 
of a node, temperature of a node, or on some architectures L3-Cache performance 
information have to be recorded separately and mapped to the corresponding process, 
and threads. To reduce the redundancy of performance information, to reduce the 
perturbation of hardware performance counter monitoring, and to increase the 
scalability of the performance monitoring it is advisable to record performance 
information of shared resources once and to map this information within the application 
monitoring to the corresponding locations. 

Besides the hardware performance counters there exists a multitude of performance 
information within the machine sub-system. Cray provides for the Gemini network two 
categories of performance counters to the users [5]. Counters of the first category are 
NIC (Network Interface Controller) performance counters, which record information 
about the data moving through the network interface controllers. These counters reflect 
the network transfers beginning and ending on the node. The second category is 
network router tile counters. These atomic counters provide fine-granular information of 
each of the 48 tiles on a chip. Currently, these counters are only accessible via a 
proprietary interface and are at the moment from a user-view only available by using 
the CrayPat profiler [5][6]. 

Since there is no common interface for network performance counter like PAPI, we 
firstly plan to investigate which counters of the multitude of network counters are 
suitable for the application performance monitoring and how to measure them. In 
addition, it is advisable to map this information to the network topology of the machine. 
Therefore, we want to investigate techniques to detect the machine hardware and 
network topology and to include this information within the measurement system. This 
can be done either via a vendor topology API or a static machine description file. 

In a second step, a proposal for a unique interface for network counters, maybe as a 
PAPI component or some other API that can be used within a wide range of monitoring 
tools either for global monitoring or application monitoring, would be very helpful. 
Because of the limited resources in this project this step will be postponed. 

Depending on the latency and perturbation of performance counter requests and the 
locality of the performance information, the performance information can be measured 
during the application monitoring or can be added afterwards. Since it is at the moment 
not advisable to record Cray Gemini network counter within the application monitoring 
[5][7], and therefore to reduce the perturbation of the measurement, and network 
performance counter are basically not task-related, we want to record this information 
simultaneously with the application run and add it afterwards.   

Cray provides the PMI interface on its systems to gather hardware topology information 
like node, router asic information, blade, cage, and cabinet information. Score-P was 
extended to make use of this information and stores it internally within a tree-based 
system hierarchy (see Figure 2). This hierarchy information is needed to classify 
different threads of execution and also to associate machine and node performance 
counter with the application performance information.  
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Figure 2 Visualisation of the Cray hardware topology within Vampir’s filter dialog. 

Since version 1.2 the measurement system is able to record generic and user-defined 
hierarchical performance counters with a metric plugins interface to address the level of 
complexity of today’s machine architectures and those of the future. This allows us to 
add synchronously and asynchronously recorded performance values like energy or 
power to the application monitoring information. Figure 3 shows the visual 
representation of a MPI parallel application using hyper-threading, running on four 
nodes with 32 processes each, and corresponding node power and freshness 
information with Vampir. 

 
Figure 3 Performance visualisation with Vampir of the application behaviour and node power and 
freshness information of a MPI parallel application using hyper-threading, running on four nodes 

with 32 processes each monitored on a Cray XC30. 

2.2 Scalability	
  
The continuation of the current fine-grained operation mode would produce an 
enormous amount of data (GBytes to TBytes in a few seconds) that would overstress 
storage, performance analysis, and visualisation. As a result, for a plausible 
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performance measurement only phases, events and processing elements of interest 
should be recorded.  

In a first step, we want to identify hot spots, outliers, and irregularities to identify the 
regions of interest. In a second step, we want to use this information to steer the 
instrumentation and measurement system for combined coarse-grained and fine-
grained data collection, i.e. use selective instrumentation for the events of interest in 
combination with a dynamic filtering approach that can be used during runtime. The 
creation of automatic filtering rules is thereby mandatory. One prerequisite of dynamic 
filtering approaches is that they do not change the causal context. Especially, filtering 
of MPI point-to-point communication events leads classical matching algorithms to 
produce mismatching or failure. Therefore, we proposed a new fault tolerant matching 
scheme in [18] that produces reliable matching even in the presence of missing send or 
receive events. 

Furthermore, we want to enable and disable the recording of the measurement to 
reduce the amount of data. We also want to be able to measure all phases of an 
application, e.g. all iterations of a loop, and only store phases of interest, which 
exceeds a predetermined threshold. Phases of non-interest will therefore be neglected. 

In conclusion, we will research which steering, and filtering decisions can be done at 
runtime or should generated in a post-mortem step to steer the next performance 
measurement run. 

Another research idea is to reduce the amount of data by combination of coarse-
grained sampling and fine-grained event instrumentation for an optimal insight into the 
highly parallel applications. For the beginning we will focus on the previously 
mentioned selective instrumentation and dynamic runtime filtering with steering 
information from an irregularity analysis and will post-pone this topic. 

2.3 Parallel	
  Programming	
  Models	
  
To address the complexity and heterogeneity of exascale architectures new parallel 
programming models and paradigms arise or become more and more popular. To gain 
insight into these new dimensions of parallelism, performance measurement systems 
like Score-P have to be extended to measure the information of interest. Furthermore, 
they must be able to avoid additional communication and synchronisation overheads 
while setting up different namespaces to handle these different types of events without 
any loss of information. The information generation can be done either by 
instrumentation or sampling.  

Since Score-P currently only provides an infrastructure for instrumentation techniques 
to intercept relevant events we will focus on instrumentation techniques for new parallel 
paradigms within the research, but nevertheless sampling is always an alternative. 

2.3.1 Performance	
  Monitoring	
  of	
  Pthreads	
  
Monitoring of POSIX threads (Pthreads) can be easily done by using a classical 
function wrapping approach, where all POSIX calls will be renamed to the 
corresponding wrapping calls by the pre-processor and the wrapping calls are 
responsible to call the measurement system, which creates the corresponding events, 
and the original POSIX function.  

Since Pthreads are using shared memory segments it is important that the monitoring 
system does not mix the events of concurrent threads and therefore must distinguish 
the threads from each other to ensure the consistency of the event buffers and 
chronology.  

We are planning to extend the flexible task identification model within Score-P so that it 
is able to handle multiple parallel programming models and paradigms used 
simultaneously within one application. 
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2.3.2 Performance	
  Monitoring	
  of	
  Hardware	
  Accelerators	
  (CUDA/OpenCL)	
  
In the last years CUDA/OpenCL capable devices became more and more popular in 
the High Performance computing area since they are promising more floating point 
operations per seconds than a typical CPU will ever provide in a user application. 

Host-side activities of OpenCL capable devices can be either monitored by 
instrumenting the library (if source code is available) or by using a shared library 
wrapper approach that uses the LD_PRELOAD mechanism.  

Besides the host-based recording, some activities of the kernel can be monitored 
directly. For example, kernel execution and data transfers. 

Monitoring of CUDA applications can be either done via the CUDA Profiling Tools 
Interface (CUPTI) [8] or by the previously mentioned library wrapping approach. CUPTI 
provides different APIs that can be used to get insight into the CPU and GPU 
behaviour of CUDA applications. The benefits of CUPTI in comparison to the library 
wrapping approach are the reduced perturbation of the kernel execution and precise 
event (kernel) time information. 

Since version 1.2 Score-P is able to monitor CUDA activities via CUPTI and OpenCL 
activities via a shared library wrapping approach. The use of the new developed 
generic one-sided RMA event model allows us to monitor memory transfers between 
host and graphic card as one-sided communication. 

2.3.3 Performance	
  Monitoring	
  of	
  PGAS	
  Models	
  
Partitioned Global Address Space (PGAS) models are available as library-based 
paradigms, e.g., Global Address Space Programming Interface (GASPI), SHMEM, as 
language extensions, e.g., UPC, Co-Array Fortran (CAF), and also new languages, 
e.g., Chapel.  

Instrumentation of these PGAS languages can be done on different levels depending 
on how these languages are implemented on a specific computing platform. 

1. If available by using a compiler instrumentation interface. 
2. If available by using the monitoring interface provided by the PGAS model. 
3. On systems where the language constructs are translated into calls to a runtime 

library, it is possible to intercept these library calls and record them. This can be 
done either by instrumenting the library or using a shared library wrapper 
approach that uses the LD_PRELOAD mechanism. 

4. On systems where the language constructs are processed in the compiler 
runtime like on the Cray systems a library wrapping approach as proposed 
before will not work. In these cases one possibility is to extend a source-to-
source instrumentor like OPARI to instrument these language extensions [9] or 
to convince the compiler vendors to provide language specific instrumentation 
interfaces. 

5. Depending on the system implementation of these language extensions it is 
sometimes more applicable to monitor the underlying communication libraries, 
e.g., the DMAPP library on the Cray systems [10], and not to focus directly on 
these language constructs. The advantage is that this approach focuses on the 
network communication but in contrast some detailed information about the 
language constructs cannot be captured, e.g., one-sided in-memory 
communication of different processes in Co-Array Fortran running on the same 
node. 

To exchange data between the different memory locations PGAS languages use RMA 
(Remote Memory Access) operations as their underlying communication substrates. 
Therefore, we investigated one-sided communication models and developed a generic 
event model to record RMA operations in the OTF2 trace format for range of one-sided 
APIs and libraries [14]. Within CRESTA the Co-Array Fortran co-design team was 
established to investigate the possibilities and potentials of this PGAS language to 
overlap communication and computation within a world leading production application 
like ECMWF’s Integrated Forecasting system (IFS). It turns out that the monitoring of 
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Cray’s Co-Array Fortran fine granular operations will be only possible by using a 
source-to-source instrumentor or by indirect monitoring of the underlying 
communication library, i.e., monitoring of the Cray DMAPP library, due to the fact that 
the language constructs are processed in the compiler runtime. The same holds for the 
Cray UPC implementation.  

Instrumentation of UPC application build with the GNU UPC or Berkeley UPC compiler 
can be done through the GASP tool interface [16]. Because of time constraints and no 
demand for UPC within CRESTA we will not investigate the monitoring via this 
interface in more detail. 

Besides the monitoring of the Cray DMAPP library we also currently investigate the 
possibilities to monitor other PGAS models like GASPI and SHMEM, which are also 
promising to scale towards exascale.  

2.3.3.1 Monitoring	
  of	
  the	
  Cray	
  DMAPP	
  Library	
  
On Cray systems Co-Array Fortran and UPC routines make use of the libpgas library, 
which uses the DMAPP library as underlying communication library. The calls to this 
library can be intercepted with a library wrapping approach and one-sided 
communication operations can be recorded with the generic one-sided RMA event 
model. Initialisation and finalisation with hierarchical unification can be done using MPI 
as underlying communication layer. Figure 4 shows the visualisation of a short Co-
Array Fortran example. It can be observed that there are tiny functions, which are 
called very frequently like for example dmapp_c_pset_test. For tiny functions, which 
are called very frequently, it is advisable to disable the detailed monitoring and to 
enable only profiling to prevent the monitoring system to be swamped by these 
functions or in worst case if the overhead is too high to disable the monitoring of this 
class of functions. 

 
Figure 4 Performance visualisation of the Cray DMAPP communication library with Vampir. It is 

important to see that dmapp_c_pset_test is called very often and therefore should not be recorded 
in detail to reduce the overhead of the monitoring. 

2.3.3.2 Monitoring	
  of	
  GASPI	
  
The Global Address Space Programming Interface (GASPI) is a PGAS API based on 
asynchronous communication and execution model. GASPI provides configurable 
RDMA PGAS memory segments and allows application developers to map the memory 
heterogeneity of modern supercomputer to these PGAS segments. All these segments 
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can directly read and write from/to each other – within the node and across all nodes 
[17].  

The data exchange in GASPI is based on one-sided asynchronous communication and 
can be therefore easily adapted to work with Score-P’s generic RMA event model. 

Since GASPI provides no point-to-point communication operation, which is a 
prerequisite of Score-P to map the local identifiers to global and unique identifiers 
within the hierarchical unification operation, the unification interface has to be adapted 
to the needs of GASPI. This can be achieved by implementing a hierarchical unification 
model based on the asynchronous GASPI communication operations or by emulation 
of point-to-point operations with asynchronous communication operations and reuse of 
the existing point-to-point hierarchical unification model. 

The instrumentation of the GASPI library and therefore the generation of information 
can be done by using a library wrapping approach and definition of the event tracing 
interface. 

Currently, GASPI is no object of the CRESTA co-design research but it is further 
promising asynchronous approach to overlap communication and computation and 
therefore might be considered and investigated in the future. 

2.3.3.3 Monitoring	
  of	
  SHMEM	
  
SHMEM is a PGAS paradigm very similar with MPI to pass data between cooperating 
parallel processes on logically shared distributed memory. 

2.3.3.3.1 Monitoring	
  of	
  Cray	
  SHMEM	
  
The one-sided communication operations of Cray SHMEM can be easily recorded with 
Score-P’s generic RMA event model. 

Cray SHMEM allows the coexistence of MPI and therefore initialisation and finalisation 
of the measurement system can be easily used with the MPI interface of Score-P. 

The instrumentation can either be done by a library wrapping approach or by definition 
of weak symbols and use of the strong symbols provided by the Cray SHMEM library, 
this approach is very similar to the PMPI interface of MPI. 

Figure 5 shows the visualisation of the performance monitoring of a Cray SHMEM 
application. 

2.3.3.3.2 Monitoring	
  of	
  OpenSHMEM	
  
In 2010 the OpenSHEM community started an effort to standardize SHMEM and to 
bring together a variety of SHMEM and SHMEM-like implementations into an open 
standard [15].  

Based on the one-sided communication API, the monitoring of these functions should 
work with the generic RMA event model of Score-P. But nevertheless, OpenSHMEM 
uses an own communication layer and integration of OpenSHMEM in Score-P is more 
time consuming than other PGAS implementation like Cray SHMEM. Since there is at 
the moment no demand for OpenSHMEM within CRESTA and also there are time 
constraints, we will not investigate the monitoring of OpenSHMEM in more detail. 
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Figure 5 Performance visualisation of a massive parallel bucket sort parallelized with Cray SHMEM. 

The master timeline shows very impressively the master-slave communication implemented with 
shmem_get64 operations coloured in light blue between the different processes surrounded by 

tow shmem_barrier_all operations coloured in yellow.  

2.3.4 Performance	
  Monitoring	
  of	
  Third-­‐party	
  Libraries	
  
The function call behaviour of third-party libraries, i.e. proprietary vendor libraries, 
where the calls are located in a runtime library, can be recorded by using a shared 
library wrapper that uses the LD_PRELOAD mechanism. We plan to extend Score-P to 
support library wrapping of shared libraries. 

2.3.5 Possible	
  Future	
  Extensions	
  	
  
1. Extension of Score-P to support library wrapping of shared libraries. 
2. Extension of Score-P Pthreads, and maybe further parallel programming 

models. 
3. Flexible and generic task identification model that supports multiple parallel 

paradigms together. 
4. Extension of Score-P by a counter interface that allows to add counters from 

global (shared) resources and also to add counters to existing traces in a 
scalable way. 

2.4 Fault-­‐tolerance	
  
See section 5 for more general information on fault-tolerance and fault-recovery. 
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3 Performance	
  Analysis	
  and	
  Visualisation	
  
Investigating performance information of million of concurrent processing elements will 
only be applicable for users by using intelligent data mining, data compression and 
visualisation strategies. Application performance visualizers like Vampir [2] come with 
various displays to gain insight into the highly complex behaviour of parallel 
applications in an intuitive way but are struggling with trillions of performance 
information. To handle the amounts of data gathered from the application monitoring, 
scalable and intelligent data analysis and processing techniques have to be developed. 

3.1 Scalability	
  
Offline performance analysis techniques have to handle amounts of information of a 
whole measurement run and usually store this information in its entirety on the parallel 
file system. Creating one file per measured location (e.g., process or thread) will no 
longer work on future file systems on a POSIX basis, because of the complex 
relationships of billions of entities with metadata and object data information organized 
on a folder structure, and therefore, we are evaluating different strategies like the use 
of the Sionlib [11] or IOFSL [12] to overcome scalability issues with future parallel file 
systems. 

Bandwidth and capacity of the entire memory hierarchy – including the file system – 
are also limiting factors for offline performance analysis, as long as no information 
reduction is done. Data compression reduction techniques, such as the data reduction 
on the Complete Call Graph (CCG) data structure [13] will become a necessity at 
exascale in order to perform on-the-fly information reduction. We will develop a library 
that supports the creation of CCGs and investigate different visualisation alternatives 
for CCGs within Vampir. 

The information of an entire time interval of millions of concurrent processing elements 
needs to be transferred and processed. Exascale performance analysis will require 
solutions to reduce the amount of data that tools display. One such option is to only 
display “interesting” locations that behave differently, which requires an automatic 
approach for pre-processing. Vampir uses pre-calculated summary information to 
partially load and analyse large event trace information and to visualise only specific 
segments of the whole monitoring run. In addition it also allows to exclude specific 
threads of execution from the analysis and visualisation, see Figure 6 as an example 
for this feature while loading a NEK5000 trace file. 
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Figure 6 Vampir’s Partial Loading Dialog showing the loading of the NEK5000 trace in the time 

range of 0 seconds to 1.6 seconds for the processes 512-1024. 
 

Also, visualisation of millions of different processing elements on a screen with a 
limited resolution is challenging and we want to research alternative visualisation 
strategies for highly parallel applications. 

3.2 Parallel	
  Programming	
  Models	
  
Each of the upcoming parallel paradigms typically comes with its own communication 
and synchronisation methods, enter and exit events. In addition, each parallel 
paradigm has its own specific performance behaviour where different kinds of 
performance issues may occur.   

Investigation of all communication and synchronisation events within one view can 
result in a misleading view when one paradigm hides the performance behaviour of 
another paradigm. Therefore, Vampir allows to explicitly select and deselect specific 
threads of execution by their paradigm, their location in the system tree, and also by 
their name, see Figure 7 and Figure 8. The information displayed in the various 
timeline and statistic displays will be adapted to this selection rules. 
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Figure 7 Vampir’s filtering dialog to filter threads of execution based on the paradigm. 

 
Figure 8 Vampir’s filtering dialog to filter threads of execution by their topology information. 

3.3 Fault-­‐tolerance	
  
In the case of hardware failures performance information will be corrupted and 
incomplete. Therefore, Vampir has to deal with this data in appropriate way, e.g. even 
on corrupted data functionalities like the message matching should work. Therefore, we 
want to investigate techniques that allows message matching on incomplete data, i.e. 
missing communication events. This can be done either by using piggy-backing 
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techniques, i.e., extension of the original message by adding additional information to 
the message, additional messages, or by additional information provided by the MPI-3 
standard. 

For further information on fault-tolerance and fault-recovery see section 5. 

3.4 Interaction	
  and	
  Interfaces	
  
Profiling and statistical information can provide in a first step insight into the application.  
We intend to highlight these profiling and statistical results and locate outliers, 
irregularities and hot spots within Vampir. 
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4 Testing	
  Plan	
  
For performance and scalability purposes we will use the benchmark suite from WP 2 
D2.6.1 to test the performance monitoring and analysis tools. In addition we test our 
tools with their functionality and features with the CRESTA applications Gromacs, IFS, 
Nek5000, HemeLB, and OpenFoam. 

Correctness and functionality tests are already implemented in the development flow of 
each tool and will be used continuously to ensure the needed quality for each CRESTA 
development branch (for each feature a separate branch). 

4.1 Score-­‐P	
  
Score-P has its own quality management system and a continuous integration checker 
called bitten, a plugin of trac, internal review processes for new extensions and 
modifications, and also nightly builds and tests on various platforms provided by the 
Score-P partners. 

4.2 Vampir	
  and	
  VampirServer	
  
Vampir as a commercial product comes with its own quality management workflow and 
nightly builds on different platforms. 

4.3 Performance	
   Monitoring	
   Tests	
   and	
   Performance	
  
Visualisation	
  Results	
  of	
  CRESTA	
  Applications	
  

This section provides a short summary of the monitoring tests and performance 
visualisation with Vampir of each individual CRESTA application. The monitoring 
results were created on the Cray machines provided by KTH, HLRS, and KTH. The 
number of the used threads of execution mainly depends on the provided input files 
and varies from 128 to 2040 cores. 

The intention of this section is to demonstrate and to test the usability of the 
performance tools and not to provide a detailed performance issues or scalability 
discussion. Each application group should address this individually. 

4.3.1 Performance	
  Monitoring	
  Test	
  and	
  Visualisation	
  Result	
  of	
  Gromacs	
  
We monitored Gromacs with various numbers of threads of execution and different 
parallel paradigms from pure MPI applications to hybrid versions of Gromacs 
MPI+OpenMP see Figure 10, or MPI+OpenMP+CUDA see Figure 9. 

Since Gromacs uses beside a data parallelism also a function parallelism, the use of 
Vampir’s filter functionality helps to investigate different classes of parallelism in more 
detail see Figure 10, Figure 11, and Figure 12. 
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Figure 9 Performance visualisation of a hybrid version of Gromacs parallelized with MPI, OpenMP, 

and CUDA running on 8 nodes with 16 cores and 2 Nvidia K20 each. Every process uses one Nvidia 
graphic card and sends its kernels coloured in blue to two different streams. 

 
Figure 10 Performance visualisation with Vampir of the runtime behaviour of a hybrid Gromacs 
parallelized with MPI and OpenMP. One quarter of the processes and corresponding threads are 

responsible to compute the bonded interactions and integration (PME).   



 

© CRESTA Consortium Partners 2011  Page 21 of 26 

 

 
Figure 11 Vampir’s filter dialog to select only the PME processes by using a regular expression. 

The resulting visualisation can be seen in Figure 12. 

 
Figure 12 Performance visualisation of a selection of processes and threads (PME) with Vampir for 

a more detailed and focussed performance analysis without any “colouring noise” of the rest of 
the processes and threads. 

4.3.2 Performance	
  Monitoring	
  Test	
  and	
  Visualisation	
  Result	
  of	
  IFS	
  
We monitored a hybrid version of IFS parallelized with MPI and OpenMP running with 
dataset T1023. The performance visualisation of the application behaviour with Vampir 
can be seen in Figure 13. 
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Figure 13 Performance visualisation with Vampir of a hybrid IFS T1023 run. 

4.3.3 Performance	
  Monitoring	
  Test	
  and	
  Visualisation	
  Result	
  of	
  Nek5000	
  
We monitored a MPI parallel version of Nek5000 with a jet data input set. The 
performance visualisation with Vampir can be seen in Figure 14. 

 
Figure 14 Performance visualisation with Vampir of Nek5000 parallelised with MPI. 

4.3.4 Performance	
  Monitoring	
  Test	
  and	
  Visualisation	
  Result	
  of	
  HemeLB	
  
We monitored a MPI parallel version of HemeLB. The performance visualisation with 
Vampir can be seen in Figure 15. 
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Figure 15 Performance visualisation with Vampir of HemeLB parallelised with MPI. 

4.3.5 Performance	
  Monitoring	
  Test	
  and	
  Visualisation	
  Result	
  of	
  OpenFoam	
  
We monitored a MPI parallel version of OpenFoam. The performance visualisation with 
Vampir can be seen in Figure 16. 

 

 
Figure 16 Performance visualisation with Vampir of OpenFoam parallelised with MPI. 
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5 Fault-­‐tolerance	
  	
  
Expectations for Exascale systems indicate that mean-time-to-failure may be far lower 
than a day. As a result, applications, systemware, operating system, and any type of 
runtime tool need to be aware of possible failures and may also need to recover from 
them. This may include the use of spare nodes or cores to replace failed components. 

These effects need to be considered for the development of performance monitoring 
and analysis tools for exascale systems. Work package 2 evaluates operating system 
and programming model changes to handle such hardware faults in D2.5.2, which will 
be released in month 30 of the project. Thus, at the current project state, there is close 
to no indication how these mechanism and designs might look like. This includes an 
indication of a mean-time-to-failure that is to be expected. Also possible advances in 
hardware may render these concerns unnecessary altogether. As an immediate 
consequence we will not address any modifications for fault tolerance in this design 
document.  
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