

© CRESTA Consortium Partners 2011 Page 1 of 26

D3.3.2	
 –	
 Performance	
 Analysis	
 Tools	

Design	
 Document	

Development	
 environment	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization TUD

Version: 1.0

Status Final

Author(s):

Jens Doleschal (TUD), Ronny Tschueter (TUD), Thomas Ilsche
(TUD), Mario Bielert (TUD), Frank Winkler (TUD), Bert Wesarg
(TUD), Holger Brunst (TUD), Harvey Richardson (CRAY), Berk
Hess (KTH), George Mozdsynski (ECMWF), Xavi Aguilar (KTH),
Adam Peplinski (KTH), Jiri Jaros (KTH), Michele Weiland
(UEDIN), Lawrence Mitchell (UEDIN), Stephen Sachs (CRAY)

Reviewer(s) Jason Beech-Brandt (CRAY), Peter Coveney (UCL)

Dissemination level

PU PU – Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

© CRESTA Consortium Partners 2011 Page 2 of 26

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 16/07/12 Finale version of D3.3.1 Jens Doleschal (TUD)

0.2 23/08/13 Version of D3.3.2 for internal review Jens Doleschal (TUD)

0.3 11/09/13 Addressed comments from internal
review

Jason-Beech-Brandt
(CRAY)

0.4 12/09/13 Addressed comments from internal
review

Peter Coveney (UCL)

1.0 13/09/13 Final version for submission Jens Doleschal (TUD)

© CRESTA Consortium Partners 2011 Page 3 of 26

Table	
 of	
 Contents	

1	
 INTRODUCTION	
 ...	
 5	

1.1	
 PURPOSE	
 ...	
 5	

1.2	
 CHANGES	
 TO	
 D3.3.1	
 ...	
 5	

1.3	
 GLOSSARY	
 OF	
 ACRONYMS	
 ...	
 6	

2	
 PERFORMANCE	
 MONITORING	
 ...	
 7	

2.1	
 PERFORMANCE	
 DATA	
 AND	
 TOPOLOGY	
 INFORMATION	
 ...	
 7	

2.2	
 SCALABILITY	
 ...	
 9	

2.3	
 PARALLEL	
 PROGRAMMING	
 MODELS	
 ..	
 10	

2.3.1	
 Performance	
 Monitoring	
 of	
 Pthreads	
 ...	
 10	

2.3.2	
 Performance	
 Monitoring	
 of	
 Hardware	
 Accelerators	
 (CUDA/OpenCL)	
 	
 11	

2.3.3	
 Performance	
 Monitoring	
 of	
 PGAS	
 Models	
 ..	
 11	

2.3.4	
 Performance	
 Monitoring	
 of	
 third-­‐party	
 Libraries	
 ...	
 14	

2.3.5	
 Possible	
 Future	
 Extensions	
 ..	
 14	

2.4	
 FAULT-­‐TOLERANCE	
 ..	
 14	

3	
 PERFORMANCE	
 ANALYSIS	
 AND	
 VISUALISATION	
 ...	
 15	

3.1	
 SCALABILITY	
 ...	
 15	

3.2	
 PARALLEL	
 PROGRAMMING	
 MODELS	
 ..	
 16	

3.3	
 FAULT-­‐TOLERANCE	
 ..	
 17	

3.4	
 INTERACTION	
 AND	
 INTERFACES	
 ...	
 18	

4	
 TESTING	
 PLAN	
 ...	
 19	

4.1	
 SCORE-­‐P	
 ...	
 19	

4.2	
 VAMPIR	
 AND	
 VAMPIRSERVER	
 ..	
 19	

4.3	
 PERFORMANCE	
 MONITORING	
 TESTS	
 AND	
 PERFORMANCE	
 VISUALISATION	
 RESULTS	
 OF	
 CRESTA	
 APPLICATIONS	
 ...	
 19	

4.3.1	
 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 Gromacs	
 	
 19	

4.3.2	
 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 IFS	
 ..	
 21	

4.3.3	
 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 Nek5000	
 	
 22	

4.3.4	
 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 HemeLB	
 	
 22	

4.3.5	
 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 OpenFoam	
 	
 23	

5	
 FAULT-­‐TOLERANCE	
 ..	
 24	

6	
 REFERENCES	
 ..	
 25	

Index	
 of	
 Figures	

Figure 1 Architecture of the Score-P instrumentation and measurement system. 7	

Figure 2 Visualisation of the Cray hardware topology within Vampir’s filter dialog. 9	

Figure 3 Performance visualisation with Vampir of the application behaviour and node
power and freshness information of a MPI parallel application using hyper-threading,
running on four nodes with 32 processes each monitored on a Cray XC30. 9	

Figure 4 Performance visualisation of the Cray DMAPP communication library with
Vampir. It is important to see that dmapp_c_pset_test is called very often and therefore
should not be recorded in detail to reduce the overhead of the monitoring. 12	

Figure 5 Performance visualisation of a massive parallel bucket sort parallelized with
Cray SHMEM. The master timeline shows very impressively the master-slave
communication implemented with shmem_get64 operations coloured in light blue
between the different processes surrounded by tow shmem_barrier_all operations
coloured in yellow. .. 14	

Figure 6 Vampir’s Partial Loading Dialog showing the loading of the NEK5000 trace in
the time range of 0 seconds to 1.6 seconds for the processes 512-1024. 16	

© CRESTA Consortium Partners 2011 Page 4 of 26

Figure 7 Vampir’s filtering dialog to filter threads of execution based on the paradigm.
 .. 17	

Figure 8 Vampir’s filtering dialog to filter threads of execution by their topology
information. ... 17	

Figure 9 Performance visualisation of a hybrid version of Gromacs parallelized with
MPI, OpenMP, and CUDA running on 8 nodes with 16 cores and 2 Nvidia K20 each.
Every process uses one Nvidia graphic card and sends its kernels coloured in blue to
two different streams. ... 20	

Figure 10 Performance visualisation with Vampir of the runtime behaviour of a hybrid
Gromacs parallelized with MPI and OpenMP. One quarter of the processes and
corresponding threads are responsible to compute the bonded interactions and
integration (PME). ... 20	

Figure 11 Vampir’s filter dialog to select only the PME processes by using a regular
expression. The resulting visualisation can be seen in Figure 12. 21	

Figure 12 Performance visualisation of a selection of processes and threads (PME)
with Vampir for a more detailed and focussed performance analysis without any
“colouring noise” of the rest of the processes and threads. .. 21	

Figure 13 Performance visualisation with Vampir of a hybrid IFS T1023 run. 22	

Figure 14 Performance visualisation with Vampir of Nek5000 parallelised with MPI. .. 22	

Figure 15 Performance visualisation with Vampir of HemeLB parallelised with MPI. .. 23	

Figure 16 Performance visualisation with Vampir of OpenFoam parallelised with MPI.
 .. 23	

	

© CRESTA Consortium Partners 2011 Page 5 of 26

1 	
 Introduction	

This document (“Performance Analysis Design Document, D.3.3.2”) is an update of the
previous D3.3.1. to present possible designs, planned modifications and extensions to
the existing application performance analysis tools Score-P [1] and Vampir [2] to
address scalability and heterogeneity.

We organized the document as follows: in section 2 we describe the designs and
extensions for the performance monitoring tool Score-P, i.e. collection of different kinds
of performance counter and integration within the monitoring system, reduction of the
amount of data to address scalability issues identified within the gap analysis (D3.1),
and what extension will be done to address applications’ demands on heterogeneity. In
section 3 will specify the designs and extensions in terms of scalability and
heterogeneity of the performance analysis and visualisation tool Vampir. Within section
4 we present how to ensure that any extensions that we provide are well-tested and
suitable for productive use. Finally, in section 5 we address the state of fault-tolerance.

1.1 Purpose	

This deliverable will specify the ideas and extensions to the application performance
analysis tools Score-P and Vampir to address the following key components to meet
exascale performance analysis requirements:

• Covering relevant performance data by including additional data sources from
the hardware and runtime level (processor, bus, memory subsystem, network,
faults, recovery);

• Pre-selection and automatic reduction of monitoring data to cope with the
limitations of data storage, data visualisation, and last but not least human
perception;

• Automatic data analysis and visualisation processes that guide the user through
the optimisation process.

1.2 Changes	
 to	
 D3.3.1	

Section 2

• Changed architecture figure of Score-P to current state and added information
about CUDA instrumentation

Section 2.1

• Added part for system topology on Cray systems
• Added part for metric plugin interface and example for power monitoring on

Cray XC30
Section 2.2

• Added information for fault-tolerant matching scheme

Section 2.3.2

• Added information for monitoring CUDA activities via CUPTI and generic one-
sided RMA event model

Section 2.3.3

• Extended PGAS section by addressing GASPI, SHMEM, and Chapel
• Introduced Score-P’s generic one-sided RMA event model
• Added results from Co-Array-Fortran co-design team
• Added information for UPC monitoring
• Added sections 2.3.3.1 – 2.3.3.3

Section 3.1

• Added information for partial event analysis of large trace file data with Vampir
and example with NEK5000 trace file

© CRESTA Consortium Partners 2011 Page 6 of 26

Section 3.2

• Added selective trace analysis by paradigm, location, name with Vampir and
usage example with Gromacs

Section 4

• Added section 4.3

1.3 Glossary	
 of	
 Acronyms	

cronym Definition
CAF
CCG
CPU
CUDA
CUPTI
D
DMAPP
GASPI
GPU
IOFSL
MPI
NIC
OPARI
OpenCL
OpenMP
OTF
PAPI
PGAS
Pthreads
RMA
TAU
TUD
UPC

Co-Array Fortran
Complete Call Graph
Central Processing Unit
Compute Unified Device Architecture
CUDA Profiling Tools Interface
Deliverable
Distributed Shared Memory Application
Global Address Space Programming Interface
Graphics Processing Unit
I/O Forwarding Scalability Layer
Message Passing Interface
Network Interface Controller
OpenMP Pragma and Region Instrumentor
Open Computing Language
Open Multi-Processing
Open Trace Format
Performance API
Partitioned Global Address Space
POSIX threads
Remote Memory Access
Tuning and Analysis Utilities
Technische Universitaet Dresden
Unified Parallel C

© CRESTA Consortium Partners 2011 Page 7 of 26

2 Performance	
 Monitoring	

Driven by the experiences, basically various scalability limitations, gathered from our
predecessor performance measurement systems, e.g. VampirTrace and Scalasca, and
their corresponding file formats OTF and EPILOG, TUD and other partners have
developed a newly designed joint performance measurement system called Score-P
(see Error! Reference source not found.) [1] and its underlying file format OTF2 [3]
with focus on scalability (e.g., efficient handling of MPI communicators, and a tree-
based reduction for trace unification), and interoperability with various performance
analysis tools for application performance monitoring and analysis. Within this project
we will use Score-P as the main application monitoring system and will adept and
extend it to the needs of exascale application performance analysis identified within
CRESTA.

Monitoring highly parallel applications with Score-P can be easily done by
instrumenting the application with measurement probes and linking against several
runtime libraries. Currently, Score-P provides the following instrumentation techniques:

• Compiler instrumentation,
• MPI library interposition,
• OpenMP source code instrumentation using OPARI2,
• CUDA instrumentation,
• Source code instrumentation via the TAU instrumentor, and
• User instrumentation using convenient macros,

to collect performance relevant data on C/C++ and Fortran codes. In addition, it is
possible to record several hardware counters by using the PAPI interface.

Figure 1 Architecture of the Score-P instrumentation and measurement system.

2.1 Performance	
 Data	
 and	
 Topology	
 Information	

Exascale systems will evolve toward complex, highly parallel and maybe also
heterogeneous architectures that include multi-core or many-core nodes as well as

© CRESTA Consortium Partners 2011 Page 8 of 26

heterogeneous accelerators such as GPUs. In such complex systems the use of
hardware counters to gain insight into the highly parallel applications has become an
accepted and integral method in the last decade [4].

PAPI (Performance API) and its components provide consistent platform and operating
system-independent access to CPU hardware performance counters and hardware
information of the machine subsystem, e.g. node-local I/O operations, that can be used
in various performance monitoring tools. Traditionally, PAPI measures this information
on a per-process or thread basis even on context switches since most of the CPU
hardware performance counters are core-local and exclusive.

Within today’s more and more complex processor architectures the number of shared
resources increases and there are also performance counters (e.g., uncore counter),
which do not belong to a specific core. These counters cannot be measured via PAPI
and also cannot be used as performance information (counter) for a specific process or
thread. All performance information that does not belong to a specific core, like power
of a node, temperature of a node, or on some architectures L3-Cache performance
information have to be recorded separately and mapped to the corresponding process,
and threads. To reduce the redundancy of performance information, to reduce the
perturbation of hardware performance counter monitoring, and to increase the
scalability of the performance monitoring it is advisable to record performance
information of shared resources once and to map this information within the application
monitoring to the corresponding locations.

Besides the hardware performance counters there exists a multitude of performance
information within the machine sub-system. Cray provides for the Gemini network two
categories of performance counters to the users [5]. Counters of the first category are
NIC (Network Interface Controller) performance counters, which record information
about the data moving through the network interface controllers. These counters reflect
the network transfers beginning and ending on the node. The second category is
network router tile counters. These atomic counters provide fine-granular information of
each of the 48 tiles on a chip. Currently, these counters are only accessible via a
proprietary interface and are at the moment from a user-view only available by using
the CrayPat profiler [5][6].

Since there is no common interface for network performance counter like PAPI, we
firstly plan to investigate which counters of the multitude of network counters are
suitable for the application performance monitoring and how to measure them. In
addition, it is advisable to map this information to the network topology of the machine.
Therefore, we want to investigate techniques to detect the machine hardware and
network topology and to include this information within the measurement system. This
can be done either via a vendor topology API or a static machine description file.

In a second step, a proposal for a unique interface for network counters, maybe as a
PAPI component or some other API that can be used within a wide range of monitoring
tools either for global monitoring or application monitoring, would be very helpful.
Because of the limited resources in this project this step will be postponed.

Depending on the latency and perturbation of performance counter requests and the
locality of the performance information, the performance information can be measured
during the application monitoring or can be added afterwards. Since it is at the moment
not advisable to record Cray Gemini network counter within the application monitoring
[5][7], and therefore to reduce the perturbation of the measurement, and network
performance counter are basically not task-related, we want to record this information
simultaneously with the application run and add it afterwards.

Cray provides the PMI interface on its systems to gather hardware topology information
like node, router asic information, blade, cage, and cabinet information. Score-P was
extended to make use of this information and stores it internally within a tree-based
system hierarchy (see Figure 2). This hierarchy information is needed to classify
different threads of execution and also to associate machine and node performance
counter with the application performance information.

© CRESTA Consortium Partners 2011 Page 9 of 26

Figure 2 Visualisation of the Cray hardware topology within Vampir’s filter dialog.

Since version 1.2 the measurement system is able to record generic and user-defined
hierarchical performance counters with a metric plugins interface to address the level of
complexity of today’s machine architectures and those of the future. This allows us to
add synchronously and asynchronously recorded performance values like energy or
power to the application monitoring information. Figure 3 shows the visual
representation of a MPI parallel application using hyper-threading, running on four
nodes with 32 processes each, and corresponding node power and freshness
information with Vampir.

Figure 3 Performance visualisation with Vampir of the application behaviour and node power and
freshness information of a MPI parallel application using hyper-threading, running on four nodes

with 32 processes each monitored on a Cray XC30.

2.2 Scalability	

The continuation of the current fine-grained operation mode would produce an
enormous amount of data (GBytes to TBytes in a few seconds) that would overstress
storage, performance analysis, and visualisation. As a result, for a plausible

© CRESTA Consortium Partners 2011 Page 10 of 26

performance measurement only phases, events and processing elements of interest
should be recorded.

In a first step, we want to identify hot spots, outliers, and irregularities to identify the
regions of interest. In a second step, we want to use this information to steer the
instrumentation and measurement system for combined coarse-grained and fine-
grained data collection, i.e. use selective instrumentation for the events of interest in
combination with a dynamic filtering approach that can be used during runtime. The
creation of automatic filtering rules is thereby mandatory. One prerequisite of dynamic
filtering approaches is that they do not change the causal context. Especially, filtering
of MPI point-to-point communication events leads classical matching algorithms to
produce mismatching or failure. Therefore, we proposed a new fault tolerant matching
scheme in [18] that produces reliable matching even in the presence of missing send or
receive events.

Furthermore, we want to enable and disable the recording of the measurement to
reduce the amount of data. We also want to be able to measure all phases of an
application, e.g. all iterations of a loop, and only store phases of interest, which
exceeds a predetermined threshold. Phases of non-interest will therefore be neglected.

In conclusion, we will research which steering, and filtering decisions can be done at
runtime or should generated in a post-mortem step to steer the next performance
measurement run.

Another research idea is to reduce the amount of data by combination of coarse-
grained sampling and fine-grained event instrumentation for an optimal insight into the
highly parallel applications. For the beginning we will focus on the previously
mentioned selective instrumentation and dynamic runtime filtering with steering
information from an irregularity analysis and will post-pone this topic.

2.3 Parallel	
 Programming	
 Models	

To address the complexity and heterogeneity of exascale architectures new parallel
programming models and paradigms arise or become more and more popular. To gain
insight into these new dimensions of parallelism, performance measurement systems
like Score-P have to be extended to measure the information of interest. Furthermore,
they must be able to avoid additional communication and synchronisation overheads
while setting up different namespaces to handle these different types of events without
any loss of information. The information generation can be done either by
instrumentation or sampling.

Since Score-P currently only provides an infrastructure for instrumentation techniques
to intercept relevant events we will focus on instrumentation techniques for new parallel
paradigms within the research, but nevertheless sampling is always an alternative.

2.3.1 Performance	
 Monitoring	
 of	
 Pthreads	

Monitoring of POSIX threads (Pthreads) can be easily done by using a classical
function wrapping approach, where all POSIX calls will be renamed to the
corresponding wrapping calls by the pre-processor and the wrapping calls are
responsible to call the measurement system, which creates the corresponding events,
and the original POSIX function.

Since Pthreads are using shared memory segments it is important that the monitoring
system does not mix the events of concurrent threads and therefore must distinguish
the threads from each other to ensure the consistency of the event buffers and
chronology.

We are planning to extend the flexible task identification model within Score-P so that it
is able to handle multiple parallel programming models and paradigms used
simultaneously within one application.

© CRESTA Consortium Partners 2011 Page 11 of 26

2.3.2 Performance	
 Monitoring	
 of	
 Hardware	
 Accelerators	
 (CUDA/OpenCL)	

In the last years CUDA/OpenCL capable devices became more and more popular in
the High Performance computing area since they are promising more floating point
operations per seconds than a typical CPU will ever provide in a user application.

Host-side activities of OpenCL capable devices can be either monitored by
instrumenting the library (if source code is available) or by using a shared library
wrapper approach that uses the LD_PRELOAD mechanism.

Besides the host-based recording, some activities of the kernel can be monitored
directly. For example, kernel execution and data transfers.

Monitoring of CUDA applications can be either done via the CUDA Profiling Tools
Interface (CUPTI) [8] or by the previously mentioned library wrapping approach. CUPTI
provides different APIs that can be used to get insight into the CPU and GPU
behaviour of CUDA applications. The benefits of CUPTI in comparison to the library
wrapping approach are the reduced perturbation of the kernel execution and precise
event (kernel) time information.

Since version 1.2 Score-P is able to monitor CUDA activities via CUPTI and OpenCL
activities via a shared library wrapping approach. The use of the new developed
generic one-sided RMA event model allows us to monitor memory transfers between
host and graphic card as one-sided communication.

2.3.3 Performance	
 Monitoring	
 of	
 PGAS	
 Models	

Partitioned Global Address Space (PGAS) models are available as library-based
paradigms, e.g., Global Address Space Programming Interface (GASPI), SHMEM, as
language extensions, e.g., UPC, Co-Array Fortran (CAF), and also new languages,
e.g., Chapel.

Instrumentation of these PGAS languages can be done on different levels depending
on how these languages are implemented on a specific computing platform.

1. If available by using a compiler instrumentation interface.
2. If available by using the monitoring interface provided by the PGAS model.
3. On systems where the language constructs are translated into calls to a runtime

library, it is possible to intercept these library calls and record them. This can be
done either by instrumenting the library or using a shared library wrapper
approach that uses the LD_PRELOAD mechanism.

4. On systems where the language constructs are processed in the compiler
runtime like on the Cray systems a library wrapping approach as proposed
before will not work. In these cases one possibility is to extend a source-to-
source instrumentor like OPARI to instrument these language extensions [9] or
to convince the compiler vendors to provide language specific instrumentation
interfaces.

5. Depending on the system implementation of these language extensions it is
sometimes more applicable to monitor the underlying communication libraries,
e.g., the DMAPP library on the Cray systems [10], and not to focus directly on
these language constructs. The advantage is that this approach focuses on the
network communication but in contrast some detailed information about the
language constructs cannot be captured, e.g., one-sided in-memory
communication of different processes in Co-Array Fortran running on the same
node.

To exchange data between the different memory locations PGAS languages use RMA
(Remote Memory Access) operations as their underlying communication substrates.
Therefore, we investigated one-sided communication models and developed a generic
event model to record RMA operations in the OTF2 trace format for range of one-sided
APIs and libraries [14]. Within CRESTA the Co-Array Fortran co-design team was
established to investigate the possibilities and potentials of this PGAS language to
overlap communication and computation within a world leading production application
like ECMWF’s Integrated Forecasting system (IFS). It turns out that the monitoring of

© CRESTA Consortium Partners 2011 Page 12 of 26

Cray’s Co-Array Fortran fine granular operations will be only possible by using a
source-to-source instrumentor or by indirect monitoring of the underlying
communication library, i.e., monitoring of the Cray DMAPP library, due to the fact that
the language constructs are processed in the compiler runtime. The same holds for the
Cray UPC implementation.

Instrumentation of UPC application build with the GNU UPC or Berkeley UPC compiler
can be done through the GASP tool interface [16]. Because of time constraints and no
demand for UPC within CRESTA we will not investigate the monitoring via this
interface in more detail.

Besides the monitoring of the Cray DMAPP library we also currently investigate the
possibilities to monitor other PGAS models like GASPI and SHMEM, which are also
promising to scale towards exascale.

2.3.3.1 Monitoring	
 of	
 the	
 Cray	
 DMAPP	
 Library	

On Cray systems Co-Array Fortran and UPC routines make use of the libpgas library,
which uses the DMAPP library as underlying communication library. The calls to this
library can be intercepted with a library wrapping approach and one-sided
communication operations can be recorded with the generic one-sided RMA event
model. Initialisation and finalisation with hierarchical unification can be done using MPI
as underlying communication layer. Figure 4 shows the visualisation of a short Co-
Array Fortran example. It can be observed that there are tiny functions, which are
called very frequently like for example dmapp_c_pset_test. For tiny functions, which
are called very frequently, it is advisable to disable the detailed monitoring and to
enable only profiling to prevent the monitoring system to be swamped by these
functions or in worst case if the overhead is too high to disable the monitoring of this
class of functions.

Figure 4 Performance visualisation of the Cray DMAPP communication library with Vampir. It is

important to see that dmapp_c_pset_test is called very often and therefore should not be recorded
in detail to reduce the overhead of the monitoring.

2.3.3.2 Monitoring	
 of	
 GASPI	

The Global Address Space Programming Interface (GASPI) is a PGAS API based on
asynchronous communication and execution model. GASPI provides configurable
RDMA PGAS memory segments and allows application developers to map the memory
heterogeneity of modern supercomputer to these PGAS segments. All these segments

© CRESTA Consortium Partners 2011 Page 13 of 26

can directly read and write from/to each other – within the node and across all nodes
[17].

The data exchange in GASPI is based on one-sided asynchronous communication and
can be therefore easily adapted to work with Score-P’s generic RMA event model.

Since GASPI provides no point-to-point communication operation, which is a
prerequisite of Score-P to map the local identifiers to global and unique identifiers
within the hierarchical unification operation, the unification interface has to be adapted
to the needs of GASPI. This can be achieved by implementing a hierarchical unification
model based on the asynchronous GASPI communication operations or by emulation
of point-to-point operations with asynchronous communication operations and reuse of
the existing point-to-point hierarchical unification model.

The instrumentation of the GASPI library and therefore the generation of information
can be done by using a library wrapping approach and definition of the event tracing
interface.

Currently, GASPI is no object of the CRESTA co-design research but it is further
promising asynchronous approach to overlap communication and computation and
therefore might be considered and investigated in the future.

2.3.3.3 Monitoring	
 of	
 SHMEM	

SHMEM is a PGAS paradigm very similar with MPI to pass data between cooperating
parallel processes on logically shared distributed memory.

2.3.3.3.1 Monitoring	
 of	
 Cray	
 SHMEM	

The one-sided communication operations of Cray SHMEM can be easily recorded with
Score-P’s generic RMA event model.

Cray SHMEM allows the coexistence of MPI and therefore initialisation and finalisation
of the measurement system can be easily used with the MPI interface of Score-P.

The instrumentation can either be done by a library wrapping approach or by definition
of weak symbols and use of the strong symbols provided by the Cray SHMEM library,
this approach is very similar to the PMPI interface of MPI.

Figure 5 shows the visualisation of the performance monitoring of a Cray SHMEM
application.

2.3.3.3.2 Monitoring	
 of	
 OpenSHMEM	

In 2010 the OpenSHEM community started an effort to standardize SHMEM and to
bring together a variety of SHMEM and SHMEM-like implementations into an open
standard [15].

Based on the one-sided communication API, the monitoring of these functions should
work with the generic RMA event model of Score-P. But nevertheless, OpenSHMEM
uses an own communication layer and integration of OpenSHMEM in Score-P is more
time consuming than other PGAS implementation like Cray SHMEM. Since there is at
the moment no demand for OpenSHMEM within CRESTA and also there are time
constraints, we will not investigate the monitoring of OpenSHMEM in more detail.

© CRESTA Consortium Partners 2011 Page 14 of 26

Figure 5 Performance visualisation of a massive parallel bucket sort parallelized with Cray SHMEM.

The master timeline shows very impressively the master-slave communication implemented with
shmem_get64 operations coloured in light blue between the different processes surrounded by

tow shmem_barrier_all operations coloured in yellow.

2.3.4 Performance	
 Monitoring	
 of	
 Third-­‐party	
 Libraries	

The function call behaviour of third-party libraries, i.e. proprietary vendor libraries,
where the calls are located in a runtime library, can be recorded by using a shared
library wrapper that uses the LD_PRELOAD mechanism. We plan to extend Score-P to
support library wrapping of shared libraries.

2.3.5 Possible	
 Future	
 Extensions	
 	

1. Extension of Score-P to support library wrapping of shared libraries.
2. Extension of Score-P Pthreads, and maybe further parallel programming

models.
3. Flexible and generic task identification model that supports multiple parallel

paradigms together.
4. Extension of Score-P by a counter interface that allows to add counters from

global (shared) resources and also to add counters to existing traces in a
scalable way.

2.4 Fault-­‐tolerance	

See section 5 for more general information on fault-tolerance and fault-recovery.

© CRESTA Consortium Partners 2011 Page 15 of 26

3 Performance	
 Analysis	
 and	
 Visualisation	

Investigating performance information of million of concurrent processing elements will
only be applicable for users by using intelligent data mining, data compression and
visualisation strategies. Application performance visualizers like Vampir [2] come with
various displays to gain insight into the highly complex behaviour of parallel
applications in an intuitive way but are struggling with trillions of performance
information. To handle the amounts of data gathered from the application monitoring,
scalable and intelligent data analysis and processing techniques have to be developed.

3.1 Scalability	

Offline performance analysis techniques have to handle amounts of information of a
whole measurement run and usually store this information in its entirety on the parallel
file system. Creating one file per measured location (e.g., process or thread) will no
longer work on future file systems on a POSIX basis, because of the complex
relationships of billions of entities with metadata and object data information organized
on a folder structure, and therefore, we are evaluating different strategies like the use
of the Sionlib [11] or IOFSL [12] to overcome scalability issues with future parallel file
systems.

Bandwidth and capacity of the entire memory hierarchy – including the file system –
are also limiting factors for offline performance analysis, as long as no information
reduction is done. Data compression reduction techniques, such as the data reduction
on the Complete Call Graph (CCG) data structure [13] will become a necessity at
exascale in order to perform on-the-fly information reduction. We will develop a library
that supports the creation of CCGs and investigate different visualisation alternatives
for CCGs within Vampir.

The information of an entire time interval of millions of concurrent processing elements
needs to be transferred and processed. Exascale performance analysis will require
solutions to reduce the amount of data that tools display. One such option is to only
display “interesting” locations that behave differently, which requires an automatic
approach for pre-processing. Vampir uses pre-calculated summary information to
partially load and analyse large event trace information and to visualise only specific
segments of the whole monitoring run. In addition it also allows to exclude specific
threads of execution from the analysis and visualisation, see Figure 6 as an example
for this feature while loading a NEK5000 trace file.

© CRESTA Consortium Partners 2011 Page 16 of 26

Figure 6 Vampir’s Partial Loading Dialog showing the loading of the NEK5000 trace in the time

range of 0 seconds to 1.6 seconds for the processes 512-1024.

Also, visualisation of millions of different processing elements on a screen with a
limited resolution is challenging and we want to research alternative visualisation
strategies for highly parallel applications.

3.2 Parallel	
 Programming	
 Models	

Each of the upcoming parallel paradigms typically comes with its own communication
and synchronisation methods, enter and exit events. In addition, each parallel
paradigm has its own specific performance behaviour where different kinds of
performance issues may occur.

Investigation of all communication and synchronisation events within one view can
result in a misleading view when one paradigm hides the performance behaviour of
another paradigm. Therefore, Vampir allows to explicitly select and deselect specific
threads of execution by their paradigm, their location in the system tree, and also by
their name, see Figure 7 and Figure 8. The information displayed in the various
timeline and statistic displays will be adapted to this selection rules.

© CRESTA Consortium Partners 2011 Page 17 of 26

Figure 7 Vampir’s filtering dialog to filter threads of execution based on the paradigm.

Figure 8 Vampir’s filtering dialog to filter threads of execution by their topology information.

3.3 Fault-­‐tolerance	

In the case of hardware failures performance information will be corrupted and
incomplete. Therefore, Vampir has to deal with this data in appropriate way, e.g. even
on corrupted data functionalities like the message matching should work. Therefore, we
want to investigate techniques that allows message matching on incomplete data, i.e.
missing communication events. This can be done either by using piggy-backing

© CRESTA Consortium Partners 2011 Page 18 of 26

techniques, i.e., extension of the original message by adding additional information to
the message, additional messages, or by additional information provided by the MPI-3
standard.

For further information on fault-tolerance and fault-recovery see section 5.

3.4 Interaction	
 and	
 Interfaces	

Profiling and statistical information can provide in a first step insight into the application.
We intend to highlight these profiling and statistical results and locate outliers,
irregularities and hot spots within Vampir.

© CRESTA Consortium Partners 2011 Page 19 of 26

4 Testing	
 Plan	

For performance and scalability purposes we will use the benchmark suite from WP 2
D2.6.1 to test the performance monitoring and analysis tools. In addition we test our
tools with their functionality and features with the CRESTA applications Gromacs, IFS,
Nek5000, HemeLB, and OpenFoam.

Correctness and functionality tests are already implemented in the development flow of
each tool and will be used continuously to ensure the needed quality for each CRESTA
development branch (for each feature a separate branch).

4.1 Score-­‐P	

Score-P has its own quality management system and a continuous integration checker
called bitten, a plugin of trac, internal review processes for new extensions and
modifications, and also nightly builds and tests on various platforms provided by the
Score-P partners.

4.2 Vampir	
 and	
 VampirServer	

Vampir as a commercial product comes with its own quality management workflow and
nightly builds on different platforms.

4.3 Performance	
 Monitoring	
 Tests	
 and	
 Performance	

Visualisation	
 Results	
 of	
 CRESTA	
 Applications	

This section provides a short summary of the monitoring tests and performance
visualisation with Vampir of each individual CRESTA application. The monitoring
results were created on the Cray machines provided by KTH, HLRS, and KTH. The
number of the used threads of execution mainly depends on the provided input files
and varies from 128 to 2040 cores.

The intention of this section is to demonstrate and to test the usability of the
performance tools and not to provide a detailed performance issues or scalability
discussion. Each application group should address this individually.

4.3.1 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 Gromacs	

We monitored Gromacs with various numbers of threads of execution and different
parallel paradigms from pure MPI applications to hybrid versions of Gromacs
MPI+OpenMP see Figure 10, or MPI+OpenMP+CUDA see Figure 9.

Since Gromacs uses beside a data parallelism also a function parallelism, the use of
Vampir’s filter functionality helps to investigate different classes of parallelism in more
detail see Figure 10, Figure 11, and Figure 12.

© CRESTA Consortium Partners 2011 Page 20 of 26

Figure 9 Performance visualisation of a hybrid version of Gromacs parallelized with MPI, OpenMP,

and CUDA running on 8 nodes with 16 cores and 2 Nvidia K20 each. Every process uses one Nvidia
graphic card and sends its kernels coloured in blue to two different streams.

Figure 10 Performance visualisation with Vampir of the runtime behaviour of a hybrid Gromacs
parallelized with MPI and OpenMP. One quarter of the processes and corresponding threads are

responsible to compute the bonded interactions and integration (PME).

© CRESTA Consortium Partners 2011 Page 21 of 26

Figure 11 Vampir’s filter dialog to select only the PME processes by using a regular expression.

The resulting visualisation can be seen in Figure 12.

Figure 12 Performance visualisation of a selection of processes and threads (PME) with Vampir for

a more detailed and focussed performance analysis without any “colouring noise” of the rest of
the processes and threads.

4.3.2 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 IFS	

We monitored a hybrid version of IFS parallelized with MPI and OpenMP running with
dataset T1023. The performance visualisation of the application behaviour with Vampir
can be seen in Figure 13.

© CRESTA Consortium Partners 2011 Page 22 of 26

Figure 13 Performance visualisation with Vampir of a hybrid IFS T1023 run.

4.3.3 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 Nek5000	

We monitored a MPI parallel version of Nek5000 with a jet data input set. The
performance visualisation with Vampir can be seen in Figure 14.

Figure 14 Performance visualisation with Vampir of Nek5000 parallelised with MPI.

4.3.4 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 HemeLB	

We monitored a MPI parallel version of HemeLB. The performance visualisation with
Vampir can be seen in Figure 15.

© CRESTA Consortium Partners 2011 Page 23 of 26

Figure 15 Performance visualisation with Vampir of HemeLB parallelised with MPI.

4.3.5 Performance	
 Monitoring	
 Test	
 and	
 Visualisation	
 Result	
 of	
 OpenFoam	

We monitored a MPI parallel version of OpenFoam. The performance visualisation with
Vampir can be seen in Figure 16.

Figure 16 Performance visualisation with Vampir of OpenFoam parallelised with MPI.

© CRESTA Consortium Partners 2011 Page 24 of 26

5 Fault-­‐tolerance	
 	

Expectations for Exascale systems indicate that mean-time-to-failure may be far lower
than a day. As a result, applications, systemware, operating system, and any type of
runtime tool need to be aware of possible failures and may also need to recover from
them. This may include the use of spare nodes or cores to replace failed components.

These effects need to be considered for the development of performance monitoring
and analysis tools for exascale systems. Work package 2 evaluates operating system
and programming model changes to handle such hardware faults in D2.5.2, which will
be released in month 30 of the project. Thus, at the current project state, there is close
to no indication how these mechanism and designs might look like. This includes an
indication of a mean-time-to-failure that is to be expected. Also possible advances in
hardware may render these concerns unnecessary altogether. As an immediate
consequence we will not address any modifications for fault tolerance in this design
document.

© CRESTA Consortium Partners 2011 Page 25 of 26

6 References	

[1] Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler,

D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik,
Y., Philippen, P., Saviankou, P., Schmidl, D., Shende, S.S., Tschüter, R.,
Wagner, M., Wesarg, B., Wolf, F.: Score-P – A Joint Performance
Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and
Vampir. In Proc. of 5th Parallel Tools Workshop, 2011.

[2] Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H.
Müller, M.S., Nagel, W.E: The Vampir Performance Analysis Tool-Set, Tools
for High Performance Computing, Part 4, pp. 139-155, Springer
Berlin/Heidelberg, 2008.

[3] Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E.: Open
Trace Format 2: The Next Generation of Scalable Trace Formats and Support
Libraries, Vol. 22, Advances in Parallel Computing, pp. 481 - 490, ISBN: 978-
1-61499-040-6, DOI: 10.3233/978-1-61499-041-3-481, 201.

[4] Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting Performance Data
with PAPI-C, Tools for High Performance Computing 2009, Springer Berlin
Heidelberg, 3rd Parallel Tools Workshop, Dresden, Germany, pp. 157-173,
2009.

[5] Overview of Gemini Hardware Counters, http://docs.cray.com/books/S-0025-
10/ (June 2012).

[6] Using Cray Performance Analysis Tools, http://docs.cray.com/books/S-2376-
41/S-2376-41.pdf (July 2012).

[7] Alverson, R., Roweth, D., Kaplan, L., The Gemini System Interconnect, High
Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on
High Performance Interconnects, pp.83-87, 18-20 Aug. 2010.

[8] CUPTI User’s Guide,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CU
PTI_Users_Guide.pdf, (June 2012).

[9] Mohr, B., DeRose, L., Vetter, J., A Performance Measurement Infrastructure
for Co-Array Fortran, Proceedings of the International Conference on Parallel
and Distributed Computing (Euro-Par 2005), Lisboa, Portugal, 30.08. -
02.09.2005. - Berlin, Springer, 2005, pp. 146 – 155.

[10] Using the GNI and DMAPP APIs, http://docs.cray.com/cgi-
bin/craydoc.cgi?mode=Show;q=dmapp;f=books/S-2446-4003/html-S-2446-
4003/S-2446-4003-toc.html#toc, (June 2012).

[11] Frings, W.; Wolf, F.; Petkov, V.: Scalable Massively Parallel I/O to Task-Local
File, Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, Portland, Oregon, November 14 - 20,
2009, SC'09, SESSION: Technical papers, Article No. 17, New York, ACM,
2009.

[12] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert
Latham, Robert Ross, Lee Ward, and P. Sadayappan: Scalable I/O
Forwarding Framework for High-Performance Computing Systems, IEEE
International Conference on Cluster Computing (Cluster 2009), New Orleans,
LA, September 2009.

[13] Knüpfer, A., Nagel, W.E., Compressible memory data structures for event-
based trace analysis, Future Generation Computer Systems (2006), ISSN:
0167-739X.

[14] Knüpfer, A., Dietrich, R., Doleschal, J., Geimer, M., Herrmans, M.-A., Rössel,
C., Tschüter, R., Wesarg, B., Wolf, F.: Generic Support for Remote Memory

© CRESTA Consortium Partners 2011 Page 26 of 26

Access Operations in Score-P and OTF2, Tools for High Performance
Computing 2012, Springer Berlin Heidelberg, pp. 57-74, 2013

[15] Chapman, B., Curtis, T., Pophale, S. Poole, S., Kuehn, J., Koelbel, C., Smith,
L.: Introducing OpenSHMEM: SHMEM for the PGAS community, PGAS’10
Proceedings of the Fourth Conference on Partitioned Global Address Space
Programming Model, ACM New York, NY, USA, 2010

[16] Su, H.-H., Bonachea, D., Leko, A., Sherburne, H., Billingsley, M., George, A.
D.: GASP! a standardized performance analysis tool interface for global
address space programming models. In: Proceedings of the 8th international
con- ference on Applied parallel computing: state of the art in scientific
computing. Berlin, Heidelberg : Springer-Verlag, 2007 (PARA’06). – ISBN 3–
540–75754–6, 978–3–540– 75754–2, S. 450–459

[17] Alrutz, T. and Backhaus, J. and Brandes, T. and End, V. and Gerhold, T. and
Geiger, A. and Grünewald, D. and Heuveline, V. and Jägersküpper, J. and
Knüpfer, A. and Krzikalla, O. and Kügeler, E. and Lojewski, C. and Lonsdale,
G. and Müller-Pfefferkorn, R. and Nagel, W. and Oden, L. and Pfreundt, F.-J.
and Rahn, M. and Sattler, M. and Schmidtobreick, M. and Schiller, A.and
Simmendinger, C. and Soddemann, T. and Sutmann, G. and Weber, H. and
Weiss, J.-P.: GASPI at Multi-Core Challenge III, in R. Keller et al. (Eds.):
Facing the Multicore-Challenge III 2012, LNCS 7686, pp. 135--136. Springer,
Heidelberg (2013)

[18] Wagner, M., Doleschal, J., Knüpfer, A., and Nagel, W.E.: Runtime Message
Uniquification for Accurate Communication Analysis on Incomplete MPI Event
Traces. In: Proceedings of the 20th European MPI Users's Group Meeting,
2013

