

Copyright © CRESTA Consortium Partners 2011

D3.4.1	 –	 Debugging	 design	
document	

WP3:	 Development	 environment	

Due date: M10

Submission date: 31/07/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation Allinea Software LTD (ASL)

Version: 1.0

Status Final

Author(s): David Lecomber (ASL), Tobias Hilbrich (TUD)

Reviewer(s) Mats Hamrud (ECMWF), Jeremy Nowell (UEDIN)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 28/06/2012 First draft for review Tobias Hilbrich (TUD),
David Lecomber (ASL)

1.0 11/07/2012 Final draft with incorporated review
comments

Tobias Hilbrich (TUD)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 ALLINEA	 DDT	 ...	 2	
2.2	 MUST	 ..	 3	
2.3	 PURPOSE	 ...	 3	
2.4	 GLOSSARY	 OF	 ACRONYMS	 ...	 3	

3	 DEBUGGER	 DESIGN	 PROPOSALS	 ..	 4	
3.1	 PROGRAMMING	 MODELS	 ...	 4	
3.2	 AUTOMATED	 ANOMALY	 DETECTION	 ...	 4	

4	 MUST	 ..	 7	
4.1	 SCALABILITY	 ...	 7	

4.1.1	 Component	 Overview	 ..	 7	
4.1.2	 Distributed	 P2P	 Analysis	 ...	 9	
4.1.3	 Distributed	 Collective	 Analysis	 ..	 10	
4.1.4	 Distributed	 Wait-‐State	 Analysis	 ..	 11	
4.1.5	 Asynchronous	 Communication	 ..	 13	
4.1.6	 Expected	 Impact	 and	 Limitations	 ..	 13	

4.2	 PARADIGMS	 ...	 14	
4.2.1	 PGAS	 Language	 Correctness	 Checking	 ..	 14	
4.2.2	 CUDA/OpenCL	 Correctness	 Checking	 ..	 15	
4.2.3	 Generic	 Correctness	 Checking	 Overview	 ...	 15	

5	 FAULT	 TOLERANCE	 ...	 17	
6	 TOOL	 INTEGRATION	 ...	 18	

6.1	 GOALS	 ..	 18	
6.2	 ENABLING	 TOOL	 INTEGRATION	 ...	 19	

7	 TESTING	 PLAN	 ...	 21	
7.1	 DDT	 FUNCTIONALITY	 TESTS	 ..	 21	
7.2	 MUST	 FUNCTIONALITY	 TESTS	 ...	 21	

8	 REFERENCES	 ..	 22	

	 Index	 of	 Figures	
Figure 1 Centralized correctness checking with MUST .. 8	
Figure 2 Distributed correctness checking with MUST ... 8	
Figure 3 Illustration of intra layer communication based P2P matching 9	
Figure 4 Illustration of event aggregation for MPI collectives 10	
Figure 5 Illustration of distributed wait-state modules .. 11	

	

	

© CRESTA Consortium Partners 2011 Page 1 of 22

1 Executive	 Summary	

This document describes designs, extension steps, and ideas that will allow the
debugger Allinea DDT and the automatic runtime correctness tool MUST to cope with
exascale needs. We use deliverable D3.1 “State of the art and gap analysis” as a
roadmap for these extensions. We will provide a second version of this document in
project month 24 to extend this document and add detail or new knowledge where
necessary.

The transition of Allinea DDT to exascale requires extensions to cope with new
paradigms and heterogeneous approaches to high performance computing as one
important step. Also, we address advances in the automatic detection of anomalies to
reduce the debugging time of complex, possibly heterogeneous or scaled to millions of
processes, applications. Finally, we add more awareness of models, application
structure, or libraries to DDT to present the user with more meaningful information.
One important use case is the display of information for MPI resource handles, where
Allinea DDT and other debuggers currently provide no resource state.

For the runtime error detection tool MUST the proposed extensions fall into scalability
and programming paradigm support. Current runtime error detection tools scale to
100-1,000 processes at most, which is even with todays scale less than unsatisfactory.
The design that we propose to distribute key correctness checks of MUST targets a
scale up to 10,000 processes. Further extensions might then further enhance MUST’s
scalability to cope with 100,000 or 1,000,000 processes. Note that while exascale
systems will likely have far more parallel cores, with hybrid programming approaches,
the total number of MPI processes might be in this range. Furthermore, the design
highlights the specific steps that would allow MUST to provide automatic correctness
checks for other paradigms.

As both Allinea DDT and MUST identify programming paradigms as an important goal
for improvement, it is crucial to notice that the experience within CRESTA has not yet
identified a primary or highly promising programing paradigm for exascale
development. As our resources within the project are limited, we expect that for both
tools we will only be able to provide extensions for one single programming paradigm
or model. Thus, we keep our extensions more general within this document, while we
hope to have identified the model of choice for the second version of this document.

A further open gap for both tools is fault tolerance. If median-time-to-failure is below
the runtime of an average application, as many expectations for Exascale indicate,
both tools need techniques to identify and react to failures. As this effect is barely
studied at the current project state we will extend our design document for this
important topic in the second version of this document. An important input for this is
deliverable D2.5.2, which will be completed in month 30. We hope that we can use first
insights from this deliverable around project month 20.

Integrations of DDT and MUST can provide users with a unified user interface that
provides access to both tools. Besides the advantages in usability, an integration can
also combine the advantages of the tools to lead to a deeper understanding of a
software bug or a reduced time to solution. As a result, we describe first steps for a
tool integration and resulting extensions to advance this integration. The highest
integration degree would allow MUST to operate within DDT’s tree based overlay
network. While such an integration is highly desirable we see this as a second priority
that only comes after addressing the before-mentioned areas of improvement.

Finally, we investigated the testing processes of both MUST and DDT. We identified
that both tools already use very elaborate and extensive functionality tests. Extensions
to the existing testing procedures will be added by covering the CRESTA benchmark
suite from D2.6.1 to detect performance issues of the tools. Also we will add a system
where both MUST and DDT operate to test integration components.

© CRESTA Consortium Partners 2011 Page 2 of 22

2 Introduction	
In this document (‘Debugging Design Document, D3.4.1’) we present designs to extend
the existing tools DDT and MUST towards the gaps and high level goals that we
identified in D3.1 ‘State of the art and gap analysis’.

We first describe the current tools for debugging/correctness within CRESTA - Allinea
DDT and MUST. We then describe the changes to be made according to the priorities
from the Gap Analysis for each tool. Section 2 presents the first designs for the Allinea
DDT and Section 3 presents first designs for MUST.

These primary recommendations from the Gap Analysis - in the order addressed in this
Design Document - were:

• Programming models are in a state of flux - due to recent seismic hardware
shifts and may require specific debugging or correctness support.

• Analysis of applications with automated correctness checking is important and
existing tools do not scale: the MUST package from TU Dresden should be
extended to improve scale.

• Automated anomaly detection is increasingly important as the scale of
concurrency grows - and architectures change - therefore detection of changes
between runs and between processes is important.

• Tool integration should be developed to enable independent developers of tools
to lever existing platforms to remove the hard problems of scalability and
portability.

• Application or model awareness should be investigated - for example improving
the understanding of MPI objects and their presentation to users in tools, or the
display of task lists with task parallel models.

• Fault tolerance is an area that that should be investigated or prototyped but is
expected to be not yet ready at the system level for production level tools
activity within the time-frame of the project.

Given the early state of the CRESTA project, we provide first design hints for these
architecture and system specific topics, but expect that we can provide a much more
detailed design in the second version of this deliverable. We address the state of fault
tolerance in Section 4 and present first insights on tool integration in Section 5. Finally
we present how we ensure that any extension that we provide is well tested and
suitable for production use (Section 6). In the following we first provide a short
overview to the two mentioned tools Allinea DDT and MUST, and then highlight the
purpose of this document.

2.1 Allinea	 DDT	
In terms of debugging the state of the art for scalable debugging is Allinea DDT – which
has proven the feasibility of Petascale debugging for the existing PRACE prototypes
and other large systems by reaching 220,000 cores (the largest machine at the time of
measurement) and provided fraction-of-a-second responsiveness with global
operations at full scale.

The Allinea DDT architecture is modern graphical debugging tool with a bespoke tree
overlay network for communication and message broadcast and aggregation, and at
the leaf (and any debugging nodes) of the tree, a daemon and a full-strength
“command line” debugger (usually the open source GDB). This tree architecture has
been essential to scalability.

Allinea DDT provides support for most paradigms found in high performance computing
- from GPU programming models through OpenMP and MPI to PGAS languages.
Platform support is similarly broad - covering the majority of HPC systems in use today.

© CRESTA Consortium Partners 2011 Page 3 of 22

2.2 MUST	
MUST (Marmot Umpire Scalable Tool) is an automatic runtime error detection tool for
parallel software. Currently it focuses on the detection of MPI programming errors,
while its extensibility allows us to advance the tool towards other programming
paradigms in the future. Automatic error detection tools are less versatile than
debuggers, however, they offer a quick and easy option to detect many error types.
The individual error outputs can often include helpful details on the surroundings and
details of the error, as well as sometimes its root cause. Finally, crucial is the notion
that some errors may not manifest in an actual application crash or hang, for some
systems or runs. In these cases silent errors may lead to erroneous calculations that
might stay undetected without these tools.

While debuggers already showed their scalability to leadership scale machines, e.g.,
Jaguar experiments with 220,000 cores, automatic runtime error detection tools fail to
scale their more detailed correctness checks to more than 100-1,000 cores. Thus, a
primary goal is to advance the scalability of MUST towards at least 10,000 cores and
potentially even more. We will detail our design for scalable MPI runtime error detection
with MUST in the first part of this section. Furthermore, new paradigms are playing an
increasing role in the development of parallel applications. We present a design to
extend MUST for the use of other paradigms in the second part of this section.

2.3 Purpose	
This document presents specific ideas and designs to overcome the identified gaps
that current debugging tools have. This particularly includes expectations of changes
for exascale systems, which in our case includes the challenges:

• Scale

• Programing models

• Fault tolerance

• Complexity of software and its bugs

The challenges scale and complexity of software and its bugs can be predicted more
clearly than the impact of programing models or fault tolerance. As a result, we can
show more detailed designs to cover scale and complexity of software and its bugs
within this design document. For scale, Allinea DDT already supports test cases with
100.000 processes very well, so extensions in this direction primarily address MUST.
For complexity of software and its bugs, we provide new designs for Allinea DDT to
allow easier root-cause analysis and paradigm/model specific insights. The
developments in the two remaining areas (programming models and fault tolerance)
remain unpredictable at the moment. As a result, our designs for these problems form
a basis for an extension in the second version of the deliverable.

2.4 Glossary	 of	 Acronyms	
cronym Definition
MPI Message Passing Interface
TBON Tree Based Overlay Network
MUST Marmot Umpire Scalable Tool
GTI
P2P
WFG

Generic Tools Infrastructure
Point-to-point
Waiting-for graph

© CRESTA Consortium Partners 2011 Page 4 of 22

3 Debugger	 Design	 Proposals	
We will propose to address the core problems identified as a result of the survey and
initial document D3.1 (‘State of the art and gap analysis’) and their impact on the
debugger architecture.

3.1 Programming	 Models	
The trend in hardware is presently towards heterogeneity - in many forms. We already
see GPUs or the latest Intel Xeon Phi as accelerators that are located on PCI Express
buses, and in time it is likely such components will become more closely integrated.
Processor platforms normally outside of HPC such as ARM are also adopting
heterogeneity with concepts for power efficiency such as big.LITTLE - whereby a
number of cores are only powered up at points within an application that can use the
concurrency. Formerly separate components such as the GPU have moved into the die
with products such as the AMD Fusion.

This heterogeneity requires programmer intervention in order to maximize performance
(or even to access the hardware in most cases). In particular - with offloaded
computations there is a need for the ability to debug synchronous and asynchronously
launched offloaded computation at the same time as debugging the host processor on
the node. The hardware combination is part of a larger system with multiple nodes -
and the software must run across the whole platform simultaneously.

The most common form of hybrid code until recently was typically OpenMP within a
node, MPI between nodes - this has changed with CUDA or OpenCL now as an
alternative to the OpenMP - often leaving multiple cores on a node idle whilst a GPU
executes an (eg.) CUDA kernel. This may change with the advent of the Intel Xeon Phi
architecture which supports – amongst other programming models - OpenMP - and
could lead to reestablishment of OpenMP + MPI as a dominant combination. The
processor roadmaps of the main vendors will have a clear but as yet uncertain impact
on the development choices made by application developers.

For a debugger such as Allinea DDT this rise of heterogeneity should be considered
and in particular:

• New platforms must be supported as a route to understanding the impact on
programmability and debugging. Architecturally the designs for the changes
depend on the platforms expected for exascale - but in the immediate term
systems such as accelerators from NVIDIA and Intel are likely candidates.

• The control of thread (including GPU thread) level parallelism within a node
should become more intuitive - allowing the same form of control that a user
has over the MPI processes.

• The display of data as shown for MPI parallelism within Allinea DDT must
include similar thread-parallel displays also - for example automated
comparison across threads is a worthy addition to comparison across
processes.

New programming models other than these mainstream coprocessor models did not
have sufficient interest from the application developers in CRESTA to consider at this
point in time.

3.2 Automated	 Anomaly	 Detection	
Automatic identification of anomalous values is becoming important. Firstly, users have
expressed concerns – in both the survey for the existing Gap Analysis document, and
we are aware anecdotally, that the volume of data is increasing as applications grow
and is already unmanageable for many applications. Secondly, debugging is both
deductive and iterative, and yet iteration is not a process that we humans do well. At

© CRESTA Consortium Partners 2011 Page 5 of 22

current scale, and as we reach higher scales, we can automatically identify anomalies
that happen - differences with previous successful runs, and with processes that are
successful within the current task. Identifying earlier that a value is invalid would be
helpful even at current application scale.

Identifying anomalous application activity is also important - current approaches, for
example, viewing merged stacks of processes are helpful but need to be extended.
Identifying, for example, the path of execution that led to a particular issue would be
helpful. This may take the form of comparing with a previous successful application
run. This could cover both data changes, and process activity. Automated methods for
asserting data integrity should be investigated that would allow, for example, a
developer to efficiently detect incorrect values. This could involve developing both
standard libraries for data verification, and model specific libraries and, for example,
the addition of consistency checks support - for example a checksum capability on
function entrance for large arrays.

This would mean exploring or develop in-process methods for check-summing: vast
data-sets require the fastest methods to access data. Running at the debugger layer
through OS debugging APIs could be too slow but an in-process dynamically loaded
library could provide fast support.

Logging and comparing different runs is another desirable way of finding why two
codes or runs have given different results, but the naive implementation is too slow. If
each function call creates a delay to log the function-event, then debugger-level logging
will impose too much delay. Compiler-level instrumentation is an option - but not
universally supported. Therefore, dynamic instrumentation needs to be compared
against selective debugging-level interruption.

Application/Library Model Awareness: Better integration of layered models and the
debugger should be investigated with, for example, awareness of MPI communicators
and the internals of request object or integration with runtime of task based parallel
frameworks to visualize internal task lists.

The first example to be tackled will be MPI handles. Presently there is no standard for
MPI handle debugging - this meaning the request objects or communicators are
typically “opaque” to the debugger and provide no useful information for the user.

• TU-Dresden has a wrapper library to MPI and a series of GDB python scripts
that could be integrated into DDT. The wrapper library wraps calls to the MPI
handle creation, for example MPI communicator objects, creating its own MPI
objects and then the gdb python scripts work to provide more sensible “pretty
printing” of the internal objects. This python based printing of variables is
already supported by DDT for global settings by virtue of it using the GDB
debugger underneath. The pretty printers and wrapper library will fit within a
modest extension to the existing preload plugin capability in DDT.

o Add support for scripts using the python API for pretty printing in the
definition files for the plugin architecture.

o For specified plugin scripts, ensure support for every MPI by transferring
the python scripts to compute nodes in systems where necessary.

• Investigate the proposed MPI 3 Handle Extension (for inclusion in the MPI 3.1
standard) whereby information similar to the TU-Dresden library is included by
default in the MPI instead and the debugger queries an interface similar to the
MPI Message Queue Debugging API to explore the handles. Discussions and
designs for this are already in draft form between Allinea and the Open MPI
team. A prototype is needed to consider whether this method is appropriate.

Alternative models beyond MPI - such as OpenMP 3 Task Parallelism - can be
considered in the next design document.

© CRESTA Consortium Partners 2011 Page 6 of 22

Extensions to the debugging interface to enable more application aware debugging will
also be considered and reported in the next design document. In particular we will
investigate

• Specific library hooks to query consistency of internal data types.

• Specific library code or support for representing the opaque data at a higher
level.

• Use of an API to enable debugger/runtime interaction - for example exposing a
programmable interface to the debugger.

© CRESTA Consortium Partners 2011 Page 7 of 22

4 MUST	
We describe MUST’s extensions towards Exascale needs in this section.

4.1 Scalability	
MUST analyses MPI events in order to analyze their correctness in terms of the MPI
standard specification. An important notion is that two types of correctness checks
exist:

• Local checks: Only require information from one process, e.g., “Is the datatype
in the MPI_Send call committed?” and can be executed directly on the
application processes; and

• Non-local checks: Require information from more than one process, e.g., “Do all
processes in the MPI_Bcast call use the same type signature?”. These require
a communication infrastructure to gather all the information that is necessary to
run the correctness check.

The local checks satisfactorily scale with the number of MPI tasks, while the non-local
checks impose scalability challenges. Prior correctness tools such as Marmot [4],
Umpire [5], and ISP [3] must use a single process or thread to run all non-local
correctness checks, which is a major scalability limitation. MUST includes both types of
correctness checks as well. The centralised design allows correctness tools to handle
100-1,000 cores at most. We propose a design that is intended to scale to at least
10,000 cores, while its extension to higher scales should be feasible. We will first
present an overview of our design and then detail its individual components.

This design also reflects progress within an ongoing cooperation with the Los Alamos
National Laboratories and the Lawrence Livermore National Laboratories. While these
cooperations focus on achieving low runtime error detection overheads for about
10,000 cores, we want to extend MUST scalability as far as possible within the
CRESTA scope. The experience with the design below and its limitations for actual test
cases will motivate a more detailed layout for further scaling in the second version of
this design document.

4.1.1 Component	 Overview	
MUST uses a module approach, where distinct modules implement particular tasks.
These modules have clearly defined interfaces and cooperate with each other. The
second important functionality in MUST is the use of Tree Based Overlay Networks
(TBONs) that allow us to distribute workload onto multiple levels of extra processes or
threads. Both the module and the TBON concept are in fact not implemented within
MUST, but rather in the infrastructure it employs, which is called the Generic Tools
Infrastructure (GTI). TUD develops GTI along with the Lawrence Livermore National
Laboratory and the MUST tool is currently its key use-case. This design describes how
we can use GTI’s TBON functionality to derive distributed non-local correctness
checks.

© CRESTA Consortium Partners 2011 Page 8 of 22

Figure 1: Centralised correctness checking with MUST

In terms of non-local correctness checking, MUST uses the layout and the modules in
Figure 1. The left side of the figure illustrates the central tool layout of MUST. A single
process receives MPI events from all application processes. The tool process runs the
modules that are listed on the right side of the figure. This includes the following
modules for correctness checking:

• CollectiveMatch: checks MPI collective calls for their correctness;

• P2PMatch: checks MPI point-to-point calls for their correctness; and

• BlockingState: detects deadlocks.

The other module groups “Resource tracking” and “Utility” are used by these
correctness checks to function correctly. While the three correctness checking modules
assume that they receive events from all MPI processes, all the other modules can
already be used in a distributed fashion. So our design focuses on distributing these
three modules.

Figure 2: Distributed correctness checking with MUST

Figure 2 illustrates the distribution of the non-local correctness checks, it shows the
application processes at the left and sketches a tree based overlay network to its right.
Our design will analyze point-to-point matching on the first non-application layer of the
TBON. Collective MPI operations and deadlocks will be analyzed throughout the
complete TBON. Finally, the root process of the tree will run the actual graph analysis
that we use for deadlock detection and it will log correctness messages. We detail

0"

Central"
Tool"

Process"

1"

N"

..."

Modules:"

Checks:"
8  Collec9veMatch"
8  P2PMatch"
8  BlockingState"

U9lity:"
8  Opera9onReordering"
8  ParallelIden9fiers"
8  Loca9onIden9fiers"
8  MessageCrea9on"
8  MessageLogging"
8  WFG8Analysis""Resource"tracking:"

8  CommTrack"
8  DatatypeTrack"
8  RequestTrack"
8  OpTrack"

Applica'on*Processes* Tool*Processes*

0"

1"

N"

..."

Applica'on*Processes* Tool*Processes*

0"

K"

2"
1"

..."

0"

L"

..." ..." 0"

Modules"(First"Tool"Layer):" Modules"(All"layers):"

Checks:"

?  DP2PMatch"

Checks:"

?  DCollecBveMatch"

?  DBlockingState"

Modules"(Root):"

UBlity:"

?  MessageLogging"

?  WFG?Analysis""

UBlity:"

?  ParallelIdenBfiers"
?  LocaBonIdenBfiers"
?  MessageCreaBon"Resource"tracking:"

?  Comms,"Types,"..." Resource"tracking:"

?  Comms,"Types,"..."

UBlity:"

?  ParallelIdenBfiers"
?  LocaBonIdenBfiers"
?  MessageCreaBon"

© CRESTA Consortium Partners 2011 Page 9 of 22

these components in the following. Note that we simplified the modules for the
distributed wait-state tracking.

4.1.2 Distributed	 P2P	 Analysis	
We propose to match and analyze the correctness of point-to-point messages on the
first non-application layer of GTI’s TBON. The key observation is that a distributed
message matching in the whole tree is unsatisfactory [2]. The limitation is that the root
would have to match 50% of all possible communication pairs for general
communication patterns. Thus, depending on an application's communication pattern,
severe load balancing problems might arise. As a result, we instead only run this
analysis on the first tool level of the TBON. In order to communicate information
between these tool processes we use a so-called intra-layer communication.

Figure 3: Illustration of intra layer communication based P2P matching

Figure 3 illustrates the intra layer communication based point-to-point matching that we
propose. Figure 3a shows that rank 0 issues a send that has rank 3 as its destination,
while rank 3 issues a matching receive for this send. Once issued, the events that
represent these MPI calls can arrive in any order on the tool processes T0 and T1. As
this example uses a binary TBON, the receive event of rank 3 will arrive at T1 (Figure
3b). We directly match receive events on the tool processes that process them, i.e., T1
in our example. T1 will analyze the receive and determine that it is not aware of a
matching send call for this event, as a result, it adds the event to an internal data
structure for point-to-point matching, which we illustrate with a small table in Figure 3c.
When information about the send event arrives at T0 (Figure 3d), we determine that the
matching receive for this send will arrive at T1 instead of T0. So in order to match the
message we transfer the send event information to T1 (Figure 3e). Finally, when the
information on the send arrives at T1, this process determines that a matching receive
is available. During this matching T1 can run any necessary correctness checks, e.g.,
type matching. Note that this requires not only to transfer specific send events within a
TBON layer, but also requires us to transfer information about MPI resources—such as
communicators or datatypes—within the layer. This complicates the implementation of
the design, as MUST’s resource system needs to be aware of such “remote”
resources.

We propose to transfer send events with intra layer communication as MPI’s push
semantic guarantees that each send call specifies a destination rank, whereas receive
events might specify that they match a send from any process

a)#Ranks#0#and#3#issue#matching#P2P#calls! b)#Informa;on#about#the#receive#event#arrives#at#T1! c)#T1#adds#the#receive#to#ist#P2P#matching#structures!

d)#Informa;on#about#the#send#event#arrives#at#T0! e)#T1#passes#informa;on#about#the#send#event#to#T1! f)#T1#adds#the#send#to#its#P2P#matching#structures!

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

MPI_Recv#(to:#3)#

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

MPI_Recv#(to:#3)#

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 1

Matching&Structure:&

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 1

Matching&Structure:&

0#

1#

3#

T0#

2#
T1#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 1

Matching&Structure:&

0#

1#

3#

T0#

2#
T1#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 0

Matching&Structure:&

MPI_Send#(to:#3)#

© CRESTA Consortium Partners 2011 Page 10 of 22

(source=MPI_ANY_SOURCE). Thus, using intra-layer communication for receive
events would add unnecessary complexity.

This design relies on the availability of an intra-layer communication mechanism within
a TBON. Our experience with MUST and GTI indicates that this poses no severe
restrictions. MUST currently uses an MPI-based TBON communication system that
utilizes an MPI_COMM_WORLD virtualization. Using an intra-layer communication in
this setting is straight forward. The actual intra layer communication can be
implemented by regular communication protocols of GTI.

4.1.3 Distributed	 Collective	 Analysis	

Figure 4: Illustration of event aggregation for MPI collectives

We propose to analyze the correctness of MPI collective events within GTI’s TBON.
Most correctness checks for MPI collective operations can use aggregations for their
implementation. Figure 4 illustrates this concept, where each application process
issues an MPI_Bcast operation (Figure 4a). When the first MPI_Bcast event arrives at
T0, it recognizes this as a new wave of events and creates a respective data structure.
Note that the event is not forwarded towards T2 (Figure 4c). When the second event
arrives at T0 (Figure 4d), the TBON node determines that it received all events that
belong to this wave and runs all correctness checks (Figure 4d). Finally, it creates a
new event that represents the information from the two incoming events. For MPI
collective operations this is possible without increasing event size. This event is then
forwarded to the next TBON layer (Figure 4e).

a)#All#ranks#execute#a#call#to#MPI_Bcast# b)#MPI_Bcast#of#rank#0#arrives#at#T0!

c)#T0#recognizes#the#start#of#a#new#collec?ve#wave# d)#The#second#event#arrives#at#T0!

e)#T0#determines#that#the#collec?ve#wave#is#completed#and#
creates#an#aggregated#even#that#it#forwards#to#T2#

0!

1!
T0!

MPI_Bcast!(c1,t1)!

MPI_Bcast!(c2,t2)!

T2!

...!

0!

1!
T0!

MPI_Bcast!(c1,t1)!

MPI_Bcast!(c2,t2)!

T2!

...!

0!

1!
T0!MPI_Bcast!(c2,t2)!

T2!

...!

Wave:!

MPI_Bcast!(c1,t1)!

0!

1!
T0!

T2!

...!

Wave:!

MPI_Bcast!(c1,t1)!

MPI_Bcast!(c2,t2)!

0!

1!
T0!

T2!

...!

Wave:!

MPI_Bcast!(c1’,t1’)!

...!

...!

...!

...!

...!

© CRESTA Consortium Partners 2011 Page 11 of 22

An analysis of all MPI collective operations reveals that all non-local correctness
checks can be distributed in this fashion and that event aggregation with constant
event size is feasible. The only exceptions are communication calls where pairs of
processes can use distinct type signatures, this includes:

• MPI_Scatterv,

• MPI_Gatherv,

• MPI_Alltoallv, and

• MPI_Alltoallw.

Note that MPI_Allgatherv is not included in this list, as it requires all processes to span
the same type-signatures with its count array. Handling these four calls with the
aggregation mechanism would require us to store arrays of type signatures in the
aggregated events. This would first of all lead to a non-constant event size and
furthermore also lead to a load imbalance, as the root of the TBON would have to
execute a majority of the type matching checks. As a result, we propose to handle the
type matching for these four operations with intra-layer communication.

For MPI_Scatterv and MPI_Gatherv, the root process needs to scatter the count array
along with the datatype in use within one TBON layer that provides intra-layer
communication. For MPI_Alltoallv and MPI_Alltoallw, each process scatters its send-
counts array and its type(s) across a TBON layer. This handling should not exceed the
complexity of the original MPI communications, and should thus provide an acceptable
overhead. Note that these four calls also have expected scalability limits for Exascale
needs, as they use arrays that are sized according to the number of processes in use.

4.1.4 Distributed	 Wait-‐State	 Analysis	

Figure 5: Illustration of distributed wait-state modules

The most challenging non-local analysis is the MPI deadlock detection. It basically
consists of two parts: a wait-state tracking and a graph based deadlock detection. The
wait-state tracking causes the higher overhead, as it needs to consider each single
possibly blocking MPI operation. It then decides whether the current operation can
complete, i.e. if all of its matching operations can actually be issued. The graph based
deadlock detection is only executed if we suspect the presence of a deadlock, and is
thus the less critical overhead. We propose the following design to distribute the wait-
state analysis:

• Each P2P and collective operation gets an associated timestamp that captures
their order within a process

0"

1"

N"

..."

Applica'on*Processes* Tool*Processes*

0"

K"

2"
1"

..."

0"

L"

..." ..." 0"

DP2PMatch"+"DWS" DCollec7veMatch"+"Collec7ve"Request"Aggrega7on"

WFG"+""
Collec7ve"Responder"

© CRESTA Consortium Partners 2011 Page 12 of 22

• P2P and collective matching add matched operations to queues of completed
operations—Completed [operation] Queue (CQ)—operations that are ordered
by the timestamp of these operations

• The Distributed Wait-State (DWS) analysis runs on the same layer as the P2P
matching (Figure 5, first tool layer)

• DWS starts at the beginning of the CQ and determines whether this operation
can safely complete

• The current operation considered by DWS in the CQ is considered the “active”
operation

• If the active operation can complete, the next operation in the queue becomes
the active operation

• DWS on a TBON node uses upstream and intra-layer communication to
determine whether the active operation can complete, that is whether all
matching operations also became active already (Figure 5, “Collective Request
Aggregation” and “Collective Responder” Modules cooperate with DWS for that)

The root of the TBON runs a centralized graph analysis (Figure 5, WFG Module).

Note that the layer on which DWS runs is only aware of whether all connected
processes called a certain collective call, but not whether all other ranks also called the
collective call. We propose to use a communication directed towards the root for that,
along with a downwards broadcast that is started by the root once that that all
processes indicated that the given collective became active.

In summary we use the following requests for the intra-layer and up/down
communication:

• Collective-Became-Active [Upwards-Aggregated]

• Collective-Commit [Downwards-Broadcasted]

• P2P-Became-Active [Intra-layer]

• P2P-Commit [Intra-layer]

When a collective operation becomes active on a node that runs DWS, it issues the
request “Collective-Became-Active” and sends it towards the TBON root. This event is
aggregated along its way if its communicator and timestamp—timestamp within the
communicator—match. Once the root received a complete wave for this request it
sends a notification event “Collective-Commit”. When DWS receives this request it can
advance its active op to the next operation in CQ. When a P2P operation becomes
active on a DWS node and the operation is a receive operation, it sends a “P2P-
Became-Active” request to the node that hosts the send that matches the receive
operation. Once the DWS node that hosts the send operation receives this request,
while the given send also became active or was already completed, it sends the “P2P-
Commit” back to the node that hosts the receive. The DWS node that hosts the sender
op can advance the active op once it saw the “P2P-Became-Active” request, while the
DWS node that hosts the receive op can advance its active op when it receives the
“P2P-Commit” request. Note that less communication is necessary if the send and/or
the receive operation is non-blocking. Also for completion calls, e.g., MPI_Waitall, array
versions of such requests will be necessary.

Finally, to actually detect deadlocks, the root of the TBON runs the WFG module. This
module uses a timeout to start deadlock detection in given intervals. When it starts a
deadlock detection it requests wait-for dependency information about the active
operation of all DWS nodes, for that it uses the following request:

• Request-Active-Ops [Downwards-Broadcast]

The DWS nodes answer with the requested wait-for information that they send back to
the WFG module. The WFG module waits until it received all the wait-for information,

© CRESTA Consortium Partners 2011 Page 13 of 22

applies it to a WFG, and then runs a deadlock detection on this graph. Note that this
graph analysis is currently still centralized, but should scale to 10,000 cores at least.

4.1.5 Asynchronous	 Communication	
Besides the distribution of MUST’s non-local correctness checks it is important that
MUST uses a highly efficient communication means. In particular, experiments indicate
that application events need to be transferred in a non-blocking fashion, i.e., the
application must be allowed to continue its execution while MUST evaluates new
events for correctness in parallel. However, in the presence of application crashes this
may result in MUST not detecting a usage error before the application crashes. Thus
we need an asynchronous communication medium that operates while the application
crashes.

We propose the following design to handle this:

• On each computing node of the system we use one core for a MUST tool
process

• The remaining cores on the nodes are used for the application processes

• These processes that are on the machine nodes of the application form the
second TBON layer (application is the first layer)

• All other layers are distributed across the remaining nodes

• Communication between the application processes (first layer) and the tool
process on the second layer uses shared memory

• The second TBON layer communicates via MPI with the remaining layers

We then use signal-handlers and error-handlers on the application processes to catch
an application crash. These handler routines notify the communication system that a
“panik” signal needs to be raised, which is forwarded to the root of the TBON. The root
then broadcasts a “complete-analysis” signal downwards in the tree. When nodes
receive this signal they must receive all available incoming events, process them and
then finish their execution.

GTI’s flexibility in its communication protocol and timing allow various platform
dependent strategies for application crash handling. The use of shared-memory
between the application layer and the first tool layer appears to be a most promising
and portable selection.

4.1.6 Expected	 Impact	 and	 Limitations	
In summary we propose distributed systems for:

• Point-to-point matching (DP2PMatch);

• Collective matching (DCollectiveMatch); and

• Wait-state tracking (DWS).

In addition we propose an asynchronous communication system that allows MUST to
detect MPI usage errors even if the application crashes.

The distributed systems should scale to 10,000 cores and beyond. While this may still
be low for Exascale applications, this is a major improvement to the previous
centralized approach. Two factors should also be considered for this scalability level:
First, Exascale applications are likely hybrid and may thus use less processes than
cores are available; Second, Even if MUST does not supports full system test cases, it
can at least support smaller test or debugging runs. Finally, it may be an option to only
run some of MUST’s correctness checks to improve its scalability where necessary.

Our performance expectations are based on the following analysis. DP2PMatch
executes a coarsened version of the applications communication pattern. Even if each
node that executes DP2PMatch receives events from multiple application processes, it
can provide low overheads as its intra-layer communication can use event buffering to

© CRESTA Consortium Partners 2011 Page 14 of 22

use high-bandwidth communication. DCollectiveMatch needs to run a TBON based
aggregation, however if we fix the fan-in (number of application/TBON-nodes
connected to a TBON node), the number of events to process stays constant with
increasing scale. As our event aggregation keeps the event size constant, the cost of
analyzing a single event also stays constant. The DWS system will likely have the
highest overhead, it uses the same communications as DP2PMatch and
DCollectiveMatch in combination (In order to communicate the different request types).
However, it uses the downwards directed broadcast in addition. The main difference
here is that DWS always sends one or multiple requests, and then waits for a reply;
whereas DP2PMatch and DCollectiveMatch can continue their execution irrespective of
the availability of a reply. So the DWS communication will be more latency bound than
the communications of DP2PMatch and DCollectiveMatch. An evaluation of a DWS
prototype must show whether this design leads to acceptable overheads.

Besides these distributed components, we see potential scalability limitations in:

• Resource tracking

• Graph-based deadlock detection

MUST’s distributed analyses require information about MPI resources (communicators,
datatypes, requests, groups, reduce operations), currently we communicate information
about these resources to all TBON nodes that need them. For 10,000 cores or more
this might lead to expensive bookkeeping, depending on the number of MPI resources
that an application uses. We will investigate this and propose extensions to MUST’s
resource system in the second version of this deliverable if necessary.

The graph-based deadlock detection runs on the root of the TBON, for N processes it
will need to analyze a graph with about N nodes. As a result, this is a scalability
bottleneck, but its impact depends on the number and type of the active wait-for
conditions. Furthermore, we only rarely execute this analysis, so it only needs to return
within an acceptable runtime. We will investigate the resulting overheads and also
propose design extensions if necessary.

4.2 Paradigms	
As architectures become more complex and heterogeneous, new parallel programing
paradigms and abstractions arise. Automatic correctness support for these paradigms
is highly desirable, but requires that automatic error detection tools understand the
paradigm in question. This both requires an instrumentation mechanism to intercept
correctness relevant events, and to add new correctness checks for these events.
MUST’s infrastructure GTI allows us to easily add new types of correctness checks.
However, the instrumentation system is very dependent upon the paradigm and can’t
easily be generalized within GTI.

With the limited resources within the CRESTA project it is unrealistic to advance MUST
towards more than one paradigm. As there is currently no clear candidate for this
paradigm, we sketch first steps towards support for additional paradigms in this design
document. This specifically includes Co-Array Fortran as a PGAS language and CUDA
as an accelerator-based paradigm.

4.2.1 PGAS	 Language	 Correctness	 Checking	
PGAS languages are available as library-based paradigms, e.g., GPI [6], and as
language extensions, e.g., UPC, Co-Array Fortran, and Chapel. In terms of
instrumentation, library based PGAS paradigms are easier to handle, as they directly
provide an interface to intercept. Language based PGAS paradigms are compiled into
an intermediate form and implemented by some communication layer. Intercepting
events is more difficult in this case.

The types of correctness errors that occur in PGAS languages appear to be more
typical to threading errors as detected by tools like the Intel Thread Checker, e.g., a

© CRESTA Consortium Partners 2011 Page 15 of 22

write to remote memory happens in parallel to a local read to the same location on the
remote side. So detecting all types of PGAS usage errors will require tools to trace
each single memory access, which we assume to be too expensive for a scalable
runtime tool. So advances in fine-grained memory race detection are outside the
expertise and resources available within the CRESTA project. However, further errors
of PGAS applications include synchronization errors like concurrent write operations to
equal memory regions or a lack of synchronization primitives between DMA operations.
Finally, due to locking and barrier synchronization, deadlocks may also manifest in
PGAS languages. The later two can also be detected without tracing each single
memory access. So first correctness checks within MUST would more likely fall into the
detection of coarse-grained synchronization errors and deadlocks. If low overhead
memory access tracing is available, experiments with per memory access based error
detection could be possible.

From our early experience, for first correctness checks of a language based PGAS
paradigm, we would require an instrumentation API that provides us with information
on:

• Memory ranges that are global

• Synchronization calls

• Communication/writes into global memory

• Communication/reads from global memory

Details of such an API would be added if a language based PGAS paradigm becomes
a primary candidate for application development within CRESTA.

4.2.2 CUDA/OpenCL	 Correctness	 Checking	
Approaches such as CUDA and OpenCL are library-based extensions, which simplifies
their instrumentation. The key difference to other paradigms is that both CUDA and
OpenCL use a host and a kernel language. The kernel language is usually a modified
subset of an existing language like C or C++. Instrumentation of kernel language
events is very challenging as the functionality that is available on the kernel level is
very limited. As a result, correctness checks of MUST for accelerator languages would
focus on the host side. This primarily includes process local correctness checks, e.g., is
the device or the kernel in the correct state for a certain API call. Also, this includes a
few potential non-local checks, e.g., are no two processes using the same GPU device.
Note that such an extension would still provide MPI correctness checking to
MPI/GPGPU hybrid applications.

4.2.3 Generic	 Correctness	 Checking	 Overview	
GTI is agnostic of any particular programing paradigm, i.e., not specific to MPI tools.
However, it is currently only used for MPI runtime tools, and may thus still need
extensions to handle other paradigms. Once GTI can be used for a certain paradigm, a
tool developer can specify which events he intercepts, which may require extensions to
PnMPI (A basis infrastructure used by GTI). Afterwards, the tool developer can directly
specify analysis modules, which can implement correctness checks in the case of
runtime error detection. In summary, GTI is prepared for handling other paradigms, but
will require instrumentation extensions (PnMPI), possible extensions for GTI itself, and
a MUST extension to add the actual correctness checks, which we describe in the
following.

PnMPI is a virtualization of the MPI profiling interface, it allows multiple tools to
intercept MPI events at the same time. GTI uses PnMPI to intercept MPI calls and
manage its modules. In order to handle additional paradigms, PnMPI needs to be able
to intercept events of this paradigm. For CUDA, OpenCL, or a library based PGAS
language, this requires us to extend PnMPI such that it creates a wrapper library to
intercept any event of interest. In the case of a language based PGAS paradigm,
PnMPI needs to provide hook or callback functions that work together with a vendor

© CRESTA Consortium Partners 2011 Page 16 of 22

provided instrumentation API, or with a source to source translation that adds events to
the PGAS language.

Based on a specification of events to intercept, GTI creates wrapper functions to fetch
events that are already intercepted by PnMPI. If PnMPI provides additional
instrumentation mechanism, GTI needs to be extended such that it is aware of these
additional mechanisms. Our specification for events to intercept needs to distinguish
the interception mechanism in this case.

Further, our primary communication protocol for GTI uses MPI based communication,
in the case of a pure PGAS/OpenCL/CUDA application; this communication medium
may not be available. So depending on the paradigm of choice, it may be necessary to
add additional communication protocols to GTI.

Finally, to make use of such PnMPI and GTI extensions we need to develop an event
specification for the new events of interest within MUST. In addition we need to
implement the new correctness checks and map them to the events that we describe.
Furthermore, depending on the paradigm, it may be necessary to provide certain base
services or conversion function to convert some event arguments into representations
that can be analyzed on all nodes of our TBON.

© CRESTA Consortium Partners 2011 Page 17 of 22

5 Fault	 Tolerance	
Expectations [7] for Exascale systems indicate that mean-time-to-failure may lower
than a day. As a result, applications, systemware, operating system, and any type of
runtime tool need to be aware of possible failures and may also need to recover from
them. This may include the use of spare nodes or cores to replace failed components.

These effects need to be considered for the development of debugging and runtime
error detection tools for Exascale systems. Work package 2 evaluates operating
system and programming model changes to handle such hardware faults in D2.5.2,
which will be released in month 30 of the project. Thus, at the current project state,
there is close to no indication of what these mechanisms and designs might look like.
This includes an indication of a mean-time-to-failure that is to be expected. Also
possible advances in hardware may render these concerns unnecessary altogether. As
an immediate consequence we will not address any modifications for fault tolerance in
this design document. Our hope is to use the insights that are available around project
month 20, to include them in the second version of this design document (month 24).

© CRESTA Consortium Partners 2011 Page 18 of 22

6 Tool	 Integration	
While individual tools may provide application developers or system administrators
valuable insights, there is usually a high reluctance to learn and understand new tools.
At the same time, combining multiple tools may lead to deeper and more meaningful
insights than with just a single tool. Debuggers and runtime error detection tools are an
example for such a case. The obvious integration direction is to incorporate an
automatic error detection tool into the debugger, this leads to the following benefits:

• Tool user only needs to learn the debugger usage

• Errors detected by an automatic runtime tool can directly be investigated with
the debugger

• Automatic runtime tools may share knowledge with the debugger

As a result, we want to investigate potential integrations between DDT and MUST in
order to provide these advantages to the tool users. An early integration between DDT
and Marmot (a predecessor of MUST) already showed a first integration approach that
allowed Marmot to stop the execution when it detected an error. Afterwards, the user
could investigate error details with the debugger. An important notion is that both
MUST and DDT rely on the use of a Tree Based Overlay Network (TBON), an
interesting question is whether an integration could allow the tools to share this
infrastructure for easier deployment and lower resource consumption. In theory,
graphical user interfaces within DDT could control the behavior of MUST and even
apply certain correctness checks to particular data. However, while such integration is
extremely promising in terms of usability and reduced time to solution, the individual
DDT and MUST extensions in the preceding sections are crucial to provide helpful
debugging tools for Exascale. Thus, the integration stays an optional research direction
that we can only follow if progress in the other development areas is successful.

Sharing TBON functionality between the tools is a key for a deep and long lasting tool
integration. As this is a basic and crucial component in either of the tools, it is important
to identify similarities and differences between the TBON usage and instantiation in the
two tools. We want to identify integration goals as a first step in this design document.
Afterwards, we will present the existing approach and first insights for sharing a TBON.

6.1 Goals	
Tool integration between DDT and a tool like MUST should provide the following
functions at least:

• Starting MUST as a plugin within DDT (within DDTs user interfaces)

• Stopping the debugger if MUST a detects errors

• Displaying MUST’s output within DDT

• Exporting environmental variables that control MUST/GTI/PnMPI

These basic features allow users to load MUST into DDT and to gain basic benefits of
an integration. The next section describes details on how we implemented such a first
integration. The following complications arise for such a basic integration:

• MUST performs a code generation steps before it runs with a certain
application. This code generation also needs to be handled by an integration, a
straight forward solution is the usage of MUST’s own utilities to perform this
generation step.

• MUST starts the MPI application with additional processes per default, their
presence will confuse DDT users

• In order to operate in a scalable and fast manner, MUST needs to use
asynchronous communication methods. As a result, it will usually detect non-
local correctness errors only after the application stepped over the respective

© CRESTA Consortium Partners 2011 Page 19 of 22

MPI calls. In such a case, stopping the application where the error happens is
not directly possible.

After handling the basic integration goals we must address these three issues to
improve the user experience with such an integration.

Once we handled these first steps additional more advanced integration goals could
include:

• Sharing TBON functionality between DDT and MUST

• Allowing the specification of user driven runtime checks within DDT, MUST
could be used to implement these checks

• Allowing user to select certain correctness checks for MUST, i.e., advanced and
tool specific options that can be selected during the DDT run configuration

• MUST can provide DDT with information about MPI state, e.g., for MPI handles
(See Section 0)

• Sharing static/debugger knowledge, e.g., DDT might tell MUST the type of a
variable; This can enhance the precision of some MUST checks

6.2 Enabling	 Tool	 Integration	
Allinea DDT has a basic capability for integrating simple components that operate
purely via shared library preloading. This has been used previously in the ITEA
PARMA project for integration of Allinea DDT and the forerunner of MUST, MARMOT -
but also supports the Intel Message Checker which targets a similar objective of MPI
usage verification.

The plugin model as it currently stands is able to—via an XML configuration file—
specify libraries to preload and default breakpoints and tracepoints. At a default
breakpoint, a message - consisting of a string and severity level can be shown to the
user. Error checkers will call this function in their ordinary course of execution - but
when running in the debugger the default breakpoint action will then cause a message
dialog to be shown to the user.

For example, the Intel Message Checker plugin file consists of this small XML file.
<plugin name="Intel Message Checker 7.1" description = "Enables
MPI message checking when using Intel MPI 3.0 or later">

 <preload name="libVTmc.so" />

 <breakpoint location="MessageCheckingBreakpoint"
action="message_box" message_variable="error" />

</plugin>

When the Message Checker detects a problem the usage error is shown inside Allinea
DDT with the application still “alive” - enabling the full context of the application to then
be understood by the programmer.

As Allinea DDT is able to launch applications with any MPI and understands how to do
library preloading for each of the implementations, this enables any tool that uses the
MPI profiling interface (PMPI) to work together and be configured to run with no effort
from the user.

The aim of this part of the CRESTA project is to enable an extended mechanism to
work for tools such as MUST that require scalable infrastructures such as a tree
network.

The design of the necessary integration components and APIs that need exposing is
underway but not complete and will be refined over the next three months by Allinea
and TU-Dresden.

© CRESTA Consortium Partners 2011 Page 20 of 22

Initially we have begun to “clean” (refactor) various parts of the existing DDT code-base
to enable easier access of 3rd party components to Allinea DDT. We have used the
infrastructure with a profiling plugin also - to demonstrate that another tool quite distinct
from debugging can use such an infrastructure. This enabling work will help to include
other tools.

The design required to support tools for scalability must expose scalable tree
operations - and hence the current simple framework is inadequate.

Exposing the tree capability requires:

• The ability to declare a library and support dynamic loading of the library into
the tree network at the tree nodes

• The library will need to conform to an API (yet to be defined) to allow the
operators - merge/broadcast functions in the tree to apply to specific defined
message types.

• Additional launch issues—for example any impact on the application on the
numbering or number of MPI tasks—as some MPI tools define extra processes
as part of their internal processing.

© CRESTA Consortium Partners 2011 Page 21 of 22

7 Testing	 Plan	
We categorize the software extensions that we include into three fields:

• Allinea DDT extensions

• MUST extensions

• Integration components

Extensions to Allinea DDT and MUST can be tested separately while any integration
component can only be tested where both tools are available. This also motivates the
use of a plugin concept for integration, as a DDT installation should not require the
presence of a MUST installation. Testing goals either include functionality tests or
performance/scalability tests. We will detail how we will test both tools for correct
functionality in the following. For performance and scalability purposes we will use all
qualifying tests of the benchmark suite from WP 2 to test both tools in regular intervals.
Further, as co-design teams identify successful or promising use cases for Allinea DDT
or MUST, we will include these respective co-design applications into regular
performance tests. For tests that address the integration of the two tools we will identify
a system where both tools are available. We will use regular tests on this system to test
the tool integration.

7.1 DDT	 Functionality	 Tests	
Allinea DDT has a comprehensive testing suite, which also includes remote testing to
enable access to more extreme machines such as those provided by vendors such as
Cray, SGI and IBM. This will be extended with test cases specific to the extensions
proposed here. Presently roughly 120 compound test cases exist which are each run
against about 10 machines with 6 MPI installations and circa 4 compilers. This is in
addition to many unit tests within the code.

One or two of the (more liberally licensed) applications from the CRESTA project will
be included as part of the test applications and specific tests build for these.

The test suite is driven by a Javascript-like interface to provide full depth integration
testing of DDT—with an API enabling basic debugging operations and GUI state to be
driven and queried.

7.2 Must	 Functionality	 Tests	
MUST uses CTest for automatic testing. We currently have a total of 697 test cases
that are constituted by various correct or incorrect MPI applications. The test cases
include the use of the current centralized MUST components and the use of early
prototypes of distributed checking components. We run these test cases on 3 different
systems every night and summarize the test results on a dashboard. The test cases
also measure the required runtime which allows us to detect overall runtime changes.
In order to test MUST with more complex applications we use SPEC MPI2007 and the
NAS Parallel Benchmarks (NPB) after each larger functionality extension.

© CRESTA Consortium Partners 2011 Page 22 of 22

8 References	
[1] Joachim Protze, Tobias Hilbrich, Andreas Knüpfer, Bronis R. de Supinski,

Matthias S. Müller, "Holistic Debugging of MPI Derived Datatypes", Parallel
Distributed Processing Symposium (IPDPS), (2012)

[2] Tobias Hilbrich, Matthias S. Müller, Bronis R. de Supinski, Martin Schulz,
Wolfgang E. Nagel, "GTI: A Generic Tools Infrastructure for Event-Based Tools
in Parallel Systems", Parallel Distributed Processing Symposium (IPDPS),
(2012)

[3] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, Robert M.
Kirby, “ISP: A Tool for Model Checking MPI Programs”, PPOPP, (2008)

[4] Bettina Krammer, Matthias S. Müller, “MPI Application Development with
MARMOT“, PARCO, (2005)

[5] Jeffrey S. Vetter, Bronis R. de Supinski, “Dynamic Software Testing of MPI
Applications with Umpire“, Supercomputing, (2000)

[6] Franz-Josef Pfreundt, “GPI and MCTP”, Fraunhofer Institut für Techno- und
Wirtschaftsmathematik ITWM, http://www.gpi-
site.com/cms/sites/default/files/GPI_Whitepaper.pdf, (accessed June 2012)

[7] Herbert Huber, Riccardo Brunino, “D4.3 Working Group Report on Hardware
roadmap, links and vendors”, European Exascale Software Initiative, (2011)

	

