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1 Executive	  Summary	  
 

This document describes designs, extension steps, and ideas that will allow the 
debugger Allinea DDT and the automatic runtime correctness tool MUST to cope with 
exascale needs.  We use deliverable D3.1 “State of the art and gap analysis” as a 
roadmap for these extensions.  We will provide a second version of this document in 
project month 24 to extend this document and add detail or new knowledge where 
necessary.  

The transition of Allinea DDT to exascale requires extensions to cope with new 
paradigms and heterogeneous approaches to high performance computing as one 
important step. Also, we address advances in the automatic detection of anomalies to 
reduce the debugging time of complex, possibly heterogeneous or scaled to millions of 
processes, applications.  Finally, we add more awareness of models, application 
structure, or libraries to DDT to present the user with more meaningful information.  
One important use case is the display of information for MPI resource handles, where 
Allinea DDT and other debuggers currently provide no resource state. 

For the runtime error detection tool MUST the proposed extensions fall into scalability 
and programming paradigm support.  Current runtime error detection tools scale to 
100-1,000 processes at most, which is even with todays scale less than unsatisfactory. 
The design that we propose to distribute key correctness checks of MUST targets a 
scale up to 10,000 processes.  Further extensions might then further enhance MUST’s 
scalability to cope with 100,000 or 1,000,000 processes.  Note that while exascale 
systems will likely have far more parallel cores, with hybrid programming approaches, 
the total number of MPI processes might be in this range.  Furthermore, the design 
highlights the specific steps that would allow MUST to provide automatic correctness 
checks for other paradigms. 

As both Allinea DDT and MUST identify programming paradigms as an important goal 
for improvement, it is crucial to notice that the experience within CRESTA has not yet 
identified a primary or highly promising programing paradigm for exascale 
development.  As our resources within the project are limited, we expect that for both 
tools we will only be able to provide extensions for one single programming paradigm 
or model.  Thus, we keep our extensions more general within this document, while we 
hope to have identified the model of choice for the second version of this document. 

A further open gap for both tools is fault tolerance.  If median-time-to-failure is below 
the runtime of an average application, as many expectations for Exascale indicate, 
both tools need techniques to identify and react to failures.  As this effect is barely 
studied at the current project state we will extend our design document for this 
important topic in the second version of this document.  An important input for this is 
deliverable D2.5.2, which will be completed in month 30.  We hope that we can use first 
insights from this deliverable around project month 20.   

Integrations of DDT and MUST can provide users with a unified user interface that 
provides access to both tools.  Besides the advantages in usability, an integration can 
also combine the advantages of the tools to lead to a deeper understanding of a 
software bug or a reduced time to solution.  As a result, we describe first steps for a 
tool integration and resulting extensions to advance this integration.  The highest 
integration degree would allow MUST to operate within DDT’s tree based overlay 
network.  While such an integration is highly desirable we see this as a second priority 
that only comes after addressing the before-mentioned areas of improvement. 

Finally, we investigated the testing processes of both MUST and DDT.  We identified 
that both tools already use very elaborate and extensive functionality tests.  Extensions 
to the existing testing procedures will be added by covering the CRESTA benchmark 
suite from D2.6.1 to detect performance issues of the tools. Also we will add a system 
where both MUST and DDT operate to test integration components. 
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2 Introduction	  
In this document (‘Debugging Design Document, D3.4.1’) we present designs to extend 
the existing tools DDT and MUST towards the gaps and high level goals that we 
identified in D3.1 ‘State of the art and gap analysis’.  

We first describe the current tools for debugging/correctness within CRESTA - Allinea 
DDT and MUST.  We then describe the changes to be made according to the priorities 
from the Gap Analysis for each tool. Section 2 presents the first designs for the Allinea 
DDT and Section 3 presents first designs for MUST. 

These primary recommendations from the Gap Analysis - in the order addressed in this 
Design Document - were: 

• Programming models are in a state of flux - due to recent seismic hardware 
shifts and may require specific debugging or correctness support. 

• Analysis of applications with automated correctness checking is important and 
existing tools do not scale: the MUST package from TU Dresden should be 
extended to improve scale. 

• Automated anomaly detection is increasingly important as the scale of 
concurrency grows - and architectures change - therefore detection of changes 
between runs and between processes is important. 

• Tool integration should be developed to enable independent developers of tools 
to lever existing platforms to remove the hard problems of scalability and 
portability. 

• Application or model awareness should be investigated - for example improving 
the understanding of MPI objects and their presentation to users in tools, or the 
display of task lists with task parallel models. 

• Fault tolerance is an area that that should be investigated or prototyped but is 
expected to be not yet ready at the system level for production level tools 
activity within the time-frame of the project. 

Given the early state of the CRESTA project, we provide first design hints for these 
architecture and system specific topics, but expect that we can provide a much more 
detailed design in the second version of this deliverable.  We address the state of fault 
tolerance in Section 4 and present first insights on tool integration in Section 5.   Finally 
we present how we ensure that any extension that we provide is well tested and 
suitable for production use (Section 6).  In the following we first provide a short 
overview to the two mentioned tools Allinea DDT and MUST, and then highlight the 
purpose of this document. 

2.1 Allinea	  DDT	  
In terms of debugging the state of the art for scalable debugging is Allinea DDT – which 
has proven the feasibility of Petascale debugging for the existing PRACE prototypes 
and other large systems by reaching 220,000 cores (the largest machine at the time of 
measurement) and provided fraction-of-a-second responsiveness with global 
operations at full scale. 

The Allinea DDT architecture is modern graphical debugging tool with a bespoke tree 
overlay network for communication and message broadcast and aggregation, and at 
the leaf (and any debugging nodes) of the tree, a daemon and a full-strength 
“command line” debugger (usually the open source GDB). This tree architecture has 
been essential to scalability. 

Allinea DDT provides support for most paradigms found in high performance computing 
- from GPU programming models through OpenMP and MPI to PGAS languages. 
Platform support is similarly broad - covering the majority of HPC systems in use today. 
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2.2 MUST	  
MUST (Marmot Umpire Scalable Tool) is an automatic runtime error detection tool for 
parallel software. Currently it focuses on the detection of MPI programming errors, 
while its extensibility allows us to advance the tool towards other programming 
paradigms in the future. Automatic error detection tools are less versatile than 
debuggers, however, they offer a quick and easy option to detect many error types. 
The individual error outputs can often include helpful details on the surroundings and 
details of the error, as well as sometimes its root cause. Finally, crucial is the notion 
that some errors may not manifest in an actual application crash or hang, for some 
systems or runs. In these cases silent errors may lead to erroneous calculations that 
might stay undetected without these tools.  

While debuggers already showed their scalability to leadership scale machines, e.g., 
Jaguar experiments with 220,000 cores, automatic runtime error detection tools fail to 
scale their more detailed correctness checks to more than 100-1,000 cores. Thus, a 
primary goal is to advance the scalability of MUST towards at least 10,000 cores and 
potentially even more. We will detail our design for scalable MPI runtime error detection 
with MUST in the first part of this section. Furthermore, new paradigms are playing an 
increasing role in the development of parallel applications. We present a design to 
extend MUST for the use of other paradigms in the second part of this section. 

 

2.3 Purpose	  
This document presents specific ideas and designs to overcome the identified gaps 
that current debugging tools have. This particularly includes expectations of changes 
for exascale systems, which in our case includes the challenges: 

• Scale 

• Programing models 

• Fault tolerance 

• Complexity of software and its bugs 

The challenges scale and complexity of software and its bugs can be predicted more 
clearly than the impact of programing models or fault tolerance. As a result, we can 
show more detailed designs to cover scale and complexity of software and its bugs 
within this design document. For scale, Allinea DDT already supports test cases with 
100.000 processes very well, so extensions in this direction primarily address MUST. 
For complexity of software and its bugs, we provide new designs for Allinea DDT to 
allow easier root-cause analysis and paradigm/model specific insights. The 
developments in the two remaining areas (programming models and fault tolerance) 
remain unpredictable at the moment. As a result, our designs for these problems form 
a basis for an extension in the second version of the deliverable. 

 

2.4 Glossary	  of	  Acronyms	  
cronym Definition 
MPI Message Passing Interface 
TBON Tree Based Overlay Network 
MUST  Marmot Umpire Scalable Tool 
GTI 
P2P 
WFG 

Generic Tools Infrastructure  
Point-to-point 
Waiting-for graph 
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3 Debugger	  Design	  Proposals	  
We will propose to address the core problems identified as a result of the survey and 
initial document D3.1 (‘State of the art and gap analysis’) and their impact on the 
debugger architecture. 

3.1 Programming	  Models	  
The trend in hardware is presently towards heterogeneity - in many forms. We already 
see GPUs or the latest Intel Xeon Phi as accelerators that are located on PCI Express 
buses, and in time it is likely such components will become more closely integrated. 
Processor platforms normally outside of HPC such as ARM are also adopting 
heterogeneity with concepts for power efficiency such as big.LITTLE - whereby a 
number of cores are only powered up at points within an application that can use the 
concurrency. Formerly separate components such as the GPU have moved into the die 
with products such as the AMD Fusion. 

This heterogeneity requires programmer intervention in order to maximize performance 
(or even to access the hardware in most cases). In particular - with offloaded 
computations there is a need for the ability to debug synchronous and asynchronously 
launched offloaded computation at the same time as debugging the host processor on 
the node. The hardware combination is part of a larger system with multiple nodes - 
and the software must run across the whole platform simultaneously.  

The most common form of hybrid code until recently was typically OpenMP within a 
node, MPI between nodes - this has changed with CUDA or OpenCL now as an 
alternative to the OpenMP - often leaving multiple cores on a node idle whilst a GPU 
executes an (eg.) CUDA kernel. This may change with the advent of the Intel Xeon Phi 
architecture which supports – amongst other programming models - OpenMP - and 
could lead to reestablishment of OpenMP + MPI as a dominant combination. The 
processor roadmaps of the main vendors will have a clear but as yet uncertain impact 
on the development choices made by application developers. 

For a debugger such as Allinea DDT this rise of heterogeneity should be considered 
and in particular: 

• New platforms must be supported as a route to understanding the impact on 
programmability and debugging. Architecturally the designs for the changes 
depend on the platforms expected for exascale - but in the immediate term 
systems such as accelerators from NVIDIA and Intel are likely candidates. 

• The control of thread (including GPU thread) level parallelism within a node 
should become more intuitive - allowing the same form of control that a user 
has over the MPI processes. 

• The display of data as shown for MPI parallelism within Allinea DDT must 
include similar thread-parallel displays also - for example automated 
comparison across threads is a worthy addition to comparison across 
processes. 

New programming models other than these mainstream coprocessor models did not 
have sufficient interest from the application developers in CRESTA to consider at this 
point in time. 

 

3.2 Automated	  Anomaly	  Detection	  
Automatic identification of anomalous values is becoming important. Firstly, users have 
expressed concerns – in both the survey for the existing Gap Analysis document, and 
we are aware anecdotally, that the volume of data is increasing as applications grow 
and is already unmanageable for many applications. Secondly, debugging is both 
deductive and iterative, and yet iteration is not a process that we humans do well. At 
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current scale, and as we reach higher scales, we can automatically identify anomalies 
that happen - differences with previous successful runs, and with processes that are 
successful within the current task. Identifying earlier that a value is invalid would be 
helpful even at current application scale. 

Identifying anomalous application activity is also important - current approaches, for 
example, viewing merged stacks of processes are helpful but need to be extended. 
Identifying, for example, the path of execution that led to a particular issue would be 
helpful. This may take the form of comparing with a previous successful application 
run. This could cover both data changes, and process activity. Automated methods for 
asserting data integrity should be investigated that would allow, for example, a 
developer to efficiently detect incorrect values. This could involve developing both 
standard libraries for data verification, and model specific libraries and, for example, 
the addition of consistency checks support - for example a checksum capability on 
function entrance for large arrays.   

This would mean exploring or develop in-process methods for check-summing: vast 
data-sets require the fastest methods to access data. Running at the debugger layer 
through OS debugging APIs could be too slow but an in-process dynamically loaded 
library could provide fast support.  

Logging and comparing different runs is another desirable way of finding why two 
codes or runs have given different results, but the naive implementation is too slow. If 
each function call creates a delay to log the function-event, then debugger-level logging 
will impose too much delay. Compiler-level instrumentation is an option - but not 
universally supported. Therefore, dynamic instrumentation needs to be compared 
against selective debugging-level interruption. 

Application/Library Model Awareness: Better integration of layered models and the 
debugger should be investigated with, for example, awareness of MPI communicators 
and the internals of request object or integration with runtime of task based parallel 
frameworks to visualize internal task lists. 

The first example to be tackled will be MPI handles. Presently there is no standard for 
MPI handle debugging - this meaning the request objects or communicators are 
typically “opaque” to the debugger and provide no useful information for the user. 

• TU-Dresden has a wrapper library to MPI and a series of GDB python scripts 
that could be integrated into DDT. The wrapper library wraps calls to the MPI 
handle creation, for example MPI communicator objects, creating its own MPI 
objects and then the gdb python scripts work to provide more sensible “pretty 
printing” of the internal objects. This python based printing of variables is 
already supported by DDT for global settings by virtue of it using the GDB 
debugger underneath. The pretty printers and wrapper library will fit within a 
modest extension to the existing preload plugin capability in DDT. 

o Add support for scripts using the python API for pretty printing in the 
definition files for the plugin architecture. 

o For specified plugin scripts, ensure support for every MPI by transferring 
the python scripts to compute nodes in systems where necessary. 

• Investigate the proposed MPI 3 Handle Extension (for inclusion in the MPI 3.1 
standard) whereby information similar to the TU-Dresden library is included by 
default in the MPI instead and the debugger queries an interface similar to the 
MPI Message Queue Debugging API to explore the handles. Discussions and 
designs for this are already in draft form between Allinea and the Open MPI 
team. A prototype is needed to consider whether this method is appropriate. 

Alternative models beyond MPI - such as OpenMP 3 Task Parallelism - can be 
considered in the next design document. 
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Extensions to the debugging interface to enable more application aware debugging will 
also be considered and reported in the next design document. In particular we will 
investigate 

• Specific library hooks to query consistency of internal data types. 

• Specific library code or support for representing the opaque data at a higher 
level. 

• Use of an API to enable debugger/runtime interaction - for example exposing a 
programmable interface to the debugger. 
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4 MUST	  
We describe MUST’s extensions towards Exascale needs in this section. 

4.1 Scalability	  
MUST analyses MPI events in order to analyze their correctness in terms of the MPI 
standard specification. An important notion is that two types of correctness checks 
exist: 

• Local checks: Only require information from one process, e.g., “Is the datatype 
in the MPI_Send call committed?” and can be executed directly on the 
application processes; and 

• Non-local checks: Require information from more than one process, e.g., “Do all 
processes in the MPI_Bcast call use the same type signature?”. These require 
a communication infrastructure to gather all the information that is necessary to 
run the correctness check.  

The local checks satisfactorily scale with the number of MPI tasks, while the non-local 
checks impose scalability challenges. Prior correctness tools such as Marmot [4], 
Umpire [5], and ISP [3] must use a single process or thread to run all non-local 
correctness checks, which is a major scalability limitation. MUST includes both types of 
correctness checks as well. The centralised design allows correctness tools to handle 
100-1,000 cores at most. We propose a design that is intended to scale to at least 
10,000 cores, while its extension to higher scales should be feasible. We will first 
present an overview of our design and then detail its individual components. 

This design also reflects progress within an ongoing cooperation with the Los Alamos 
National Laboratories and the Lawrence Livermore National Laboratories. While these 
cooperations focus on achieving low runtime error detection overheads for about 
10,000 cores, we want to extend MUST scalability as far as possible within the 
CRESTA scope. The experience with the design below and its limitations for actual test 
cases will motivate a more detailed layout for further scaling in the second version of 
this design document. 

4.1.1 Component	  Overview	  
MUST uses a module approach, where distinct modules implement particular tasks. 
These modules have clearly defined interfaces and cooperate with each other. The 
second important functionality in MUST is the use of Tree Based Overlay Networks 
(TBONs) that allow us to distribute workload onto multiple levels of extra processes or 
threads. Both the module and the TBON concept are in fact not implemented within 
MUST, but rather in the infrastructure it employs, which is called the Generic Tools 
Infrastructure (GTI). TUD develops GTI along with the Lawrence Livermore National 
Laboratory and the MUST tool is currently its key use-case. This design describes how 
we can use GTI’s TBON functionality to derive distributed non-local correctness 
checks. 
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Figure 1: Centralised correctness checking with MUST 

In terms of non-local correctness checking, MUST uses the layout and the modules in 
Figure 1. The left side of the figure illustrates the central tool layout of MUST. A single 
process receives MPI events from all application processes. The tool process runs the 
modules that are listed on the right side of the figure. This includes the following 
modules for correctness checking: 

• CollectiveMatch: checks MPI collective calls for their correctness; 

• P2PMatch: checks MPI point-to-point calls for their correctness; and 

• BlockingState: detects deadlocks. 

The other module groups “Resource tracking” and “Utility” are used by these 
correctness checks to function correctly. While the three correctness checking modules 
assume that they receive events from all MPI processes, all the other modules can 
already be used in a distributed fashion. So our design focuses on distributing these 
three modules.  

 
Figure 2: Distributed correctness checking with MUST 

Figure 2 illustrates the distribution of the non-local correctness checks, it shows the 
application processes at the left and sketches a tree based overlay network to its right. 
Our design will analyze point-to-point matching on the first non-application layer of the 
TBON. Collective MPI operations and deadlocks will be analyzed throughout the 
complete TBON. Finally, the root process of the tree will run the actual graph analysis 
that we use for deadlock detection and it will log correctness messages. We detail 
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these components in the following. Note that we simplified the modules for the 
distributed wait-state tracking. 

4.1.2 Distributed	  P2P	  Analysis	  
We propose to match and analyze the correctness of point-to-point messages on the 
first non-application layer of GTI’s TBON. The key observation is that a distributed 
message matching in the whole tree is unsatisfactory [2].  The limitation is that the root 
would have to match 50% of all possible communication pairs for general 
communication patterns. Thus, depending on an application's communication pattern, 
severe load balancing problems might arise. As a result, we instead only run this 
analysis on the first tool level of the TBON. In order to communicate information 
between these tool processes we use a so-called intra-layer communication. 

 
Figure 3: Illustration of intra layer communication based P2P matching 

Figure 3 illustrates the intra layer communication based point-to-point matching that we 
propose. Figure 3a shows that rank 0 issues a send that has rank 3 as its destination, 
while rank 3 issues a matching receive for this send. Once issued, the events that 
represent these MPI calls can arrive in any order on the tool processes T0 and T1. As 
this example uses a binary TBON, the receive event of rank 3 will arrive at T1 (Figure 
3b). We directly match receive events on the tool processes that process them, i.e., T1 
in our example. T1 will analyze the receive and determine that it is not aware of a 
matching send call for this event, as a result, it adds the event to an internal data 
structure for point-to-point matching, which we illustrate with a small table in Figure 3c. 
When information about the send event arrives at T0 (Figure 3d), we determine that the 
matching receive for this send will arrive at T1 instead of T0. So in order to match the 
message we transfer the send event information to T1 (Figure 3e). Finally, when the 
information on the send arrives at T1, this process determines that a matching receive 
is available. During this matching T1 can run any necessary correctness checks, e.g., 
type matching. Note that this requires not only to transfer specific send events within a 
TBON layer, but also requires us to transfer information about MPI resources—such as 
communicators or datatypes—within the layer. This complicates the implementation of 
the design, as MUST’s resource system needs to be aware of such “remote” 
resources. 

We propose to transfer send events with intra layer communication as MPI’s push 
semantic guarantees that each send call specifies a destination rank, whereas receive 
events might specify that they match a send from any process 
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(source=MPI_ANY_SOURCE). Thus, using intra-layer communication for receive 
events would add unnecessary complexity. 

This design relies on the availability of an intra-layer communication mechanism within 
a TBON. Our experience with MUST and GTI indicates that this poses no severe 
restrictions. MUST currently uses an MPI-based TBON communication system that 
utilizes an MPI_COMM_WORLD virtualization. Using an intra-layer communication in 
this setting is straight forward. The actual intra layer communication can be 
implemented by regular communication protocols of GTI. 

4.1.3 Distributed	  Collective	  Analysis	  

 
Figure 4:  Illustration of event aggregation for MPI collectives 

We propose to analyze the correctness of MPI collective events within GTI’s TBON. 
Most correctness checks for MPI collective operations can use aggregations for their 
implementation. Figure 4 illustrates this concept, where each application process 
issues an MPI_Bcast operation (Figure 4a). When the first MPI_Bcast event arrives at 
T0, it recognizes this as a new wave of events and creates a respective data structure. 
Note that the event is not forwarded towards T2 (Figure 4c). When the second event 
arrives at T0 (Figure 4d), the TBON node determines that it received all events that 
belong to this wave and runs all correctness checks (Figure 4d). Finally, it creates a 
new event that represents the information from the two incoming events. For MPI 
collective operations this is possible without increasing event size. This event is then 
forwarded to the next TBON layer (Figure 4e).  
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An analysis of all MPI collective operations reveals that all non-local correctness 
checks can be distributed in this fashion and that event aggregation with constant 
event size is feasible. The only exceptions are communication calls where pairs of 
processes can use distinct type signatures, this includes: 

• MPI_Scatterv, 

• MPI_Gatherv, 

• MPI_Alltoallv, and 

• MPI_Alltoallw. 

Note that MPI_Allgatherv is not included in this list, as it requires all processes to span 
the same type-signatures with its count array. Handling these four calls with the 
aggregation mechanism would require us to store arrays of type signatures in the 
aggregated events. This would first of all lead to a non-constant event size and 
furthermore also lead to a load imbalance, as the root of the TBON would have to 
execute a majority of the type matching checks. As a result, we propose to handle the 
type matching for these four operations with intra-layer communication. 

For MPI_Scatterv and MPI_Gatherv, the root process needs to scatter the count array 
along with the datatype in use within one TBON layer that provides intra-layer 
communication. For MPI_Alltoallv and MPI_Alltoallw, each process scatters its send-
counts array and its type(s) across a TBON layer. This handling should not exceed the 
complexity of the original MPI communications, and should thus provide an acceptable 
overhead. Note that these four calls also have expected scalability limits for Exascale 
needs, as they use arrays that are sized according to the number of processes in use. 

4.1.4 Distributed	  Wait-‐State	  Analysis	  

 
Figure 5:  Illustration of distributed wait-state modules 

The most challenging non-local analysis is the MPI deadlock detection. It basically 
consists of two parts: a wait-state tracking and a graph based deadlock detection. The 
wait-state tracking causes the higher overhead, as it needs to consider each single 
possibly blocking MPI operation. It then decides whether the current operation can 
complete, i.e. if all of its matching operations can actually be issued. The graph based 
deadlock detection is only executed if we suspect the presence of a deadlock, and is 
thus the less critical overhead. We propose the following design to distribute the wait-
state analysis: 

• Each P2P and collective operation gets an associated timestamp that captures 
their order within a process 
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• P2P and collective matching add matched operations to queues of completed 
operations—Completed [operation] Queue (CQ)—operations that are ordered 
by the timestamp of these operations 

• The Distributed Wait-State (DWS) analysis runs on the same layer as the P2P 
matching (Figure 5, first tool layer) 

• DWS starts at the beginning of the CQ and determines whether this operation 
can safely complete 

• The current operation considered by DWS in the CQ is considered the “active” 
operation 

• If the active operation can complete, the next operation in the queue becomes 
the active operation 

• DWS on a TBON node uses upstream and intra-layer communication to 
determine whether the active operation can complete, that is whether all 
matching operations also became active already (Figure 5, “Collective Request 
Aggregation” and “Collective Responder” Modules cooperate with DWS for that) 

The root of the TBON runs a centralized graph analysis (Figure 5, WFG Module). 

Note that the layer on which DWS runs is only aware of whether all connected 
processes called a certain collective call, but not whether all other ranks also called the 
collective call. We propose to use a communication directed towards the root for that, 
along with a downwards broadcast that is started by the root once that that all 
processes indicated that the given collective became active. 

In summary we use the following requests for the intra-layer and up/down 
communication: 

• Collective-Became-Active [Upwards-Aggregated] 

• Collective-Commit [Downwards-Broadcasted] 

• P2P-Became-Active [Intra-layer] 

• P2P-Commit [Intra-layer] 

When a collective operation becomes active on a node that runs DWS, it issues the 
request “Collective-Became-Active” and sends it towards the TBON root. This event is 
aggregated along its way if its communicator and timestamp—timestamp within the 
communicator—match. Once the root received a complete wave for this request it 
sends a notification event “Collective-Commit”. When DWS receives this request it can 
advance its active op to the next operation in CQ. When a P2P operation becomes 
active on a DWS node and the operation is a receive operation, it sends a “P2P-
Became-Active” request to the node that hosts the send that matches the receive 
operation. Once the DWS node that hosts the send operation receives this request, 
while the given send also became active or was already completed, it sends the “P2P-
Commit” back to the node that hosts the receive. The DWS node that hosts the sender 
op can advance the active op once it saw the “P2P-Became-Active” request, while the 
DWS node that hosts the receive op can advance its active op when it receives the 
“P2P-Commit” request. Note that less communication is necessary if the send and/or 
the receive operation is non-blocking. Also for completion calls, e.g., MPI_Waitall, array 
versions of such requests will be necessary. 

Finally, to actually detect deadlocks, the root of the TBON runs the WFG module. This 
module uses a timeout to start deadlock detection in given intervals. When it starts a 
deadlock detection it requests wait-for dependency information about the active 
operation of all DWS nodes, for that it uses the following request: 

• Request-Active-Ops [Downwards-Broadcast] 

The DWS nodes answer with the requested wait-for information that they send back to 
the WFG module. The WFG module waits until it received all the wait-for information, 
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applies it to a WFG, and then runs a deadlock detection on this graph. Note that this 
graph analysis is currently still centralized, but should scale to 10,000 cores at least.  

4.1.5 Asynchronous	  Communication	  
Besides the distribution of MUST’s non-local correctness checks it is important that 
MUST uses a highly efficient communication means. In particular, experiments indicate 
that application events need to be transferred in a non-blocking fashion, i.e., the 
application must be allowed to continue its execution while MUST evaluates new 
events for correctness in parallel. However, in the presence of application crashes this 
may result in MUST not detecting a usage error before the application crashes. Thus 
we need an asynchronous communication medium that operates while the application 
crashes. 

We propose the following design to handle this: 

• On each computing node of the system we use one core for a MUST tool 
process 

• The remaining cores on the nodes are used for the application processes  

• These processes that are on the machine nodes of the application form the 
second TBON layer (application is the first layer) 

• All other layers are distributed across the remaining nodes 

• Communication between the application processes (first layer) and the tool 
process on the second layer uses shared memory 

• The second TBON layer communicates via MPI with the remaining layers 

We then use signal-handlers and error-handlers on the application processes to catch 
an application crash. These handler routines notify the communication system that a 
“panik” signal needs to be raised, which is forwarded to the root of the TBON. The root 
then broadcasts a “complete-analysis” signal downwards in the tree. When nodes 
receive this signal they must receive all available incoming events, process them and 
then finish their execution.  

GTI’s flexibility in its communication protocol and timing allow various platform 
dependent strategies for application crash handling. The use of shared-memory 
between the application layer and the first tool layer appears to be a most promising 
and portable selection. 

4.1.6 Expected	  Impact	  and	  Limitations	  
In summary we propose distributed systems for: 

• Point-to-point matching (DP2PMatch);  

• Collective matching (DCollectiveMatch); and 

• Wait-state tracking (DWS). 

In addition we propose an asynchronous communication system that allows MUST to 
detect MPI usage errors even if the application crashes.  

The distributed systems should scale to 10,000 cores and beyond. While this may still 
be low for Exascale applications, this is a major improvement to the previous 
centralized approach. Two factors should also be considered for this scalability level: 
First, Exascale applications are likely hybrid and may thus use less processes than 
cores are available; Second, Even if MUST does not supports full system test cases, it 
can at least support smaller test or debugging runs. Finally, it may be an option to only 
run some of MUST’s correctness checks to improve its scalability where necessary. 

Our performance expectations are based on the following analysis. DP2PMatch 
executes a coarsened version of the applications communication pattern. Even if each 
node that executes DP2PMatch receives events from multiple application processes, it 
can provide low overheads as its intra-layer communication can use event buffering to 
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use high-bandwidth communication. DCollectiveMatch needs to run a TBON based 
aggregation, however if we fix the fan-in (number of application/TBON-nodes 
connected to a TBON node), the number of events to process stays constant with 
increasing scale. As our event aggregation keeps the event size constant, the cost of 
analyzing a single event also stays constant. The DWS system will likely have the 
highest overhead, it uses the same communications as DP2PMatch and 
DCollectiveMatch in combination (In order to communicate the different request types). 
However, it uses the downwards directed broadcast in addition. The main difference 
here is that DWS always sends one or multiple requests, and then waits for a reply; 
whereas DP2PMatch and DCollectiveMatch can continue their execution irrespective of 
the availability of a reply. So the DWS communication will be more latency bound than 
the communications of DP2PMatch and DCollectiveMatch. An evaluation of a DWS 
prototype must show whether this design leads to acceptable overheads. 

Besides these distributed components, we see potential scalability limitations in: 

• Resource tracking 

• Graph-based deadlock detection 

MUST’s distributed analyses require information about MPI resources (communicators, 
datatypes, requests, groups, reduce operations), currently we communicate information 
about these resources to all TBON nodes that need them. For 10,000 cores or more 
this might lead to expensive bookkeeping, depending on the number of MPI resources 
that an application uses. We will investigate this and propose extensions to MUST’s 
resource system in the second version of this deliverable if necessary.  

The graph-based deadlock detection runs on the root of the TBON, for N processes it 
will need to analyze a graph with about N nodes. As a result, this is a scalability 
bottleneck, but its impact depends on the number and type of the active wait-for 
conditions. Furthermore, we only rarely execute this analysis, so it only needs to return 
within an acceptable runtime. We will investigate the resulting overheads and also 
propose design extensions if necessary. 

 

4.2 Paradigms	  
As architectures become more complex and heterogeneous, new parallel programing 
paradigms and abstractions arise. Automatic correctness support for these paradigms 
is highly desirable, but requires that automatic error detection tools understand the 
paradigm in question. This both requires an instrumentation mechanism to intercept 
correctness relevant events, and to add new correctness checks for these events. 
MUST’s infrastructure GTI allows us to easily add new types of correctness checks. 
However, the instrumentation system is very dependent upon the paradigm and can’t 
easily be generalized within GTI. 

With the limited resources within the CRESTA project it is unrealistic to advance MUST 
towards more than one paradigm. As there is currently no clear candidate for this 
paradigm, we sketch first steps towards support for additional paradigms in this design 
document. This specifically includes Co-Array Fortran as a PGAS language and CUDA 
as an accelerator-based paradigm.  

4.2.1 PGAS	  Language	  Correctness	  Checking	  
PGAS languages are available as library-based paradigms, e.g., GPI [6], and as 
language extensions, e.g., UPC, Co-Array Fortran, and Chapel. In terms of 
instrumentation, library based PGAS paradigms are easier to handle, as they directly 
provide an interface to intercept. Language based PGAS paradigms are compiled into 
an intermediate form and implemented by some communication layer. Intercepting 
events is more difficult in this case.  

The types of correctness errors that occur in PGAS languages appear to be more 
typical to threading errors as detected by tools like the Intel Thread Checker, e.g., a 
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write to remote memory happens in parallel to a local read to the same location on the 
remote side. So detecting all types of PGAS usage errors will require tools to trace 
each single memory access, which we assume to be too expensive for a scalable 
runtime tool. So advances in fine-grained memory race detection are outside the 
expertise and resources available within the CRESTA project. However, further errors 
of PGAS applications include synchronization errors like concurrent write operations to 
equal memory regions or a lack of synchronization primitives between DMA operations. 
Finally, due to locking and barrier synchronization, deadlocks may also manifest in 
PGAS languages. The later two can also be detected without tracing each single 
memory access. So first correctness checks within MUST would more likely fall into the 
detection of coarse-grained synchronization errors and deadlocks. If low overhead 
memory access tracing is available, experiments with per memory access based error 
detection could be possible. 

From our early experience, for first correctness checks of a language based PGAS 
paradigm, we would require an instrumentation API that provides us with information 
on: 

• Memory ranges that are global 

• Synchronization calls 

• Communication/writes into global memory 

• Communication/reads from global memory 

Details of such an API would be added if a language based PGAS paradigm becomes 
a primary candidate for application development within CRESTA. 

4.2.2 CUDA/OpenCL	  Correctness	  Checking	  
Approaches such as CUDA and OpenCL are library-based extensions, which simplifies 
their instrumentation. The key difference to other paradigms is that both CUDA and 
OpenCL use a host and a kernel language. The kernel language is usually a modified 
subset of an existing language like C or C++. Instrumentation of kernel language 
events is very challenging as the functionality that is available on the kernel level is 
very limited. As a result, correctness checks of MUST for accelerator languages would 
focus on the host side. This primarily includes process local correctness checks, e.g., is 
the device or the kernel in the correct state for a certain API call. Also, this includes a 
few potential non-local checks, e.g., are no two processes using the same GPU device. 
Note that such an extension would still provide MPI correctness checking to 
MPI/GPGPU hybrid applications.  

4.2.3 Generic	  Correctness	  Checking	  Overview	  
GTI is agnostic of any particular programing paradigm, i.e., not specific to MPI tools. 
However, it is currently only used for MPI runtime tools, and may thus still need 
extensions to handle other paradigms. Once GTI can be used for a certain paradigm, a 
tool developer can specify which events he intercepts, which may require extensions to 
PnMPI (A basis infrastructure used by GTI). Afterwards, the tool developer can directly 
specify analysis modules, which can implement correctness checks in the case of 
runtime error detection. In summary, GTI is prepared for handling other paradigms, but 
will require instrumentation extensions (PnMPI), possible extensions for GTI itself, and 
a MUST extension to add the actual correctness checks, which we describe in the 
following. 

PnMPI is a virtualization of the MPI profiling interface, it allows multiple tools to 
intercept MPI events at the same time. GTI uses PnMPI to intercept MPI calls and 
manage its modules. In order to handle additional paradigms, PnMPI needs to be able 
to intercept events of this paradigm. For CUDA, OpenCL, or a library based PGAS 
language, this requires us to extend PnMPI such that it creates a wrapper library to 
intercept any event of interest. In the case of a language based PGAS paradigm, 
PnMPI needs to provide hook or callback functions that work together with a vendor 
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provided instrumentation API, or with a source to source translation that adds events to 
the PGAS language. 

Based on a specification of events to intercept, GTI creates wrapper functions to fetch 
events that are already intercepted by PnMPI. If PnMPI provides additional 
instrumentation mechanism, GTI needs to be extended such that it is aware of these 
additional mechanisms. Our specification for events to intercept needs to distinguish 
the interception mechanism in this case.  

Further, our primary communication protocol for GTI uses MPI based communication, 
in the case of a pure PGAS/OpenCL/CUDA application; this communication medium 
may not be available. So depending on the paradigm of choice, it may be necessary to 
add additional communication protocols to GTI. 

Finally, to make use of such PnMPI and GTI extensions we need to develop an event 
specification for the new events of interest within MUST. In addition we need to 
implement the new correctness checks and map them to the events that we describe. 
Furthermore, depending on the paradigm, it may be necessary to provide certain base 
services or conversion function to convert some event arguments into representations 
that can be analyzed on all nodes of our TBON. 
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5 Fault	  Tolerance	  
Expectations [7] for Exascale systems indicate that mean-time-to-failure may lower 
than a day. As a result, applications, systemware, operating system, and any type of 
runtime tool need to be aware of possible failures and may also need to recover from 
them. This may include the use of spare nodes or cores to replace failed components.  

These effects need to be considered for the development of debugging and runtime 
error detection tools for Exascale systems. Work package 2 evaluates operating 
system and programming model changes to handle such hardware faults in D2.5.2, 
which will be released in month 30 of the project. Thus, at the current project state, 
there is close to no indication of what these mechanisms and designs might look like. 
This includes an indication of a mean-time-to-failure that is to be expected. Also 
possible advances in hardware may render these concerns unnecessary altogether. As 
an immediate consequence we will not address any modifications for fault tolerance in 
this design document. Our hope is to use the insights that are available around project 
month 20, to include them in the second version of this design document (month 24). 
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6 Tool	  Integration	  
While individual tools may provide application developers or system administrators 
valuable insights, there is usually a high reluctance to learn and understand new tools. 
At the same time, combining multiple tools may lead to deeper and more meaningful 
insights than with just a single tool. Debuggers and runtime error detection tools are an 
example for such a case. The obvious integration direction is to incorporate an 
automatic error detection tool into the debugger, this leads to the following benefits: 

• Tool user only needs to learn the debugger usage 

• Errors detected by an automatic runtime tool can directly be investigated with 
the debugger 

• Automatic runtime tools may share knowledge with the debugger 

As a result, we want to investigate potential integrations between DDT and MUST in 
order to provide these advantages to the tool users. An early integration between DDT 
and Marmot (a predecessor of MUST) already showed a first integration approach that 
allowed Marmot to stop the execution when it detected an error. Afterwards, the user 
could investigate error details with the debugger. An important notion is that both 
MUST and DDT rely on the use of a Tree Based Overlay Network (TBON), an 
interesting question is whether an integration could allow the tools to share this 
infrastructure for easier deployment and lower resource consumption. In theory, 
graphical user interfaces within DDT could control the behavior of MUST and even 
apply certain correctness checks to particular data. However, while such integration is 
extremely promising in terms of usability and reduced time to solution, the individual 
DDT and MUST extensions in the preceding sections are crucial to provide helpful 
debugging tools for Exascale. Thus, the integration stays an optional research direction 
that we can only follow if progress in the other development areas is successful.  

Sharing TBON functionality between the tools is a key for a deep and long lasting tool 
integration. As this is a basic and crucial component in either of the tools, it is important 
to identify similarities and differences between the TBON usage and instantiation in the 
two tools. We want to identify integration goals as a first step in this design document. 
Afterwards, we will present the existing approach and first insights for sharing a TBON. 

6.1 Goals	  
Tool integration between DDT and a tool like MUST should provide the following 
functions at least: 

• Starting MUST as a plugin within DDT (within DDTs user interfaces) 

• Stopping the debugger if MUST a detects errors 

• Displaying MUST’s output within DDT 

• Exporting environmental variables that control MUST/GTI/PnMPI 

These basic features allow users to load MUST into DDT and to gain basic benefits of 
an integration. The next section describes details on how we implemented such a first 
integration. The following complications arise for such a basic integration: 

• MUST performs a code generation steps before it runs with a certain 
application. This code generation also needs to be handled by an integration, a 
straight forward solution is the usage of MUST’s own utilities to perform this 
generation step.  

• MUST starts the MPI application with additional processes per default, their 
presence will confuse DDT users 

• In order to operate in a scalable and fast manner, MUST needs to use 
asynchronous communication methods. As a result, it will usually detect non-
local correctness errors only after the application stepped over the respective 
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MPI calls. In such a case, stopping the application where the error happens is 
not directly possible. 

After handling the basic integration goals we must address these three issues to 
improve the user experience with such an integration. 

Once we handled these first steps additional more advanced integration goals could 
include: 

• Sharing TBON functionality between DDT and MUST 

• Allowing the specification of user driven runtime checks within DDT, MUST 
could be used to implement these checks 

• Allowing user to select certain correctness checks for MUST, i.e., advanced and 
tool specific options that can be selected during the DDT run configuration 

• MUST can provide DDT with information about MPI state, e.g., for MPI handles 
(See Section 0) 

• Sharing static/debugger knowledge, e.g., DDT might tell MUST the type of a 
variable; This can enhance the precision of some MUST checks 

 

6.2 Enabling	  Tool	  Integration	  
Allinea DDT has a basic capability for integrating simple components that operate 
purely via shared library preloading. This has been used previously in the ITEA 
PARMA project for integration of Allinea DDT and the forerunner of MUST, MARMOT - 
but also supports the Intel Message Checker which targets a similar objective of MPI 
usage verification. 

The plugin model as it currently stands is able to—via an XML configuration file—
specify libraries to preload and default breakpoints and tracepoints. At a default 
breakpoint, a message - consisting of a string and severity level can be shown to the 
user. Error checkers will call this function in their ordinary course of execution - but 
when running in the debugger the default breakpoint action will then cause a message 
dialog to be shown to the user. 

For example, the Intel Message Checker plugin file consists of this small XML file. 
<plugin name="Intel Message Checker 7.1" description = "Enables 
MPI message checking when using Intel MPI 3.0 or later"> 

 <preload name="libVTmc.so" /> 

 <breakpoint location="MessageCheckingBreakpoint" 
action="message_box" message_variable="error" /> 

</plugin> 

When the Message Checker detects a problem the usage error is shown inside Allinea 
DDT with the application still “alive” - enabling the full context of the application to then 
be understood by the programmer. 

As Allinea DDT is able to launch applications with any MPI and understands how to do 
library preloading for each of the implementations, this enables any tool that uses the 
MPI profiling interface (PMPI) to work together and be configured to run with no effort 
from the user. 

The aim of this part of the CRESTA project is to enable an extended mechanism to 
work for tools such as MUST that require scalable infrastructures such as a tree 
network. 

The design of the necessary integration components and APIs that need exposing is 
underway but not complete and will be refined over the next three months by Allinea 
and TU-Dresden. 
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Initially we have begun to “clean” (refactor) various parts of the existing DDT code-base 
to enable easier access of 3rd party components to Allinea DDT. We have used the 
infrastructure with a profiling plugin also - to demonstrate that another tool quite distinct 
from debugging can use such an infrastructure. This enabling work will help to include 
other tools. 

The design required to support tools for scalability must expose scalable tree 
operations - and hence the current simple framework is inadequate. 

Exposing the tree capability requires: 

• The ability to declare a library and support dynamic loading of the library into 
the tree network at the tree nodes 

• The library will need to conform to an API (yet to be defined) to allow the 
operators - merge/broadcast functions in the tree to apply to specific defined 
message types.  

• Additional launch issues—for example any impact on the application on the 
numbering or number of MPI tasks—as some MPI tools define extra processes 
as part of their internal processing. 
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7 Testing	  Plan	  
We categorize the software extensions that we include into three fields: 

• Allinea DDT extensions 

• MUST extensions 

• Integration components 

Extensions to Allinea DDT and MUST can be tested separately while any integration 
component can only be tested where both tools are available. This also motivates the 
use of a plugin concept for integration, as a DDT installation should not require the 
presence of a MUST installation. Testing goals either include functionality tests or 
performance/scalability tests. We will detail how we will test both tools for correct 
functionality in the following. For performance and scalability purposes we will use all 
qualifying tests of the benchmark suite from WP 2 to test both tools in regular intervals. 
Further, as co-design teams identify successful or promising use cases for Allinea DDT 
or MUST, we will include these respective co-design applications into regular 
performance tests. For tests that address the integration of the two tools we will identify 
a system where both tools are available. We will use regular tests on this system to test 
the tool integration. 

7.1 DDT	  Functionality	  Tests	  
Allinea DDT has a comprehensive testing suite, which also includes remote testing to 
enable access to more extreme machines such as those provided by vendors such as 
Cray, SGI and IBM. This will be extended with test cases specific to the extensions 
proposed here. Presently roughly 120 compound test cases exist which are each run 
against about 10 machines with 6 MPI installations and circa 4 compilers. This is in 
addition to many unit tests within the code. 

One or two of the (more liberally licensed) applications from the CRESTA project will 
be included as part of the test applications and specific tests build for these. 

The test suite is driven by a Javascript-like interface to provide full depth integration 
testing of DDT—with an API enabling basic debugging operations and GUI state to be 
driven and queried. 

7.2 Must	  Functionality	  Tests	  
MUST uses CTest for automatic testing. We currently have a total of 697 test cases 
that are constituted by various correct or incorrect MPI applications. The test cases 
include the use of the current centralized MUST components and the use of early 
prototypes of distributed checking components. We run these test cases on 3 different 
systems every night and summarize the test results on a dashboard. The test cases 
also measure the required runtime which allows us to detect overall runtime changes. 
In order to test MUST with more complex applications we use SPEC MPI2007 and the 
NAS Parallel Benchmarks (NPB) after each larger functionality extension. 
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