

© CRESTA Consortium Partners 2011 Page 1 of 28

D3.4.2	
 –	
 Debugging	
 design	

document	

WP3:	
 Development	
 environment	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization ASL

Version: 1.0

Status Final

Author(s): David Lecomber (ASL), Tobias Hilbrich (TUD), Mark O’Connor
(ASL), Joachim Protze (TUD)

Reviewer(s) Michele Weiland (EPCC), Mats Aspnäs (ABO), Alistair Hart
(Cray)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

© CRESTA Consortium Partners 2011 Page 2 of 28

	

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 28/06/2012 Copy from Google Docs and complete
document pass

Tobias Hilbrich (TUD),
David Lecomber (ASL)

0.2 11/07/2012 Incorporated review comments Tobias Hilbrich (TUD)

0.3 29/07/2013 Update Allinea sections with more
detail

Mark O’Connor (ASL)

0.5 16/08/2013 Update MUST sections to current state Joachim Protze (TUD)

0.5.1 23/8/2013 Include design changes as a result of
co-design feedback, included more
detail of designs completed so far

Mark O’Connor (ASL)

0.6 23/8/2013 Merge of changes on MUST/DDT parts Joachim Protze (TUD)

0.7 26/08/2013 Reading pass (primarily MUST and
introductory parts)

Tobias Hilbrich (TUD)

0.8 30/08/2013 Pass over Allinea sections David Lecomber (ASL)

0.9 12/09/2013 Incorporated internal review comments Joachim Protze (TUD)

0.9.1 16/09/2013 Handled several internal review
comments

Tobias Hilbrich (TUD)

0.9.2 17/09/2013 Allinea modifications after internal
review.

David Lecomber (ASL)

1.0 17/09/2013 Final version for submission Joachim Protze (TUD)

© CRESTA Consortium Partners 2011 Page 3 of 28

Table	
 of	
 Contents	

CHANGE	
 NOTES	
 ..	
 5	

1	
 INTRODUCTION	
 ...	
 6	

1.1	
 ALLINEA	
 DDT	
 ...	
 6	

1.2	
 MUST	
 ..	
 6	

1.3	
 PURPOSE	
 ...	
 7	

1.4	
 GLOSSARY	
 OF	
 ACRONYMS	
 ...	
 7	

2	
 DEBUGGER	
 DESIGN	
 PROPOSALS	
 ..	
 9	

2.1	
 PROGRAMMING	
 MODELS	
 ...	
 9	

2.2	
 AUTOMATED	
 ANOMALY	
 DETECTION	
 ...	
 9	

2.3	
 ENABLING	
 INTEGRATION	
 WITH	
 TOOLS	
 IN	
 EXASCALE	
 SIMULATIONS	
 ...	
 10	

2.4	
 APPLICATION	
 OR	
 MODEL	
 AWARE	
 DEBUGGING	
 ..	
 11	

3	
 MUST	
 ..	
 12	

3.1	
 SCALABILITY	
 ...	
 12	

3.1.1	
 Component	
 Overview	
 ..	
 12	

3.1.2	
 Distributed	
 P2P	
 Analysis	
 ...	
 13	

3.1.3	
 Distributed	
 Collective	
 Analysis	
 ..	
 15	

3.1.4	
 Distributed	
 Wait-­‐State	
 Analysis	
 ..	
 16	

3.1.5	
 Asynchronous	
 Communication	
 ..	
 18	

3.1.6	
 Expected	
 Impact	
 and	
 Limitations	
 ..	
 18	

3.2	
 PARADIGMS	
 ...	
 19	

3.2.1	
 PGAS	
 Language	
 Correctness	
 Checking	
 ..	
 20	

3.2.2	
 CUDA/OpenCL	
 Correctness	
 Checking	
 ..	
 21	

3.2.3	
 Tasking	
 Paradigm	
 Correctness	
 Checking	
 ..	
 21	

3.2.4	
 Extensions	
 to	
 Provide	
 GASPI/OpenSHMEM	
 Checks	
 ..	
 21	

4	
 FAULT	
 TOLERANCE	
 ...	
 23	

5	
 TOOL	
 INTEGRATION	
 ...	
 24	

5.1	
 GOALS	
 ..	
 24	

5.2	
 ENABLING	
 TOOL	
 INTEGRATION	
 ...	
 25	

5.3	
 TOOL	
 EXTENSIBILITY	
 ...	
 26	

6	
 TESTING	
 PLAN	
 ...	
 27	

6.1	
 DDT	
 FUNCTIONALITY	
 TESTS	
 ..	
 27	

6.2	
 MUST	
 FUNCTIONALITY	
 TESTS	
 ...	
 27	

7	
 REFERENCES	
 ..	
 28	

Index	
 of	
 Figures	

Figure 1 Centralised correctness checking with MUST .. 12	

Figure 2 Distributed correctness checking with MUST ... 13	

Figure 3 Illustration of intra layer communication based P2P matching 14	

Figure 4: Overhead measurement of a prototype for point-to-point matching 15	

Figure 5: Illustration of event aggregation for MPI collectives 15	

Figure 6: Illustration of distributed wait-state modules ... 16	

© CRESTA Consortium Partners 2011 Page 4 of 28

	

	
 Executive	
 Summary	

This document describes designs, extension steps, and ideas that will allow the
debugger Allinea DDT and the automatic runtime correctness tool MUST to adapt
towards Exascale needs. We use deliverable D3.1 “State of the art and gap analysis”
as a roadmap for these extensions. We extend the first version of this document from
project month 10 and refine our designs and plans where we gained additional
knowledge or feedback.

The transition of Allinea DDT to Exascale requires extensions to cope with new
paradigms and heterogeneous approaches to high performance computing as one
important step. Also we address advances in the automatic detection of anomalies to
reduce the debugging time of complex—possibly heterogeneous or scaled to millions
of processes—applications. Finally, we add more awareness of models, application
structure, or libraries to DDT to present the user with more meaningful information. One
important use case is the display of information for MPI resource handles, where
Allinea DDT and other debuggers currently provide no resource state.

For the runtime error detection tool MUST the proposed extensions fall into the
categories of scalability and support for programming paradigms. Current runtime error
detection tools scale to 100-1,000 processes at most which, even with today’s scale, is
unsatisfactory. The design that we propose (to distribute key correctness checks of
MUST) targets up to 10,000 processes. Further extensions might then further enhance
MUST’s scalability to cope with 100,000 or 1,000,000 processes. Note that while
Exascale systems will likely have far more parallel cores, with hybrid programming
approaches, the total number of MPI processes might be in this range. Furthermore,
the design highlights the specific steps that allow MUST to provide automatic
correctness checks for other paradigms.

Both Allinea DDT and MUST identify parallel programming paradigms as an important
goal for improvement. However, within the CRESTA consortium there is no single
paradigm (non MPI/OpenMP) that all application developers want to explore. Given the
number of available parallel programming paradigms this is no surprise.We will extend
both tools towards one additional paradigm, where Allinea DDT already supports a
wide range of paradigms. Thus, we focus on support for Xeon Phi as the primary
architecture to support for Allinea DDT and use a PGAS library implementation as the
target paradigm for MUST. We select the library implementation since our
instrumentation approach is oriented to interfere library calls. Checks for the selected
PGAS paradigm will provide functionality that we can reuse for different PGAS
implementations in the future.

At the current state of development towards Exascale systems we still see no clear
indication towards fault tolerance requirements and techniques. Thus, we closely watch
suggestions from upcoming CRESTA deliverables such as D2.5.2, but do not plan to
implement such techniques within the timeframe of CRESTA.

Integrations of DDT and MUST can provide users with a unified user interface that
provides access to both tools. Besides the advantages in usability, integration can also
combine the advantages of the tools to lead to a deeper understanding of a software
bug or reduced time to solution. As a result, we describe first steps for tool integration
and resulting extensions to advance this integration. In particular, we identified an
integration scheme that allows Allinea DDT to highlight errors that MUST detects in an
asynchronous manner, i.e. where the application has already progressed beyond the
error invocation at the time MUST detects the error.

Finally, we investigated the testing processes of both MUST and DDT. We identified
that both tools already use very elaborate and extensive functionality tests.

© CRESTA Consortium Partners 2011 Page 5 of 28

Change	
 Notes	

This second version of the document is an update of document D3.4.1.

Key modifications include:

• Based on co-design feedback we shift development priorities from DDT
features such as automatic array checksums and OpenMP 3 Task Parallelism
towards improved CUDA and Xeon Phi support (Section 2.2);

• Increased detail in plan for application logging and comparisons via Allinea DDT
(Section 2.2);

• We present first promising measurements of intra-layer communication (Section
3.1);

• We describe studies regarding correctness checking for further new paradigms
(PGAS paradigms in Section 3.2.1 and tasking in Section 3.2.3);

• We select a paradigm for MUST correctness check extensions (Section 3.2.4),
• We update our plans towards fault tolerance (Section 0);
• We present a refined design for an Allinea DDT and MUST integration (Section

5);
• We add a design for a simplified batch mode for Allinea DDT as a direct result

of the co-design process (Section 2); and
• We add Section 5.3 on tool extensibility and co-design work done to ensure

other tools can benefit from Allinea DDT’s parallel framework and Allinea MAP’s
performance monitoring data.

© CRESTA Consortium Partners 2011 Page 6 of 28

1 Introduction	

In this document (“Debugging Design Document, D3.4.2”) we present designs to
extend the existing tools DDT and MUST towards the gaps and high level goals that we
identified in D3.1 “State of the art and gap analysis”.

We first describe the current tools for debugging and correctness within CRESTA -
Allinea DDT and MUST. We then describe the changes to be made according to the
priorities from the Gap Analysis for each tool. Section 2 presents designs that extend
Allinea DDT and Section 3 presents designs that extend MUST.

These primary recommendations from the Gap Analysis - in the order addressed in this
Design Document - were:

• Programming models are in a state of flux - due to recent massive hardware
shifts and may require specific debugging or correctness support.

• Analysis of applications with automated correctness checking is important and
existing tools do not scale: the MUST package from TU Dresden should be
extended to improve scale.

• Automated anomaly detection is increasingly important as the scale of
concurrency grows - and architectures change - therefore detection of changes
between runs and between processes is important.

• Tool integration should be developed to enable independent developers of tools
to leverage existing platforms to remove the hard problems of scalability and
portability.

• Application or model awareness should be investigated - for example improving
the understanding of MPI objects and their presentation to users in tools, or the
display of task lists with task parallel models.

• Fault tolerance is an area that that should be investigated or prototyped but is
expected to be not yet ready at the system level for production level tools
activity within the time-frame of the project.

We address the state of fault tolerance in Section 0 and present our design of tool
integration in Section 5. Finally we present how we ensure that any extension that we
provide is well tested and suitable for production use (Section 5.3). In the following we
first provide a short overview to the tools Allinea DDT and MUST, and then highlight
the purpose of this document.

1.1 Allinea	
 DDT	

In terms of debugging, the state of the art for scalable debugging is Allinea DDT –
which has proven the feasibility of Petascale debugging for the existing PRACE
prototypes and other large systems by reaching 220,000 cores (the largest machine at
the time of measurement) and provided fraction-of-a-second responsiveness with
global operations at full scale. During 2012 Allinea DDT was used at over 700,000
cores.
The Allinea DDT architecture essentially consists of a Qt4-library based user interface,
a bespoke tree overlay network for communication and message broadcast and
aggregation, and at the leaf (and any debugging nodes) of the tree, a daemon and a
full-strength “command line” debugger (usually the open source GDB). This tree
architecture has been essential to scalability.
Allinea DDT provides support for most paradigms found in high performance computing
- from GPU programming models through OpenMP and MPI to PGAS languages.
Platform support is similarly broad - covering the majority of HPC systems in use today.

1.2 MUST	

MUST (Marmot Umpire Scalable Tool) is an automatic runtime error detection tool for
parallel software. It currently focuses on the detection of MPI programming errors,
while its extensibility allows us to advance the tool towards other programming

© CRESTA Consortium Partners 2011 Page 7 of 28

paradigms in the future. Automatic error detection tools are less versatile than
debuggers, but they offer a quick and easy option to detect many error types. The
individual error outputs can often include helpful details on the surroundings and details
of the error, as well as sometimes its root cause. Finally, a crucial notion is that for
some systems or runs, errors may not manifest in an actual application crash or hang.
In these cases silent errors may lead to erroneous calculations that might stay
undetected without these tools.
While debuggers already showed their scalability to leadership scale machines, e.g.
ORNL Jaguar experiments with 220,000 cores, automatic runtime error detection tools
fail to scale their more detailed correctness checks to more than 100-1,000 cores.
Thus, a primary goal is to advance the scalability of MUST towards at least 10,000
cores and potentially even more. We will detail our design for scalable MPI runtime
error detection with MUST in the first part of this section. Furthermore, new paradigms
are playing an increasing role in the development of parallel applications. We present a
design to extend MUST for the use of other paradigms in the second part of this
section.

1.3 Purpose	

This document presents specific ideas and designs to overcome the identified gaps in
current debugging tools. This particularly includes expectations of changes for
Exascale systems, which in our case includes the challenges:

• Scale
• Programing models
• Fault tolerance
• Complexity of software and its bugs

The challenges scale and complexity of software and its bugs can be predicted more
clearly than the impact of programming models or fault tolerance. As a result, we can
show more detailed designs to cover scale and complexity of software and its bugs
within this design document. For scale, Allinea DDT already supports test cases with
100.000 processes very well, so extensions in this direction primarily address MUST.
For complexity of software and its bugs, we provide new designs for Allinea DDT to
allow easier root-cause analysis and paradigm/model specific insights. The
developments in the two remaining areas (programming models and fault tolerance)
remain hard to predict. Allinea DDT already offers wide support for novel programming
paradigms such as the CUDA API - and the Xeon Phi architecture support has been
developed within CRESTA. MPI correctness checks remain the focus of MUST, but we
will explore checks for the GASPI PGAS API to evaluate its potential for other
paradigms. Finally, due to limited input for techniques to implement fault tolerance, we
detail no designs towards this challenge.

1.4 Glossary	
 of	
 Acronyms	

Acronym Definition
API
CQ
CUDA
DDT
DWS
GASPI
GDB
GPGPU
GPI
GPU
GTI
GUI
ISP
MPI

Application Programming Interface
Completed Queue
Compute Unified Device Architecture
Allinea DDT – the parallel debugger
Distributed Wait State
Global Address Space Programming Interface
GNU Project Debugger
General Purpose Graphics Processing Unit
Global address space Programming Interface
Graphics Processing Unit
Generic Tools Infrastructure
Graphical User Interface
In-situ Partial Order
Message Passing Interface

© CRESTA Consortium Partners 2011 Page 8 of 28

MUST
ORNL
P2P
PGAS
PRACE
PSTI
SPEC
TBON
WFG
XML

Marmot Umpire Scalable Tool
Oak Ridge National Laboratory
Point-to-point
Partitioned Global Address Space
Partnership for Advanced Computing in Europe
Workshop on Parallel Software Tools and Tool Infrastructures
Standard Performance Evaluation Corporation
Tree Based Overlay Network
Waiting-for graph
Extensible Markup Language

© CRESTA Consortium Partners 2011 Page 9 of 28

2 Debugger	
 Design	
 Proposals	

These proposed features and enhancements to Allinea DDT are designed to address
the core problems identified in attaining rapid correctness at Exascale.

2.1 Programming	
 Models	

The trend in hardware is presently towards heterogeneity - in many forms. We already
see GPUs or the latest Intel Xeon Phi as accelerators that are located on PCI Express
buses, and in time it is likely such components will become more closely integrated.
Processor platforms normally outside of HPC such as ARM are also adopting
heterogeneity with concepts for power efficiency such as big.LITTLE - whereby a
number of cores are only powered up at points within an application that can use the
concurrency. Formerly separate components such as the GPU have moved into the die
with products such as the AMD APU – which combine the CPU and GPU on one chip.
This heterogeneity requires programmer intervention in order to maximize performance
(or even to access the hardware in most cases). In particular, with offloaded
computations there is a need for the ability to debug synchronous and asynchronously
launched offloaded computation at the same time as debugging the host processor on
the node. The hardware combination is part of a larger system with multiple nodes, and
the software must run across the whole platform simultaneously.
The most common form of GPU hybrid code until recently was typically OpenMP within
a node, MPI between nodes - this has changed with CUDA, OpenACC or OpenCL now
as an alternative to the OpenMP - potentially leaving multiple cores on a node idle
whilst a GPU executes a CUDA kernel.

Additionally, the Intel Xeon Phi architecture is seeing strong interest amongst co-design
partners and support for an OpenMP + MPI combination on Intel Xeon Phi will be
developed for Allinea DDT. A prototype implementation has been made available for
feedback and on-going application development.
For a debugger such as Allinea DDT this rise of heterogeneity should be considered
and in particular:

• New platforms must be supported as a route to understanding the impact on
programmability and debugging. Architecturally the designs for the changes
depend on the platforms expected for Exascale - but in the immediate term
systems such as accelerators from NVIDIA and Intel are likely candidates.

• The control of thread (including GPU thread) level parallelism within a node
should become more intuitive - allowing the same form of control that a user
has over the MPI processes.

• The display of data as shown for MPI parallelism within Allinea DDT must
include similar thread-parallel displays also - for example automated
comparison across threads is a worthy addition to comparison across
processes.

New programming models other than these mainstream coprocessor models did not
have sufficient interest from the application developers in CRESTA when surveyed
during the first feedback exercise with partners (D3.1).

2.2 Automated	
 Anomaly	
 Detection	

Automatic identification of anomalous values is becoming important. Firstly, the volume
of trace and debug data is increasing as applications and systems grow. Secondly,
debugging is both deductive and iterative, and yet iteration is not a process that we
humans do well. At current scale, and as we reach higher scales, we can automatically
identify anomalies that happen - differences with previous successful runs, and with
processes that are successful within the current task. Identifying earlier that a value is
invalid would be helpful even at current application scale.

© CRESTA Consortium Partners 2011 Page 10 of 28

Identifying anomalous application activity is also important - current approaches, for
example, viewing merged stacks of processes are helpful, but need to be extended.
Identifying, for example, the path of execution that led to a particular issue would be
helpful. This may take the form of comparing with a previous successful application
run. This could cover both data changes, and process activity.

Automated methods for asserting data integrity were discussed with co-design
partners, but demand for improved heterogeneous platform support (NVIDIA CUDA +
Intel Xeon Phi) was significantly higher. Enhancing and deepening support on these
platforms will be prioritized over automated data integrity work.

Our research suggests that addressing Exascale debugging effectively hinges on well-
executed implementations of:

• Additional automated correctness checking, – specifically integration with the
MPI correctness checking proposed and implemented in MUST, see Sections 3
and 5.

• Enhancing and automating the ability to log and compare different runs,
described by call paths, variable and invariant values and comparisons or
statistical analyses over many processes in a scalable and minimally
performance-impacting manner.

• Simpler, more flexible ways to launch and use debugging tools in complex
batch script-driven environments. This was a direct result of co-design feedback
during the CRESTA project.

• The continuing blurring of lines between debugging and profiling, as at
increasingly large core counts the inability to scale efficiently is both frequently
caused by bugs and is by definition a software defect at Exascale. See Section
5 for more details.

Building on extensible data collection to deliver easy access to low-overhead
performance reporting, giving application developers and system owners a quick check
on whether an application is performing well on the current system and scale - see
Section 5 for more details on this.

Logging and comparing different runs is a desirable and efficient way to discover why
two codes or runs have given different results - but a naive implementation logging all
calls and variables is too slow and data-intensive for Exascale-class codes. Therefore
a combination of dynamic instrumentation and job-wide debugging-level interruption
with statistical aggregation is proposed. This approach will minimise the amount of
redundant and unvisualisable data generated during program execution.

An initial logging implementation has been made available to CRESTA partners,
allowing debugging runs to be automatically logged, saved, reviewed and shared.
Implementation of comparison between logging runs across different scales,
architectures or code revisions is also planned.

These changes are also enhancing the existing offline debugging reports (a form of
non- interactive debugging) present in Allinea DDT.

2.3 Enabling	
 Integration	
 with	
 Tools	
 in	
 Exascale	
 Simulations	

In moving towards automated debugging, one of the feedback items from the D3.1
deliverable and co-design with CRESTA partners was the requirement to make it
easier to take a tool and run it inside existing workflows.

Existing applications tend to have complex dependencies and configurations. They can
have workflows and frameworks that do not fit with existing shrink-wrapped “click and
run” types of development tool. One example is the IFS code from ECMWF which uses
its own workflow management tool to create packaged runs of the IFS application.
These are responsible for obtaining initial data, configuring initial parameters, setting
up the runtime environment – and executing a sequence of linked steps through the
batch scheduling systems.

© CRESTA Consortium Partners 2011 Page 11 of 28

Exascale simulations are likely to bring more coupling of codes – and workflows such
as the IFS scenario. This led to a requirement to make launching and configuration in
these scenarios more seamless. A change to reduce the integration necessary for
Allinea DDT to run to being a single “prefix” command inside existing jobs will be
prototyped.

2.4 Application	
 or	
 Model	
 Aware	
 Debugging	

Application/Library Model Awareness: better integration of layered models and the
debugger should be investigated - with, for example, awareness of MPI communicators
and the internals of request object or integration with runtime of task based parallel
frameworks to visualize internal task lists.

The first example to be tackled is MPI handles. Presently there is no standard for MPI
handle debugging - this means that the request objects or communicators are typically
“opaque” to the debugger and provide no useful information for the user.

• TU-Dresden [1] has a wrapper library to MPI and a series of GDB python scripts
that could be integrated into DDT. The wrapper library wraps calls to the MPI
handle creation, for example MPI communicator objects, creating its own MPI
objects and then the GDB python scripts work to provide more sensible “pretty
printing” of the internal objects. This python-based approach of printing
variables is already supported by DDT for global settings, by virtue of it using
the GDB debugger underneath. The pretty printers and wrapper library will fit
within a modest extension to the existing preload plugin capability in DDT.

o Add support for scripts using the python API for pretty printing in the
definition files for the plugin architecture.

o For specified plugin scripts, ensure support for every MPI by transferring
the python scripts to compute nodes in systems where necessary.

• Investigate the proposed MPI 3 Handle Extension (for inclusion in the MPI 3.1
standard) whereby information similar to the TU-Dresden library is included by
default in the MPI instead and the debugger queries an interface similar to the
MPI Message Queue Debugging API to explore the handles. Designs for this
have reached a limited prototype implementation form between Allinea and the
Open MPI team. It is not clear whether this extension will appear in the MPI 3.1
standard.

Alternative models beyond MPI, such as OpenMP 3 Task Parallelism, have been
investigated, but – based on D3.1 feedback - improving support for CUDA – particularly
more general-purpose features such as dynamic parallelism – and Intel Xeon Phi were
preferred and have been implemented in prototypes.

© CRESTA Consortium Partners 2011 Page 12 of 28

3 MUST	

We describe MUST’s extensions towards Exascale needs in this section.

3.1 Scalability	

MUST analyses MPI events in order to detect usage errors of the MPI interface. An
important notion is that two types of correctness checks exist:

• Local checks: Only require information from one process, e.g. “Is the datatype
in the MPI_Send call committed?”, and can be executed directly on the
application processes; and

• Non-local checks: Require information from more than one process, e.g. “Do all
processes in the MPI_Bcast call use the same type signature?”. These require
a communication infrastructure to gather all the information that is necessary to
run the correctness check.

The local checks satisfactorily scale with the number of MPI tasks, while the non-local
checks impose scalability challenges. Prior correctness tools such as Marmot [5],
Umpire [6], and ISP [2] use a single process or thread to run all non-local correctness
checks, which is a major scalability limitation. MUST includes both types of correctness
checks as well. The centralised design allows correctness tools to handle 100-1,000
cores at most. We propose a design that is intended to scale to at least 10,000 cores,
while its extension to higher scales should be feasible. We will first present an overview
of our design and then detail its individual components.

This design also reflects progress within an on-going collaboration with the Los Alamos
National Laboratories and the Lawrence Livermore National Laboratories. While these
collaborations focus on achieving low runtime error detection overheads for about
10,000 cores, we want to extend MUST scalability as far as possible within the
CRESTA scope. From early prototypes we identified extension directions that we
summarize in this document.

3.1.1 Component	
 Overview	

MUST uses a modular approach, where distinct modules implement particular tasks.
These modules have clearly defined interfaces and cooperate with each other. The
second important functionality in MUST is the use of Tree Based Overlay Networks
(TBONs) that allow us to distribute workload onto multiple levels of extra processes or
threads. Both the module and the TBON concept are in fact not implemented within
MUST, but rather in the infrastructure it employs, which is called the Generic Tools
Infrastructure (GTI). TUD develops GTI along with the Lawrence Livermore National
Laboratory and the MUST tool is currently its key use-case. This design describes how
we can use GTI’s TBON functionality to derive distributed non-local correctness
checks.

Figure 1 Centralised correctness checking with MUST

0"

Central"
Tool"

Process"

1"

N"

..."

Modules:"

Checks:"
8  Collec9veMatch"
8  P2PMatch"
8  BlockingState"

U9lity:"
8  Opera9onReordering"
8  ParallelIden9fiers"
8  Loca9onIden9fiers"
8  MessageCrea9on"
8  MessageLogging"
8  WFG8Analysis""Resource"tracking:"

8  CommTrack"
8  DatatypeTrack"
8  RequestTrack"
8  OpTrack"

Applica'on*Processes* Tool*Processes*

© CRESTA Consortium Partners 2011 Page 13 of 28

In terms of non-local correctness checking, MUST uses the layout and the modules in
Figure 1 The left side of the figure illustrates the central tool layout of MUST. A single
process receives MPI events from all application processes. The tool process runs the
modules that are listed on the right side of the figure. This includes the following
modules for correctness checking:

• CollectiveMatch: checks MPI collective calls for their correctness;
• P2PMatch: checks MPI point-to-point calls for their correctness; and
• BlockingState: detects deadlocks.

The other module groups “Resource tracking” and “Utility” are used by these
correctness checks to function correctly. While the three correctness checking modules
assume that they receive events from all MPI processes, all the other modules can
already be used in a distributed fashion. So our design focuses on distributing these
three modules.

Figure 2 Distributed correctness checking with MUST

Figure 2 illustrates the distribution of the non-local correctness checks, it shows the
application processes at the left and sketches a tree based overlay network to its right.
Our design will analyse point-to-point matching on the first non-application layer of the
TBON. Collective MPI operations and deadlocks will be analysed throughout the
complete TBON. Finally, the root process of the tree will run the actual graph analysis
that we use for deadlock detection and it will log correctness messages. We detail
these components in the following. Note that we simplified the modules for the
distributed wait-state tracking.

3.1.2 Distributed	
 P2P	
 Analysis	

We propose to match and analyse the correctness of point-to-point messages on the
first non-application layer of GTI’s TBON. The key observation is that a distributed
message matching in the whole tree is unsatisfactory [2]. The limitation is that the root
has to match 50% of all possible communication pairs for general communication
patterns. Thus, depending on an application's communication pattern, severe load
balancing problems might arise. As a result, we instead only run this analysis on the
first tool level of the TBON. In order to communicate information between these tool
processes we use a so-called intra-layer communication.

0"

1"

N"

..."

Applica'on*Processes* Tool*Processes*

0"

K"

2"
1"

..."

0"

L"

..." ..." 0"

Modules"(First"Tool"Layer):" Modules"(All"layers):"

Checks:"

?  DP2PMatch"

Checks:"

?  DCollecBveMatch"

?  DBlockingState"

Modules"(Root):"

UBlity:"

?  MessageLogging"

?  WFG?Analysis""

UBlity:"

?  ParallelIdenBfiers"
?  LocaBonIdenBfiers"
?  MessageCreaBon"Resource"tracking:"

?  Comms,"Types,"..." Resource"tracking:"

?  Comms,"Types,"..."

UBlity:"

?  ParallelIdenBfiers"
?  LocaBonIdenBfiers"
?  MessageCreaBon"

© CRESTA Consortium Partners 2011 Page 14 of 28

Figure 3 Illustration of intra layer communication based P2P matching

Figure 3 illustrates the intra layer communication based point-to-point matching that we
propose. Figure 3a shows that rank 0 issues a send that has rank 3 as its destination,
while rank 3 issues a matching receive for this send. Once issued, the events that
represent these MPI calls can arrive in any order on the tool processes T0 and T1. As
this example uses a binary TBON, the receive event of rank 3 will arrive at T1 (Figure
3b). We match receive events on the tool processes that process them directly, i.e. T1
in our example. T1 will analyse the receive event and determine that it is not aware of a
matching send call for this event. As a result, T1 adds the event to an internal data
structure for point-to-point matching, which we illustrate with a small table in Figure 3c.
When information about the send event arrives on T0 (Figure 3d), we determine that
the matching receive for this send will arrive at T1 instead of T0. So in order to match
the message we transfer the send event information to T1 (Figure 3e). Finally, when
the information on the send arrives at T1, this process determines that a matching
receive is available. During this matching T1 can run any necessary correctness
checks, e.g., type matching. Note that this requires not only to transfer specific send
events within a TBON layer, but also requires us to transfer information about MPI
resources—such as communicators or datatypes—within the layer. This complicates
the implementation of the design, as MUST’s resource system needs to be aware of
such “remote” resources.

We propose to transfer send events with intra layer communication as MPI’s push
semantic guarantees that each send call specifies a destination rank, whereas receive
events might specify that they match a send from any process
(source=MPI_ANY_SOURCE). Thus, using intra-layer communication for receive
events would add unnecessary complexity.

a)#Ranks#0#and#3#issue#matching#P2P#calls! b)#Informa;on#about#the#receive#event#arrives#at#T1! c)#T1#adds#the#receive#to#ist#P2P#matching#structures!

d)#Informa;on#about#the#send#event#arrives#at#T0! e)#T1#passes#informa;on#about#the#send#event#to#T1! f)#T1#adds#the#send#to#its#P2P#matching#structures!

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

MPI_Recv#(to:#3)#

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

MPI_Recv#(to:#3)#

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 1

Matching&Structure:&

0#

1#

3#

T0#

2#
T1#

MPI_Send#(to:#3)#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 1

Matching&Structure:&

0#

1#

3#

T0#

2#
T1#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 1

Matching&Structure:&

0#

1#

3#

T0#

2#
T1#

Recvs& Partner&

0 1 2 3

Is
su
ed

&b
y&

0

1

2

3 0

Matching&Structure:&

MPI_Send#(to:#3)#

© CRESTA Consortium Partners 2011 Page 15 of 28

Figure 4: Overhead measurement of a prototype for point-to-point matching

This design relies on the availability of an intra-layer communication mechanism within
a TBON. Our experience with MUST and GTI indicates that this poses no severe
restrictions. MUST currently uses an MPI-based TBON communication system that
utilises an MPI_COMM_WORLD virtualization. Using an intra-layer communication in
this setting is straight-forward. The actual intra layer communication is implemented by
regular communication protocols of GTI. In a paper [3] we published at PSTI’13 we
showcase the impact of the intra layer communication on the overhead of point-to-point
matching. For a synthetic benchmark example and an early prototype of point-to-point
matching we see a constant slowdown while scaling from 16 to 4096 application
processes in Figure 4. The figure presents a slowdown that we calculate as the ratio of
application runtime with MUST to the runtime of a reference run.

3.1.3 Distributed	
 Collective	
 Analysis	

Figure 5: Illustration of event aggregation for MPI collectives

We propose to analyse the correctness of MPI collective events within GTI’s TBON.
Most correctness checks for MPI collective operations can use aggregations for their
implementation. Figure 5 illustrates this concept, where each application process
issues an MPI_Bcast operation (Figure 5a). When the first MPI_Bcast event arrives at
T0, it recognises this as a new wave of events and creates a respective data structure.
Note that the event is not forwarded towards T2 (Figure 5c). When the second event
arrives at T0 (Figure 5d), the TBON node determines that it received all events that
belong to this wave and runs all correctness checks (Figure 5d). Finally, it creates a
new event that represents the information from the two incoming events. For MPI

a)#All#ranks#execute#a#call#to#MPI_Bcast# b)#MPI_Bcast#of#rank#0#arrives#at#T0!

c)#T0#recognizes#the#start#of#a#new#collec?ve#wave# d)#The#second#event#arrives#at#T0!

e)#T0#determines#that#the#collec?ve#wave#is#completed#and#
creates#an#aggregated#even#that#it#forwards#to#T2#

0!

1!
T0!

MPI_Bcast!(c1,t1)!

MPI_Bcast!(c2,t2)!

T2!

...!

0!

1!
T0!

MPI_Bcast!(c1,t1)!

MPI_Bcast!(c2,t2)!

T2!

...!

0!

1!
T0!MPI_Bcast!(c2,t2)!

T2!

...!

Wave:!

MPI_Bcast!(c1,t1)!

0!

1!
T0!

T2!

...!

Wave:!

MPI_Bcast!(c1,t1)!

MPI_Bcast!(c2,t2)!

0!

1!
T0!

T2!

...!

Wave:!

MPI_Bcast!(c1’,t1’)!

...!

...!

...!

...!

...!

© CRESTA Consortium Partners 2011 Page 16 of 28

collective operations this is possible without increasing event size. This event is then
forwarded to the next TBON layer (Figure 5e).

An analysis of all MPI collective operations reveals that all non-local correctness
checks can be distributed in this fashion and that event aggregation with constant
event size is feasible. The only exceptions are communication calls where pairs of
processes can use distinct type signatures, this includes:

• MPI_Scatterv,
• MPI_Gatherv,
• MPI_Alltoallv, and
• MPI_Alltoallw.

Note that MPI_Allgatherv is not included in this list, as it requires all processes to span
the same type-signatures with its count array. Handling these four calls with the
aggregation mechanism would require us to store arrays of type signatures in the
aggregated events. This would first of all lead to a non-constant event size and
furthermore also lead to a load imbalance, as the root of the TBON would have to
execute a majority of the type matching checks. As a result, we propose to handle the
type matching for these four operations with intra-layer communication.

For MPI_Scatterv and MPI_Gatherv, the root process needs to scatter the count array
along with the datatype in use within one TBON layer that provides intra-layer
communication. For MPI_Alltoallv and MPI_Alltoallw, each process scatters its send-
counts array and its type(s) across a TBON layer. This handling should not exceed the
complexity of the original MPI communications, and should thus provide an acceptable
overhead. Note that these four calls also have expected scalability limits for Exascale
needs, as they use arrays that are sized according to the number of processes in use.

3.1.4 Distributed	
 Wait-­‐State	
 Analysis	

Figure 6: Illustration of distributed wait-state modules

The most challenging non-local analysis is the MPI deadlock detection. It basically
consists of two parts: a wait-state tracking and a graph based deadlock detection. The
wait-state tracking causes the higher overhead, as it needs to consider each single
possibly blocking MPI operation. It then decides whether the current operation can
complete, i.e. if all of its matching operations can actually be issued. The graph based
deadlock detection is only executed if we suspect the presence of a deadlock, and is
thus the less critical overhead. We propose the following design to distribute the wait-
state analysis:

• Each P2P and collective operation gets an associated timestamp that captures
their order within a process

0"

1"

N"

..."

Applica'on*Processes* Tool*Processes*

0"

K"

2"
1"

..."

0"

L"

..." ..." 0"

DP2PMatch"+"DWS" DCollec7veMatch"+"Collec7ve"Request"Aggrega7on"

WFG"+""
Collec7ve"Responder"

© CRESTA Consortium Partners 2011 Page 17 of 28

• P2P and collective matching add matched operations to queues of completed
operations—Completed [operation] Queue (CQ)—operations that are ordered
by the timestamp of these operations

• The Distributed Wait-State (DWS) analysis runs on the same layer as the P2P
matching (Figure 5, first tool layer)

• DWS starts at the beginning of the CQ and determines whether this operation
can safely complete

• The current operation considered by DWS in the CQ is considered the “active”
operation

• If the active operation can complete, the next operation in the queue becomes
the active operation

• DWS on a TBON node uses upstream and intra-layer communication to
determine whether the active operation can complete, that is whether all
matching operations also became active already (Figure 5, “Collective Request
Aggregation” and “Collective Responder” Modules cooperate with DWS for that)

The root of the TBON runs a centralised graph analysis (Figure 5, WFG Module).

Note that the layer on which DWS runs is only aware of whether all connected
processes called a certain collective call, but not whether all other ranks also called the
collective call. We propose to use a communication directed towards the root for that,
along with a downwards broadcast that is started by the root once that all processes
indicated that the given collective became active.

In summary we use the following requests for the intra-layer and up/down
communication:

• Collective-Became-Active [Upwards-Aggregated]
• Collective-Commit [Downwards-Broadcasted]
• P2P-Became-Active [Intra-layer]
• P2P-Commit [Intra-layer]

When a collective operation becomes active on a node that runs DWS, it issues the
request “Collective-Became-Active” and sends it towards the TBON root. This event is
aggregated along its way if its communicator and timestamp—timestamp within the
communicator—match. Once the root received a complete wave for this request it
sends a notification event “Collective-Commit”. When DWS receives this request it can
advance its active op to the next operation in CQ. When a P2P operation becomes
active on a DWS node and the operation is a receive operation, it sends a “P2P-
Became-Active” request to the node that hosts the send that matches the receive
operation. Once the DWS node that hosts the send operation receives this request,
while the given send also became active or was already completed, it sends the “P2P-
Commit” back to the node that hosts the receive. The DWS node that hosts the sender
op can advance the active op once it saw the “P2P-Became-Active” request, while the
DWS node that hosts the receive op can advance its active op when it receives the
“P2P-Commit” request. Note that less communication is necessary if the send and/or
the receive operation is non-blocking. Also for completion calls, e.g. MPI_Waitall, array
versions of such requests will be necessary.

Finally, to actually detect deadlocks, the root of the TBON runs the WFG module. This
module uses a timeout to start deadlock detection in given intervals. When it starts
deadlock detection it requests wait-for dependency information about the active
operation of all DWS nodes, for that it uses the following request:

• Request-Active-Ops [Downwards-Broadcast]

The DWS nodes answer with the requested wait-for information that they send back to
the WFG module. The WFG module waits until it received all the wait-for information,
applies it to a WFG, and then runs deadlock detection on this graph. Note that this
graph analysis is currently still centralised, but it should scale to 10,000 cores at least.

© CRESTA Consortium Partners 2011 Page 18 of 28

3.1.5 Asynchronous	
 Communication	

Besides the distribution of MUST’s non-local correctness checks it is important that
MUST uses a highly efficient communication means. In particular, experiments indicate
that application events need to be transferred in a non-blocking fashion, i.e., the
application must be allowed to continue its execution while MUST evaluates new
events for correctness in parallel. However, in the presence of application crashes this
may result in MUST not detecting a usage error before the application crashes. Thus
we need an asynchronous communication medium that operates while the application
crashes.

We propose the following design to handle this:

• On each computing node of the system we use one core for a MUST tool
process

• The remaining cores on the nodes are used for the application processes
• These processes that are on the machine nodes of the application form the

second TBON layer (application is the first layer)
• All other layers are distributed across the remaining nodes
• Communication between the application processes (first layer) and the tool

process on the second layer uses shared memory
• The second TBON layer communicates via MPI with the remaining layers

We then use signal-handlers and error-handlers on the application processes to catch
an application crash. These handler routines notify the communication system that a
“panic” signal needs to be raised, which is forwarded to the root of the TBON. The root
then broadcasts a “complete-analysis” signal downwards in the tree. When nodes
receive this signal they must receive all available incoming events, process them and
then finish their execution.

The use of an alternative communication medium (shared-memory) along with the use
of immediate communication ensures that we can transfer all event information for
error situations where some processes hang in blocking communication calls.
However, communicating towards application processes that hang is challenging.
Thus, the shutdown of such processes will be controlled by their responsible tool
process. GTI’s flexibility in its communication protocol and timing allow various platform
dependent strategies for application crash handling. The use of shared-memory
between the application layer and the first tool layer appears to be a most promising
and portable selection.

3.1.6 Expected	
 Impact	
 and	
 Limitations	

In summary we propose distributed systems for:

• Point-to-point matching (DP2PMatch);
• Collective matching (DCollectiveMatch); and
• Wait-state tracking (DWS).

In addition we propose an asynchronous communication system that allows MUST to
detect MPI usage errors even if the application crashes.

The distributed systems should scale to 10,000 cores and beyond. While this may still
be low for Exascale applications, this is a major improvement to the previous
centralised approach. Two factors should also be considered for this scalability level:
First, Exascale applications are likely hybrid and may thus use less processes than
cores are available; Second, Even if MUST does not support full system test cases, it
can at least support smaller test or debugging runs. Finally, it may be an option to only
run some of MUST’s correctness checks to improve its scalability where necessary.

Our performance expectations are based on the following analysis. DP2PMatch
executes a coarsened version of the applications communication pattern. Even if each
node that executes DP2PMatch receives events from multiple application processes, it
can provide low overheads as its intra-layer communication can use event buffering to
use high-bandwidth communication. DCollectiveMatch needs to run a TBON based

© CRESTA Consortium Partners 2011 Page 19 of 28

aggregation, however if we fix the fan-in (number of application/TBON-nodes
connected to a TBON node), the number of events to process stays constant with
increasing scale. As our event aggregation keeps the event size constant, the cost of
analysing a single event also stays constant. The DWS system will likely have the
highest overhead. It uses the same communications as DP2PMatch and
DCollectiveMatch in combination (In order to communicate the different request types).
However, it uses the downwards-directed broadcast in addition. The main difference
here is that DWS always sends one or multiple requests, and then waits for a reply;
whereas DP2PMatch and DCollectiveMatch can continue their execution irrespective of
the availability of a reply. So the DWS communication will be more latency bound than
the communications of DP2PMatch and DCollectiveMatch. An evaluation of a DWS
prototype must show whether this design leads to acceptable overheads.

MUST modules must receive events from application processes and then repeat the
communication pattern of the application (coarsened). This highlights that rank-to-core
placement impacts MUST’s performance. If an application uses a tuned rank-to-core
binding, then MUST may cause perturbation that degrades this optimisation; and
MUST itself should use a similar tuned binding that reduces the overhead of its
communication pattern replay. Thus, at higher scales rank-to-core binding can heavily
influence the overhead of MUST. This notion remains an important direction for future
work that should integrate with placement optimisation frameworks.

Besides the distributed components, we see potential scalability limitations in:

• Resource tracking
• Graph-based deadlock detection

MUST’s distributed analyses require information about MPI resources (communicators,
datatypes, requests, groups, reduce operations) currently we communicate information
about these resources to all TBON nodes that need them. For 10,000 cores or more
this might lead to expensive bookkeeping, depending on the number of MPI resources
that an application uses. With our current prototypes of MUST, we experience no
degradation due to heavy MPI resource usage even with our intra-layer communication
system that forwards tracked resources between nodes of a single tool layer. For
different target applications or at increased scale, this may change and require future
extensions.

The graph-based deadlock detection runs on the root of the TBON. For N processes it
needs to analyse a graph with up to N nodes and N2 arcs. As a result, this is a
scalability bottleneck, but its impact depends on the number and type of the active wait-
for conditions. Furthermore, we only rarely execute this analysis, so it only needs to
return within an acceptable runtime. We will investigate the resulting overheads, but do
not consider extensions to this implementation within CRESTA

3.2 Paradigms	

As architectures become more complex and heterogeneous, new parallel programing
paradigms and abstractions arise. Automatic correctness support for these paradigms
is highly desirable, but requires that automatic error detection tools understand the
paradigm in question. This requires an instrumentation mechanism to both intercept
correctness relevant events and to add new correctness checks for these events.
MUST’s infrastructure GTI allows us to easily add new types of correctness checks.
However, the instrumentation system is very dependent upon the paradigm and can’t
easily be generalised within GTI.

We sketch steps towards support for additional paradigms in this design document to
evaluate development costs for their support and benefits from checks for these
paradigms. This includes PGAS languages such as Coarray Fortran and accelerator-
based paradigms such as CUDA. Based on this evaluation, we decided to focus on
PGAS paradigms within CRESTA. Since the development of an instrumentation
interface would consume considerable development resources we select a target
paradigm that already provides such an interface. Co-design activities explore Coarray

© CRESTA Consortium Partners 2011 Page 20 of 28

Fortran, but since this paradigm provides no instrumentation interface, we cannot
provide support for this paradigm within CRESTA. Therefore we decide to use a library
implementation of the PGAS paradigm to prototype correctness checks for a PGAS
language. These checks will provide functionality that we can reuse for different PGAS
implementations in the future.

3.2.1 PGAS	
 Language	
 Correctness	
 Checking	

PGAS languages are available as library-based paradigms, e.g. GASPI / GPI [7],
OpenSHMEM and as language extensions or individual languages, e.g. UPC, Coarray
Fortran, and Chapel. In terms of instrumentation, library based PGAS paradigms are
easier to handle, as they directly provide an interface to intercept. Language based
PGAS paradigms are compiled into an intermediate form and implemented by some
communication layer. Intercepting events is more difficult in this case.

The types of correctness errors that occur in PGAS languages appear to be more
typical to threading errors as detected by tools like the Intel Thread Checker, e.g. a
write to remote memory happens in parallel to a local read to the same location on the
remote side. Detecting all types of PGAS usage errors will therefore require tools to
trace each single memory access, which limits the applicability of a scalable runtime
tool such as MUST, since it induces high overheads. Advances in fine-grained memory
race detection are outside the expertise and resources available within the CRESTA
project. However, further errors of PGAS applications include synchronisation errors
like concurrent write operations to equal memory regions or a lack of synchronisation
primitives between DMA operations. Finally, due to locking and barrier synchronisation,
deadlocks may also manifest in PGAS languages. The latter two can also be detected
without tracing each single memory access. First correctness checks within MUST fall
into the category of detection of coarse-grained synchronisation errors and deadlocks.

From our early experience, for first correctness checks of a language based PGAS
paradigm, we need an instrumentation API that provides us with information on:

• Memory ranges that are global
• Synchronisation calls
• Communication/writes into global memory
• Communication/reads from global memory

Within the CRESTA co-design activities the application IFS explores Coarray Fortran
as a PGAS paradigm. Experiments with the paradigm show performance benefits that
motivate the use of such paradigms. However, since Coarray Fortran provides no
instrumentation interface, we cannot directly apply correctness checks to this PGAS
implementation. Thus, we will prototype MUST correctness checks for a PGAS library
implementation instead, since this offers a readily available instrumentation interface.

Since the first version of this document the GASPI consortium released Version 1.0 of
the GASPI standard. This standard includes a profiling interface that offers a name
shifting mechanism like MPI.

OpenSHMEM doesn’t define a profiling interface like GASPI. This makes the
interception of library calls a bit less portable.

The constraints given by these interfaces are very similar, given by the nature of the
PGAS approach. The decision for one of this libraries, or both will be done while
implementing the library wrapper. Based on one of this interfaces we will implement
prototype checks for MUST. This will include checks for:

• Integrity checks for argument values (within the defined boundaries);
(application local check)

• Mutual excluded calls according to the standard (e.g. collectives, MPI/GASPI);
(aggregated, centralised checks)

• Checks for: “A valid one-sided communication request requires that the local
and the remote segment are allocated, that there is a connection between the

© CRESTA Consortium Partners 2011 Page 21 of 28

local and the remote GASPI process and that the remote segment has been
registered on the local GASPI process.” (check with intra-layer communication)

• Coarse-grained checks for races based on library calls. (check with intra-layer
communication)

The MPI interoperability described in the GASPI standard is minimal. It states that
there shall be no running MPI operation when GASPI is active and vice versa. For this
reason we cannot use MPI as communication means between application and tool
processes. This restriction can impact the productivity and availability of our prototype
checks. GTI provides a posix shared memory communication means that is restricted
to a shared memory node. This would suffice for a small prototype, but no scalable
tool.

3.2.2 CUDA/OpenCL	
 Correctness	
 Checking	

Approaches such as CUDA and OpenCL are library-based extensions, which simplifies
their instrumentation. The key difference to other paradigms is that both CUDA and
OpenCL use a host and a kernel language. The kernel language is usually a modified
subset of an existing language like C or C++. Instrumentation of kernel language
events is very challenging as the functionality that is available on the kernel level is
very limited. As a result, correctness checks of MUST for accelerator languages would
focus on the host side. This primarily includes process local correctness checks, e.g.
whether the device or the kernel is in the correct state for a certain API call. Also, this
includes a few potential non-local checks that can also document sources for
performance degradation, e.g., are no two processes using the same GPU device.
Note that such an extension would still provide MPI correctness checking to
MPI/GPGPU hybrid applications.

3.2.3 Tasking	
 Paradigm	
 Correctness	
 Checking	

Tasking paradigms such as OmpSs, Charm++ and DAGuE could potentially increase
the programmability of Exascale systems. These paradigms offer promising properties
towards fault tolerance and load balancing. Since a runtime system manages the
actual communication calls for such paradigms runtime correctness checks can only
check for a limited number of correctness error classes. First, deadlocks are likely rare
for such paradigms, since a runtime system automatically issues communication and
synchronisation primitives. Second, a key correctness issue for tasking are data races
on shared memory. As for PGAS languages, this requires instrumentation for each
memory access, which may drastically increase runtime overhead for an approach
such as MUST. Correctness checks for a tasking paradigm would be most powerful if
they could check task-specific input/output properties to reveal programming errors.
However, such checks require a specification language that provides the correctness
tool input on input/output requirements of each task.

3.2.4 Extensions	
 to	
 Provide	
 GASPI/OpenSHMEM	
 Checks	

GTI as a base infrastructure of MUST is designed to be programing paradigm agnostic,
i.e. is not limited to MPI tools. However, GTI provides communication and tool node
start-up services that differ between target paradigms. As an example, for MPI we use
a communicator virtualisation that allows us to use MPI for tool node start-up and for
communication. Thus, to support GASPI checks we must adapt our communication
modules and our tool node start-up mechanisms for this paradigm. Since both
consume large amounts of development time, we will first explore execution modes
that use MPI and GASPI simultaneously to reuse existing mechanisms. If this is not
feasible we will explore more manual mechanisms to avoid costly development of
additional tool components, such that we can focus on the development of the actual
checks.

For OpenSHMEM we can use the MPI communication means of GTI.

Once we can execute GTI tools with GASPI/OpenSHMEM applications (automatically,
semi-automatically, or manually) we must provide information on the
GASPI/OpenSHMEM API to tool modules. This requires extensions to PnMPI (a basis

© CRESTA Consortium Partners 2011 Page 22 of 28

infrastructure used by GTI) to support the new instrumentation interface. Afterwards,
the tool developer can directly specify analysis modules, which can implement
correctness checks. 	

© CRESTA Consortium Partners 2011 Page 23 of 28

4 Fault	
 Tolerance	

Expectations [8] for Exascale systems indicate that mean-time-to-failure may be lower
than a day. If the mean-time-to-failure becomes too low, check pointing approaches
may become unfeasible. Such a compute system requires that applications, system
ware, operating system, and/or any type of runtime tool needs to be aware of failures
and handle them such that an application can continue its execution. This may include
the use of spare nodes or cores to replace failed components.

These effects need to be considered for the development of debugging and runtime
error detection tools for Exascale systems. Work package 2 evaluates operating
system and programming model changes to handle such hardware faults in D2.5.2,
which will be released in month 30 of the project. At the current project state we have
no results about an expected mean-time-of-failure or indications about fault tolerance
mechanisms. Particularly, the latest US-project on Exascale operating systems (ARGO
[9]) appears to address fault tolerance primarily within the operating system level.
Thus, it remains unclear whether (and what) techniques for fault tolerance need to be
applied to which software layers. The MPI forum also did not provide fault tolerance
support for its recent MPI-3 standard. Possibly check pointing remains a viable option.
Thus, we will not address any modifications for fault tolerance in this design document.

© CRESTA Consortium Partners 2011 Page 24 of 28

5 Tool	
 Integration	

While individual tools may provide application developers or system administrators
valuable insights, there is usually a high reluctance to learn and understand new tools.
At the same time, combining multiple tools may lead to deeper and more meaningful
insights than with just a single tool. Debuggers and runtime error detection tools are an
example for such a case. The obvious integration direction is to incorporate an
automatic error detection tool into the debugger, this leads to the following benefits:

• Tool user only needs to learn the debugger usage
• Errors detected by an automatic runtime tool can directly be investigated with

the debugger
• Automatic runtime tools may share knowledge with the debugger

As a result, we want to investigate potential integrations between DDT and MUST in
order to provide these advantages to tool users. An early integration between DDT and
Marmot (a predecessor of MUST) already allowed Marmot to stop the execution when
it detected an error. Afterwards, the user could investigate error details with the
debugger. Both MUST and DDT rely on the use of a Tree Based Overlay Network
(TBON), and an interesting question is whether an integration could allow the tools to
share this infrastructure for easier deployment and lower resource consumption in the
future. We include experience with Allinea MAP that reuses components from Allinea
DDT in that respect. In theory, graphical user interfaces within DDT could control the
behaviour of MUST and even apply certain correctness checks to particular data.
However, while such integration is extremely promising in terms of usability and
reduced time to solution, the individual DDT and MUST extensions in the preceding
sections are crucial to provide helpful debugging tools for Exascale. Thus, the
integration stays an optional research direction that we can only follow if progress in
the other development areas is successful.

5.1 Goals	

Integration between DDT and a tool like MUST should provide the following functions
at least:

• Starting MUST as a plugin within DDT (within DDTs user interfaces),
• Stopping the debugger if MUST detects errors,
• Displaying MUST’s output within DDT, and
• Exporting environmental variables that control MUST/GTI/PnMPI.

These basic features allow users to load MUST into DDT and to gain basic benefits of
an integration. The next section describes details on how we implemented such a first
integration. The following complications arise for such a basic integration:

• MUST performs a code generation step before it runs with an application. This
code generation also needs to be handled when integrated with DDT. A
straightforward solution is to use MUST’s own utilities to perform this generation
step.

• MUST starts the MPI application with additional processes per default, their
presence will confuse DDT users.

• In order to operate in a scalable and fast manner, MUST needs to use
asynchronous communication methods. As a result, it will usually detect non-
local correctness errors only after the application stepped over the respective
MPI calls. In such a case, stopping the application where the error happens is
not directly possible.

After handling the basic integration goals we must address these three issues to
improve the user experience with the integrated tool.

Within the scope of CRESTA we will implement the following integration features:

© CRESTA Consortium Partners 2011 Page 25 of 28

• Allowing user to select certain correctness checks for MUST, i.e. advanced and
tool specific options that can be selected during the DDT run configuration,
implemented by passing arguments to the mustrun command.

• MUST can provide DDT with information about MPI state, e.g. for MPI handles
(See Section 0)

5.2 Enabling	
 Tool	
 Integration	

Allinea DDT has a basic capability for integrating simple components that operate
purely via shared library preloading. This has been used previously in the ITEA
PARMA project for integration of Allinea DDT and the forerunner of MUST, Marmot -
but also supports the Intel Message Checker, which targets a similar objective of MPI
usage verification.

The plugin model as it currently stands is able to—via an XML configuration file—
specify libraries to preload and set default breakpoints and tracepoints. At a default
breakpoint, a message, consisting of a string and severity level, can be shown to the
user. Error checkers will call this function in their ordinary course of execution - but
when running in the debugger the default breakpoint action will cause a message
dialog to be shown to the user.

For example, the Intel Message Checker plugin file consists of this small XML file.
<plugin name="Intel Message Checker 7.1" description = "Enables
MPI message checking when using Intel MPI 3.0 or later">

 <preload name="libVTmc.so" />

 <breakpoint location="MessageCheckingBreakpoint"
action="message_box" message_variable="error" />

</plugin>

When the Message Checker detects a problem the usage error is shown inside Allinea
DDT with the application still “alive” - enabling the full context of the application to then
be understood by the programmer.

As Allinea DDT is able to launch applications with any MPI and understands how to do
library preloading for each of the implementations, this enables any tool that uses the
MPI profiling interface (PMPI) to work together and be configured to run with no effort
from the user.

The aim of this part of the CRESTA project is to enable an extended mechanism to
work for tools such as MUST that require scalable infrastructures such as a tree
network.

Allinea DDT will be modified to allow users to add MUST checking to a normal
debugging session at start-up time. The tools will integrate as follows:

1. Allinea DDT launches MUST’s “mustrun” with a special identifying argument or
environment variable to inform MUST that this session is being debugged.

2. MUST performs its usual start-up behaviour, but launches “ddt-client” instead of
executing the underlying mpirun as it would do in a non-debugger run.

3. Allinea DDT detects the ddt-client launch, and starts mpirun and the rest of the
processes under debugger control using the arguments passed by MUST.

As mentioned above, MUST allocates additional processes for the analysis TBON. For
cases in which DDT needs to know in advance how many processes will be required in
total (e.g. when requesting resources from a job scheduler) it will use the existing
“mustrun –must:info” functionality of MUST to get this information.

Using this start-up methodology, Allinea DDT and MUST do not need to share the
same scalable tree, vastly simplifying implementation and maintenance. MUST will
continue to manage its processes and communication as usual. Allinea DDT will hide
MUST-specific processes from the user using the same functionality as implemented
previously when adding Marmot support. MUST decides in the MPI_Init function

© CRESTA Consortium Partners 2011 Page 26 of 28

whether a process becomes a tool or an application process, the tool processes will
never leave the MPI_Init function, so DDT is able to hide the tool processes after the
application processes left the MPI_Init function.

For scalability the analysis within the TBON runs asynchronously. When an error is
identified, the application has typically made progress. Therefore DDT cannot break at
the call where the error occurred. For applications with a reproducible communication
scheme we will provide a simplistic replay mode where we:

- Restart the application run,
- Ensure that the communication scheme is retained,
- Break at the erroneous MPI call, and
- Display the recorded error message.

This mode is not applicable for applications with non-deterministic communication
schemes, e.g. dynamically load balanced applications.

5.3 	
 Tool	
 Extensibility	

Allinea MAP, a performance profiling tool, is now part of the Allinea tools platform. Co-
design work with some CRESTA members was undertaken to ensure that this meets
the identified needs to locate and understand all causes of performance bottlenecks,
including algorithmic errors and other software defects. Important feedback from this
process led Allinea MAP to produce XML output files suitable for integration with and
analysis by other applications.

One design requirement is building a common extensible platform that other tools are
able to benefit from, without having to re-implement high-scalability start-up and data
merging.

A tool that takes advantage of this tool extensibility is being prototyped that will enable
quick, low-overhead performance reports of unmodified application binaries, allowing
application and system owners to characterize the performance of a code and quickly
identify whether a code is currently in need of deeper analysis.

© CRESTA Consortium Partners 2011 Page 27 of 28

6 Testing	
 Plan	

We categorise the software extensions that we include into three fields:

• Allinea DDT extensions
• MUST extensions
• Integration components

Extensions to Allinea DDT and MUST can be tested separately while any integration
component can only be tested where both tools are available. This also motivates the
use of a plugin concept for integration, as a DDT installation should not require the
presence of a MUST installation. Testing goals either include functionality tests or
performance/scalability tests. We will detail how we will test both tools for correct
functionality in the following. For performance and scalability purposes we will use all
qualifying tests of the benchmark suite from WP 2 to test both tools at regular intervals.
Further, as co-design teams identify successful or promising use cases for Allinea DDT
or MUST, we will include these respective co-design applications into regular
performance tests. For tests that address the integration of the two tools we will identify
an HPC system where both tools are available. We will use regular tests on this system
to test the tool integration.

6.1 DDT	
 Functionality	
 Tests	

Allinea DDT has a comprehensive testing suite, which also includes remote testing to
enable access to more extreme machines such as those provided by vendors such as
Cray, SGI and IBM. This will be extended with test cases specific to the extensions
proposed here. Presently roughly 120 compound test cases exist which are each run
against about 10 machines with 6 MPI installations and circa 4 compilers. This is in
addition to many unit tests within the code.

One or two of the (more liberally licensed) applications from the CRESTA project will
be included as part of the test applications and specific tests build for these – this is
planned for M24-M36.

The test suite is driven by a JavaScript-like interface to provide full depth integration
testing of DDT—with an API enabling basic debugging operations and GUI state to be
driven and queried.

6.2 MUST	
 Functionality	
 Tests	

MUST uses CTest for automatic testing. We currently have a total of 697 test cases
that represent various correct or incorrect synthetic MPI applications. The test cases
include the use of the current centralized MUST components and the use of early
prototypes of distributed checking components. We run these test cases on 3 different
systems every night and summarize the test results on a dashboard. The test cases
also measure the required runtime which allows us to detect overall runtime changes.
To test MUST with more complex applications, we use SPEC MPI2007 and the NAS
Parallel Benchmarks (NPB) after each larger functionality extension.

© CRESTA Consortium Partners 2011 Page 28 of 28

7 References	

[1] Joachim Protze, Tobias Hilbrich, Andreas Knüpfer, Bronis R. de Supinski,

Matthias S. Müller, "Holistic Debugging of MPI Derived Datatypes", Parallel
Distributed Processing Symposium (IPDPS), (2012)

[2] Tobias Hilbrich, Matthias S. Müller, Bronis R. de Supinski, Martin Schulz,
Wolfgang E. Nagel, "GTI: A Generic Tools Infrastructure for Event-Based Tools
in Parallel Systems", Parallel Distributed Processing Symposium (IPDPS),
(2012)

[3] Tobias Hilbrich, Joachim Protze, Bronis R. de Supinski, Martin Schulz, Matthias
S. Mueller and Wolfgang E. Nagel, " Intralayer Communication for Tree-Based
Overlay Networks", Parallel Software Tools and Tool Infrastructures Workshop
(PSTI), (2013)

[4] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, Robert M.
Kirby, “ISP: A Tool for Model Checking MPI Programs”, PPOPP, (2008)

[5] Bettina Krammer, Matthias S. Müller, “MPI Application Development with
MARMOT“, PARCO, (2005)

[6] Jeffrey S. Vetter, Bronis R. de Supinski, “Dynamic Software Testing of MPI
Applications with Umpire“, Supercomputing, (2000)

[7] Franz-Josef Pfreundt, “GPI and MCTP”, Fraunhofer Institut für Techno- und
Wirtschaftsmathematik ITWM, http://www.gpi-
site.com/cms/sites/default/files/GPI_Whitepaper.pdf, (accessed June 2012)

[8] Herbert Huber, Riccardo Brunino, “D4.3 Working Group Report on Hardware
roadmap, links and vendors”, European Exascale Software Initiative, (2011)

[9] Argonne National Laboratory, Mathematics and Computer Science, Feature
Stories, (08/07/13), http://www.mcs.anl.gov/articles/designing-new-operating-
system-exascale-architectures, (accessed August 2013)

	

