

Copyright © CRESTA Consortium Partners 2011

D3.5.1	
 –Compiler	
 support	
 for	

exascale	

WP3:	
 Development	
 Environment	

Due date: M10

Submission date: 31/07/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation UEDIN

Version: 1.0

Status Final

Author(s): David Henty (UEDIN)

Reviewer(s) Michael Schliephake (KTH), David Lecomber (ASL)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 26/06/12 First version of the deliverable David Henty (UEDIN)

0.2 27/06/12 OpenACC added David Henty (UEDIN)

0.3 28/06/12 Auto-tuning added David Henty (UEDIN)

0.4 01/07/12 First draft for review David Henty (UEDIN)

0.9 24/07/12 Updated re reviewers’ comments David Henty (UEDIN)

1.0 Final version after proof reading

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 NEK5000	
 ..	
 2	

2.2	
 STRUCTURE	
 OF	
 THE	
 REPORT	
 ...	
 2	

2.3	
 PURPOSE	
 ..	
 3	

2.4	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 3	

3	
 STAND-­‐ALONE	
 KERNEL	
 BENCHMARK	
 ...	
 4	

3.1	
 VERIFICATION	
 ..	
 4	

3.2	
 MODE	
 OF	
 OPERATION	
 ...	
 4	

3.3	
 KERNEL	
 VERSIONS	
 ..	
 5	

4	
 CPU	
 PERFORMANCE	
 ...	
 7	

4.1	
 EXPERIMENTS	
 ..	
 7	

4.2	
 RESULTS	
 ...	
 9	

4.3	
 SUMMARY	
 ..	
 10	

5	
 OPENACC	
 ACCELERATION	
 ..	
 11	

5.1	
 PORTING	
 TO	
 THE	
 NVIDIA	
 TESLA	
 GPU	
 ...	
 11	

5.2	
 PERFORMANCE	
 ..	
 12	

5.3	
 SUMMARY	
 ..	
 14	

6	
 AUTO	
 TUNING	
 ...	
 15	

6.1	
 NEK5000	
 OPENACC	
 KERNEL	
 IN	
 C	
 ..	
 15	

6.2	
 DEFAULT	
 PERFORMANCE	
 ...	
 16	

6.3	
 AUTO-­‐TUNED	
 PERFORMANCE	
 ...	
 16	

6.4	
 SUMMARY	
 ..	
 17	

7	
 CONCLUSIONS	
 AND	
 FURTHER	
 WORK	
 ...	
 18	

8	
 ACKNOWLEDGEMENTS	
 ..	
 19	

9	
 REFERENCES	
 ..	
 20	

Index	
 of	
 Figures	

Figure 1: Results for N=6 case 1 .. 7	

Figure 2: Results for N=6 case 2 .. 8	

Figure 3: Results for N=6 case 3 .. 8	

Figure 4: Results for N=24 case 1 .. 8	

Figure 5: Results for N=24 case 2 .. 9	

Figure 6: Results for N=24 case 3 .. 9	

Figure 7: Results for N = 6 with the PGI compiler .. 13	

Figure 8: Results for N =12 with the PGI compiler ... 13	

Figure 9: Results for N = 18 with the PGI compiler .. 13	

Figure 10: Results for N = 24 with the PGI compiler .. 14	

Figure 11: Comparison of OpenACC kernel for different languages 16	

Figure 12: Speedup from Auto-tuning .. 17	

Figure 13: Performance of Default and Auto-tuned Kernels ... 17	

© CRESTA Consortium Partners 2011 Page 1 of 20

1 Executive	
 Summary	

A survey of compiler technologies relevant to exascale was performed in a previous
CRESTA deliverable [1]. Two particular issues that were identified were the growing
requirement for compilers to support CPU accelerators, and the possible advantages of
auto-tuning to produce better performing code on today’s increasingly complex and
heterogeneous processors. Motivated by this, we study key kernels from one of the
CRESTA co-design applications, Nek5000. We investigate to what extent user-level
source modifications affect performance at different levels of optimisation across a
range of compilers. We then study new GPU-enabled version of the kernels, written for
this study using the new OpenACC standard for accelerator directives, to explore
current compiler capabilities for heterogeneous architectures. Finally, we attempt to
optimise the performance of OpenACC using auto-tuning technology developed at the
University of Edinburgh.

© CRESTA Consortium Partners 2011 Page 2 of 20

2 Introduction	

Rather than performing a review of existing literature, we decided to undertake a
practical investigation of compiler performance. The most important decision in any
study of this type is what particular source code(s) should be used in any experiments.
There is an extremely wide range of standard benchmark codes available, ranging from
small serial kernels through to large parallel applications, which offers a somewhat
bewildering amount of choice. Fortunately, however, one of the cornerstones of
CRESTA is that six applications have been identified as the chosen co-design vehicles
so this gives us a much more constrained set of codes to choose from.

After a brief survey of the contents of the CRESTA benchmark suite [2], Nek5000 [3]
was chosen because it already includes a self-contained kernel benchmark that
measures the performance of a variety of matrix-matrix operations that are a core part
of the algorithm. These are already implemented via multiple subroutines that perform
the same calculation using different pieces of code. The kernels have also already
been used in an extensive auto-tuning study [4] (using the CHILL framework [5]
previously described in [1]) that leaves us free to concentrate these auto-tuning studies
on our new GPU-accelerated kernel.

2.1 Nek5000	

Nek5000 is a Fortran code that performs engineering simulations using spectral
elements. The core computational kernel involves a large number of matrix-matrix
operations that could be implemented by a call to the standard DGEMM function from
level 3 of the BLAS library. DGEMM is a standard HPC test case and it might therefore
appear that there is little new to be learned here. However, the particular calculation
required in Nek5000 has a number of distinguishing features:

1. It requires multiplications between a large number of independent small
matrices as opposed to a small number of multiplications of large matrices. This
means that memory bandwidth is stressed as well as floating-point
performance, which is not true of a typical large DGEMM test case.

2. The benchmark investigates a wide range of matrix sizes (though all are small).
3. The matrices are not always square: for a given value of N the benchmark has

three cases with matrices of size N x N, N2 x N and N x N2. The values of N
range between 1 and 24.

2.2 Structure	
 of	
 the	
 report	

In section 3 we describe the construction and verification of a small stand-alone
benchmark as extracted from the main Nek5000 code, and describe the various matrix-
matrix implementations already present in the code. In section 4 we study how the
performance of the kernels varies across a range of compilers and optimisation levels
on HECToR, the UK national supercomputer. We then port the benchmark to a
platform which contains NVIDIA GPU accelerators, and develop a simple OpenACC
version of the kernel which is investigated in section 5. In section 6 we describe how
this was ported to C to enable it to fit into the chosen auto-tuning framework, and
present results from that investigation. Section 7 presents some conclusions and
describes possible further work.

In many cases we are able to compare the performance achieved from the user code
to that obtained from the highly-optimised DGEMM library. This library typically
provides an upper bound on the achievable performance and is therefore a useful
reference value. The reason we are looking at the performance of the Nek5000 matrix-
matrix kernels is not to try and out-perform DGEMM: rather, we are using them as
examples of the types of kernels that scientists might want to use in a real code. Of
course, for production runs of Nek5000 itself then using an optimised library would
probably be the preferred option.

© CRESTA Consortium Partners 2011 Page 3 of 20

2.3 Purpose	

The purposes of this deliverable are:

• To investigate the performance variation of the Nek5000 kernels occurring from
differences in source code, compiler and optimisation level;

• To implement an accelerated OpenACC kernel and investigate its performance
on an NVIDIA GPU;

• To attempt to optimise the accelerated kernel using an auto-tuning framework.

2.4 Glossary	
 of	
 Acronyms	

cronym Definition
BLAS
CPU
CUDA
D

Basic Linear Algebra Subprograms
Central Processing Unit
Compute Unified Device Architecture
Deliverable

EC
FLOP
GPU
HECToR
HPC
MFLOPs
NAIS
OpenACC
OpenMP
PGI

European Commission
Floating-point Operations per Second
Graphics Processing Unit
High End Computing Terascale Resource
High Performance Computing
Million Floating-point Operations per Second
Numerical Analysis and Intelligent Software
Open Accelerator Directives
Open Multiprocessing Directives
The Portland Group, Inc.

PM
RMS

Project Manager
Root Mean Square

WP Work Package

© CRESTA Consortium Partners 2011 Page 4 of 20

3 Stand-­‐alone	
 kernel	
 benchmark	

With the Nek5000 distribution, a standard program is provided that executes some low-
level benchmarks without requiring any input files. As supplied it runs both computation
(matrix-matrix) and communication (ping-pong, reduction etc.) kernels. Although it
would have been possible simply to comment out the communication benchmarks, this
has two major disadvantages:

1. The benchmark would still have contained thousands of lines of unused code;
2. It would not have been easy to port because, as supplied, the unused code

does not compile on some compilers (e.g. the Cray compiler).

The minimal amount of code was therefore extracted to enable the calculation
benchmarks to be run. This only required us to retain two source files (mxm_wrapper.f
and mxm_std.f) and three include files (OCPTR, SIZE and TOTAL). The Fortran source
files were left untouched, and all new code (e.g. the driver program) was contained in a
single file nekbench.f. Of the include files, only TOTAL had to be altered. In our
benchmark it is simply a dummy file containing only comments. It is provided so that
we do not have to alter any other files that explicitly include it.

3.1 Verification	

A new version of the existing driver routine ‘mxmtest’ in mxm_std.f was written to
provide more control. In addition, since new kernels were to be added as part of this
study, a verification routine was introduced to ensure correctness. A reference solution
is computed using the simplest version of the kernels (this is called ‘std’ and is
completely straightforward naïve Fortran). All subsequent results are compared to this
reference by computing the RMS difference, and if this exceeds a certain tolerance (set
to 1.0e-12), then an error is reported. All calculations are done in double precision,
although this is actually achieved by promoting reals to doubles using compiler flags.

This verification actually discovered an error in one of the routines. This had already
been identified when the source code was read by the author while trying to
understand how each kernel routine operated (there is a simple typo in the ‘mxm44’
implementation where the wrong specialised subroutine is called for N=1). It was
encouraging that the verification test reported this as an error at runtime, and also that
no errors were reported in any of the other routines.

3.2 Mode	
 of	
 operation	

The driver routine originally had the following structure:

• Initialise data to random values
• Loop over the three test cases

o Loop over values of N from 1 to 24
§ Loop over the ten different matrx-matrix kernel implementations

• Start the timer
• Perform many repetitions of the kernel, attempting

constant runtime by choosing the repetition count based
on the value of N and the number of matrices M being
considered (as distributed M = 4*8*8*8*130 = 266240).

• Stop the timer and report a MFLOP value

For a given value of N, the three test cases of A x B = C are:

1. N2 x N matrix times N x N matrix equals N2 x N matrix (“tall times square”)
2. N x N matrix times N x N matrix equals N x N matrix (“square times square”)
3. N x N matrix times N x N2 matrix equals N x N2 matrix (“square times long”)

It is important to remember that each test is actually repeated over many different
matrices, i.e. the actual calculation is Ai x Bi = Ci for i = 1, 2, 3, If the number of
repetitions exceeds M then i is reset to 1 and the process continues from the start.

© CRESTA Consortium Partners 2011 Page 5 of 20

In the original code the memory management was quite complicated with the arrays of
matrices being declared as one-dimensional arrays in the main code, and the loop over
i done manually by indexing into the appropriate section of these linear arrays when
calling the kernel subroutine. This means that the loop over matrices is performed in
the driver code and cannot easily be performed in the kernel routine. This would be a
major problem for any accelerated kernel where this loop is an obvious candidate for
parallelisation (especially for small values of N). This scheme was simplified, and
although it had an effect on the memory access pattern no significant performance
difference was observed. Indeed, the original memory access pattern did not appear to
be very representative as all matrix arrays were accessed in strides of N3 even when
they were actually of size N2. In the new code, all arrays are accessed contiguously.

The original version had one exceptional case where a matrix addition was performed
as opposed to a multiplication. This was removed as it substantially complicated the
logic of the code and did not provide any useful additional information for this particular
study. To reduce the total amount of output, the exhaustive loop over N was replaced
by only four values: 6, 12, 18 and 24.

Finally, the original driver contained both “fast” and “memory” versions of the
benchmarks. The “memory” version is as described above, looping over the M matrices
in each array. The “fast” version is designed to operate inside the cache and does
many repetitions of A x B = C for the same matrices A, B and C (i.e. the value of i is
fixed to 1). Although the “fast” form was retained in our standalone benchmark for
completeness, it is not of so much interest as the “memory” form so we do not report
results here.

The resulting code ‘nekbench.f’ compiles quickly and easily on all platforms, the only
technical issues being finding appropriate compiler flags to manually enable C-style
source preprocessing (since we retain the Nek5000 convention of using a “.f” suffix for
source files as opposed to “.F”) and to promote default reals to double precision.

3.3 Kernel	
 versions	

All the kernels are implementing an extremely simple computation which, in naïve
Fortran, would read:

 double precision a(n1, n2), b(n2, n3), c(n1, n3)

 do j = 1, n3
 do i = 1, n1

 c(i,j) = 0.0

 do k = 1, n
 c(i,j) = c(i,j) + a(i,k)*b(k,j)
 end do

 end do
 end do

There are at least 10 different implementations of this kernel in the code, exploring the
following types of optimisations:

• specific hard-coded versions for different values of n1, n2 and n3 so that these
are constants at compile time;

• different loop orderings;
• loops unrolled by various amounts;
• matrix values stored explicitly in numerous temporary scalars;
• hand tiling into blocks for better cache reuse;
• calling the DGEMM library.

© CRESTA Consortium Partners 2011 Page 6 of 20

In order to have a manageable volume of data, we only report results for three
versions:

• ‘std’ which is essentially the code as presented above (although written in an
older F77 style)

• ‘m44’ which tiles the matrices to improve cache re-use use with tiles of size 4x4;
• ‘mxmd’ which used the DGEMM library function.

Although ‘m44’ did not turn out always to be the best performing kernel (particularly for
small values of N), it is very representative of the types of optimisations which are often
done by hand and, and more importantly it was the routine previously auto-tuned in [4].

© CRESTA Consortium Partners 2011 Page 7 of 20

4 CPU	
 performance	

Although it was commonplace over a decade ago to optimise code performance using
manual recoding (e.g. loop unrolling or tiling), modern compilers are very sophisticated
and can in principle apply many of these techniques automatically. As a result, it is
interesting to investigate the performance of the Nek5000 kernels across multiple
compilers at various optimisation levels. This was done on HECToR the UK national
supercomputer, because it supports three compilers: GNU, PGI and Cray.

It should be noted that other compilers may produce superior performance to the
results presented here. For example, the Intel compiler is specifically targeted at the
x86 architectures used in all our CPU studies. In practice our choice was limited by the
availability of compilers on each architecture, e.g. the Intel compiler is not supported on
HECToR. However, this is not a major issue for these studies where we are more
interested in the general performance variability observed across several different
compilers than the maximum performance achievable across all compilers.

4.1 Experiments	

We ran the stand-alone benchmark on a single core of HECToR. The nodes of
HECToR contain 2 x 12-core 2.3 GHz AMD Interlagos processors. We deliberately
took a somewhat naïve approach, compiling the code using either default levels of
optimisation (i.e. no optimisation flags passed to the compiler) or a high level of
optimisation (as recommended in the HECToR User Guide [6]). The only option we did
not investigate was inter-procedural optimisation such as inlining since support for this
varied so widely across compilers.

The results are show in Figure 1 – Figure 6 where, separately for each optimisation
level, we show the six performance results obtained for the two kernels ‘std’ and ‘m44’
on each of the three compilers. We show results for all three cases for the smallest and
largest matrix sizes N=6 and N=24 (note the difference in vertical scale between the
two sizes). For comparison we also show the DGEMM performance which, as
expected, was unaffected by choice of compiler or options since it is an external library.

Figure 1: Results for N=6 case 1

0	

500	

1000	

1500	

2000	

2500	

Default	
 Opt	
 Highest	
 Opt	
 DGEMM	

M
FL
O
Ps
	

Code	
 Version	

GNU:	
 std	

GNU:	
 m44	

PGI:	
 std	

PGI:	
 m44	

Cray:	
 std	

Cray:	
 m44	

© CRESTA Consortium Partners 2011 Page 8 of 20

Figure 2: Results for N=6 case 2

Figure 3: Results for N=6 case 3

Figure 4: Results for N=24 case 1

0	

500	

1000	

1500	

2000	

2500	

Default	
 Opt	
 Highest	
 Opt	
 DGEMM	

M
FL
O
Ps
	

Code	
 Version	

GNU:	
 std	

GNU:	
 m44	

PGI:	
 std	

PGI:	
 m44	

Cray:	
 std	

Cray:	
 m44	

0	

500	

1000	

1500	

2000	

2500	

Default	
 Opt	
 Highest	
 Opt	
 DGEMM	

M
FL
O
Ps
	

Code	
 Version	

GNU:	
 std	

GNU:	
 m44	

PGI:	
 std	

PGI:	
 m44	

Cray:	
 std	

Cray:	
 m44	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

Default	
 Opt	
 Highest	
 Opt	
 DGEMM	

M
FL
O
Ps
	

Code	
 Version	

GNU:	
 std	

GNU:	
 m44	

PGI:	
 std	

PGI:	
 m44	

Cray:	
 std	

Cray:	
 m44	

© CRESTA Consortium Partners 2011 Page 9 of 20

Figure 5: Results for N=24 case 2

Figure 6: Results for N=24 case 3

4.2 Results	

The results are dramatically different between the two matrix sizes so we will consider
them separately.

N	
 =	
 6	

The first thing to note is that the DGEMM results are not the fastest. Presumably this is
because the library has not been targeted at matrices that are so small and/or of such
unusual shapes. In all cases the Cray results are almost identical at the two
optimisation levels, which simply indicates that the Cray compiler has high optimisation
as a default setting (since it is a dedicated HPC compiler).

Cases 2 and 3 are very similar: m44 is always substantially faster than std for all
compilers and optimisation levels. At high optimisation there is a substantial difference
between the two kernels with GNU std being the slowest across all six versioos, but
GNU m44 the fastest.

For case 1, m44 outperforms std at the low optimisation levels of the GNU and PGI
compilers. However, for high optimisation the situation is the reverse of the other two
cases with std always outperforming m44, and with Cray giving both the slowest (m44)
and the fastest (std) results across all six versions.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

Default	
 Opt	
 Highest	
 Opt	
 DGEMM	

M
FL
O
Ps
	

Code	
 Version	

GNU:	
 std	

GNU:	
 m44	

PGI:	
 std	

PGI:	
 m44	

Cray:	
 std	

Cray:	
 m44	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

Default	
 Opt	
 Highest	
 Opt	
 DGEMM	

M
FL
O
Ps
	

Code	
 Version	

GNU:	
 std	

GNU:	
 m44	

PGI:	
 std	

PGI:	
 m44	

Cray:	
 std	

Cray:	
 m44	

© CRESTA Consortium Partners 2011 Page 10 of 20

N	
 =	
 24	

The results for the larger matrices are much more consistent than for the smaller ones.
Here, DGEMM is always the fastest overall and m44 always outperforms std for a
given compiler and optimisation level. For case 1, PGI m44 is the fastest whereas it is
Cray m44 for cases 2 and 3. However, there is a lot less variation across all the highly
optimised results than for the smaller N = 6 case.

4.3 Summary	

We see significant variations in performance across different combinations of compiler,
optimisation level, matrix size and case. In some situations hand optimisation is
beneficial, whereas in others it actually gives worse performance than naïve code. No
single kernel or library routine performs the best across all the different matrices,
indicating that some sort of auto-tuning might be beneficial in selecting the best choice
of code for each specific problem. This is backed up by the results of [4] where auto-
tuning is found to increase the performance of m44 by more than a factor of two (albeit
on a different platform).

© CRESTA Consortium Partners 2011 Page 11 of 20

5 OpenACC	
 Acceleration	

Accelerators are seen by many people as the only way to increase CPU performance
to the levels required for exascale. The current most popular accelerator technology is
the GPU, developed for and funded by the massive worldwide computer games
industry. The market leader at present is NVIDIA with their current generation Tesla
GPUs installed in a number of petascale HPC systems. Motivated by this we choose to
investigate the performance of the Nek5000 kernels on the Tesla architecture.

One of the major drawbacks of programming NVIDIA GPUs has been that the
programming model, CUDA [7], is not a recognised standard and is completely
proprietary to NVIDIA. Although there has been a large volume of research into porting
HPC kernels to GPUs, the HPC community is nervous about investing substantial
software development effort in converting applications to use a programming language
that is not portable between different architectures. There is an ongoing effort to
include accelerators in the existing OpenMP standard for shared-memory directives,
but this is likely to be a long process as it requires significant updates to the standard.
To address this, a number of HPC hardware and software vendors got together to
produce an interim standard for accelerator directives, OpenACC [8], based on their
own experiences and guided by the direction of the OpenMP efforts.

5.1 Porting	
 to	
 the	
 NVIDIA	
 Tesla	
 GPU	

The HECToR system used previously was useful for CPU studies as it supported three
different compilers. Unfortunately, HECToR does not have GPU accelerators so we
had to port the benchmark to a different system. We chose a small internal EPCC
development system, Hydra, since it is easily accessible and supports OpenACC via
the PGI compiler. Hydra comprises a 24-core shared-memory frontend (4 x 6-core
Xeon X5650 2.67 GHz CPUs) with an NVIDIA Tesla C2050 GPU accelerator. All
studies were performed with PGI version 12.3 (the version is significant as OpenACC is
still a relatively new standard and compiler capabilities are constantly improving).

The basic idea of OpenACC is that the applications developer does not have to be
concerned with the details of the underlying hardware. At the most basic level the
programmer has to manage data transfer between host and GPU (analogous to
declaring data as shared or private in OpenMP), and indicate which loops should be
parallelised. Fine control can in principle be exercised over the distribution of loops to
threads; OpenACC has three levels of control over gangs, workers and vectors. These
correspond roughly to the CUDA concepts of thread blocks, thread warps and
individual threads. Although the way in which loop iterations are split among each of
these levels must be specified explicitly in CUDA, in OpenACC the programmer can
choose to let the compiler make the decision. Here we deliberately take a very naïve
approach and give complete freedom to the compiler. We will investigate how good the
compiler’s default choices are in the next section were we will use auto-tuning
technology to search for optimal settings of these parameters.

One of the main restrictions in OpenACC is that you cannot call functions or
subroutines from within an accelerated region. In order to give the compiler as much
freedom as possible to parallelise over all loops, we created a new accelerated kernel
which itself performs the entire loop over the M matrices (previously we made M
separate calls to each kernel). This is essential in exploiting the power of the GPU
because, for example, multiplying two 6x6 matrices does not require enough
operations to occupy the many hundreds of GPU threads.

The code is shown below. Note that this is not exactly the code as contained in the
benchmark. The real kernel is slightly more complicated in that it performs an additional
loop outside the loop over the M matrices (i.e. outside the ‘imat’ loop) to ensure that the
correct number of repetitions is performed so the elapsed time is kept under control.
However, this is inside the data transfer region (the ‘acc data’ directive) so does not
affect the logic of the loop and is omitted here for simplicity.

© CRESTA Consortium Partners 2011 Page 12 of 20

! Simple parallel OpenACC version of the Nek5000 kernel

 double precision a(n1, n2, m), b(n2, n3, m), c(n1, n3, m)
 double precision tmp

!$acc data copyin(a,b) copyout(c)

!$acc kernels loop independent
 do imat = 1, m
!$acc loop independent
 do j = 1, n3
!$acc loop independent
 do i = 1, n1

 tmp = 0.0
!$acc loop
 do k = 1, n2
 tmp = tmp + a(i,k,imat)*b(k,j,imat)
 end do

 c(i, j, imat) = tmp

 end do
 end do
 end do
!$acc end kernels
 end do

!$acc end data

The outermost ‘data’ region ensures that the input matrices A and B are copied to the
GPU, and that the result C is copied back to the host. The outermost loop over ‘imat’ is
marked as being the place to start parallelisation using the ‘kernels’ directive. All of the
four loops are marked as parallelisable. The compiler is given additional information
that the computation of every element of C is independent using the ‘independent’
clause on the first three loops. Parallelisation of the innermost loop requires a reduction
operation. Although this can in principle be indicated using a ‘reduction’ clause,
reductions over array elements is not possible with the 12.3 version of the PGI compiler
used here. Following the advice produced by the compiler itself, an explicit temporary
reduction scalar ‘tmp’ is introduced which solves the problem.

5.2 Performance	

The performance of the three CPU kernel versions considered previously (‘std’, ‘m44’
and ‘DGEMM’) was compared to OpenACC across the same four values of N. The
results are presented in Figure 7 - Figure 10 showing all three cases for each kernel
version. Only the PGI compiler was considered as we required OpenACC support.

The first observation is that the DGEMM performance is typically not any better than
the compiled source. This simply indicates that the default BLAS library on Hydra is not
very well optimised. Although we could have installed a better version this was not
done as we are more concerned here with compiler performance.

The performance of the simple OpenACC kernel is quite impressive. For the smallest
value of N it depends quite strongly on the shapes of the matrices: 18 GFLOPs for
case 1 compared to 8 GFLOPs for cases 2 and 3. As N increases, the performance of
cases 2 and 3 increase more rapidly than case 1. At N = 12, the figures are 27, 19 and
22 GFLOPs respectively. For larger values of N we see case 3 becoming the fastest,
and cases 1 and 2 having similar (but poorer) performance to each other. For N = 18
we see 19 GFLOPs for cases 1 and 2, and 23 GFLOPs for case 3. Performance
increases again for N = 24 where these figures are now 25 and 30 GFLOPs.

© CRESTA Consortium Partners 2011 Page 13 of 20

Figure 7: Results for N = 6 with the PGI compiler

Figure 8: Results for N =12 with the PGI compiler

Figure 9: Results for N = 18 with the PGI compiler

0	

5000	

10000	

15000	

20000	

25000	

30000	

std	
 m44	
 DGEMM	
 OpenACC	

M
FL
O
Ps
	

Code	
 version	

Case	
 1	

Case	
 2	

Case	
 3	

0	

5000	

10000	

15000	

20000	

25000	

30000	

std	
 m44	
 DGEMM	
 OpenACC	

M
FL
O
Ps
	

Code	
 version	

Case	
 1	

Case	
 2	

Case	
 3	

0	

5000	

10000	

15000	

20000	

25000	

30000	

std	
 m44	
 DGEMM	
 OpenACC	

M
FL
O
Ps
	

Code	
 version	

Case	
 1	

Case	
 2	

Case	
 3	

© CRESTA Consortium Partners 2011 Page 14 of 20

Figure 10: Results for N = 24 with the PGI compiler

5.3 Summary	

Overall we see performance improvements for the OpenACC version of between 5 and
9 when compared to ‘m44’ on the CPU. Although this may seem impressive for such a
simple parallelisation, it is important to note that we are comparing to the performance
of a single Xeon core. Even a very simple OpenMP parallelisation of the CPU
calculation (e.g. across the outermost loop over the M matrices) would easily exploit all
24 Xeon cores and we would expect that this would outperform the OpenACC version.
Similarly, a hand-coded CUDA version for the GPU would probably outperform our
OpenACC version, or we could aim for ultimate performance by calling a GPU-enabled
version of DGEMM from the CUBLAS library.

Despite this, the results are promising in that the insertion of five simple compiler
directives (one for data movement, and one for each of the four loops) enabled the
compiler to generate GPU code achieving some tens of GFLOPs for all but the
smallest matrices. Other than the introduction of a single scalar variable, no source
changes were required. Comparing to similar naive Fortran compiled using the CPU
compiler (i.e. the ‘std’ kernel), performance improvements on the GPU vary between
factors of 6 and 12 across the various tests. All the OpenACC versions also produced
correct answers.

0	

5000	

10000	

15000	

20000	

25000	

30000	

std	
 m44	
 DGEMM	
 OpenACC	

M
FL
O
Ps
	

Code	
 version	

Case	
 1	

Case	
 2	

Case	
 3	

© CRESTA Consortium Partners 2011 Page 15 of 20

6 Auto	
 Tuning	

Lead by Prof. Mike O’Boyle, the compiler group from the School of Informatics at the
University of Edinburgh [9] performs leading research into compiler auto-tuning for both
serial and parallel programs. Under the NAIS project [9], EPCC collaborates with this
group to investigate these novel compilation techniques as applied to real scientific
applications. Nick Johnson at EPCC has recently started a project with Dominik Grewe
and Alberto Magni to look at OpenACC codes. This presents CRESTA with an
important opportunity to evaluate auto-tuning technologies for the co-design vehicles:
all that is required is a simple OpenACC version of the Nek5000 kernel.

Unfortunately, the existing kernel is written in Fortran. Although there is no reason in
principle why it could not be auto-tuned, the OpenACC auto-tuning framework is still in
the research phase and has only been verified on C codes. As a result we had to port
the Nek5000 kernel benchmark to C.

6.1 Nek5000	
 OpenACC	
 kernel	
 in	
 C	

The C code is shown below. It is a direct translation of the Fortran version except with
the order of the array indices reversed to preserve the same layout in memory. The
only other difference is that the array sizes are explicitly declared in the data copy
clauses. In the real version of the code this kernel is contained in a function and,
despite the arrays being declared statically with compile-time constant sizes, the
compiler complains that it does not know the extents of the A, B and C arrays in the
data directive unless they are explicitly restated. Presumably this is because the C
language does not support arrays very well, and they are perhaps converted to simple
pointers during the function call at which point the true array extents are forgotten. As
before, results are verified against an equivalent kernel executed on the host CPU.
/* Simple parallel OpenACC version of the Nek5000 kernel */

double a[NMAT][N2][N1], b[NMAT][N3][N2], c[NMAT][N3][N1];
double tmp;

#pragma acc data \
copyin (a[0:NMAT][0:N2][0:N1], b[0:NMAT][0:N3][0:N2]) \
copyout(c[0:NMAT][0:N3][0:N1])

#pragma acc kernels loop independent
for (imat=0; imat < NMAT; imat++)
{
 #pragma acc loop independent
 for (j = 0; j < N3; j++)
 {
 #pragma acc loop independent
 for (i = 0; i < N1; i++)
 {
 tmp = 0.0;

 #pragma acc loop
 for (k = 0; k < N2; k++)
 {
 tmp += a[imat][k][i] * b[imat][j][k];
 }

 c[imat][j][i] = tmp;
 }
 }
}

© CRESTA Consortium Partners 2011 Page 16 of 20

6.2 Default	
 performance	

Before the auto-tuning was attempted, it was important to verify that this code executed
correctly with default settings and performed similarly to the Fortran version. All the test
cases verified correctly against the host code. The performance of this new C version
was compared to the previous Fortran results – see Figure 11.

Figure 11: Comparison of OpenACC kernel for different languages

The agreement between the two codes, although not perfect, is very good. It is clear
that the two versions have roughly the same absolute performance and also exhibit the
same general trends across different matrix sizes and shapes. Except for cases 1 and
2 at N = 12, the C version is always slightly faster than Fortran. Perhaps it is because
the array dimensions in the C kernel are fixed at compile time as opposed to being
passed as runtime arguments in Fortran, but this is pure speculation.

6.3 Auto-­‐tuned	
 performance	

The auto-tuning framework compiles and executes a code many thousands of times. It
is therefore essential to make it as simple as possible to compile and execute, and to
minimise screen output. The C version of the OpenACC kernel driver was designed so
that it only ran a single test case, with the parameters selected at compile time by
passing different flags to ‘make’. This is important as we want to find optimal OpenACC
parameters for each kernel, so we must compile each combination of matrix size and
shape separately. Output was reduced to a single performance figure, and verification
indicated by a true or false return value from main. The benchmark was then handed
on as a black box to Mike O’Boyle’s group who ran it through their auto-tuning tools.

The auto-tuning was performed on the outermost three of the four loops. It was found
that the compiler was not parallelising the innermost loop so this was left untouched.
This is not an issue in practice as this loop involves a reduction operation over a very
small loop with a maximum trip count of 24 (this loop is always over N and never N2). It
would therefore be unlikely that parallelisation would have any overall benefit given that
there is ample scope for parallelism at the three outer loop levels.

The three parallel loops were auto-tuned over various choices of the ‘gang’ and ‘vector’
parameters (the highest and lowest levels of control respectively). Although there is an
additional ‘workers’ parameter that in principle controls parallelism between these two
levels, it is somewhat redundant on the NVIDIA architecture. For values of ‘vector’
larger than the warp size (which is 32), a loop is automatically split into multiple
‘workers’ so there is little benefit in varying this parameter explicitly.

The results are shown in Figure 12 (relative improvement) and Figure 13 (absolute
performance).

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

M
FL
O
Ps
	

Matrix	
 size	
 (cases	
 1,	
 2	
 and	
 3)	

Fortran	

C	

© CRESTA Consortium Partners 2011 Page 17 of 20

Figure 12: Speedup from Auto-tuning

Figure 13: Performance of Default and Auto-tuned Kernels

6.4 Summary	

The benefits of auto-tuning for this code are obvious, with the performance of every
kernel being improved to some extent. The amount of improvement varies significantly
across the different tests, between factors of 1.01 to 2.10. The similarities in default
performance between the original Fortran and new C kernel would suggest that the
optimised parameters from the C kernel could also be used in the Fortran version.
However, this has not yet been investigated.

As OpenACC is such a new technology the auto-tuning done here is quite basic,
looking only at the space of high-level loop scheduling options with the actual source
code remaining fixed. Many more GPU optimisations can be investigated for codes
written at a lower level using CUDA. For example, in [11] the full CHILL framework is
extended to include CUDA and the auto-tuned performance of matrix-matrix code
approaches that of the CUBLAS library. A similar study (although not performed using
CHILL) was carried out in [12] for 3D Fast Fourier Transforms, where the auto-tuned
code out-performed the vendor-supplied CUFFT library. However, because OpenACC
is much more portable and easier to use than CUDA, we believe that auto-tuning the
higher-level OpenACC parameters will become increasingly important in the future as
HPC applications developers move away from CUDA.

0	

0.5	

1	

1.5	

2	

2.5	

N	
 =	
 6	
 N	
 =	
 12	
 N	
 =	
 18	
 N	
 =	
 24	

Sp
ee
du

p	

	
 	

Size	

Case	
 1	

Case	
 2	

Case	
 3	

0	

10000	

20000	

30000	

40000	

50000	

60000	

M
FL
O
Ps
	

Matrix	
 size	
 (cases	
 1,	
 2	
 and	
 3)	

Default	

Auto-­‐tuned	

© CRESTA Consortium Partners 2011 Page 18 of 20

7 Conclusions	
 and	
 Further	
 Work	

This study deliberately took a very naïve approach using simple kernels to investigate
the accelerator capabilities of today’s compilers and to see how much performance
improvement could be gained from compiler auto-tuning. The results were overall very
positive, with significant speedups achieved on an NVIDA GPU compared to the single
CPU versions of the Nek5000 benchmarks. This only required the addition of a few
simple OpenACC directives (assuming OpenACC support in the compiler). These
speedups could be improved further by up to a factor of 2 by auto-tuning the loop
distribution parameters. However, the performance achieved was still well below the
peak of the GPU, and probably even inferior to a simple multicore CPU version.

As this is an initial study it is clearly incomplete at present, and there are many
possibilities for further work.

• Profiling of the OpenACC code to identify further optimisation opportunities.
• Comparison to performance of an OpenMP multicore version.
• Comparison to CUDA or library (e.g. CUBLAS) implementations.
• Evaluation of Fortran OpenACC performance using optimal C parameters.
• Development of a single kernel routine that calls the optimal OpenACC version

based on its input parameters.
• Integration back into Nek5000.

Perhaps the major success of this work has been that the initial results have been
sufficiently promising that we will be creating a CRESTA co-design team to further
investigate GPU acceleration of the entire Nek5000 parallel application.

© CRESTA Consortium Partners 2011 Page 19 of 20

8 Acknowledgements	

We would like to thank Mike O’Boyle for his assistance in this work, and Dominik
Grewe and Alberto Magni for undertaking the auto-tuning investigations. Thanks go to
Nick Johnson for acting as the interface between CRESTA and the auto-tuning group
and for his advice on OpenACC and the design of the C kernel.

© CRESTA Consortium Partners 2011 Page 20 of 20

9 References	

[1] State of the art and gap analysis, Project Deliverable D3.1.

[2] CRESTA benchmark suite, Project Deliverable D2.6.1.

[3] Nek5000 project web page http://nek5000.mcs.anl.gov/.

[4] J. Shin, et al., “Autotuning and Specialization: Speeding up Nek5000 with
Compiler Technology", presented at the International Conference on
Supercomputing, 2010.

[5] A. Tiwari et al., “A scalable autotuning framework for compiler optimization”,
Proceedings of the 24th International Parallel and Distributed Proecessing
Symposium (2009).

[6] HECToR user guide http://www.hector.ac.uk/support/documentation/userguide/,
accessed on June 6th 2012.

[7] The CUDA Toolkit http://www.nvidia.com/content/cuda/cuda-toolkit.html/.
[8] OpenACC Home Page http://openacc.org/.
[9] Institute for Computing Systems Architecture, School of Informatics, The

University of Edinburgh http://www.inf.ed.ac.uk/research/icsa/.

[10] NAIS: The Centre for Numerical Algorithms and Intelligent Software
http://www.nais.org.uk/.

[11] G. Rudy, et al., “A programming language interface to describe
transformations and code generation” in Proceedings of the 23rd international
conference on Languages and compilers for parallel computing (LCPC'10).

[12] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for CUDA
GPUs” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC '09).

