
 
Copyright © CRESTA Consortium Partners 2011 

 

D3.5.1	
  –Compiler	
  support	
  for	
  
exascale	
  

WP3:	
  Development	
  Environment	
  

Due date: M10 

Submission date: 31/07/2012 

Project start date: 01/10/2011 

Project duration: 36 months 

Deliverable lead 
organisation UEDIN 

Version: 1.0 

Status Final  

Author(s): David Henty (UEDIN) 

Reviewer(s) Michael Schliephake (KTH), David Lecomber (ASL) 

 

Dissemination level 

<PU/PP/RE/CO> PU - Public 

Project Acronym CRESTA 

Project Title Collaborative Research Into Exascale Systemware, Tools and 
Applications 

Project Number 287703 

Instrument Collaborative project 

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation 



 
Copyright © CRESTA Consortium Partners 2011 

 

	
  

Version	
  History	
  
Version Date Comments, Changes, Status Authors, contributors, 

reviewers 

0.1 26/06/12 First version of the deliverable David Henty (UEDIN) 

0.2 27/06/12 OpenACC added David Henty (UEDIN) 

0.3 28/06/12 Auto-tuning added David Henty (UEDIN) 

0.4 01/07/12 First draft for review David Henty (UEDIN) 

0.9 24/07/12 Updated re reviewers’ comments David Henty (UEDIN) 

1.0  Final version after proof reading  



 
Copyright © CRESTA Consortium Partners 2011 

 

Table	
  of	
  Contents	
  
1	
   EXECUTIVE	
  SUMMARY	
  .................................................................................................................	
  1	
  

2	
   INTRODUCTION	
  ...........................................................................................................................	
  2	
  

2.1	
   NEK5000	
  ......................................................................................................................................	
  2	
  
2.2	
   STRUCTURE	
  OF	
  THE	
  REPORT	
  ...............................................................................................................	
  2	
  
2.3	
   PURPOSE	
  ........................................................................................................................................	
  3	
  
2.4	
   GLOSSARY	
  OF	
  ACRONYMS	
  ..................................................................................................................	
  3	
  

3	
   STAND-­‐ALONE	
  KERNEL	
  BENCHMARK	
  ...........................................................................................	
  4	
  

3.1	
   VERIFICATION	
  ..................................................................................................................................	
  4	
  
3.2	
   MODE	
  OF	
  OPERATION	
  .......................................................................................................................	
  4	
  
3.3	
   KERNEL	
  VERSIONS	
  ............................................................................................................................	
  5	
  

4	
   CPU	
  PERFORMANCE	
  .....................................................................................................................	
  7	
  

4.1	
   EXPERIMENTS	
  ..................................................................................................................................	
  7	
  
4.2	
   RESULTS	
  .........................................................................................................................................	
  9	
  
4.3	
   SUMMARY	
  ....................................................................................................................................	
  10	
  

5	
   OPENACC	
  ACCELERATION	
  ..........................................................................................................	
  11	
  

5.1	
   PORTING	
  TO	
  THE	
  NVIDIA	
  TESLA	
  GPU	
  ...............................................................................................	
  11	
  
5.2	
   PERFORMANCE	
  ..............................................................................................................................	
  12	
  
5.3	
   SUMMARY	
  ....................................................................................................................................	
  14	
  

6	
   AUTO	
  TUNING	
  ...........................................................................................................................	
  15	
  

6.1	
   NEK5000	
  OPENACC	
  KERNEL	
  IN	
  C	
  ....................................................................................................	
  15	
  
6.2	
   DEFAULT	
  PERFORMANCE	
  .................................................................................................................	
  16	
  
6.3	
   AUTO-­‐TUNED	
  PERFORMANCE	
  ...........................................................................................................	
  16	
  
6.4	
   SUMMARY	
  ....................................................................................................................................	
  17	
  

7	
   CONCLUSIONS	
  AND	
  FURTHER	
  WORK	
  .........................................................................................	
  18	
  

8	
   ACKNOWLEDGEMENTS	
  ..............................................................................................................	
  19	
  

9	
   REFERENCES	
  ..............................................................................................................................	
  20	
  

Index	
  of	
  Figures	
  
Figure 1: Results for N=6 case 1 .................................................................................... 7	
  

Figure 2: Results for N=6 case 2 .................................................................................... 8	
  

Figure 3: Results for N=6 case 3 .................................................................................... 8	
  

Figure 4: Results for N=24 case 1 .................................................................................. 8	
  

Figure 5: Results for N=24 case 2 .................................................................................. 9	
  

Figure 6: Results for N=24 case 3 .................................................................................. 9	
  

Figure 7: Results for N = 6 with the PGI compiler ........................................................ 13	
  

Figure 8: Results for N =12 with the PGI compiler ....................................................... 13	
  

Figure 9: Results for N = 18 with the PGI compiler ...................................................... 13	
  

Figure 10: Results for N = 24 with the PGI compiler .................................................... 14	
  

Figure 11: Comparison of OpenACC kernel for different languages ............................ 16	
  

Figure 12: Speedup from Auto-tuning .......................................................................... 17	
  

Figure 13: Performance of Default and Auto-tuned Kernels ......................................... 17	
  



 

© CRESTA Consortium Partners 2011  Page 1 of 20 

 

1 Executive	
  Summary	
  
A survey of compiler technologies relevant to exascale was performed in a previous 
CRESTA deliverable [1]. Two particular issues that were identified were the growing 
requirement for compilers to support CPU accelerators, and the possible advantages of 
auto-tuning to produce better performing code on today’s increasingly complex and 
heterogeneous processors. Motivated by this, we study key kernels from one of the 
CRESTA co-design applications, Nek5000. We investigate to what extent user-level 
source modifications affect performance at different levels of optimisation across a 
range of compilers. We then study new GPU-enabled version of the kernels, written for 
this study using the new OpenACC standard for accelerator directives, to explore 
current compiler capabilities for heterogeneous architectures. Finally, we attempt to 
optimise the performance of OpenACC using auto-tuning technology developed at the 
University of Edinburgh. 
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2 Introduction	
  
Rather than performing a review of existing literature, we decided to undertake a 
practical investigation of compiler performance. The most important decision in any 
study of this type is what particular source code(s) should be used in any experiments. 
There is an extremely wide range of standard benchmark codes available, ranging from 
small serial kernels through to large parallel applications, which offers a somewhat 
bewildering amount of choice. Fortunately, however, one of the cornerstones of 
CRESTA is that six applications have been identified as the chosen co-design vehicles 
so this gives us a much more constrained set of codes to choose from. 

After a brief survey of the contents of the CRESTA benchmark suite [2], Nek5000 [3] 
was chosen because it already includes a self-contained kernel benchmark that 
measures the performance of a variety of matrix-matrix operations that are a core part 
of the algorithm. These are already implemented via multiple subroutines that perform 
the same calculation using different pieces of code. The kernels have also already 
been used in an extensive auto-tuning study [4] (using the CHILL framework [5] 
previously described in [1]) that leaves us free to concentrate these auto-tuning studies 
on our new GPU-accelerated kernel. 

2.1 Nek5000	
  
Nek5000 is a Fortran code that performs engineering simulations using spectral 
elements. The core computational kernel involves a large number of matrix-matrix 
operations that could be implemented by a call to the standard DGEMM function from 
level 3 of the BLAS library. DGEMM is a standard HPC test case and it might therefore 
appear that there is little new to be learned here. However, the particular calculation 
required in Nek5000 has a number of distinguishing features: 

1. It requires multiplications between a large number of independent small 
matrices as opposed to a small number of multiplications of large matrices. This 
means that memory bandwidth is stressed as well as floating-point 
performance, which is not true of a typical large DGEMM test case. 

2. The benchmark investigates a wide range of matrix sizes (though all are small). 
3. The matrices are not always square: for a given value of N the benchmark has 

three cases with matrices of size N x N, N2 x N and N x N2. The values of N 
range between 1 and 24. 

2.2 Structure	
  of	
  the	
  report	
  
In section 3 we describe the construction and verification of a small stand-alone 
benchmark as extracted from the main Nek5000 code, and describe the various matrix-
matrix implementations already present in the code. In section 4 we study how the 
performance of the kernels varies across a range of compilers and optimisation levels 
on HECToR, the UK national supercomputer. We then port the benchmark to a 
platform which contains NVIDIA GPU accelerators, and develop a simple OpenACC 
version of the kernel which is investigated in section 5. In section 6 we describe how 
this was ported to C to enable it to fit into the chosen auto-tuning framework, and 
present results from that investigation. Section 7 presents some conclusions and 
describes possible further work. 

In many cases we are able to compare the performance achieved from the user code 
to that obtained from the highly-optimised DGEMM library. This library typically 
provides an upper bound on the achievable performance and is therefore a useful 
reference value. The reason we are looking at the performance of the Nek5000 matrix-
matrix kernels is not to try and out-perform DGEMM: rather, we are using them as 
examples of the types of kernels that scientists might want to use in a real code. Of 
course, for production runs of Nek5000 itself then using an optimised library would 
probably be the preferred option. 

 



 

© CRESTA Consortium Partners 2011  Page 3 of 20 

 

2.3 Purpose	
  
The purposes of this deliverable are: 

• To investigate the performance variation of the Nek5000 kernels occurring from 
differences in source code, compiler and optimisation level; 

• To implement an accelerated OpenACC kernel and investigate its performance 
on an NVIDIA GPU; 

• To attempt to optimise the accelerated kernel using an auto-tuning framework. 
 

2.4 Glossary	
  of	
  Acronyms	
  
cronym Definition 
BLAS 
CPU 
CUDA 
D 

Basic Linear Algebra Subprograms 
Central Processing Unit 
Compute Unified Device Architecture 
Deliverable 

EC 
FLOP 
GPU 
HECToR 
HPC 
MFLOPs 
NAIS 
OpenACC 
OpenMP 
PGI 

European Commission 
Floating-point Operations per Second 
Graphics Processing Unit 
High End Computing Terascale Resource 
High Performance Computing 
Million Floating-point Operations per Second 
Numerical Analysis and Intelligent Software 
Open Accelerator Directives 
Open Multiprocessing Directives  
The Portland Group, Inc. 

PM  
RMS 

Project Manager 
Root Mean Square  

WP Work Package 
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3 Stand-­‐alone	
  kernel	
  benchmark	
  
With the Nek5000 distribution, a standard program is provided that executes some low-
level benchmarks without requiring any input files. As supplied it runs both computation 
(matrix-matrix) and communication (ping-pong, reduction etc.) kernels. Although it 
would have been possible simply to comment out the communication benchmarks, this 
has two major disadvantages: 

1. The benchmark would still have contained thousands of lines of unused code; 
2. It would not have been easy to port because, as supplied, the unused code 

does not compile on some compilers (e.g. the Cray compiler). 

The minimal amount of code was therefore extracted to enable the calculation 
benchmarks to be run. This only required us to retain two source files (mxm_wrapper.f 
and mxm_std.f) and three include files (OCPTR, SIZE and TOTAL). The Fortran source 
files were left untouched, and all new code (e.g. the driver program) was contained in a 
single file nekbench.f. Of the include files, only TOTAL had to be altered. In our 
benchmark it is simply a dummy file containing only comments. It is provided so that 
we do not have to alter any other files that explicitly include it. 

3.1 Verification	
  
A new version of the existing driver routine ‘mxmtest’ in mxm_std.f was written to 
provide more control. In addition, since new kernels were to be added as part of this 
study, a verification routine was introduced to ensure correctness. A reference solution 
is computed using the simplest version of the kernels (this is called ‘std’ and is 
completely straightforward naïve Fortran). All subsequent results are compared to this 
reference by computing the RMS difference, and if this exceeds a certain tolerance (set 
to 1.0e-12), then an error is reported. All calculations are done in double precision, 
although this is actually achieved by promoting reals to doubles using compiler flags. 

This verification actually discovered an error in one of the routines. This had already 
been identified when the source code was read by the author while trying to 
understand how each kernel routine operated (there is a simple typo in the ‘mxm44’ 
implementation where the wrong specialised subroutine is called for N=1). It was 
encouraging that the verification test reported this as an error at runtime, and also that 
no errors were reported in any of the other routines. 

3.2 Mode	
  of	
  operation	
  
The driver routine originally had the following structure: 

• Initialise data to random values 
• Loop over the three test cases 

o Loop over values of N from 1 to 24 
§ Loop over the ten different matrx-matrix kernel implementations 

• Start the timer 
• Perform many repetitions of the kernel, attempting 

constant runtime by choosing the repetition count based 
on the value of N and the number of matrices M being 
considered (as distributed M = 4*8*8*8*130 = 266240). 

• Stop the timer and report a MFLOP value 

For a given value of N, the three test cases of A x B = C are: 

1. N2 x N matrix times N x N  matrix equals N2 x N  matrix (“tall times square”) 
2. N  x N matrix times N x N  matrix equals N   x N  matrix (“square times square”) 
3. N  x N matrix times N x N2 matrix equals N   x N2 matrix (“square times long”) 

It is important to remember that each test is actually repeated over many different 
matrices, i.e. the actual calculation is Ai x Bi = Ci for i = 1, 2, 3, .... If the number of 
repetitions exceeds M then i is reset to 1 and the process continues from the start. 
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In the original code the memory management was quite complicated with the arrays of 
matrices being declared as one-dimensional arrays in the main code, and the loop over 
i done manually by indexing into the appropriate section of these linear arrays when 
calling the kernel subroutine. This means that the loop over matrices is performed in 
the driver code and cannot easily be performed in the kernel routine. This would be a 
major problem for any accelerated kernel where this loop is an obvious candidate for 
parallelisation (especially for small values of N). This scheme was simplified, and 
although it had an effect on the memory access pattern no significant performance 
difference was observed. Indeed, the original memory access pattern did not appear to 
be very representative as all matrix arrays were accessed in strides of N3 even when 
they were actually of size N2. In the new code, all arrays are accessed contiguously. 

The original version had one exceptional case where a matrix addition was performed 
as opposed to a multiplication. This was removed as it substantially complicated the 
logic of the code and did not provide any useful additional information for this particular 
study. To reduce the total amount of output, the exhaustive loop over N was replaced 
by only four values: 6, 12, 18 and 24. 

Finally, the original driver contained both “fast” and “memory” versions of the 
benchmarks. The “memory” version is as described above, looping over the M matrices 
in each array. The “fast” version is designed to operate inside the cache and does 
many repetitions of A x B = C for the same matrices A, B and C (i.e. the value of i is 
fixed to 1). Although the “fast” form was retained in our standalone benchmark for 
completeness, it is not of so much interest as the “memory” form so we do not report 
results here. 

The resulting code ‘nekbench.f’ compiles quickly and easily on all platforms, the only 
technical issues being finding appropriate compiler flags to manually enable C-style 
source preprocessing (since we retain the Nek5000 convention of using a “.f” suffix for 
source files as opposed to “.F”) and to promote default reals to double precision. 

3.3 Kernel	
  versions	
  
All the kernels are implementing an extremely simple computation which, in naïve 
Fortran, would read: 
 
      double precision a(n1, n2), b(n2, n3), c(n1, n3)       
 
      do j = 1, n3 
        do i = 1, n1 
 
          c(i,j) = 0.0 
 
          do k = 1, n 
            c(i,j) = c(i,j) + a(i,k)*b(k,j) 
          end do 
 
        end do 
      end do 
 
There are at least 10 different implementations of this kernel in the code, exploring the 
following types of optimisations: 

• specific hard-coded versions for different values of n1, n2 and n3 so that these 
are constants at compile time; 

• different loop orderings; 
• loops unrolled by various amounts; 
• matrix values stored explicitly in numerous temporary scalars; 
• hand tiling into blocks for better cache reuse; 
• calling the DGEMM library. 
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In order to have a manageable volume of data, we only report results for three 
versions: 

• ‘std’ which is essentially the code as presented above (although written in an 
older F77 style) 

• ‘m44’ which tiles the matrices to improve cache re-use use with tiles of size 4x4; 
• ‘mxmd’ which used the DGEMM library function. 

Although ‘m44’ did not turn out always to be the best performing kernel (particularly for 
small values of N), it is very representative of the types of optimisations which are often 
done by hand and, and more importantly it was the routine previously auto-tuned in [4]. 
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4 CPU	
  performance	
  
Although it was commonplace over a decade ago to optimise code performance using 
manual recoding (e.g. loop unrolling or tiling), modern compilers are very sophisticated 
and can in principle apply many of these techniques automatically. As a result, it is 
interesting to investigate the performance of the Nek5000 kernels across multiple 
compilers at various optimisation levels. This was done on HECToR the UK national 
supercomputer, because it supports three compilers: GNU, PGI and Cray. 

It should be noted that other compilers may produce superior performance to the 
results presented here. For example, the Intel compiler is specifically targeted at the 
x86 architectures used in all our CPU studies. In practice our choice was limited by the 
availability of compilers on each architecture, e.g. the Intel compiler is not supported on 
HECToR. However, this is not a major issue for these studies where we are more 
interested in the general performance variability observed across several different 
compilers than the maximum performance achievable across all compilers. 

4.1 Experiments	
  
We ran the stand-alone benchmark on a single core of HECToR. The nodes of 
HECToR contain 2 x 12-core 2.3 GHz AMD Interlagos processors. We deliberately 
took a somewhat naïve approach, compiling the code using either default levels of 
optimisation (i.e. no optimisation flags passed to the compiler) or a high level of 
optimisation (as recommended in the HECToR User Guide [6]). The only option we did 
not investigate was inter-procedural optimisation such as inlining since support for this 
varied so widely across compilers. 

The results are show in Figure 1 – Figure 6 where, separately for each optimisation 
level, we show the six performance results obtained for the two kernels ‘std’ and ‘m44’ 
on each of the three compilers. We show results for all three cases for the smallest and 
largest matrix sizes N=6 and N=24 (note the difference in vertical scale between the 
two sizes). For comparison we also show the DGEMM performance which, as 
expected, was unaffected by choice of compiler or options since it is an external library. 

 

 
Figure 1: Results for N=6 case 1 
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Figure 2: Results for N=6 case 2 

 
Figure 3: Results for N=6 case 3 

 
Figure 4: Results for N=24 case 1 
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Figure 5: Results for N=24 case 2 

 
Figure 6: Results for N=24 case 3 
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N	
  =	
  24	
  
The results for the larger matrices are much more consistent than for the smaller ones. 
Here, DGEMM is always the fastest overall and m44 always outperforms std for a 
given compiler and optimisation level. For case 1, PGI m44 is the fastest whereas it is 
Cray m44 for cases 2 and 3. However, there is a lot less variation across all the highly 
optimised results than for the smaller N = 6 case. 

4.3 Summary	
  
We see significant variations in performance across different combinations of compiler, 
optimisation level, matrix size and case. In some situations hand optimisation is 
beneficial, whereas in others it actually gives worse performance than naïve code. No 
single kernel or library routine performs the best across all the different matrices, 
indicating that some sort of auto-tuning might be beneficial in selecting the best choice 
of code for each specific problem. This is backed up by the results of [4] where auto-
tuning is found to increase the performance of m44 by more than a factor of two (albeit 
on a different platform).  
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5 OpenACC	
  Acceleration	
  
Accelerators are seen by many people as the only way to increase CPU performance 
to the levels required for exascale. The current most popular accelerator technology is 
the GPU, developed for and funded by the massive worldwide computer games 
industry. The market leader at present is NVIDIA with their current generation Tesla 
GPUs installed in a number of petascale HPC systems. Motivated by this we choose to 
investigate the performance of the Nek5000 kernels on the Tesla architecture. 

One of the major drawbacks of programming NVIDIA GPUs has been that the 
programming model, CUDA [7], is not a recognised standard and is completely 
proprietary to NVIDIA. Although there has been a large volume of research into porting 
HPC kernels to GPUs, the HPC community is nervous about investing substantial 
software development effort in converting applications to use a programming language 
that is not portable between different architectures. There is an ongoing effort to 
include accelerators in the existing OpenMP standard for shared-memory directives, 
but this is likely to be a long process as it requires significant updates to the standard. 
To address this, a number of HPC hardware and software vendors got together to 
produce an interim standard for accelerator directives, OpenACC [8], based on their 
own experiences and guided by the direction of the OpenMP efforts. 

5.1 Porting	
  to	
  the	
  NVIDIA	
  Tesla	
  GPU	
  
The HECToR system used previously was useful for CPU studies as it supported three 
different compilers. Unfortunately, HECToR does not have GPU accelerators so we 
had to port the benchmark to a different system. We chose a small internal EPCC 
development system, Hydra, since it is easily accessible and supports OpenACC via 
the PGI compiler. Hydra comprises a 24-core shared-memory frontend (4 x 6-core 
Xeon X5650 2.67 GHz CPUs) with an NVIDIA Tesla C2050 GPU accelerator. All 
studies were performed with PGI version 12.3 (the version is significant as OpenACC is 
still a relatively new standard and compiler capabilities are constantly improving). 

The basic idea of OpenACC is that the applications developer does not have to be 
concerned with the details of the underlying hardware. At the most basic level the 
programmer has to manage data transfer between host and GPU (analogous to 
declaring data as shared or private in OpenMP), and indicate which loops should be 
parallelised. Fine control can in principle be exercised over the distribution of loops to 
threads; OpenACC has three levels of control over gangs, workers and vectors. These 
correspond roughly to the CUDA concepts of thread blocks, thread warps and 
individual threads. Although the way in which loop iterations are split among each of 
these levels must be specified explicitly in CUDA, in OpenACC the programmer can 
choose to let the compiler make the decision. Here we deliberately take a very naïve 
approach and give complete freedom to the compiler. We will investigate how good the 
compiler’s default choices are in the next section were we will use auto-tuning 
technology to search for optimal settings of these parameters. 

One of the main restrictions in OpenACC is that you cannot call functions or 
subroutines from within an accelerated region. In order to give the compiler as much 
freedom as possible to parallelise over all loops, we created a new accelerated kernel 
which itself performs the entire loop over the M matrices (previously we made M 
separate calls to each kernel). This is essential in exploiting the power of the GPU 
because, for example, multiplying two 6x6 matrices does not require enough 
operations to occupy the many hundreds of GPU threads. 

The code is shown below. Note that this is not exactly the code as contained in the 
benchmark. The real kernel is slightly more complicated in that it performs an additional 
loop outside the loop over the M matrices (i.e. outside the ‘imat’ loop) to ensure that the 
correct number of repetitions is performed so the elapsed time is kept under control. 
However, this is inside the data transfer region (the ‘acc data’ directive) so does not 
affect the logic of the loop and is omitted here for simplicity. 
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!  Simple parallel OpenACC version of the Nek5000 kernel 
 
      double precision a(n1, n2, m), b(n2, n3, m), c(n1, n3, m) 
      double precision tmp 
 
!$acc data copyin(a,b) copyout(c) 
 
!$acc kernels loop independent 
        do imat = 1, m 
!$acc loop independent 
           do j = 1, n3 
!$acc loop independent 
              do i = 1, n1 
 
                 tmp = 0.0 
!$acc loop 
                 do k = 1, n2 
                    tmp = tmp + a(i,k,imat)*b(k,j,imat) 
                 end do 
 
                 c(i, j, imat) = tmp 
 
              end do 
           end do 
        end do 
!$acc end kernels         
      end do 
 
!$acc end data 

The outermost ‘data’ region ensures that the input matrices A and B are copied to the 
GPU, and that the result C is copied back to the host. The outermost loop over ‘imat’ is 
marked as being the place to start parallelisation using the ‘kernels’ directive. All of the 
four loops are marked as parallelisable. The compiler is given additional information 
that the computation of every element of C is independent using the ‘independent’ 
clause on the first three loops. Parallelisation of the innermost loop requires a reduction 
operation. Although this can in principle be indicated using a ‘reduction’ clause, 
reductions over array elements is not possible with the 12.3 version of the PGI compiler 
used here. Following the advice produced by the compiler itself, an explicit temporary 
reduction scalar ‘tmp’ is introduced which solves the problem. 

5.2 Performance	
  
The performance of the three CPU kernel versions considered previously (‘std’, ‘m44’ 
and ‘DGEMM’) was compared to OpenACC across the same four values of N. The 
results are presented in Figure 7 - Figure 10 showing all three cases for each kernel 
version. Only the PGI compiler was considered as we required OpenACC support. 

The first observation is that the DGEMM performance is typically not any better than 
the compiled source. This simply indicates that the default BLAS library on Hydra is not 
very well optimised. Although we could have installed a better version this was not 
done as we are more concerned here with compiler performance. 

The performance of the simple OpenACC kernel is quite impressive. For the smallest 
value of N it depends quite strongly on the shapes of the matrices: 18 GFLOPs for 
case 1 compared to 8 GFLOPs for cases 2 and 3. As N increases, the performance of 
cases 2 and 3 increase more rapidly than case 1. At N = 12, the figures are 27, 19 and 
22 GFLOPs respectively. For larger values of N we see case 3 becoming the fastest, 
and cases 1 and 2 having similar (but poorer) performance to each other. For N = 18 
we see 19 GFLOPs for cases 1 and 2, and 23 GFLOPs for case 3. Performance 
increases again for N = 24 where these figures are now 25 and 30 GFLOPs. 
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Figure 7: Results for N = 6 with the PGI compiler 

 
Figure 8: Results for N =12 with the PGI compiler 

 
Figure 9: Results for N = 18 with the PGI compiler 

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

30000	
  

std	
   m44	
   DGEMM	
   OpenACC	
  

M
FL
O
Ps
	
  

Code	
  version	
  

Case	
  1	
  

Case	
  2	
  

Case	
  3	
  

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

30000	
  

std	
   m44	
   DGEMM	
   OpenACC	
  

M
FL
O
Ps
	
  

Code	
  version	
  

Case	
  1	
  

Case	
  2	
  

Case	
  3	
  

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

30000	
  

std	
   m44	
   DGEMM	
   OpenACC	
  

M
FL
O
Ps
	
  

Code	
  version	
  

Case	
  1	
  

Case	
  2	
  

Case	
  3	
  



 

© CRESTA Consortium Partners 2011  Page 14 of 20 

 

 
Figure 10: Results for N = 24 with the PGI compiler 

 

5.3 Summary	
  
Overall we see performance improvements for the OpenACC version of between 5 and 
9 when compared to ‘m44’ on the CPU. Although this may seem impressive for such a 
simple parallelisation, it is important to note that we are comparing to the performance 
of a single Xeon core. Even a very simple OpenMP parallelisation of the CPU 
calculation (e.g. across the outermost loop over the M matrices) would easily exploit all 
24 Xeon cores and we would expect that this would outperform the OpenACC version. 
Similarly, a hand-coded CUDA version for the GPU would probably outperform our 
OpenACC version, or we could aim for ultimate performance by calling a GPU-enabled 
version of DGEMM from the CUBLAS library. 

Despite this, the results are promising in that the insertion of five simple compiler 
directives (one for data movement, and one for each of the four loops) enabled the 
compiler to generate GPU code achieving some tens of GFLOPs for all but the 
smallest matrices. Other than the introduction of a single scalar variable, no source 
changes were required. Comparing to similar naive Fortran compiled using the CPU 
compiler (i.e. the ‘std’ kernel), performance improvements on the GPU vary between 
factors of 6 and 12 across the various tests. All the OpenACC versions also produced 
correct answers. 
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6 Auto	
  Tuning	
  
Lead by Prof. Mike O’Boyle, the compiler group from the School of Informatics at the 
University of Edinburgh [9] performs leading research into compiler auto-tuning for both 
serial and parallel programs. Under the NAIS project [9], EPCC collaborates with this 
group to investigate these novel compilation techniques as applied to real scientific 
applications. Nick Johnson at EPCC has recently started a project with Dominik Grewe 
and Alberto Magni to look at OpenACC codes. This presents CRESTA with an 
important opportunity to evaluate auto-tuning technologies for the co-design vehicles: 
all that is required is a simple OpenACC version of the Nek5000 kernel. 

Unfortunately, the existing kernel is written in Fortran. Although there is no reason in 
principle why it could not be auto-tuned, the OpenACC auto-tuning framework is still in 
the research phase and has only been verified on C codes. As a result we had to port 
the Nek5000 kernel benchmark to C. 

6.1 Nek5000	
  OpenACC	
  kernel	
  in	
  C	
  
The C code is shown below. It is a direct translation of the Fortran version except with 
the order of the array indices reversed to preserve the same layout in memory. The 
only other difference is that the array sizes are explicitly declared in the data copy 
clauses. In the real version of the code this kernel is contained in a function and, 
despite the arrays being declared statically with compile-time constant sizes, the 
compiler complains that it does not know the extents of the A, B and C arrays in the 
data directive unless they are explicitly restated. Presumably this is because the C 
language does not support arrays very well, and they are perhaps converted to simple 
pointers during the function call at which point the true array extents are forgotten. As 
before, results are verified against an equivalent kernel executed on the host CPU. 
/* Simple parallel OpenACC version of the Nek5000 kernel */ 
 
double a[NMAT][N2][N1], b[NMAT][N3][N2], c[NMAT][N3][N1]; 
double tmp; 
 
#pragma acc data \ 
copyin (a[0:NMAT][0:N2][0:N1], b[0:NMAT][0:N3][0:N2]) \ 
copyout(c[0:NMAT][0:N3][0:N1]) 
 
#pragma acc kernels loop independent 
for (imat=0; imat < NMAT; imat++) 
{ 
  #pragma acc loop independent 
  for (j = 0; j < N3; j++) 
  { 
    #pragma acc loop independent 
    for (i = 0; i < N1; i++) 
    { 
      tmp = 0.0; 
 
      #pragma acc loop 
      for (k = 0; k < N2; k++) 
      { 
        tmp += a[imat][k][i] * b[imat][j][k]; 
      } 
 
      c[imat][j][i] = tmp; 
    } 
  } 
} 
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6.2 Default	
  performance	
  
Before the auto-tuning was attempted, it was important to verify that this code executed 
correctly with default settings and performed similarly to the Fortran version. All the test 
cases verified correctly against the host code. The performance of this new C version 
was compared to the previous Fortran results – see Figure 11. 

 
Figure 11: Comparison of OpenACC kernel for different languages 

The agreement between the two codes, although not perfect, is very good. It is clear 
that the two versions have roughly the same absolute performance and also exhibit the 
same general trends across different matrix sizes and shapes. Except for cases 1 and 
2 at N = 12, the C version is always slightly faster than Fortran. Perhaps it is because 
the array dimensions in the C kernel are fixed at compile time as opposed to being 
passed as runtime arguments in Fortran, but this is pure speculation. 

6.3 Auto-­‐tuned	
  performance	
  
The auto-tuning framework compiles and executes a code many thousands of times. It 
is therefore essential to make it as simple as possible to compile and execute, and to 
minimise screen output. The C version of the OpenACC kernel driver was designed so 
that it only ran a single test case, with the parameters selected at compile time by 
passing different flags to ‘make’. This is important as we want to find optimal OpenACC 
parameters for each kernel, so we must compile each combination of matrix size and 
shape separately. Output was reduced to a single performance figure, and verification 
indicated by a true or false return value from main. The benchmark was then handed 
on as a black box to Mike O’Boyle’s group who ran it through their auto-tuning tools. 

The auto-tuning was performed on the outermost three of the four loops. It was found 
that the compiler was not parallelising the innermost loop so this was left untouched. 
This is not an issue in practice as this loop involves a reduction operation over a very 
small loop with a maximum trip count of 24 (this loop is always over N and never N2). It 
would therefore be unlikely that parallelisation would have any overall benefit given that 
there is ample scope for parallelism at the three outer loop levels. 

The three parallel loops were auto-tuned over various choices of the ‘gang’ and ‘vector’ 
parameters (the highest and lowest levels of control respectively). Although there is an 
additional ‘workers’ parameter that in principle controls parallelism between these two 
levels, it is somewhat redundant on the NVIDIA architecture. For values of ‘vector’ 
larger than the warp size (which is 32), a loop is automatically split into multiple 
‘workers’ so there is little benefit in varying this parameter explicitly. 

The results are shown in Figure 12 (relative improvement) and Figure 13 (absolute 
performance). 
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Figure 12: Speedup from Auto-tuning 

 
Figure 13: Performance of Default and Auto-tuned Kernels 

6.4 Summary	
  
The benefits of auto-tuning for this code are obvious, with the performance of every 
kernel being improved to some extent. The amount of improvement varies significantly 
across the different tests, between factors of 1.01 to 2.10. The similarities in default 
performance between the original Fortran and new C kernel would suggest that the 
optimised parameters from the C kernel could also be used in the Fortran version. 
However, this has not yet been investigated. 

As OpenACC is such a new technology the auto-tuning done here is quite basic, 
looking only at the space of high-level loop scheduling options with the actual source 
code remaining fixed. Many more GPU optimisations can be investigated for codes 
written at a lower level using CUDA. For example, in [11] the full CHILL framework is 
extended to include CUDA and the auto-tuned performance of matrix-matrix code 
approaches that of the CUBLAS library. A similar study (although not performed using 
CHILL) was carried out in [12] for 3D Fast Fourier Transforms, where the auto-tuned 
code out-performed the vendor-supplied CUFFT library. However, because OpenACC 
is much more portable and easier to use than CUDA, we believe that auto-tuning the 
higher-level OpenACC parameters will become increasingly important in the future as 
HPC applications developers move away from CUDA. 
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7 Conclusions	
  and	
  Further	
  Work	
  
This study deliberately took a very naïve approach using simple kernels to investigate 
the accelerator capabilities of today’s compilers and to see how much performance 
improvement could be gained from compiler auto-tuning. The results were overall very 
positive, with significant speedups achieved on an NVIDA GPU compared to the single 
CPU versions of the Nek5000 benchmarks. This only required the addition of a few 
simple OpenACC directives (assuming OpenACC support in the compiler). These 
speedups could be improved further by up to a factor of 2 by auto-tuning the loop 
distribution parameters. However, the performance achieved was still well below the 
peak of the GPU, and probably even inferior to a simple multicore CPU version. 

As this is an initial study it is clearly incomplete at present, and there are many 
possibilities for further work. 

• Profiling of the OpenACC code to identify further optimisation opportunities. 
• Comparison to performance of an OpenMP multicore version. 
• Comparison to CUDA or library (e.g. CUBLAS) implementations. 
• Evaluation of Fortran OpenACC performance using optimal C parameters. 
• Development of a single kernel routine that calls the optimal OpenACC version 

based on its input parameters. 
• Integration back into Nek5000. 

Perhaps the major success of this work has been that the initial results have been 
sufficiently promising that we will be creating a CRESTA co-design team to further 
investigate GPU acceleration of the entire Nek5000 parallel application. 
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