

Copyright © CRESTA Consortium Partners 2011

D3.5.2	 –Compiler	 support	 for	
exascale	

WP3:	 Development	 Environment	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation UEDIN

Version: 1.0

Status Final version

Author(s):
David Henty, Luis Cebamanos (UEDIN)

Jing Gong, Stefano Markidis (KTH)

Alistair Hart (CRAY)

Reviewer(s) Alan Gray (UEDIN), Christoph Niethammer (USTUTT)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 31/08/2013 Partial draft of the deliverable
containing CPU results

David Henty, Luis
Cebamanos (UEDIN);
Jing Gong, Stefano
Markidis (KTH); Alistair
Hart (CRAY)

0.2 02/09/2013 Now contains all GPU results as well. David Henty, Luis
Cebamanos (UEDIN);
Jing Gong, Stefano
Markidis (KTH); Alistair
Hart (CRAY)

0.3 03/09/2013 First complete draft for internal review David Henty, Luis
Cebamanos (UEDIN);
Jing Gong, Stefano
Markidis (KTH); Alistair
Hart (CRAY)

1.0 24/09/2013 Final version after internal review;
includes updated GPU results.

David Henty, Luis
Cebamanos (UEDIN);
Jing Gong, Stefano
Markidis (KTH); Alistair
Hart (CRAY)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 STRUCTURE	 OF	 THE	 REPORT	 ...	 2	
2.2	 HARDWARE	 AND	 SOFTWARE	 ..	 2	
2.3	 PURPOSE	 ...	 2	
2.4	 GLOSSARY	 OF	 ACRONYMS	 ...	 2	

3	 CPU	 PERFORMANCE	 ..	 3	
3.1	 EXISTING	 BENCHMARK	 ..	 3	
3.2	 RELATIONSHIP	 WITH	 NEKBONE	 KERNELS	 ...	 3	
3.3	 IMPLICATIONS	 FOR	 OPENACC	 KERNELS	 ...	 4	
3.4	 CPU	 KERNEL	 AUTO-‐TUNING	 ..	 6	

4	 CPU	 PERFORMANCE	 OF	 NEKBONE	 ...	 8	
4.1	 EXTENSIONS	 TO	 NEKBONE	 CODE	 ...	 8	
4.2	 PERFORMANCE	 STUDIES	 ..	 8	
4.3	 DEFAULT	 PERFORMANCE	 ...	 9	
4.4	 AUTO-‐TUNED	 RESULTS	 ...	 11	
4.5	 FASTEST	 VERSION	 OVERALL	 ..	 13	
4.6	 CONCLUSIONS	 ..	 14	

5	 OPENACC	 KERNELS	 ..	 15	
5.1	 REPRODUCING	 PREVIOUS	 STUDY	 ...	 15	
5.2	 AUTO-‐TUNING	 CODE	 AND	 SCRIPT	 ..	 15	
5.3	 PERFORMANCE	 RESULTS	 ...	 15	
5.4	 TUNING	 BASED	 ON	 THE	 NUMBER	 OF	 ELEMENTS	 ..	 17	

6	 PERFORMANCE	 OF	 NEKBONE	 ..	 19	
6.1	 DEVELOPING	 A	 TUNABLE	 OPENACC	 VERSION	 OF	 NEKBONE	 ...	 19	
6.2	 INITIAL	 PERFORMANCE	 RESULTS	 ..	 19	
6.3	 SUMMARY	 ...	 21	

7	 CONCLUSIONS	 AND	 FURTHER	 WORK	 ...	 22	
8	 APPENDIX	 ..	 23	

8.1	 AUTO-‐TUNING	 SCRIPT	 ..	 23	
8.2	 REPRESENTATIVE	 AUTO-‐TUNING	 KERNEL	 ..	 24	

9	 REFERENCES	 ..	 25	

	

 	

Copyright © CRESTA Consortium Partners 2011

Index	 of	 Figures	
Figure 1: Auto-tuned mxv/vxm kernel performance (case 1) from single core execution6	
Figure 2: Auto-tuned mxv/vxm kernel performance (case 1) from 32-core execution 7	
Figure 3: Default performance of scalar version of Nekbone ... 9	
Figure 4: Default performance of jammed version of Nekbone 10	
Figure 5: Default performance of vector version of Nekbone 10	
Figure 6: Percentage improvement of default scalar version vs jammed 11	
Figure 7: Percentage improvement of default vector version vs jammed 11	
Figure 8: Auto-tuned performance of scalar version of Nekbone 12	
Figure 9: Auto-tuned performance of vector version of Nekbone 12	
Figure 10: Percentage improvement of auto-tuned vector version vs default 13	
Figure 11: Percentage improvement of auto-tuned scalar version vs jammed 13	
Figure 12: Percentage improvement of auto-tuned vector version vs jammed 14	
Figure 13: Performance of kernels with array dimensions as subroutine arguments ... 16	
Figure 14: Performance of kernels with array dimensions as compile-time constants . 16	
Figure 15: Default performance of case 1 vs number of elements 17	
Figure 16: Default performance of case 2 vs number of elements 17	
Figure 17: Auto-tuned performance of case 1 vs number of elements 18	
Figure 18: Auto-tuned performance of case 2 vs number of elements 18	
Figure 19: Performance of hand-tuned OpenACC jammed Nekbone (data from [2]) . 20	
Figure 20: Performance of OpenACC vector Nekbone with default settings 20	
Figure 21: Performance of OpenACC vector Nekbone with hand-tuned settings 20	

© CRESTA Consortium Partners 2011 Page 1 of 25

1 Executive	 summary	
A study of the performance of the computational kernels relevant to the Nek5000
CRESTA co-design application was completed last year [1]. This included a brief study
of CPU performance and a more in-depth study of performance on a single GPU. The
GPU study used the PGI compiler suite and OpenACC accelerator directives, coupled
with auto-tuning compiler technology from the University of Edinburgh School of
Informatics. A standalone benchmark version of the full Nek5000 application, called
Nekbone, was subsequently ported to large-scale Cray GPU parallel systems using the
Cray OpenACC compiler and then optimised by hand [2]. The design of a CRESTA
auto-tuning framework was also developed, and a prototype implementation produced
[3]. In this study we draw these three strands together and use the CRESTA auto-tuner
on the Nekbone kernels to attempt to produce an optimised accelerated version for
Cray hardware whose performance can be compared with the hand-optimised
accelerator code. We also perform an in-depth investigation of a similar approach
applied to the CPU version of Nekbone to enable comparisons of the auto-tuning
procedures and performances achieved between CPU and GPU. Although auto-tuning
is found to be extremely beneficial for all the kernels and for the full Nekbone code on
the CPU, there is still substantial room for improvement in the performance of the auto-
tuned accelerator code. It appears that the kernel routines behave very differently when
run within the Nekbone application compared to being run in isolation. Initial results
indicate that good performance could be obtained if the kernels were auto-tuned from
within Nekbone, but this work is still in its early stages. Although hand-tuned versions
of Nekbone currently perform much better than using default OpenACC settings , their
performance still does not substantially exceed that of the best CPU code. Our future
auto-tuning work will be aimed at further increasing the GPU performance.

© CRESTA Consortium Partners 2011 Page 2 of 25

2 Introduction	
This report is an update to D3.5.1 Compiler Support for Exascale, extending the work
done there and also widening its scope to include results from other CRESTA
workpackages. It should be read in conjunction with the previous work in D3.5.1; we do
not reproduce any background material here.

2.1 Structure	 of	 the	 report	
In section 3 we present results for the CPU performance of the Nek5000 [4] DGEMM
kernels on Cray CPU hardware, and discuss the issue of what precise versions of the
kernels are most representative of the Nek5000 application. In section 4 we incorporate
these optimised kernels into the CPU version of Nekbone (a stripped-down version of
Nek5000 designed specifically for benchmarking studies) and present performance
results. We then repeat the same procedure for the OpenACC accelerated version of
the code: we investigate optimisation of the kernels for the GPU using the CRESTA
auto-tuning framework in Section 5; we incorporate these kernels into an OpenACC
version of Nekbone in Section 6. We then compare these CPU and GPU results with
those obtained from a hand-optimised OpenACC version of Nekbone in Section 6.2,
and provide conclusions and suggestions for further work in Section 7.

2.2 Hardware	 and	 software	
As the ultimate aim of this workpackage is to investigate performance on very large
scale systems, we exclusively target Cray hardware and associated compilers in this
study. All CPU benchmarking was performed on the UK’s national supercomputer
HECToR, a Cray XE6 system operated by EPCC. All GPU benchmarking was
performed on Raven, a Cray-internal XK6 development system. A single node of
HECToR has two sockets, each containing a 16-core AMD Interlagos CPU. Raven has
almost identical hardware, except that one of the AMD processors on each node is
replaced by an Nvidia Kepler GPU. This enables very clean performance comparisons
between CPU and GPU: the correct comparison is one node of HECToR (2x16-core
CPUs) against one node of Raven (1x16-core CPU + 1xGPU).

2.3 Purpose	
The purposes of this deliverable are:

• to investigate the auto-tuning of a GPU-accelerated version of the Nekbone
benchmark code using the CRESTA auto-tuning framework;

• to compare these results with the best performance obtained from hand-
optimised GPU, and auto-tuned CPU, versions of the same code.

Nekbone contains all the core functionality of the CRESTA co-design application
Nek5000, so this deliverable is relevant across the whole CRESTA project.

2.4 Glossary	 of	 Acronyms	
BLAS
CPU
CUDA
D

Basic Linear Algebra Subprograms
Central Processing Unit
Compute Unified Device Architecture
Deliverable

EC
FLOP
GPU
HECToR
HPC
MFLOPs
OpenACC
PGI

European Commission
Floating-point Operations per Second
Graphics Processing Unit
High End Computing Terascale Resource
High Performance Computing
Million Floating-point Operations per Second
Open Accelerator Directives
The Portland Group, Inc.

RMS Root Mean Square
WP Work Package

© CRESTA Consortium Partners 2011 Page 3 of 25

3 CPU	 performance	
When performing any performance investigation of new hardware such as GPUs, it is
essential to have reliable baseline results from existing hardware (here the CPU). For a
fair comparison, this should be the best possible performance that could be obtained.

In [1] we developed a small stand-alone kernel benchmark program by extracting
existing benchmark subroutines from Nek5000. We observed that in some cases one
or more of the 8 different hand-coded kernels out-performed the optimised DGEMM
routine from the BLAS library (e.g. for small matrices, since BLAS is usually targeted at
large matrices). In order to obtain reliable baseline performance for Nekbone, it was
therefore necessary to run a version which used the optimal version of these kernel
routines in all cases. Since we have already seen that no single kernel is optimal for all
parameter values, this required additional work to be done on the CPU code.

3.1 Existing	 benchmark	
The existing DGEMM benchmark times the following operation:

• Declare three arrays A, B and C, each containing M matrices
• Repeat many times for timing purposes

o Loop over i = 1, 2, …, M
§ Compute matrix multiplication C(i) = A(i) * B(i)

o End loop
• End repetition

The sizes of the individual matrices are determined by the value of N, which
corresponds to the order of the spectral elements in Nek5000. The benchmark
considers three cases for a given value of N each of which uses matrices of different
dimension.

The three test cases of C = A * B are:

1. (N2 x N) matrix = (N2 x N) matrix * (N x N) matrix (“tall times square”)
2. (N x N) matrix = (N x N) matrix * (N x N) matrix (“square times square”)
3. (N x N2) matrix = (N x N) matrix * (N x N2) matrix (“square times long”)

The value of M is related to the size of the problem that is being solved in Nek5000. In
the kernel benchmark, a fixed amount of memory comprising NFLOAT floating-point
numbers is declared (as distributed, NFLOAT = 4*8*8*8*130 = 266240). The value of M
is then set to fill this array with as many matrices as possible, i.e. for each case:

1. M = NFLOAT / (N3)
2. M = NFLOAT / (N2)
3. M = NFLOAT / (N3)

This means that the inner loop always has roughly the same number of floating-point
operations of order M x N3. Although there is a factor of N more matrices for case 2,
the matrices themselves are smaller so each matrix multiplication has corresponding a
factor of N fewer floating-point operations.

As originally written, the Nek5000 benchmark measures the performance of each of 9
different kernels (8 hand-coded + DGEMM library) and for every value of N reports
which is the fastest routine separately for each of the three cases. It also reports the
routine which performs best on average by looking for the maximum harmonic mean
performance (i.e. minimum runtime) over the three cases.

3.2 Relationship	 with	 Nekbone	 kernels	
Because we expected to have to write new code in order to investigate the
performance of Nekbone on GPUs, we wanted to fully understand the Nekbone
computational kernels and how they related to the kernel benchmarks.

© CRESTA Consortium Partners 2011 Page 4 of 25

As mentioned above, the value of N equates to the order of the spectral elements in
Nekbone which would be fixed by the user. The number of elements, nel, corresponds
to setting a particular value of NFLOAT in the kernel benchmarks. As each element
requires N3 storage, nel = NLFOAT / N3. In Nekbone, updating a single element
requires six kernel calls: two separate calls for each of the three cases. The cases
actually correspond to operations across different spatial dimensions of the 3D
elements. For cases 1 and 3, the update can be cast a single matrix operation; for case
2 it requires N separate calls operating on smaller matrices. This is why the benchmark
increases the value of M by a factor of N for case 2.

To summarise, the computational load of the Nekbone kernel is distributed equally
between the three kernel cases. In terms of the number of elements nel, the value of M
in the benchmark is set as M = nel for cases 1 and 3, and M = nel * N for case 2.

The core operation in Nekbone is implemented by a routine called ax_e which has the
following form:

• Loop over elements e = 1, 2, …, nel
o Loop over repeat = 1, 2

§ Update e using kernel case 3
§ Loop over i = 1, 2, …, N

o Update e using kernel case 2
§ End loop
§ Update e using kernel case 1

o End loop over repeat
• End loop over elements

The fact that the inner operations are repeated twice is not important in terms of the
performance, and neither is the order of the calls to the cases, so we will ignore these
details from now on and consider the following as the canonical form for ax_e

• Loop over elements e = 1, 2, …, nel
o Update e using kernel case 1
o Update e using kernel case 2 (N times)
o Update e using kernel case 3

• End loop over elements

We will refer to this as a scalar version because the kernels operate on a single
element at a time (although note that these are actually matrix operations).

Written in this way it is clear how it relates to the kernel benchmark as we are calling
the kernels repeatedly across whole arrays of nel matrices, with a factor of N more
calls for case 2.

Given that nel and N are likely to be fixed for many runs of Nek5000 (as they
correspond to the basic discretisation parameters of the simulation) the way for a user
to optimise Nekbone performance using the benchmark is as follows:

1. Set NFLOAT based on nel; the precise choice is not important with respect to
performance, e.g. assuming that nel is large then it only has to be large enough
to ensure that data is read from memory and is not cache resident.

2. Run the benchmark and find the routine with the best harmonic mean
performance across all three cases.

3. Compile that single version and use in all calls.

This is a perfectly sensible procedure for the CPU version.

3.3 Implications	 for	 OpenACC	 kernels	
To exploit the massive parallelism of GPUs requires many independent floating-point
operations, and it was clear in advance that there would not be sufficient parallelism
within a single kernel. We therefore decided that the accelerated kernels would have to
operate on a whole array of elements at once. We will refer to this as a vector version
because it operates on all the elements at once.

© CRESTA Consortium Partners 2011 Page 5 of 25

We therefore expected the accelerated Nekbone kernel vax_e to have the following
form:

• Update all elements e using accelerated kernel case 1 (vector length = nel)
• Update all elements e using accelerated kernel case 2 (vector length = nel * N)
• Update all elements e using accelerated kernel case 3 (vector length = nel)

Writing the kernels in this form revealed that the actual operations of Nekbone were not
exactly as measured in the existing kernel benchmarks. Rather than being of the form
C(i) = A(i) * B(i), one of the matrices (either A or B) was actually fixed throughout the
loop. Although this would initially seem to increase the complexity of benchmarking
(two options, fixed A or fixed B, for each case) this was not true as the actual form was:

• Call accelerated kernel case 1 for C(i) = A(i) * B (vector length = nel)
• Call accelerated kernel case 2 for C(i) = A(i) * B (vector length = nel * N)
• Call accelerated kernel case 3 for C(i) = A * B(i) (vector length = nel)

We call these versions of the kernel vxm (cases 1 and 2) and mxv (case 3) to indicate
that one argument (A first or B second) is a fixed matrix, multiplied by the other which
is a vector of matrices. In this terminology, the original benchmark is vxv and the core
matrix-matrix routine (e.g. DGEMM) is mxm.

Based on this information and experiences from the previous deliverable, we therefore
anticipated three differences between the benchmarking required for auto-tuning the
GPU version compared to the CPU version:

1. the value of nel is much more critical as it is an integral part of the vector kernel,
so we might want to tune separately for each value of nel;

2. the GPU performance varies much more significantly with the case so we might
want to call different kernels for each case and not just pick the best average;

3. we might want to optimise OpenACC settings separately for C(i) = A(i) * B and
C(i) = A * B(i) and not just take the values from benchmarking C(i) = A(i) * B(i).

Finally, Paul Fischer (the author of Nek5000 and Nekbone) had also anticipated the
need for parallelism over elements to be explicit in the OpenACC version but had taken
a different approach. In the final version of Nekbone he supplied us, he included a new
subroutine that was called ax3d and was of the form:

• Loop over elements e = 1, 2, …, nel
o Update e completely using explicit code

• End loop over elements

i.e. it does not call any kernel routines at all. In this version, all the computations
associated with the six kernel calls are written out in full with explicit loops over all
indices, e.g. one section reads:
 do e=1,nel
 ...
 do k=1,n
 do j=1,n
 do i=1,n
 w(i,j,k,e) = 0
 do l=1,n
 w(i,j,k,e) = w(i,j,k,e) + D(l,i)*ur(l,j,k,e)
 $ + D(l,j)*us(i,l,k,e)
 $ + D(l,k)*ut(i,j,l,e)
 enddo
 enddo
 enddo
 enddo
 enddo

© CRESTA Consortium Partners 2011 Page 6 of 25

Note that, as expected, the computational complexity of each elemental calculation is
O(N4); although matrix multiplication is O(N3) remember that for cases 1 and 3 one of
the matrix dimensions is of size N2, and for case 2 there is an additional loop over N.

This is an extreme form of a performance optimisation called loop jamming, so we refer
to this as the jammed version of the kernel.

3.4 CPU	 kernel	 auto-‐tuning	
As well as being an interesting exercise in itself, the CPU auto-tuning is a useful testing
ground for optimising Nekbone before introducing the additional complexity of GPU
acceleration. Note that we did not use any auto-tuning frameworks for this; we simply
ran the existing benchmark many times as previously done for the CPU benchmarking
in [1]. For simplicity we still call this “auto-tuning” because it is done in a mechanical
way that could easily be automated in principle. Auto-tuning is relatively simple here as
there are no compiler options to vary; we simply set the highest optimisation flags on
the Cray compiler or link to the Cray-optimised DGEMM routine. All we are doing is
selecting which kernel version to call rather than how best to compile it. This is not the
case for the subsequent accelerator auto-tuning where there are many more options to
explore because of the additional complexity of OpenACC and the relative immaturity
of the GPU compilers compared to the long-established CPU versions.

The differences between this work and that done in [1] are:

• We set the number of elements by hand (i.e. we adjust NFLOAT based on the
value of N) and benchmark separately for each value of nel as we expect that
this will be important in the OpenACC versions.

• We benchmark the vxv and mxv/vxm versions of the kernels separately.
• As well as running on a single core, we also run in a mode where all 32 cores

on a node are running simultaneously. This better represents the real situation
in a parallel run of Nekbone and has a substantial effect on performance due to
sharing of cache and memory bandwidth between cores.

We record the best performing kernel for every different combination of nel, N and
case, and store in a file for later use by Nekbone. For the ranges of parameters used
here this amounted to over 250 separate entries from over 2000 individual
measurements just record the vxv data for a single core. The individual performance of
these kernels is not particularly interesting as we are mainly interested in the ultimate
performance of the Nekbone code, but we present some selected results in Figure 1
and Figure 2 (note the differences in scale). The single-process data in Figure 1 has
been multiplied by 32 so it can be compared directly to the 32-core results.

Figure 1: Auto-tuned mxv/vxm kernel performance (case 1) from single core execution

© CRESTA Consortium Partners 2011 Page 7 of 25

Figure 2: Auto-tuned mxv/vxm kernel performance (case 1) from 32-core execution

This shows the effect of stressing the resources on a shared-memory node by fully
populating all the cores: we see a factor of two drop between the single core and 32-
core results.

© CRESTA Consortium Partners 2011 Page 8 of 25

4 CPU	 performance	 of	 Nekbone	
In this section we report on the performance of Nekbone measured using the optimal
CPU kernels as identified in Section .3.4. In all cases, Nekbone is run on 32 processes
completely filling a node of HECToR to enable direct comparison to subsequent GPU
results. In the previous CPU tuning section, nel referred to the number of elements on
each process. In this section, however, nel in the graphs refers to the number of
elements in the entire parallel calculation (i.e. the total number per node: 32 times
larger), again to help with direct comparison to the GPU results.

4.1 Extensions	 to	 Nekbone	 code	
In order to enable Nekbone to use the best kernel in all routines, it was extended in two
ways:

1. At startup, a new routine readtune is called which reads in the tuning data
from Section 3.4 and stores the results in an array. Note that this data could
come from benchmarking the vxv kernels, or the mxv/vxm ones, or from a
single or multi-processor run of the benchmark.

2. At runtime, the best kernel is called based on the current values of nel and N,
and the particular case (1, 2 or 3).

The second extension was relatively easy to implement as all calls to the kernels
(including the new mxv/vxm versions) already funneled through a single mxm stub.
Rather than pointing this stub to a fixed matrix-matrix function, a simple switch
statement (SELECT CASE in Fortran) allowed the best kernel to be selected at runtime
based on the data from readtune. The performance overheads of this switching were
found to be minimal.

Nekbone already had the functionality to switch between different versions of the
element update routines based on a value i_ax read from file. This could already be
used to choose between the scalar (ax_e) and jammed (ax3d) versions. Introducing
the vector kernel (vax_e) was relatively straightforward based on the existing scalar
kernel and contains code such as:
 call mxv(nmat, D,m1,u, m1,ur,m2)
 call vxm(nmat*m1, u,m1,Dt,m1,us,m1)
 call vxm(nmat, u,m2,Dt,m1,ut,m1)

Here nmat = nel, m1 = N and m2 = N2, so this corresponds to cases 3, 2 and 1
respectively (see Subsection 3.3) with the u variables being arrays of matrices (i.e.
arrays of elements) and the D variables fixed matrices.

In subsequent calls for cases 1 and 2 the result needs to be accumulated into C, i.e.
the operation is actually of the form C(i) = C(i) + A(i) * B(i). For efficiency in the later
OpenACC version we introduced a separate vector function addvxm to achieve this.
However, it differs so trivially from vxm that there was no need to benchmark it
separately so it simply uses the best approach as already determined for vxm (and in
the CPU version it ultimately calls the identical mxm routine in any case).

It is important to note that although the performance of the scalar and vector versions
of Nekbone will be affected by the choices of kernel, that of the jammed version will be
unaffected as it comprises completely explicit code with no function calls.

4.2 Performance	 studies	
For subsequent comparison, we used the same settings for nel and N as employed in
the previous study of hand optimisation of Nekbone for accelerators [1]. All the different
combinations of options lead to many hundreds of individual runs of Nekbone and
generate an enormous amount of data. Here we present the data in a way that aims to
answer the following questions:

© CRESTA Consortium Partners 2011 Page 9 of 25

a. what is the default performance of the three versions (scalar, vector and
jammed) of Nekbone?

b. can the scalar and vector versions be improved by tuning, and if so how much?
c. how sensitive are these results to the details of how the kernel benchmarking

as performed?
d. which of the three versions (tuned scalar, tuned vector or jammed) is the fastest

overall?

It is important for question (a) to define what “default” means. Although we could
ascribe enormous benefits to auto-tuning be selecting a very slow “default” versions,
this would not be a fair comparison. Given that the BLAS library is widely accepted as
being the best implementation of linear algebra available, we define “default” as
performing all matrix-matrix operations with DGEMM. This is simply achieved by
supplying a dummy file to readtune that lists DGEMM as the optimal routine for every
parameter choice.

4.3 Default	 performance	
The default performance of Nekbone for different choices of the spectral order N (8, 10,
, …, 18, 20) and the number of elements per node nel (32, 64, …, 1024, 2048) are
shown in Figure 3 (scalar), Figure 4 (jammed) and Figure 5 (vector). To enable these to
be more easily compared we plot the percentage difference (either faster or slower),
compared to the jammed version, of the scalar version in Figure 6 and the vector in
Figure 7.

It is clear that that the performance characteristics depend very strongly on N; for N =
8, 10 or 12 the jammed version performs best for all values of nel. For larger values of
N, the scalar version always outperforms jammed, presumably because the DGEMM
routine is highly optimised for this case. For these large values of N vector also
outperforms jammed for smaller values of nel, but performs worse for large values (the
crossover point being around 256 or 512). This is presumably a memory or cache
effect: the vector algorithm involves reloading all the element data each time a kernel is
called, so will suffer from limited memory bandwidth when there is a lot of data to be
processed. The scalar and jammed versions do not have this problem as they
complete all the operations required on a single element before moving on to the next.

It is quite interesting at this stage that no single algorithm is the best across all the
values of N and nel, although the vector version is almost never the fastest.

Figure 3: Default performance of scalar version of Nekbone

© CRESTA Consortium Partners 2011 Page 10 of 25

Figure 4: Default performance of jammed version of Nekbone

Figure 5: Default performance of vector version of Nekbone

© CRESTA Consortium Partners 2011 Page 11 of 25

Figure 6: Percentage improvement of default scalar version vs jammed

Figure 7: Percentage improvement of default vector version vs jammed

4.4 Auto-‐tuned	 results	
To try and obtain the best possible scalar and vector performance, we re-ran Nekbone
with tuning results obtained by running the mxv/vxm kernels on 32 cores of HECToR,
which is the closest match to the real operation of Nekbone (indeed, for the scalar
version these are the actual routines called). The performance is shown in Figure 8
(scalar) and Figure 9 (vector). It appears that the performance is improved significantly,
especially for the smaller values of N where the previous results from the jammed
version have already indicated that the default (i.e. DGEMM) routine may not be
optimal.

© CRESTA Consortium Partners 2011 Page 12 of 25

Figure 8: Auto-tuned performance of scalar version of Nekbone

Figure 9: Auto-tuned performance of vector version of Nekbone

To better understand what auto-tuning is doing see, for example, Figure 10 which
shows the improvement coming from auto-tuning for the vector version of Nekbone.
For all values of N up to and including 14 we see improvements across all values of
nel. There is essentially no improvement at any value of nel for all higher values of N,
i.e. DGEMM is always optimal in this range. There is one apparently anomalous
improvement for N=18 at the smallest value of nel, but this does not change what is
overall a very clear picture. The equivalent results for the scalar version (not plotted)
are qualitatively the same, showing exactly the same trends but with slightly greater
performance improvements across the board.

© CRESTA Consortium Partners 2011 Page 13 of 25

Figure 10: Percentage improvement of auto-tuned vector version vs default

We also repeated these runs using tuning data collected in the same way as in [1], i.e.
a single processor run of the original vxv kernels (as opposed to the multi-processor
mxv/vxm data above). The two results are virtually indistinguishable apart from a very
few isolated cases where we see some small advantage from using the mxv/vxm data.

4.5 Fastest	 version	 overall	
To find out what the fastest version is across the scalar, vector and jammed versions
we must compare Figure 8 and Figure 9 with Figure 10. We again compute the
percentage improvement (or reduction) in performance between the best auto-tuned
versions of the scalar and vector algorithms and the jammed version (which is
unaffected by tuning); the results are shown in Figure 11 and Figure 12.

Figure 11: Percentage improvement of auto-tuned scalar version vs jammed

© CRESTA Consortium Partners 2011 Page 14 of 25

Figure 12: Percentage improvement of auto-tuned vector version vs jammed

Except for a few points at small N and nel, the scalar version matches or outperforms
the jammed version in all cases; only a single point is significantly slower.

For the vector version, we only see improvements over the jammed version at small nel
(e.g. 256 or less) and large N (e.g, 16 or more). Despite this, however, the performance
is never worse than 20% below the the jammed version which indicates that the effects
of increased memory traffic are not too severe.

4.6 Conclusions	
The results of this section are relatively encouraging, showing that auto-tuning can
have significant benefits in certain regions of the parameter space. Here, in cases of
small N (8, 10, 12 and 14) we were able to improve performance above the default by
using some alternative to the DGEMM library function. However, for larger values of N
(16, 18 and 20) no improvement was possible.

Given that only the vector and jammed versions are viable candidates for GPU
acceleration, Figure 12 gives some hope that the approach of separating out small
kernels and auto-tuning them may be a useful approach in some parameter regions
(here, large N and small nel) despite the fact that this vector version makes higher
demands on the memory system. However, these improvements were possible
because existing library routines (here, DGEMM) were able to significantly outperform
the handwritten jammed code. Unless similarly optimised libraries can be found for the
vector versions on the GPU it seems unlikely that we will be able to reproduce the
modest success of these CPU results.

© CRESTA Consortium Partners 2011 Page 15 of 25

5 OpenACC	 kernels	
We now aim to auto-tune GPU kernels for Nekbone. All performance data is from a
single GPU and therefore directly comparable to the previous 32-core CPU results.

5.1 Reproducing	 previous	 study	
In [1], results for auto-tuned OpenACC versions of the vxv kernels were presented.
However, those results are not directly applicable to this study as they were obtained
using the PGI compiler and we now want to investigate the Cray compiler. In addition,
they employed an auto-tuning framework developed by the University of Edinburgh
School of Informatics (see [5] which includes our results as part a wider study of a
range of kernels) and we now want to evaluate the CRESTA auto-tuning framework [3].

The previous study used kernels written in C to enable easy integration with the
existing Informatics framework. As Nekbone is written in Fortran, and the CRESTA
framework is language-neutral, we rewrote the NekGemm benchmark in Fortran.
Previously all array dimensions (i.e. the values of N and nel) were compile-time
constants, a decision partly based on limitations of C. However, modern Fortran deals
equally well with static and dynamic arrays so we wrote two versions of the kernels:
one (called DIMARGS) where array dimensions are passed as subroutine arguments
at runtime, the other (NODIMARGS) where dimensions are compile-time constants
Note that we had to disable subroutine inlining: by default the kernels were inlined and
the Cray compiler was then clever enough to recognise that subroutines were being
called with constant parameter values. Although this is a useful feature in a real code, it
led to both versions being effectively identical which is not what we want in this study.

5.2 Auto-‐tuning	 code	 and	 script	
For completeness, the script used for the auto-tuning is shown in Section 8.1; see [3]
for the full syntax of the tuning file. Although we can use the script to tune how the code
for the kernels is generated, it is the user’s responsibility to write as many different
versions as possible, i.e. to supply a tunable code. We did this via a combination of
multiple subroutines as was done previously for the CPU version (they appear here as
different choices for algorithm) and multiple possible options for the OpenACC
directives passed as #defines via –D flags to the Makefile (in the script these are
values such as NUM_GANGS and VECTOR_LENGTH). The particular test case, e.g the
value of N (NPSEC in the script), is selected in the same way. To illustrate how the
tuning script and the application interact a representative piece of tunable code, e.g. for
algorithm 106, is shown in Section 8.2.

As well as writing many different versions of the kernels, we did initial experiments with
calling the DGEMM routine from the cuBLAS library. The performance was always very
poor as any parallelisation has to be performed within a single matrix and N is simply
not big enough for this to be efficient; N has to have values around 1000 for this to be
competitive. Launching many separate DGEMM calls simultaneously using the
OpenACC async clause was also not successful, perhaps because the number of
concurrent calls is currently limited to 16.

Using the script, the auto-tuning framework runs the code many times and reports the
combination of parameters that produces the best results (here the maximum
performance). The data for all the individual runs is also logged for later reference.

5.3 Performance	 results	
The results are show in Figure 13 (dimensions as arguments) and Figure 14 (constant
dimensions); note the difference in scales between the two. The features to note are:

• Default performance is substantially better in all cases when the compiler
knows the array dimensions at compile time.

• Auto-tuning dramatically increases performance in all cases, but there is always
a substantial performance benefit from knowing dimensions at compile time.

© CRESTA Consortium Partners 2011 Page 16 of 25

• The default performance is less than previously achieved with the PGI compiler,
quite substantially so for the larger values of N.

• The auto-tuned performance is always better than previously obtained.

Figure 13: Performance of kernels with array dimensions as subroutine arguments

Figure 14: Performance of kernels with array dimensions as compile-time constants

The fact that the default performances are so different between Cray and PGI is
perhaps not that surprising as the two compilers take totally different approaches to
OpenACC. The PGI compiler focuses on the kernels directive, whereas Cray focuses
on the parallel directive. Based on these results, for all future studies we decided to
use versions of the subroutines where array dimensions are fixed at compile time.

© CRESTA Consortium Partners 2011 Page 17 of 25

5.4 Tuning	 based	 on	 the	 number	 of	 elements	
The approach taken above was to set the total memory consumption and pick the
number of elements based on this value. This means that the number of elements
drops significantly with increasing N; for example, for the settings used here
(NFLOAT=266240) the number of elements is as small as 19 for N = 24. As mentioned
before, this is not an issue for the CPU code where performance tuning is relatively
insensitive to nel. However, for the GPU we expect performance characteristics to vary
significantly with nel and therefore want to both set it explicitly and tune individually for
each value. Note that we are still working with the original vxv kernel benchmarks.

To allow for direct comparison with [2], we now use the same values of N and nel as
used there. The results for cases 1 and 2 are presented in Figure 15 and Figure 16
(default), and Figure 17 and Figure 18 (auto-tuned); case 3 is very similar to case 2
and is not shown.

Figure 15: Default performance of case 1 vs number of elements

Figure 16: Default performance of case 2 vs number of elements

© CRESTA Consortium Partners 2011 Page 18 of 25

Figure 17: Auto-tuned performance of case 1 vs number of elements

Figure 18: Auto-tuned performance of case 2 vs number of elements

They show a very consistent picture:

• significant benefits from auto-tuning in all situations;
• auto-tuned performance is similar for all cases;
• any differences in default performance (e.g. cases 1 and 2 differ significantly) is

removed by auto-tuning.

Overall, these results for auto-tuning of the kernel benchmarks are very encouraging.

© CRESTA Consortium Partners 2011 Page 19 of 25

6 Performance	 of	 Nekbone	
We are now in a position to take the optimal parameter settings from Section 5.4 and
introduce them into an accelerated version of Nekbone to see what effect the kernel
auto-tuning has on overall application performance.

6.1 Developing	 a	 tunable	 OpenACC	 version	 of	 Nekbone	
As part of the work done in [2], a fully functioning OpenACC version of NekBone was
developed based on the jammed kernel ax3d, so this was the obvious starting point.
Only two issues major were encountered:

1. Some of the optimisations introduced for the OpenACC version of ax3d require
different lookup tables; these are initialised instead of the default tables use by
vax causing the code to fail. The solution was simply to ensure that the correct
setup routines are called based on the value of i_ax (see Section 4.1).

2. The ax3d version does not call any subroutines, whereas vax calls subroutines
such as vlocal_grad3 which subsequently call the mxv/vxm vector kernels.
This meant that data scoping was more complicated, especially as the original
code worked with different lookup tables. As had already been done carefully
elsewhere in Nekbone, it was important to ensure that extended data regions
were used to minimise data copying at entry and exit from accelerated regions.

Unlike the CPU version, switching between different optimised routines at runtime is
not simply a matter of calling the correct precompiled version. A single function can be
compiled in many ways depending on the OpenACC settings, so some coding work
would be needed to enable multiple versions of the same subroutine to exist in the
same program, and the best version called at runtime as appropriate. There has not yet
been sufficient time to do this, so at present all OpenACC settings are the same
regardless of the values of N and nel. Given the structure of the code, however, we are
able to use different settings for each of the three cases.

6.2 Initial	 performance	 results	
This work is in its early stages, so as described above we do not yet change the
OpenACC settings dynamically within the application. In addition, we are currently
obtaining tuning parameters from the vxv kernels (as presented in Section 5.4) and not
the mxv/vxm kernels that are actually called in Nekbone. Although we saw in Section
4.4 that this had no significant impact for the CPU version, there is no reason to
assume that this will also be true on the GPU.

The performance results obtained in [2] serve as useful reference values, and are
shown in Figure 19; remember that these come from a hand-tuned version of the
jammed code (i.e. using ax3d). The maximum value of nel is often smaller than the
previous value of 8192 used in the kernel benchmarks because Nekbone uses more
memory, and we run into memory limits on the GPU (especially at large N). The default
performance we obtain for the vector version (i.e. calling vax) is shown in Figure 20
(note the difference in scale).

To illustrate the effects of parameter tuning, we picked a set of OpenACC parameters
that gave good kernel performance for all values of N and nel for each case.
Surprisingly, this resulted in extremely poor performance for Nekbone which was worse
than the default settings in all cases; the reasons for this are not yet clear. It could be
because the parameters came from the vxv kernels, or because the compiler is treating
the kernels differently when placed within a larger application.

However, by selecting non-default OpenACC parameters by hand (effectively using
trial and error) we were able to obtain good performance for the vector version – see
Figure 21. The performance here is close to that of the hand-tuned jammed version
and suggests that auto-tuning the entire vector version of Nekbone (rather than the
vector kernels in isolation) could result in even better performance.

© CRESTA Consortium Partners 2011 Page 20 of 25

Figure 19: Performance of hand-tuned OpenACC jammed Nekbone (data from [2])

Figure 20: Performance of OpenACC vector Nekbone with default settings

Figure 21: Performance of OpenACC vector Nekbone with hand-tuned settings

© CRESTA Consortium Partners 2011 Page 21 of 25

6.3 Summary	
In terms of application performance, the results in Figure 21 are encouraging when
compared to the hand-optimised results in Figure 19. It is surprising that, unlike for the
CPU version, the auto-tuned OpenACC kernel parameters resulted in very poor
performance for the Nekbone application and we had to resort to hand-tuning. There
was not sufficient time available to create a fully tunable version of Nekbone, although
this should not be difficult to develop in the future.

There are several possible explanations for this behaviour:

1. The OpenACC settings from Section 5.4 are currently determined from the
original vxv kernels and, despite the results from the CPU studies, might not be
appropriate on the GPU for Nekbone’s mxv/vxm kernels.

2. Perhaps the kernel auto-tuning search space was too small; given the number
of combinations of N, nel and case, we had to restrict the ranges of some of the
parameters to ensure that the time spent on auto-tuning was not too large.

3. The application performance may be strongly affected by factors not present in
the kernel benchmarks, e.g. the presence of many other large arrays and extra
operations such as matrix addition.

4. The compiler may be making different decisions when compiling OpenACC
code within Nekbone compared to the kernel benchmark.

Despite the current limitations of our approach, however, we do see many potential
benefits from auto-tuning compared to selecting default values. Unlike on the CPU, for
the GPU it appears that these parameters need to be determined from running the full
application rather than from isolated kernels. Although possible in principle, this will be
a lot more difficult in practice as the application runtime will always be much larger than
the kernels so we will not be able to explore such a large region of parameter space.

© CRESTA Consortium Partners 2011 Page 22 of 25

7 Conclusions	 and	 further	 work	
This study deliberately took a simple but methodical approach to auto-tuning the
Nekbone application:

• gain experience of the application and its auto-tuning on the familiar CPU;
• develop a version calling vector kernels suitable for auto-tuning on the GPU;
• determine OpenACC parameters by auto-tuning the existing kernel benchmark;
• use these parameters in the vector version of Nekbone;
• compare performance to the existing hand-tuned version of Nekbone.

The prototype CRESTA auto-tuning framework was used for the OpenACC work and
shown to be very effective and easy to use; a number of suggestions for
enhancements have been passed on to the authors. Auto-tuning worked very well on
the GPU kernel benchmark, increasing the performance significantly above that
obtained with default settings. Suprisingly, no benefits were observed when these
settings were applied to the full Nekbone application, with performance less than the
default settings. However, good performance was achieved by hand-tuning these
parameters.

The GPU auto-tuning work has not yet been completed and there are a number of
areas of further work (in approximate order of importance):

• repeat studies in Section 5.4 using the more representative mxv/vxm kernels;
• auto-tune the mxv/vxm kernels within Nekbone application and not in isolation;
• extend Nekbone so it automatically calls the fastest vector kernel in all cases;
• extend the auto-tuning parameter space for the mxv/vxm kernels;
• investigate auto-tuning the existing hand-tuned jammed version of Nekbone.

Despite the somewhat limited scope of the current study, it has clearly demonstrated
that auto-tuning can be beneficial for OpenACC-accelerated applications running on
GPUs. The default settings chosen by current compilers can be far from optimal, even
if they know all the application parameter settings (e.g. array dimensions) at
compilation time.

Once the auto-tuning work has been completed for Nekbone, it would be interesting to
extend it to the full Nek5000 application. The same approach could also be used for
other CRESTA applications, e.g. GROMACS. A hand-tuned GPU version of
GROMACS already exists, with core kernels implemented in CUDA. It would be
interesting to see if the CUDA code’s performance can be matched using OpenACC,
and also how much improvement is gained from the CRESTA auto-tuning framework.

© CRESTA Consortium Partners 2011 Page 23 of 25

8 Appendix	
8.1 Auto-‐tuning	 script	

! File is called: nekgemm.tune

begin configuration
 begin tune
 mode: tune
! do not tune on NEKCASE, NMAT !
 scope: VECTOR_LENGTH algorithm NSPEC
 target: max
 metric-source: file
 postrun-metric-file: output.$run_id
 metric-placement: lastregexp
 metric-regexp: tune run metric +(\S+)
 end tune
end configuration

begin parameters
 begin typing
 label NUM_GANGS
 label NUM_WORKERS
 int VECTOR_LENGTH
 label SCALAR_REDUCTION
 label DIMARGS
 int NEKCASE
 int NSPEC
 int algorithm
 end typing
 begin constraints
 range NUM_GANGS none default none
 range NUM_WORKERS none 1 2 4 8 16 32 default none
 range VECTOR_LENGTH 64 128 256 default 128
 range SCALAR_REDUCTION no yes default yes
 range DIMARGS no yes default no
 range NEKCASE 1 2 3 default 1
 range NSPEC 6 12 18 24 default 6
 range algorithm 101 104 105 106 107 108 121 122 131 132 default 101
! Put runtime parameters first in this list
 depends algorithm,VECTOR_LENGTH,NSPEC,NEKCASE
 end constraints
!if you change something here, you need to re-compile
 begin collections
 BUILD: NUM_GANGS NUM_WORKERS VECTOR_LENGTH SCALAR_REDUCTION DIMARGS
NEKCASE NSPEC
 end collections
end parameters

begin build
 command: make clean; make NUM_GANGS=$NUM_GANGS
 NUM_WORKERS=$NUM_WORKERS VECTOR_LENGTH=$VECTOR_LENGTH
 NEKCASE=$NEKCASE NSPEC=$NSPEC
end build

begin run
 command: aprun -n1 -N1 ./nekgemm $algorithm > output.$run_id
 validation-source: command
 validation-command: cat output.$run_id
 validation-failure-mode: warning
end run

© CRESTA Consortium Partners 2011 Page 24 of 25

8.2 Representative	 auto-‐tuning	 kernel	

SUBROUTINE accgemm106(a, b, c, n1arg, n2arg, n3arg, nmatarg)

 INTEGER :: n1arg, n2arg, n3arg, nmatarg
 INTEGER :: n1loop, n2loop, n3loop, nmatloop
 INTEGER :: i, j, k, imat

 DOUBLE PRECISION, DIMENSION(n1arg, n2arg, nmatarg), INTENT(IN) :: a
 DOUBLE PRECISION, DIMENSION(n2arg, n3arg, nmatarg), INTENT(IN) :: b
 DOUBLE PRECISION, DIMENSION(n1arg, n3arg, nmatarg), INTENT(OUT) :: c
 n1loop=n1arg
 n2loop=n2arg
 n3loop=n3arg
 nmatloop=nmatarg

#ifdef SCALAR_REDUCTION
 DOUBLE PRECISION :: tmp
#endif

!!$ I might choose to specify num_gangs and/or num_workers,
!!$ I will always specify vector_length.

 !$acc parallel present(a,b,c) private(i,j,k) &
#ifdef SPECIFY_NUM_GANGS
 !$acc num_gangs(NUM_GANGS) &
#endif
#ifdef SPECIFY_NUM_WORKERS
 !$acc num_workers(NUM_WORKERS) &
#endif
 !$acc vector_length(VECTOR_LENGTH)
 !$acc loop gang collapse(2)
 DO imat = 1, nmatloop
 DO j = 1, n3loop
 !$acc loop vector
 DO i = 1, n1loop
#ifdef SCALAR_REDUCTION
!!$ Do the reduction into a loop-private scalar
 tmp = 0
#else
!!$ Do the reduction directly into the array
 c(i,j,imat) = 0
#endif
 DO k = 1, n2loop
#ifdef SCALAR_REDUCTION
 tmp = tmp + a(i,k,imat) * b(k,j,imat)
#else
 c(i,j,imat) = c(i,j,imat) + a(i,k,imat) * b(k,j,imat)
#endif
 END DO
#ifdef SCALAR_REDUCTION
 c(i,j,imat) = tmp
#endif
 END DO
 END DO
 END DO
 !$acc end parallel

END SUBROUTINE accgemm106

© CRESTA Consortium Partners 2011 Page 25 of 25

9 References	
[1] Compiler Support for Exascale, CRESTA Project Deliverable D3.5.1.

[2] OpenACC Acceleration of Nek5000, a Spectral Element Code, presented at
“Exascale Applications and Software Conference” (2013).

[3] Domain Specific Language (DSL) for expressing parallel auto-tuning, CRESTA
Project Deliverable D3.6.2.

[4] Nek5000 project web page http://nek5000.mcs.anl.gov/.

[5] Alberto Magni, Dominik Grewe and Nick Johnson, “Input-Aware Auto-Tuning for
Directive-based GPU Programming”, proceedings of GPGPU6 (2013).

