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1 Executive	
  Summary	
  
 
This document describes a domain-specific language (DSL) that serves as the central 
component of an autotuning framework for the tuning of parallel applications.  We 
describe what features the DSL was designed to provide, how it fits within a wider 
autotuning framework and outline the initial implementation. 

Our initial approach was to start from scratch without detailed reference to, or 
consideration of, existing autotuning technology but starting from the basis of a specific 
set of requirements we considered important.  One reason for this is that the remit of 
the CRESTA project is to define a distinct European approach.  We also need to be 
sure that we can be in control of (or define) an environment that will support particular 
aspects of tuning parallel applications. 

Subsequently we will refine the DSL based on experience with the CRESTA co-design 
applications and publish a final specification for project month 30. 

The following sections introduce the outline the scope and objectives of WP3 task 3.2.1 
giving an overview of what the actual deliverable addresses. We then consider the 
objectives for the DSL and move on to describing the specification and how it would be 
implemented within an autotuning framework. 
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2 Introduction	
  
The CRESTA WP3 work package contains a task (3.2) on Compiler and Runtime 
Environments of which subtask (3.2.1) deals with autotuning, a technology that can 
address the inherent complexity of the latest and future computer architectures.  In the 
context of this project, autotuning is the process by which an application may be 
optimised for a target platform by making automated optimal choices of how the 
application is built and deployed. Tuning choices can be made that target algorithms, 
source code (optional branches, data flow, loop transformations etc.), compilation and 
application launch.  We can express both the tuning choices and controls for an 
autotuning framework via the use of a domain specific language (DSL) and this is the 
focus of this specification. 

The DSL we are developing can expose these choices within an application and 
primarily concerns source mark-up; in particular we aim to address parallel tuning 
aspects and interoperability with existing and future autotuning technology. 

In subsequent sections we note how the work on the DSL fits in the wider context of 
the project and note in more detail the requirements and implementation choices we 
have made. 

2.1 Purpose	
  
The purpose of this document is to provide an initial specification for the DSL. 

2.2 Related	
  work	
  
One of the project partners (Cray) has extensive experience of production autotuning, 
specifically for the generation of optimized scientific subroutine libraries[1]. This was, in 
part, motivation for new unrelated work under CRESTA to research more general 
library tuning and whole-application tuning of parallel applications. 

The DSL described here would exist in a more general autotuning framework, some 
components of which would be studied or provided within the CRESTA project.  Work 
on adaptive runtime and compiler autotuning are separate tasks in CRESTA.  The DSL 
will be subsequently developed in conjunction with the CRESTA co-design applications 
and be informed by those application requirements in addition to other project activities.  
This will happen later in the project. 

2.3 Scope	
  and	
  objectives	
  
The DSL is primarily concerned with markup of tuning choices.  These may be either 
exposed by the programmer/user (for example algorithm choices, source optimization 
choices, library choices, runtime choices) or may be implementation choices of higher 
level programming “constructs” (for example stencils, communication patterns etc.). 

The DSL principally targets the application developer and possibly those concerned 
with application optimization.  Runtime features may be of interest to the application 
user.  Use of the DSL should facilitate exploration of the application tuning space to 
make it easier to produce an application optimized for a particular platform. 

DSL statements can appear in various places: in source files or files associated with 
source or in a configuration file describing the overall tuning process.  The particular 
aspects which would warrant placement in a global configuration file are the following: 

1. Runtime choices (for example how many threads for a mixed-mode application) 
2. Dependency information between tuning parameters 
3. Convenience grouping of tuning parameters 
4. Linking or disambiguating tuning parameters defined in multiple places in order 

to fix their scope 
5. Compiler options and build choices 
6. Use of external tools/components for example compiler autotuners, parameter 

optimization, machine learning matcher 
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7. Interfaces to above  

Note that there is some overlap and you could embed DSL in application code that 
could alternatively be placed in a configuration file. In addition, a global configuration 
could augment DSL in source files, for example by adding additional scoping.  For 
subsequent sections we will use the term XDSL to indicate DSL that would more 
naturally be placed in an external configuration file. 

We will also consider control information that would be required in order to perform an 
end-to-end autotuning session, this allows us to understand how the DSL would fit in a 
wider context and would give us something that we can mock up at the end of the 
project.  We have also defined some components as external modules (for example a 
parameter optimizer) because this gives us flexibility to build simple reduced-capability 
implementations or interface to other software that can provide the required 
functionality. 

Note that a basic autotuning infrastructure could be useful in general code 
development and testing, allowing a simple mechanism for the developer to explore 
choices even if an intelligent tuning framework is not required. 

Our aim is to support, at a minimum, applications that are written in C, C++ and Fortran 
and use OpenMP and MPI in addition to selected single-sided or PGAS programming 
models. 

Autotuning is a wide area of research with many aspects[2], in particular a lot of work 
has been done on autotuning compiler infrastructure; our focus is more on parallel 
application tuning in the context of a general framework. 

2.4 Glossary	
  of	
  Acronyms	
  
cronym Definition 
D Deliverable 
DSL 
EC 
ML 
PGAS 

Domain Specific Language 
European Commission 
Machine Learning 
Partitioned Global Address Space 

PM  Project Manager/ Project Month 
WP Work Package 
XDSL 
XML 

External DSL 
Extensible Markup Language 
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3 Requirements	
  
In this section we outline the requirements and objectives we had in designing the DSL 
and begin by considering the overall tuning framework. 

The DSL is a component of an autotuning framework and at the highest level we 
assume that this framework can optimize an application over a set of tuning 
parameters.  Some parameters we term characterization parameters and may, for 
example, map to input parameters relating to problem size.  The other tuning 
parameters relate to build and runtime optimization choices which we can choose to 
give for example the best runtime. At its simplest, the autotuner framework can 
optimize over the tuning parameters, at the most complex it can build routines and 
applications choosing the best tuning parameters for a set of characterization 
parameters. 

In this section we consider which features the DSL needs to support and we categorize 
them as follows: 

• Overall tuning configuration information 
• Details of tuning parameters and relationships 
• Parallel autotuning features 

o Stencils 
o Data movement primitives 
o Process placement 

• Build information and control 
• Runtime information and control 
• Interfaces to tools/components 

o Parameter optimization 
o Machine-learning (ML) matcher interface 
o Library tuners 
o Serial compilation and Compiler-based tools (profile feedback and 

autotuning) 

For now we will not consider the syntax and placement details of DSL constructs. 

3.1 Overall	
  tuning	
  configuration	
  
We need a way to control an overall tuning session, describe the objectives for a tuning 
run, the parameter space and build and run details.  It is an implementation decision as 
to which aspects of the tuning configuration are described centrally or in application 
files.  The overall configuration should describe the following: 

3.1.1 Tuning	
  Control	
  
This is where we describe what an autotuning run should do.  There are likely two 
scenarios: 

1. Only tune across tuning parameters picking the best 
2. Run tuning (over tuning parameters) for a set of characterization parameters 

and process results with an ML system in order to build a tuned library or 
application that can cater for a range of characterization parameters. 

For option 2 we need to define or obtain the set of characterization parameters. 

3.1.2 Tuning	
  target	
  
We need to be able to describe optimization for a target performance metric which 
could be minimum execution time or related to some output from the application.  This 
should be flexible enough to support something like minimizing power consumption. 

3.1.3 Tuning	
  scope	
  
It is very likely that we would want to tune for some subset of tuning parameters or 
code base so some parameter grouping method should be provided to enable this. 
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3.1.4 Previous	
  state	
  
State from previous tuning sessions may be available; this section would describe how 
this could be done.  In order to interface to an external optimizer it would most likely be 
a requirement to manage state. 

3.1.5 Logfiles	
  
The tuning process should produce a log of progress to specified output streams/files. 

3.2 Tuning	
  Parameters	
  and	
  relationships	
  
Various aspects of autotuning require that we set parameters within some range.  This 
enables us to optimize over fixed choices of code paths, parallel decompositions, 
optimizations (for example blocking and unrolling) etc.  To do so we need to define that 
a parameter is a tuning parameter and describe any bounds and constraints. 

The parameter definition should support 

• Typing, to include integer, real, character and Boolean 
• Definition of a range of values or a specified set of values 
• Any constraints between parameters (for example we may have parameters N 

and M which have to satisfy some relationship M*N = P) 
• A way to indicate that particular parameter choices are not allowed; this could 

happen if machine-learning software was generating parameter values. 

At a higher level we need the ability to group parameters for the following reasons: 

1. So we can describe which parameters should be treated as dependent for 
tuning purposes.  All parameters are likely to be dependent to some degree but 
to cut down the search space and to aid understanding it will be useful to have 
the ability to declare parameters as independent. 

2. So we can tune over a subset of parameters. 

3.3 Parallel	
  autotuning	
  features	
  
To some extent traditional serial autotuning techniques can be applied to the parallel 
domain. We can use any features we have to choose amongst implementation choices 
at the routine or block level to choose different ways to implement parallel operations.  
However there is scope to move beyond this and more directly address parallel 
aspects of an application, for example to target standard patterns (stencils for example) 
or address data movement. These two aspects are where the DSL should have most 
utility as we expect to move beyond mere tuning choice parameterization. The other 
topic is that of decomposition and runtime process and thread distribution choices.  
These topics are considered in this subsection. 

3.3.1 Stencil	
  computation	
  	
  	
  
A stencil computation is a core component of some algorithms and comprises a 
distributed calculation on a grid.  On a local level this typically equates to an iteration 
encompassing data movement (to move data from other processors) and a local 
computation partly involving data that has been moved.  The classic examples are 
simple iterative schemes to solve for example the Laplace equation. 

Stencils are described at a very high level and require an appropriate infrastructure to 
manage the decomposition and communication.  Our approach will be to tackle stencils 
via aggregate data movement primitives described below.  It would be a bonus to 
integrate somehow with software that can optimize stencil computations. 

3.3.2 Data	
  movement	
  primitives	
  
The idea here is to think about a particular pattern of computation that we think is 
lower-level than for example the stencil but will cover more real application usage.  
These primitives could, for example, address the data movement (halo exchange) that 
we see in stencil computation but be more general.  One approach we want to 
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investigate is to describe locations in the code where data could be communicated and 
locations where that data needs to be available.  The autotuning infrastructure can use 
various choices on how that movement can take place to optimize the communication 
(likely to be the most expensive part).  Choices that would need to be made would be 
the use of non-blocking communications, use of buffers and synchronization. 

3.3.3 Process	
  placement	
  
By process placement we mean the ability to vary, for example, the number of 
processes and threads in a multi-process programming model.  Also the mapping of 
processes to the hardware is something that can be varied.  For GPU models we can 
vary the decomposition to the GPU (grid dimensions, number of threads etc.). 

This is more of a runtime concern for some programming models so would be part of a 
runtime configuration. 

3.4 Build	
  description	
  and	
  control	
  
We need to allow an autotuner to control the build process.  There are various aspects 
to this. 

We need to be able to describe how parameters defined in the global configuration can 
make it into the build process.  For example one scenario is that they are passed into a 
Makefile as variables that appear as –D options in compilations.  There should be 
enough flexibility that a script can be provided to enable this integration for a more 
general build infrastructure. 

There should be a way to name or tag any output binary with a tuning build for a set of 
parameters.  Note also that we need to define which parameters relate to a new build 
of a binary as we will have to rebuild if we vary those parameters. 

We should describe how we can call a clean script provided for the application build. 

We also need to describe compiler flag optimization; this is where we explore a set of 
compiler options applied to many or some source files. 

In order to build a version of the application for a specific set of tuning parameters 
defined in DSL embedded in source we need to either parse the DSL with a DSL-
capable compiler or process the source files appropriately for a specific set of tuning 
parameters and pass the resulting source into the build. 

Our approach needs to be flexible and not mandate new and invasive build 
procedures. 

3.5 Runtime	
  information	
  and	
  control	
  
We need a way to describe how to run the application. 

Some parameters may map to an input file for the application.  We should provide a 
standard format file for this and also allow a script to create the expected input for the 
application. 

One part of this is a correctness check where we can optionally determine that a run 
was successful; there would be no point in optimizing for the fastest incorrect run! 

3.6 Interfaces	
  to	
  tools	
  and	
  components	
  
In order to provide a general autotuning framework there are some components that 
are essential or which it would be useful to interoperate with.  This means we can 
describe a modular structure which should be more attractive to potential users. 

3.6.1 Parameter	
  Optimization	
  
This is a core component of an autotuner and can be as simple as an exhaustive 
search of the parameter space, or as complex as a full machine-learning environment. 

There are two running scenarios that should be supported as outlined below: 
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Parameter	
  space	
  optimization	
  
This is where the tuning process finds the optimal parameters from the 
parameter space. 

Parameter	
  space	
  exploration	
  
This is a variation on the above where some parameters are characterizations 
of the application run, for example problem sizes.  The tuner would explore the 
remaining parameter space and a machine learning system could then build a 
model to find the optimal set of tunable parameters from the characterization 
parameters.  Note that there are compilation systems that work like this (the 
features are program fragments). 

To support these two scenarios we need the ability to run across the whole parameter 
space or to optimize all or part of the parameter space. 

Provision should be made to call a plugin tuner which would accept the parameter 
definitions and control the tuning process.  This would have to be some sort of 
“delegated control interface” such that the tuner passes back information on which set 
of parameters to use for the next run as it explores the parameter space to find the 
minimum.  Some state will have to be maintained by the tuner and possibly by the 
overall autotuner. 

We also need provision to send the results of an exploration characterization space to 
an ML system and integrate the results back into the build so that we can either choose 
an appropriate binary for a set of characterization parameters or optimize individual 
routines for relevant characterization parameters as noted below in section 3.6.2. 

The core configuration should describe the primary metric for optimization and what 
that optimization is.  Additional secondary metrics (for example performance counter 
data) should be optionally provided to the optimizer. 

We should be able to incorporate compiler option tuning into a generic optimizer by 
having labels as independent tuning parameters. 

This process can and will involve many compilations and for some applications this will 
be time consuming.  The design should minimize the number of builds required to 
explore the tuning space. 

3.6.2 Machine	
  learning	
  matcher	
  
In order to produce a library routine or application that is tuned for a range of scenarios 
this is an important component.  The purpose of the “matcher” as we have termed it is 
to build a mapping from characterization parameters into a model that predicts the best 
set of tuning parameters for a given choice of characterization parameters.  An 
interface is required that sends the tuning experiment results to the matcher and 
accepts back the model in a form that can be incorporated into a library interface or 
some sort of runtime launch.  At its most complex, the matcher could be a machine 
learning[3][4] system using decision trees or some other technique. 

3.6.3 Library	
  tuners	
  
One technology that is relatively mature is the library tuner that can produce optimal 
code for a library routine for a given architecture and set of input parameters.  We 
should support this aspect of tuning in the following ways: 

1. Allow grouping of parameters and their independent tuning for some source 
subset (the library routine). 

Library tuning fits into the overall architecture as follows.  The DSL describes the tuning 
location, the characterization parameters and the tuning parameters at the call site.  
The framework explores the characterization space and passes the result to the ML 
system.  The ML system then creates an interface routine that maps the 
characterization parameters to the optimal choice of optimization parameters.  Note 
that for this to work at runtime the optimization parameters must be runtime parameters 
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or we need a mechanism to create multiple versions of the library routine (which might 
be possible). 

It is likely that library tuning will be a separate component of whole-application tuning 
and could potentially be used to tune implementation of parallel data movement 
routines (like MPI collectives). 

3.6.4 Serial	
  compilation	
  and	
  compiler-­‐based	
  tools	
  
A crucial aspect of application performance is the optimal compilation of source code 
into machine instructions.  Performance-critical code sections typically involve loop 
nests and require the compiler to apply transformations such as loop unrolling and 
blocking for cache along with decisions concerning register use and instruction 
scheduling.  Some specific tunable aspects are unroll length, prefetch length, prefetch 
depth, loop order and blocking factors. 

We need to decide to what extent we want to support this aspect of tuning and we can 
consider various capabilities: 

1. We support the programmer in manually implementing tuning by using the 
general framework to tune for parameters that control loop transformations (our 
framework should at least provide this but it puts the onus very much on the 
programmer to do all the work. 

2. We provide DSL to allow the programmer to control loop transformations and 
arrange for these to be mapped to implementation-specific compiler directives 
or we generate source to manually implement the options. 

3. We have a compilation system that can operate at the IR level and accept 
transformation instructions in terms of the IR or alternatively can output its 
tuning choices in such a way that we can mandate it picks one of those choices. 

4. We treat compiler-based tuning as something separate. 

Our initial approach is to support options 1, 3b and 4 and work towards supporting 
option 2 in the course of the project if we can add any value above existing compiler 
autotuning projects. 
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4 Implementation	
  and	
  DSL	
  specification	
  
In this section we consider which choices we have to make or have already made (or 
have deferred) in implementing a DSL/XDSL that meets the requirements previously 
outlined. 

The most high-level choices to be made are the style of the DSL and the 
implementation of the global configuration; various choices are possible[5].  The most 
flexible approach is going to be a DSL that is a first class addition to the language in 
use (primarily C and Fortran for Exascale applications).  An alternative is to use 
directives within application source. 

Our initial approach will be to define a DSL with a view to an initial mockup 
implementation at the end of the project that would parse source and generate 
compilable source that did not require extra compiler infrastructure beyond standard 
language support.  As a result this document will outline initial syntax in the form of 
directives/pragmas. 

4.1 Software	
  Architecture	
  
The most appropriate architecture would seem to be to have an overall controlling 
application which reads the global configuration and controls the whole tuning process.  
This application would be responsible for building and running the application and 
interfacing with the optimizer (a separate component). (We will mock-up an application 
to do this by the end of the project using a scripting language.) 

 
Figure 1: Tuning Architecture – high level view 

The components shown in Figure 1 implement the scenarios outlined in the 
requirements section 3.1.1 as follows.  The autotuner component controls the whole 
process and starts by reading DSL in application source files and a global configuration 
file.  The autotuner will either scan all application source or call a special script which 
would cause a supplied preprocess script to be run over the application source.  The 
autotuner would then decide if a simple tuning run or characterization space run was 
required.  To accomplish a tuning run the source is appropriately preprocessed (or just 
compiled) and an optimization process organized.  Build and run scripts manage the 
build and run process and the optimization component can help streamline the search 
for the best tuning parameters.  If a characterization run is undertaken then the 
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matcher is called to build a model that maps characterization parameters to the 
appropriate tuning parameters.  The output from this could be used to either build 
optimal versions of specific routines or to choose from alternative application binaries.  
How this process is controlled and implemented is outlined in subsequent sections. 

We expect to be able to provide a specimen mock-up implementation that we can use 
to test the architecture by the end of the project.  The optimizer can be implemented as 
an exhaustive search and the matcher can generate a closest match. 

Our intention would be to use Ruby for the mock-up. 

NOTE: Although we may define a compiler-parsed DSL by project completion we are 
not providing compiler infrastructure to compile it. 

4.2 Overall	
  tuning	
  configuration	
  
The overall tuning configuration is described in a configuration file with sections for the 
various parts of the configuration (build, run etc.).  This file will be defined in two styles, 
text and XML.  The XML form will be described at a later stage but would closely follow 
the text syntax described here. 

Syntax (text): 
begin configuration 
 <configuration entity> 
end configuration 

Allowable configuration entries are tuning target, tuning scope, previous statefile and 
logfiles. 

4.2.1 Tuning	
  target	
  and	
  scope	
  
This section describes the objective for the optimization of parameters and how target 
metrics are obtained from an application run. 

begin tune 
 <tune entity> 
… 
end tune 

where the tune entity is: 
mode: tune | characterize 
characterize-params: param-list | collection 
characterize-param-source: parameter [ file | export ] 
characterize-param-file: filename 
characterize-param-sets: number 
characterize-maxruns: number 
target: min|max 
scope: param-list | collection 
metric-source: file | stdout | runtime 
metric-placement: lastline | lastnumber| validation 

If the mode is set to “tune” then we will optimize over the tune-scope parameters.  If the 
mode is set to characterize then we will do a characterization run.  For a 
characterization run the set of characterization parameters to use can come from 
various places as defined by the characterize-xxx settings.  The characterization 
parameters could be just defined as normal parameters with ranges.  They could come 
in as a set of values from a file of keyword-value pairs, one set per line or be exported 
from a run of the application.  If the characterization values come from the application 
then the number of runs needs to be defined.  The matcher feedback options define if 
the matcher is supposed to provide a wrapper for library tuning or produce a script to 
produce whole-program tuning. 

The target entry defines how the optimizer should optimize the runtime metric.  The 
source of that metric can be from a named file, standard out or the runtime.  The metric 
can be obtained from the last line of a file, be the last recognizable number in a file or 
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can be output from a validation script executed after a single tuning run.  The following 
additional statement defines the location of the metric file. 

postrun-metric-file: filename 
 

The metric can also be obtained from the validation output (see section 4.6). 

The scope statement allows us to restrict the tuning session to part of the parameter 
space. 

4.2.2 Previous	
  state	
  
In order to cater for incorporation of previous state the following commands are 
defined: 

use-previous-state: true | false 
previous-state-file: filename 

 
Optionally a filename can be given which will be used to store previous state.  This 
would allow the continuation of a previous tuning session. 

4.2.3 Logfiles	
  
A log statement directs progress and state information to specified locations. 

progress-log: filename 

 

4.3 Tuning	
  parameters	
  and	
  relationships	
  
The properties of tuning parameters can be described as part of the overall 
configuration (appropriate for runtime parameters for example) or can be declared in 
source DSL. 

4.3.1 XDSL	
  tuning	
  parameter	
  definition	
  
The configuration contains a section where we define tuning parameters, their ranges 
constraints and aggregation.  The parameters section includes various parts: 

begin parameters 
 begin typing 
  <type-entry> 
 … 
 end typing 
 begin constraints 
  <constraint-entry> 
  … 
 end constraints 
 begin collections 
  <collection-entry> 
   … 
 end collections 
 begin dependencies 
  depend: <depend-list> 
 end dependencies 
end parameters 
 

The typing section allows parameters to be typed as int, real or label, more specifically: 
type-entry is  type name 
type       is  int | real | label 

For example: 
int np 
int m 
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int Q 
label method 

The set of allowed values of a parameter are defined in the constraints section.  This 
supports specific sets of values, ranges, parameter relationships and legality 
constraints. 

Constraint-entry is range | product | constraint | default 
range is value-list | value-range [ default value ] 
default is value 
value-range is value-list | value triplet 
constraint is logical expression | assignment 

Some examples are: 
range N 1-100 
range M 20,40,60 
range M2 20:60:20 
range NB 100,110,120,130,140,150 default 120 
range opt1 –O1,-O2 
range threads 1,4 
range nppn 1,2,4 
range method buffer, nobuffer 
product OPTa.c opt1 {-m32,-m64} 
constraint M*N < NP 
constraint Q = P / N 

The default value is used when the parameter in question is not being varied by the 
tuning (otherwise the first value in the list or range is chosen).  This default value can 
be overridden in the tuning section. Note that a constraint as an assignment means 
that the parameter that is the target of the assignment should be generated from the 
expression. 

Parameters may be grouped into collections: 
Blocksizes: M N 
decomposition: P Q 
runtime: np, threads, pagesize 

Note that collections may also be defined in the build and runtime configuration and 
some have special meanings. 

The dependency section allows us to say which parameters should be treated as 
dependent: depend-list is either a list of parameters or a list of collections. 

Note particularly the product definition which defines a product of the list of possibilities.  
Along with some (user-defined) naming convention understood by the build script this 
can be used to associate compile options with filenames by using the filename as part 
of the parameter name.  In the example we used OPTa.c which would be understood 
by a build script to define the current compile options (or additional options) to be used 
when compiling the file a.c. 

Runtime and build parameters are naturally defined in the global configuration but we 
provide a related syntax to define parameter types and ranges in the source DSL as 
outlined below. 

4.3.2 DSL	
  tuning	
  parameter	
  definition	
  
Tuning parameters can also be declared in source DSL.  With directive syntax we use 
a tune sentinel as follows: 

!dir$ tune  
#pragma tune … 

The syntax can mirror the syntax described above but with the tune sentinel 
prepended.  As an alternative we allow the all-in-one syntax: 

#pragma tune parameter n type int range 10,20  
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For scoping, the default situation would be to assume that parameters have a scope of 
the next use of the variable and hence the autotuner (preprocessor) will insert an 
assignment for the specific value of the parameter just after the directive. 

4.4 Parallel	
  Autotuning	
  Features	
  
This section addresses tuning specific to a parallel application.  Note that the generic 
framework can of course be used to do this by parameterization of control flow. 

The following subsections address specific aspects of parallel tuning. 

4.4.1 Stencil	
  computation	
  
This is the highest level aspect of parallel tuning that we hope to address. 

A stencil is an operation on a grid expressed as updates to grid values as functions of 
nearby grid values.  Once this is distributed in parallel we can decompose into local 
computation and a communication phase to move edge data that is required for 
computation on other processes.  There are various ways to organize this and a stencil 
approach defines the problem generally leaving the details to the framework.  
We support stencils by using the pattern feature of data movement primitives. 

4.4.2 Data	
  movement	
  primitives	
  
Data movement primitives allow us to express parallel data movement and have the 
autotuner explore the best way to do this.  This is implemented as follows: 

1. We use DSL to optionally define patterns of data movement in a aggregate 
way. 

2. We place DSL in source at points that data is available to be communicated 
and where it needs to be available. 

Data movement patterns could be for example an alltoall pattern or a halo-swap 
communication pattern. 

The DSL to accomplish this looks like the following: 
#pragma tune pattern label mylabel ptype M N pmodel  

#pragma tune label dlabel var available 
#pragme tune label dlabel var available 

… compute… 
 
#pragma tune label dlabel var required 
 

The pattern type (ptype) specifies one of predefined (or user supplied) patterns and this 
particular pattern is labelled with mylabel by the programmer.  The pattern data 
dependencies are defined by the dlabel clauses as appropriate for the pattern.  So to 
give an example we assume the availability of a 2D HALO pattern and the DSL would 
look like: 

#pragma tune pattern label myhalo type HALO_2D M N MPI 
myrank 
#pragma tune myhalo left A(1:n) available  
#pragma tune myhalo right B(1:n) available 
 
… compute 
 
#pragma tune myhalo left B(1:n) required 

A range of available patterns will be predefined (or potentially user-supplied). 

This idea can be used at a simpler level to just move data between locations.  We will 
need to experiment with these ideas and work on the restrictions on what restrictions 
will be required in the source for this to work.  Note that a pattern may require 
information from the program, in this case the global decomposition (M,N) and the 
variable containing the local rank (because we will use MPI). 
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4.4.3 Process	
  Placement	
  
A parallel application brings a new level of complexity at launch beyond a serial 
application.  We can for example decide how many processes to use, where those 
processes are located and how they are mapped to the hardware.  For a hybrid 
application (for example MPI application with OpenMP threading) we can trade 
processes for threads within the same total thread count and have various options for 
thread affinity.  The framework of parameters can be used to explore this tuning space 
as these are all runtime parameters and just need mapped to the right environment 
variables or application launch options by the run script. 

One aspect we will look at in the next stage of the project is rank reordering where we 
remap ranks on launch.  To do this intelligently requires information about application 
topology. 

4.5 Build	
  description	
  and	
  control	
  
This would be a section of the global configuration file where we define the interface to 
the build process: 

begin build 
 prescan-type: directory | script 
 build-preprocess: directory | implicit 
 command: shell-command 
 command-param-file: filename 

  begin collection 
   BUILD: N M 
  end collection 
 
end build 

We need to build the application taking account of the current set of tuning parameters.  
Because the source can contain DSL and we start by implementing this as source 
directives we need a mechanism to parse the DSL source.  The prescan-type setting 
gives a choice of scanning a whole directory tree looking for source with DSL or calling 
a script that will cause the source to be scanned (this script could be the build 
command).  Note that this script is called with an argument that provides a script which 
converts source to compilable source. 

The initial scan is just looking for definitions of tuning parameters. 

When the actual build is done we also need to preprocess, and the build-preprocess 
setting defines again if a scan is undertaken or if the normal build will use the 
preprocess script. 

The build progresses by running a shell-command which should exit with 0 exit code to 
indicate a successful build.  The parameter list can be provided as a keyword list or as 
a file containing names and values for the parameter set.  The parameters can be 
referenced as $param in the command.  Here is an example: 

begin build 
 command: make N=$N P=$P 
end build 

Note that the collection BUILD has a special meaning and defines the set of 
parameters that would require a new build.  This collection can be defined here or in 
the global configuration.  If this is not defined then it is assumed that any change of 
parameters will require a new build. 

Each build has an associated unique tag generated by the autotuner and this is 
available to the build command as $build_tag.  This could be used for example as part 
of the executable name.  The same tag is available to the run script. 
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4.6 Runtime	
  information	
  and	
  control	
  
This section of the global configuration describes the run process and is similar to that 
for the build process: 

begin run 
 command: shell-command 
 command-param-file: filename 
 validation: stdout | script 
 independence: none | n 
end run 

The application is run by the command script (which should return a successful exit 
status) and the current parameter values will be provided (optionally) in the command 
parameter file.  The run can be validated by supplying data at the end of the standard 
output or providing the validation data as the output of a script.  In particular the syntax 
of this should be: 

  tune run status validation-status [ metric value ] 
  validation-status is validated | failed  

Only a validation status of validated indicates a successful run.  Optionally the 
validation metric may be defined here.  Note that because the validation metric can be 
obtained from a script this allows extra flexibility, for example to obtain metrics that 
relate to power consumption, something that is not likely to be available to the 
application. 

The $build_tag is available to the run command. If more than one instance of the 
application can be run at the same time then the extent of execution parallelism can be 
declared via the independence setting. 

Environment variables can be provided to the run by including parameters in a 
collection called RUN_ENVARS.  If this is done then at runtime the parameters will be 
mapped to environment variables of the same name, if the parameter is set to the 
value unset then the environment variable will not be defined. 

4.7 Interfaces	
  to	
  tools	
  and	
  components	
  
This section of the global configuration describes how we interact with external 
components.  This is part of the global configuration. 

4.7.1 Parameter	
  optimization	
  
This is where we describe the interface to the optimizer that explores the parameter 
space searching for the optimal set of parameters. 

We do this via a “delegated control” interface where we setup the optimizer and then 
act on its responses by running the application and returning the resultant metric to the 
optimizer.  Using this technique means that we only need the autotuner to understand 
how to optimize a set of parameters and not understand how to run the application. 

The control section is as follows: 
begin optimizer 
 command: shell-cmd 
 cycles: <integer> 
end optimizer 

The interaction with the optimizer proceeds as follows: 

It is sent a start command and the parameter configuration (types, ranges, constraints, 
objective and a pointer to a file containing previous history of optimizer runs). 

The optimizer should respond asking for a tuning run of the application for a given set 
of parameters.  The framework sends back the results of the tuning run by returning the 
primary metric along with any secondary metrics.  The process continues until the 
parameter space has been explored.  The cycles parameter limits how many times the 
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optimizer will be called, this would be used with a complex (intractable) search space 
and an optimizer that does not do exhaustive search in order to limit the computation. 

4.7.2 Machine	
  learning	
  matcher	
  
It is outside the scope of this project to implement a full machine learning system for 
the matcher component but our intention is describe the interface to this component for 
the full DSL specification.  In the mockup we may implement a simple closest match 
model and apply it to a library routine tuning example. 

4.7.3 Library	
  tuners	
  
In this section we are concerned with the capability of specifically tuning a 
subroutine/function, something we would do if producing a library or optimized routines. 

Our implementation uses the characterization run where the characterization 
parameters map to input parameters to the routine in question.  So for example 
consider that we wish to tune a routine NORMALS which accepts arguments M,N.  
This function includes DSL to expose tuning choices with parameters B,L,O. 

We perform a characterization run over values of M,N (assume for now these can be 
program input). The matcher produces a model mapping any M,N to the optimal 
choices or B,L,O and we instantiate that logic into a wrapper to call NORMALS 
appropriately.  So in DSL this would look like: 

#pragma tune library NORMALS characterization-params M, N  
tune B,L,O wrapper NORMALS_wrap 

This declares the parameters and names a wrapper routine that can be inserted after 
the matcher has run. 

Additional features allow capturing the values of variables from within the program and 
supporting timing: 

#pragma tune library NORMALS characterization-params M,N 
tune B,L,O wrapper NORMALS EXPORT M,N timer 

This would cause the program to be instrumented to export the M,N values and 
implement a timer which could be used as the tune metric. 

 

4.7.4 Compiler-­‐based	
  tools	
  
As discussed in section 3.6.4 this is a complex area and initially we will only support 
this by parameterized control flow and describing an interface whereby we could 
interact with a compiler that can expose its tuning choices. 

For the latter we expect the compiler to create a companion file with the name 
“file.ctune” which contains the following DSL: 

#pragma tune compiler-export 
#pragme tune… 

where the second and subsequent lines define tuning parameters. 

The compiler should accept as input a file “file.ctune.in” in the same directory that sets 
those parameters. 
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5 Sample	
  Configurations	
  
Here we provide a couple of examples one with pure parameter tuning and one using 
source DSL. 

5.1 Build	
  and	
  runtime	
  parameter	
  examples	
  
In this example consider an application that has one tunable parameter, some 
blocksize (NB) and that this can be set on the command line. 

A possible autotuner configuration to tune for NB is as follows: 
begin configuration 
 begin tune 
  mode: tune 
  scope: NB 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  int NB 
 end typing 
 begin constraints 
  range NB 80,90,100,120,140 
 end constraints 
end parameters 
begin build 
 command: make 
end build 
begin run 
 command: ./solver NB=$NB 
end run 
 

We could have used a run script and picked up the value of NB from a provided input 
file (command-param-file) or from an environment variable (the RUN_ENVAR 
collection). 

In the next example we assume that we have an additional tuning choice which is 
controlled at compile time by a preprocessor variable USE_EXTRA_BUFFER: 

begin configuration 
 begin tune 
  mode: tune 
  scope: NB EXTRA_BUFFERING 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  int NB 
  label EXTRA_BUFFERING 
 end typing 
 begin collections 
  BUILD: EXTRA_BUFFERING 
 end collections 
 begin constraints 
  range NB 80,90,100,120,140 
  range EXTRA_BUFFERING “YES”,”NO” 
  depends NB EXTRA_BUFFERING 
 end constraints 
end parameters 
begin build 
 command: make EXTRA_BUFFERING=$EXTRA_BUFFERING 



 

© CRESTA Consortium Partners 2011  Page 18 of 21 

 

end build 
begin run 
 command: ./solver NB=$NB 
end run 

The differences are that we added the new parameter and passed it into the build.  We 
included it in the BUILD collection to make sure that any changes cause a new build 
and we marked NB and EXTRA_BUFFERING as dependent so that the optimizer 
would not treat them independently in tuning. 

5.2 Example	
  of	
  DSL	
  in	
  source	
  
This is a simple example to show how a source file may have DSL to control values of 
a variable. 

!dir$tune parameter bfac type int range 20,40,80 
do jb=1,n,bfac 
 do ib=1,m,bfac 
  do j=jb, min(jb+bfac,n) 
  do i=ib, min(ib+bfac,m) 
   … 
   end do 
   end do 
 end do 
end do 
 

The global configuration would name bfac as a tuning parameter. 

5.3 Compiler	
  flag	
  tuning	
  
This example shows how tuning of compiler flags can be achieved with the framework.  
Assume that there are various source files main.c, solver.c, stats.c and that we wish to 
explore the use of certain options in the build.  A sample configuration is shown below: 

begin configuration 
 begin tune 
  mode: tune 
  scope: copts 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  label OPT_strength 
  label OPT_fp 
  label OPT_default 
  label OPT_num 
  label FOPT_main.c  
  label FOPT_solver.c 
  label FOPT_stats.c 
 end typing 
 begin constraints 
  range OPT_base –m64 
  range OPT_fp –fp_model=strict,-fp_model=precise 
  range OPT_strength –O2,-O3 
  product OPT_num OPT_fp OPT_strength 
  range FOPT_main.c OPT_num 
  range FOPT_solver.c OPT_num 
  range FOPT_stats.c OPT_num 
 end constraints 
 begin collections 
  BUILD: OPT_base FOPT_main.c FOPT_solver.c FOPT_stats.c 
 end collections 
 begin dependencies 
  depend: OPT_fp OPT_strength 
 end dependencies 
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end parameters 
begin build 
 command: make 
end build 
begin run 
 command: ./program 
end run 

 

In this case the assumption is that the Makefile is expecting to use $OPT_base and the 
FOPT_xxx parameters to set the compilation options for each file.  Note that in this 
example the same options are applied to the files, but if we split OPT_num to 
OPT_num1 and OPT_num2 and made those independent then each file would get 
distinct choices of OPT_fp and OPT_strength when the parameter search was done. 
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Annex	
  A. Deferred	
  Work	
  
This document describes the initial DSL specification which will be refined based on 
experience gained from the CRESTA applications.  The following areas are deferred 
for future study: 

 
Table 1: Future work 

DSL constructs In-place DSL parsing, 
Scoping and null-case (ignore tuning) 
templates (based on application use) 

Runtime aspects Rank reordering, 
template runtime 
 

Mockup implementation Basic parameter exploration scripts 
Basic optimizer 
Compiler flags 

DSL XML Format  

Other project interactions What can we learn from other projects? 
What software (ML, optimizers etc.) can 
we interoperate with and how? 

Project interactions Compiler support, 

Static autotuning or runtime planning? 

CRESTA co-design Nek5000 and parallel FFT perhaps? 

Mock-up  

 

 


