

Copyright © CRESTA Consortium Partners 2011

D3.6.1	
 –	
 	

Domain	
 Specific	
 Language	
 (DSL)	
 for	

expressing	
 parallel	
 auto-­‐tuning	

WP3:	
 Development	
 environment	

Due date: M12

Submission date: 30/09/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization KTH

Version: 1.0

Status Final

Author(s): Harvey Richardson (CRAY)

Reviewer(s) Dmitry Khabi (USTUTT), Xavi Aguilar (KTH)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 31/7/2012 First version Harvey Richardson
(CRAY)

0.2 7/8/2012 Small revisions, added product Harvey Richardson
(CRAY)

0.3 15/8/2012 Configuration parameters, more detail on
library and compiler aspects

Andrew Turner (UEDIN)

0.4 29/8/2012 Reverted to template structure Harvey Richardson
(CRAY)

0.5 30/8/2012 References, examples, review version Harvey Richardson
(CRAY)

1.0 17/9/2012 Final draft with incorporated review
comments

Harvey Richardson
(CRAY)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 PURPOSE	
 ..	
 2	

2.2	
 RELATED	
 WORK	
 ...	
 2	

2.3	
 SCOPE	
 AND	
 OBJECTIVES	
 ...	
 2	

2.4	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 3	

3	
 REQUIREMENTS	
 ...	
 4	

3.1	
 OVERALL	
 TUNING	
 CONFIGURATION	
 ..	
 4	

3.1.1	
 Tuning	
 Control	
 ..	
 4	

3.1.2	
 Tuning	
 target	
 ..	
 4	

3.1.3	
 Tuning	
 scope	
 ...	
 4	

3.1.4	
 Previous	
 state	
 ...	
 5	

3.1.5	
 Logfiles	
 ..	
 5	

3.2	
 TUNING	
 PARAMETERS	
 AND	
 RELATIONSHIPS	
 ...	
 5	

3.3	
 PARALLEL	
 AUTOTUNING	
 FEATURES	
 ...	
 5	

3.3.1	
 Stencil	
 computation	
 ..	
 5	

3.3.2	
 Data	
 movement	
 primitives	
 ...	
 5	

3.3.3	
 Process	
 placement	
 ..	
 6	

3.4	
 BUILD	
 DESCRIPTION	
 AND	
 CONTROL	
 ..	
 6	

3.5	
 RUNTIME	
 INFORMATION	
 AND	
 CONTROL	
 ..	
 6	

3.6	
 INTERFACES	
 TO	
 TOOLS	
 AND	
 COMPONENTS	
 ...	
 6	

3.6.1	
 Parameter	
 Optimization	
 ...	
 6	

3.6.2	
 Machine	
 learning	
 matcher	
 ...	
 7	

3.6.3	
 Library	
 tuners	
 ..	
 7	

3.6.4	
 Serial	
 compilation	
 and	
 compiler-­‐based	
 tools	
 ..	
 8	

4	
 IMPLEMENTATION	
 AND	
 DSL	
 SPECIFICATION	
 ..	
 9	

4.1	
 SOFTWARE	
 ARCHITECTURE	
 ...	
 9	

4.2	
 OVERALL	
 TUNING	
 CONFIGURATION	
 ..	
 10	

4.2.1	
 Tuning	
 target	
 and	
 scope	
 ...	
 10	

4.2.2	
 Previous	
 state	
 ...	
 11	

4.2.3	
 Logfiles	
 ..	
 11	

4.3	
 TUNING	
 PARAMETERS	
 AND	
 RELATIONSHIPS	
 ..	
 11	

4.3.1	
 XDSL	
 tuning	
 parameter	
 definition	
 ..	
 11	

4.3.2	
 DSL	
 tuning	
 parameter	
 definition	
 ..	
 12	

4.4	
 PARALLEL	
 AUTOTUNING	
 FEATURES	
 ..	
 13	

4.4.1	
 Stencil	
 computation	
 ..	
 13	

4.4.2	
 Data	
 movement	
 primitives	
 ...	
 13	

4.4.3	
 Process	
 Placement	
 ..	
 14	

4.5	
 BUILD	
 DESCRIPTION	
 AND	
 CONTROL	
 ..	
 14	

4.6	
 RUNTIME	
 INFORMATION	
 AND	
 CONTROL	
 ..	
 15	

4.7	
 INTERFACES	
 TO	
 TOOLS	
 AND	
 COMPONENTS	
 ...	
 15	

4.7.1	
 Parameter	
 optimization	
 ..	
 15	

4.7.2	
 Machine	
 learning	
 matcher	
 ...	
 16	

4.7.3	
 Library	
 tuners	
 ..	
 16	

4.7.4	
 Compiler-­‐based	
 tools	
 ..	
 16	

5	
 SAMPLE	
 CONFIGURATIONS	
 ..	
 17	

5.1	
 BUILD	
 AND	
 RUNTIME	
 PARAMETER	
 EXAMPLES	
 ...	
 17	

5.2	
 EXAMPLE	
 OF	
 DSL	
 IN	
 SOURCE	
 ..	
 18	

5.3	
 COMPILER	
 FLAG	
 TUNING	
 ..	
 18	

6	
 REFERENCES	
 ..	
 20	

ANNEX	
 A.	
 DEFERRED	
 WORK	
 ...	
 21	

Copyright © CRESTA Consortium Partners 2011

	

Index	
 of	
 Figures	

Figure 1: Tuning Architecture – high level view .. 9	

Index	
 of	
 Tables	

Table 1: Future work ... 21	

	

© CRESTA Consortium Partners 2011 Page 1 of 21

1 Executive	
 Summary	

This document describes a domain-specific language (DSL) that serves as the central
component of an autotuning framework for the tuning of parallel applications. We
describe what features the DSL was designed to provide, how it fits within a wider
autotuning framework and outline the initial implementation.

Our initial approach was to start from scratch without detailed reference to, or
consideration of, existing autotuning technology but starting from the basis of a specific
set of requirements we considered important. One reason for this is that the remit of
the CRESTA project is to define a distinct European approach. We also need to be
sure that we can be in control of (or define) an environment that will support particular
aspects of tuning parallel applications.

Subsequently we will refine the DSL based on experience with the CRESTA co-design
applications and publish a final specification for project month 30.

The following sections introduce the outline the scope and objectives of WP3 task 3.2.1
giving an overview of what the actual deliverable addresses. We then consider the
objectives for the DSL and move on to describing the specification and how it would be
implemented within an autotuning framework.

© CRESTA Consortium Partners 2011 Page 2 of 21

2 Introduction	

The CRESTA WP3 work package contains a task (3.2) on Compiler and Runtime
Environments of which subtask (3.2.1) deals with autotuning, a technology that can
address the inherent complexity of the latest and future computer architectures. In the
context of this project, autotuning is the process by which an application may be
optimised for a target platform by making automated optimal choices of how the
application is built and deployed. Tuning choices can be made that target algorithms,
source code (optional branches, data flow, loop transformations etc.), compilation and
application launch. We can express both the tuning choices and controls for an
autotuning framework via the use of a domain specific language (DSL) and this is the
focus of this specification.

The DSL we are developing can expose these choices within an application and
primarily concerns source mark-up; in particular we aim to address parallel tuning
aspects and interoperability with existing and future autotuning technology.

In subsequent sections we note how the work on the DSL fits in the wider context of
the project and note in more detail the requirements and implementation choices we
have made.

2.1 Purpose	

The purpose of this document is to provide an initial specification for the DSL.

2.2 Related	
 work	

One of the project partners (Cray) has extensive experience of production autotuning,
specifically for the generation of optimized scientific subroutine libraries[1]. This was, in
part, motivation for new unrelated work under CRESTA to research more general
library tuning and whole-application tuning of parallel applications.

The DSL described here would exist in a more general autotuning framework, some
components of which would be studied or provided within the CRESTA project. Work
on adaptive runtime and compiler autotuning are separate tasks in CRESTA. The DSL
will be subsequently developed in conjunction with the CRESTA co-design applications
and be informed by those application requirements in addition to other project activities.
This will happen later in the project.

2.3 Scope	
 and	
 objectives	

The DSL is primarily concerned with markup of tuning choices. These may be either
exposed by the programmer/user (for example algorithm choices, source optimization
choices, library choices, runtime choices) or may be implementation choices of higher
level programming “constructs” (for example stencils, communication patterns etc.).

The DSL principally targets the application developer and possibly those concerned
with application optimization. Runtime features may be of interest to the application
user. Use of the DSL should facilitate exploration of the application tuning space to
make it easier to produce an application optimized for a particular platform.

DSL statements can appear in various places: in source files or files associated with
source or in a configuration file describing the overall tuning process. The particular
aspects which would warrant placement in a global configuration file are the following:

1. Runtime choices (for example how many threads for a mixed-mode application)
2. Dependency information between tuning parameters
3. Convenience grouping of tuning parameters
4. Linking or disambiguating tuning parameters defined in multiple places in order

to fix their scope
5. Compiler options and build choices
6. Use of external tools/components for example compiler autotuners, parameter

optimization, machine learning matcher

© CRESTA Consortium Partners 2011 Page 3 of 21

7. Interfaces to above

Note that there is some overlap and you could embed DSL in application code that
could alternatively be placed in a configuration file. In addition, a global configuration
could augment DSL in source files, for example by adding additional scoping. For
subsequent sections we will use the term XDSL to indicate DSL that would more
naturally be placed in an external configuration file.

We will also consider control information that would be required in order to perform an
end-to-end autotuning session, this allows us to understand how the DSL would fit in a
wider context and would give us something that we can mock up at the end of the
project. We have also defined some components as external modules (for example a
parameter optimizer) because this gives us flexibility to build simple reduced-capability
implementations or interface to other software that can provide the required
functionality.

Note that a basic autotuning infrastructure could be useful in general code
development and testing, allowing a simple mechanism for the developer to explore
choices even if an intelligent tuning framework is not required.

Our aim is to support, at a minimum, applications that are written in C, C++ and Fortran
and use OpenMP and MPI in addition to selected single-sided or PGAS programming
models.

Autotuning is a wide area of research with many aspects[2], in particular a lot of work
has been done on autotuning compiler infrastructure; our focus is more on parallel
application tuning in the context of a general framework.

2.4 Glossary	
 of	
 Acronyms	

cronym Definition
D Deliverable
DSL
EC
ML
PGAS

Domain Specific Language
European Commission
Machine Learning
Partitioned Global Address Space

PM Project Manager/ Project Month
WP Work Package
XDSL
XML

External DSL
Extensible Markup Language

© CRESTA Consortium Partners 2011 Page 4 of 21

3 Requirements	

In this section we outline the requirements and objectives we had in designing the DSL
and begin by considering the overall tuning framework.

The DSL is a component of an autotuning framework and at the highest level we
assume that this framework can optimize an application over a set of tuning
parameters. Some parameters we term characterization parameters and may, for
example, map to input parameters relating to problem size. The other tuning
parameters relate to build and runtime optimization choices which we can choose to
give for example the best runtime. At its simplest, the autotuner framework can
optimize over the tuning parameters, at the most complex it can build routines and
applications choosing the best tuning parameters for a set of characterization
parameters.

In this section we consider which features the DSL needs to support and we categorize
them as follows:

• Overall tuning configuration information
• Details of tuning parameters and relationships
• Parallel autotuning features

o Stencils
o Data movement primitives
o Process placement

• Build information and control
• Runtime information and control
• Interfaces to tools/components

o Parameter optimization
o Machine-learning (ML) matcher interface
o Library tuners
o Serial compilation and Compiler-based tools (profile feedback and

autotuning)

For now we will not consider the syntax and placement details of DSL constructs.

3.1 Overall	
 tuning	
 configuration	

We need a way to control an overall tuning session, describe the objectives for a tuning
run, the parameter space and build and run details. It is an implementation decision as
to which aspects of the tuning configuration are described centrally or in application
files. The overall configuration should describe the following:

3.1.1 Tuning	
 Control	

This is where we describe what an autotuning run should do. There are likely two
scenarios:

1. Only tune across tuning parameters picking the best
2. Run tuning (over tuning parameters) for a set of characterization parameters

and process results with an ML system in order to build a tuned library or
application that can cater for a range of characterization parameters.

For option 2 we need to define or obtain the set of characterization parameters.

3.1.2 Tuning	
 target	

We need to be able to describe optimization for a target performance metric which
could be minimum execution time or related to some output from the application. This
should be flexible enough to support something like minimizing power consumption.

3.1.3 Tuning	
 scope	

It is very likely that we would want to tune for some subset of tuning parameters or
code base so some parameter grouping method should be provided to enable this.

© CRESTA Consortium Partners 2011 Page 5 of 21

3.1.4 Previous	
 state	

State from previous tuning sessions may be available; this section would describe how
this could be done. In order to interface to an external optimizer it would most likely be
a requirement to manage state.

3.1.5 Logfiles	

The tuning process should produce a log of progress to specified output streams/files.

3.2 Tuning	
 Parameters	
 and	
 relationships	

Various aspects of autotuning require that we set parameters within some range. This
enables us to optimize over fixed choices of code paths, parallel decompositions,
optimizations (for example blocking and unrolling) etc. To do so we need to define that
a parameter is a tuning parameter and describe any bounds and constraints.

The parameter definition should support

• Typing, to include integer, real, character and Boolean
• Definition of a range of values or a specified set of values
• Any constraints between parameters (for example we may have parameters N

and M which have to satisfy some relationship M*N = P)
• A way to indicate that particular parameter choices are not allowed; this could

happen if machine-learning software was generating parameter values.

At a higher level we need the ability to group parameters for the following reasons:

1. So we can describe which parameters should be treated as dependent for
tuning purposes. All parameters are likely to be dependent to some degree but
to cut down the search space and to aid understanding it will be useful to have
the ability to declare parameters as independent.

2. So we can tune over a subset of parameters.

3.3 Parallel	
 autotuning	
 features	

To some extent traditional serial autotuning techniques can be applied to the parallel
domain. We can use any features we have to choose amongst implementation choices
at the routine or block level to choose different ways to implement parallel operations.
However there is scope to move beyond this and more directly address parallel
aspects of an application, for example to target standard patterns (stencils for example)
or address data movement. These two aspects are where the DSL should have most
utility as we expect to move beyond mere tuning choice parameterization. The other
topic is that of decomposition and runtime process and thread distribution choices.
These topics are considered in this subsection.

3.3.1 Stencil	
 computation	
 	
 	

A stencil computation is a core component of some algorithms and comprises a
distributed calculation on a grid. On a local level this typically equates to an iteration
encompassing data movement (to move data from other processors) and a local
computation partly involving data that has been moved. The classic examples are
simple iterative schemes to solve for example the Laplace equation.

Stencils are described at a very high level and require an appropriate infrastructure to
manage the decomposition and communication. Our approach will be to tackle stencils
via aggregate data movement primitives described below. It would be a bonus to
integrate somehow with software that can optimize stencil computations.

3.3.2 Data	
 movement	
 primitives	

The idea here is to think about a particular pattern of computation that we think is
lower-level than for example the stencil but will cover more real application usage.
These primitives could, for example, address the data movement (halo exchange) that
we see in stencil computation but be more general. One approach we want to

© CRESTA Consortium Partners 2011 Page 6 of 21

investigate is to describe locations in the code where data could be communicated and
locations where that data needs to be available. The autotuning infrastructure can use
various choices on how that movement can take place to optimize the communication
(likely to be the most expensive part). Choices that would need to be made would be
the use of non-blocking communications, use of buffers and synchronization.

3.3.3 Process	
 placement	

By process placement we mean the ability to vary, for example, the number of
processes and threads in a multi-process programming model. Also the mapping of
processes to the hardware is something that can be varied. For GPU models we can
vary the decomposition to the GPU (grid dimensions, number of threads etc.).

This is more of a runtime concern for some programming models so would be part of a
runtime configuration.

3.4 Build	
 description	
 and	
 control	

We need to allow an autotuner to control the build process. There are various aspects
to this.

We need to be able to describe how parameters defined in the global configuration can
make it into the build process. For example one scenario is that they are passed into a
Makefile as variables that appear as –D options in compilations. There should be
enough flexibility that a script can be provided to enable this integration for a more
general build infrastructure.

There should be a way to name or tag any output binary with a tuning build for a set of
parameters. Note also that we need to define which parameters relate to a new build
of a binary as we will have to rebuild if we vary those parameters.

We should describe how we can call a clean script provided for the application build.

We also need to describe compiler flag optimization; this is where we explore a set of
compiler options applied to many or some source files.

In order to build a version of the application for a specific set of tuning parameters
defined in DSL embedded in source we need to either parse the DSL with a DSL-
capable compiler or process the source files appropriately for a specific set of tuning
parameters and pass the resulting source into the build.

Our approach needs to be flexible and not mandate new and invasive build
procedures.

3.5 Runtime	
 information	
 and	
 control	

We need a way to describe how to run the application.

Some parameters may map to an input file for the application. We should provide a
standard format file for this and also allow a script to create the expected input for the
application.

One part of this is a correctness check where we can optionally determine that a run
was successful; there would be no point in optimizing for the fastest incorrect run!

3.6 Interfaces	
 to	
 tools	
 and	
 components	

In order to provide a general autotuning framework there are some components that
are essential or which it would be useful to interoperate with. This means we can
describe a modular structure which should be more attractive to potential users.

3.6.1 Parameter	
 Optimization	

This is a core component of an autotuner and can be as simple as an exhaustive
search of the parameter space, or as complex as a full machine-learning environment.

There are two running scenarios that should be supported as outlined below:

© CRESTA Consortium Partners 2011 Page 7 of 21

Parameter	
 space	
 optimization	

This is where the tuning process finds the optimal parameters from the
parameter space.

Parameter	
 space	
 exploration	

This is a variation on the above where some parameters are characterizations
of the application run, for example problem sizes. The tuner would explore the
remaining parameter space and a machine learning system could then build a
model to find the optimal set of tunable parameters from the characterization
parameters. Note that there are compilation systems that work like this (the
features are program fragments).

To support these two scenarios we need the ability to run across the whole parameter
space or to optimize all or part of the parameter space.

Provision should be made to call a plugin tuner which would accept the parameter
definitions and control the tuning process. This would have to be some sort of
“delegated control interface” such that the tuner passes back information on which set
of parameters to use for the next run as it explores the parameter space to find the
minimum. Some state will have to be maintained by the tuner and possibly by the
overall autotuner.

We also need provision to send the results of an exploration characterization space to
an ML system and integrate the results back into the build so that we can either choose
an appropriate binary for a set of characterization parameters or optimize individual
routines for relevant characterization parameters as noted below in section 3.6.2.

The core configuration should describe the primary metric for optimization and what
that optimization is. Additional secondary metrics (for example performance counter
data) should be optionally provided to the optimizer.

We should be able to incorporate compiler option tuning into a generic optimizer by
having labels as independent tuning parameters.

This process can and will involve many compilations and for some applications this will
be time consuming. The design should minimize the number of builds required to
explore the tuning space.

3.6.2 Machine	
 learning	
 matcher	

In order to produce a library routine or application that is tuned for a range of scenarios
this is an important component. The purpose of the “matcher” as we have termed it is
to build a mapping from characterization parameters into a model that predicts the best
set of tuning parameters for a given choice of characterization parameters. An
interface is required that sends the tuning experiment results to the matcher and
accepts back the model in a form that can be incorporated into a library interface or
some sort of runtime launch. At its most complex, the matcher could be a machine
learning[3][4] system using decision trees or some other technique.

3.6.3 Library	
 tuners	

One technology that is relatively mature is the library tuner that can produce optimal
code for a library routine for a given architecture and set of input parameters. We
should support this aspect of tuning in the following ways:

1. Allow grouping of parameters and their independent tuning for some source
subset (the library routine).

Library tuning fits into the overall architecture as follows. The DSL describes the tuning
location, the characterization parameters and the tuning parameters at the call site.
The framework explores the characterization space and passes the result to the ML
system. The ML system then creates an interface routine that maps the
characterization parameters to the optimal choice of optimization parameters. Note
that for this to work at runtime the optimization parameters must be runtime parameters

© CRESTA Consortium Partners 2011 Page 8 of 21

or we need a mechanism to create multiple versions of the library routine (which might
be possible).

It is likely that library tuning will be a separate component of whole-application tuning
and could potentially be used to tune implementation of parallel data movement
routines (like MPI collectives).

3.6.4 Serial	
 compilation	
 and	
 compiler-­‐based	
 tools	

A crucial aspect of application performance is the optimal compilation of source code
into machine instructions. Performance-critical code sections typically involve loop
nests and require the compiler to apply transformations such as loop unrolling and
blocking for cache along with decisions concerning register use and instruction
scheduling. Some specific tunable aspects are unroll length, prefetch length, prefetch
depth, loop order and blocking factors.

We need to decide to what extent we want to support this aspect of tuning and we can
consider various capabilities:

1. We support the programmer in manually implementing tuning by using the
general framework to tune for parameters that control loop transformations (our
framework should at least provide this but it puts the onus very much on the
programmer to do all the work.

2. We provide DSL to allow the programmer to control loop transformations and
arrange for these to be mapped to implementation-specific compiler directives
or we generate source to manually implement the options.

3. We have a compilation system that can operate at the IR level and accept
transformation instructions in terms of the IR or alternatively can output its
tuning choices in such a way that we can mandate it picks one of those choices.

4. We treat compiler-based tuning as something separate.

Our initial approach is to support options 1, 3b and 4 and work towards supporting
option 2 in the course of the project if we can add any value above existing compiler
autotuning projects.

© CRESTA Consortium Partners 2011 Page 9 of 21

4 Implementation	
 and	
 DSL	
 specification	

In this section we consider which choices we have to make or have already made (or
have deferred) in implementing a DSL/XDSL that meets the requirements previously
outlined.

The most high-level choices to be made are the style of the DSL and the
implementation of the global configuration; various choices are possible[5]. The most
flexible approach is going to be a DSL that is a first class addition to the language in
use (primarily C and Fortran for Exascale applications). An alternative is to use
directives within application source.

Our initial approach will be to define a DSL with a view to an initial mockup
implementation at the end of the project that would parse source and generate
compilable source that did not require extra compiler infrastructure beyond standard
language support. As a result this document will outline initial syntax in the form of
directives/pragmas.

4.1 Software	
 Architecture	

The most appropriate architecture would seem to be to have an overall controlling
application which reads the global configuration and controls the whole tuning process.
This application would be responsible for building and running the application and
interfacing with the optimizer (a separate component). (We will mock-up an application
to do this by the end of the project using a scripting language.)

Figure 1: Tuning Architecture – high level view

The components shown in Figure 1 implement the scenarios outlined in the
requirements section 3.1.1 as follows. The autotuner component controls the whole
process and starts by reading DSL in application source files and a global configuration
file. The autotuner will either scan all application source or call a special script which
would cause a supplied preprocess script to be run over the application source. The
autotuner would then decide if a simple tuning run or characterization space run was
required. To accomplish a tuning run the source is appropriately preprocessed (or just
compiled) and an optimization process organized. Build and run scripts manage the
build and run process and the optimization component can help streamline the search
for the best tuning parameters. If a characterization run is undertaken then the

parse / preprocess

Autotuner

Application

Configuration

DSL

DSL

 script

build

 script

run

 optimizer

matcher

sources

© CRESTA Consortium Partners 2011 Page 10 of 21

matcher is called to build a model that maps characterization parameters to the
appropriate tuning parameters. The output from this could be used to either build
optimal versions of specific routines or to choose from alternative application binaries.
How this process is controlled and implemented is outlined in subsequent sections.

We expect to be able to provide a specimen mock-up implementation that we can use
to test the architecture by the end of the project. The optimizer can be implemented as
an exhaustive search and the matcher can generate a closest match.

Our intention would be to use Ruby for the mock-up.

NOTE: Although we may define a compiler-parsed DSL by project completion we are
not providing compiler infrastructure to compile it.

4.2 Overall	
 tuning	
 configuration	

The overall tuning configuration is described in a configuration file with sections for the
various parts of the configuration (build, run etc.). This file will be defined in two styles,
text and XML. The XML form will be described at a later stage but would closely follow
the text syntax described here.

Syntax (text):
begin configuration
 <configuration entity>
end configuration

Allowable configuration entries are tuning target, tuning scope, previous statefile and
logfiles.

4.2.1 Tuning	
 target	
 and	
 scope	

This section describes the objective for the optimization of parameters and how target
metrics are obtained from an application run.

begin tune
 <tune entity>
…
end tune

where the tune entity is:
mode: tune | characterize
characterize-params: param-list | collection
characterize-param-source: parameter [file | export]
characterize-param-file: filename
characterize-param-sets: number
characterize-maxruns: number
target: min|max
scope: param-list | collection
metric-source: file | stdout | runtime
metric-placement: lastline | lastnumber| validation

If the mode is set to “tune” then we will optimize over the tune-scope parameters. If the
mode is set to characterize then we will do a characterization run. For a
characterization run the set of characterization parameters to use can come from
various places as defined by the characterize-xxx settings. The characterization
parameters could be just defined as normal parameters with ranges. They could come
in as a set of values from a file of keyword-value pairs, one set per line or be exported
from a run of the application. If the characterization values come from the application
then the number of runs needs to be defined. The matcher feedback options define if
the matcher is supposed to provide a wrapper for library tuning or produce a script to
produce whole-program tuning.

The target entry defines how the optimizer should optimize the runtime metric. The
source of that metric can be from a named file, standard out or the runtime. The metric
can be obtained from the last line of a file, be the last recognizable number in a file or

© CRESTA Consortium Partners 2011 Page 11 of 21

can be output from a validation script executed after a single tuning run. The following
additional statement defines the location of the metric file.

postrun-metric-file: filename

The metric can also be obtained from the validation output (see section 4.6).

The scope statement allows us to restrict the tuning session to part of the parameter
space.

4.2.2 Previous	
 state	

In order to cater for incorporation of previous state the following commands are
defined:

use-previous-state: true | false
previous-state-file: filename

Optionally a filename can be given which will be used to store previous state. This
would allow the continuation of a previous tuning session.

4.2.3 Logfiles	

A log statement directs progress and state information to specified locations.

progress-log: filename

4.3 Tuning	
 parameters	
 and	
 relationships	

The properties of tuning parameters can be described as part of the overall
configuration (appropriate for runtime parameters for example) or can be declared in
source DSL.

4.3.1 XDSL	
 tuning	
 parameter	
 definition	

The configuration contains a section where we define tuning parameters, their ranges
constraints and aggregation. The parameters section includes various parts:

begin parameters
 begin typing
 <type-entry>
 …
 end typing
 begin constraints
 <constraint-entry>
 …
 end constraints
 begin collections
 <collection-entry>
 …
 end collections
 begin dependencies
 depend: <depend-list>
 end dependencies
end parameters

The typing section allows parameters to be typed as int, real or label, more specifically:
type-entry is type name
type is int | real | label

For example:
int np
int m

© CRESTA Consortium Partners 2011 Page 12 of 21

int Q
label method

The set of allowed values of a parameter are defined in the constraints section. This
supports specific sets of values, ranges, parameter relationships and legality
constraints.

Constraint-entry is range | product | constraint | default
range is value-list | value-range [default value]
default is value
value-range is value-list | value triplet
constraint is logical expression | assignment

Some examples are:
range N 1-100
range M 20,40,60
range M2 20:60:20
range NB 100,110,120,130,140,150 default 120
range opt1 –O1,-O2
range threads 1,4
range nppn 1,2,4
range method buffer, nobuffer
product OPTa.c opt1 {-m32,-m64}
constraint M*N < NP
constraint Q = P / N

The default value is used when the parameter in question is not being varied by the
tuning (otherwise the first value in the list or range is chosen). This default value can
be overridden in the tuning section. Note that a constraint as an assignment means
that the parameter that is the target of the assignment should be generated from the
expression.

Parameters may be grouped into collections:
Blocksizes: M N
decomposition: P Q
runtime: np, threads, pagesize

Note that collections may also be defined in the build and runtime configuration and
some have special meanings.

The dependency section allows us to say which parameters should be treated as
dependent: depend-list is either a list of parameters or a list of collections.

Note particularly the product definition which defines a product of the list of possibilities.
Along with some (user-defined) naming convention understood by the build script this
can be used to associate compile options with filenames by using the filename as part
of the parameter name. In the example we used OPTa.c which would be understood
by a build script to define the current compile options (or additional options) to be used
when compiling the file a.c.

Runtime and build parameters are naturally defined in the global configuration but we
provide a related syntax to define parameter types and ranges in the source DSL as
outlined below.

4.3.2 DSL	
 tuning	
 parameter	
 definition	

Tuning parameters can also be declared in source DSL. With directive syntax we use
a tune sentinel as follows:

!dir$ tune
#pragma tune …

The syntax can mirror the syntax described above but with the tune sentinel
prepended. As an alternative we allow the all-in-one syntax:

#pragma tune parameter n type int range 10,20

© CRESTA Consortium Partners 2011 Page 13 of 21

For scoping, the default situation would be to assume that parameters have a scope of
the next use of the variable and hence the autotuner (preprocessor) will insert an
assignment for the specific value of the parameter just after the directive.

4.4 Parallel	
 Autotuning	
 Features	

This section addresses tuning specific to a parallel application. Note that the generic
framework can of course be used to do this by parameterization of control flow.

The following subsections address specific aspects of parallel tuning.

4.4.1 Stencil	
 computation	

This is the highest level aspect of parallel tuning that we hope to address.

A stencil is an operation on a grid expressed as updates to grid values as functions of
nearby grid values. Once this is distributed in parallel we can decompose into local
computation and a communication phase to move edge data that is required for
computation on other processes. There are various ways to organize this and a stencil
approach defines the problem generally leaving the details to the framework.
We support stencils by using the pattern feature of data movement primitives.

4.4.2 Data	
 movement	
 primitives	

Data movement primitives allow us to express parallel data movement and have the
autotuner explore the best way to do this. This is implemented as follows:

1. We use DSL to optionally define patterns of data movement in a aggregate
way.

2. We place DSL in source at points that data is available to be communicated
and where it needs to be available.

Data movement patterns could be for example an alltoall pattern or a halo-swap
communication pattern.

The DSL to accomplish this looks like the following:
#pragma tune pattern label mylabel ptype M N pmodel

#pragma tune label dlabel var available
#pragme tune label dlabel var available

… compute…

#pragma tune label dlabel var required

The pattern type (ptype) specifies one of predefined (or user supplied) patterns and this
particular pattern is labelled with mylabel by the programmer. The pattern data
dependencies are defined by the dlabel clauses as appropriate for the pattern. So to
give an example we assume the availability of a 2D HALO pattern and the DSL would
look like:

#pragma tune pattern label myhalo type HALO_2D M N MPI
myrank
#pragma tune myhalo left A(1:n) available
#pragma tune myhalo right B(1:n) available

… compute

#pragma tune myhalo left B(1:n) required

A range of available patterns will be predefined (or potentially user-supplied).

This idea can be used at a simpler level to just move data between locations. We will
need to experiment with these ideas and work on the restrictions on what restrictions
will be required in the source for this to work. Note that a pattern may require
information from the program, in this case the global decomposition (M,N) and the
variable containing the local rank (because we will use MPI).

© CRESTA Consortium Partners 2011 Page 14 of 21

4.4.3 Process	
 Placement	

A parallel application brings a new level of complexity at launch beyond a serial
application. We can for example decide how many processes to use, where those
processes are located and how they are mapped to the hardware. For a hybrid
application (for example MPI application with OpenMP threading) we can trade
processes for threads within the same total thread count and have various options for
thread affinity. The framework of parameters can be used to explore this tuning space
as these are all runtime parameters and just need mapped to the right environment
variables or application launch options by the run script.

One aspect we will look at in the next stage of the project is rank reordering where we
remap ranks on launch. To do this intelligently requires information about application
topology.

4.5 Build	
 description	
 and	
 control	

This would be a section of the global configuration file where we define the interface to
the build process:

begin build
 prescan-type: directory | script
 build-preprocess: directory | implicit
 command: shell-command
 command-param-file: filename

 begin collection
 BUILD: N M
 end collection

end build

We need to build the application taking account of the current set of tuning parameters.
Because the source can contain DSL and we start by implementing this as source
directives we need a mechanism to parse the DSL source. The prescan-type setting
gives a choice of scanning a whole directory tree looking for source with DSL or calling
a script that will cause the source to be scanned (this script could be the build
command). Note that this script is called with an argument that provides a script which
converts source to compilable source.

The initial scan is just looking for definitions of tuning parameters.

When the actual build is done we also need to preprocess, and the build-preprocess
setting defines again if a scan is undertaken or if the normal build will use the
preprocess script.

The build progresses by running a shell-command which should exit with 0 exit code to
indicate a successful build. The parameter list can be provided as a keyword list or as
a file containing names and values for the parameter set. The parameters can be
referenced as $param in the command. Here is an example:

begin build
 command: make N=$N P=$P
end build

Note that the collection BUILD has a special meaning and defines the set of
parameters that would require a new build. This collection can be defined here or in
the global configuration. If this is not defined then it is assumed that any change of
parameters will require a new build.

Each build has an associated unique tag generated by the autotuner and this is
available to the build command as $build_tag. This could be used for example as part
of the executable name. The same tag is available to the run script.

© CRESTA Consortium Partners 2011 Page 15 of 21

4.6 Runtime	
 information	
 and	
 control	

This section of the global configuration describes the run process and is similar to that
for the build process:

begin run
 command: shell-command
 command-param-file: filename
 validation: stdout | script
 independence: none | n
end run

The application is run by the command script (which should return a successful exit
status) and the current parameter values will be provided (optionally) in the command
parameter file. The run can be validated by supplying data at the end of the standard
output or providing the validation data as the output of a script. In particular the syntax
of this should be:

 tune run status validation-status [metric value]
 validation-status is validated | failed

Only a validation status of validated indicates a successful run. Optionally the
validation metric may be defined here. Note that because the validation metric can be
obtained from a script this allows extra flexibility, for example to obtain metrics that
relate to power consumption, something that is not likely to be available to the
application.

The $build_tag is available to the run command. If more than one instance of the
application can be run at the same time then the extent of execution parallelism can be
declared via the independence setting.

Environment variables can be provided to the run by including parameters in a
collection called RUN_ENVARS. If this is done then at runtime the parameters will be
mapped to environment variables of the same name, if the parameter is set to the
value unset then the environment variable will not be defined.

4.7 Interfaces	
 to	
 tools	
 and	
 components	

This section of the global configuration describes how we interact with external
components. This is part of the global configuration.

4.7.1 Parameter	
 optimization	

This is where we describe the interface to the optimizer that explores the parameter
space searching for the optimal set of parameters.

We do this via a “delegated control” interface where we setup the optimizer and then
act on its responses by running the application and returning the resultant metric to the
optimizer. Using this technique means that we only need the autotuner to understand
how to optimize a set of parameters and not understand how to run the application.

The control section is as follows:
begin optimizer
 command: shell-cmd
 cycles: <integer>
end optimizer

The interaction with the optimizer proceeds as follows:

It is sent a start command and the parameter configuration (types, ranges, constraints,
objective and a pointer to a file containing previous history of optimizer runs).

The optimizer should respond asking for a tuning run of the application for a given set
of parameters. The framework sends back the results of the tuning run by returning the
primary metric along with any secondary metrics. The process continues until the
parameter space has been explored. The cycles parameter limits how many times the

© CRESTA Consortium Partners 2011 Page 16 of 21

optimizer will be called, this would be used with a complex (intractable) search space
and an optimizer that does not do exhaustive search in order to limit the computation.

4.7.2 Machine	
 learning	
 matcher	

It is outside the scope of this project to implement a full machine learning system for
the matcher component but our intention is describe the interface to this component for
the full DSL specification. In the mockup we may implement a simple closest match
model and apply it to a library routine tuning example.

4.7.3 Library	
 tuners	

In this section we are concerned with the capability of specifically tuning a
subroutine/function, something we would do if producing a library or optimized routines.

Our implementation uses the characterization run where the characterization
parameters map to input parameters to the routine in question. So for example
consider that we wish to tune a routine NORMALS which accepts arguments M,N.
This function includes DSL to expose tuning choices with parameters B,L,O.

We perform a characterization run over values of M,N (assume for now these can be
program input). The matcher produces a model mapping any M,N to the optimal
choices or B,L,O and we instantiate that logic into a wrapper to call NORMALS
appropriately. So in DSL this would look like:

#pragma tune library NORMALS characterization-params M, N
tune B,L,O wrapper NORMALS_wrap

This declares the parameters and names a wrapper routine that can be inserted after
the matcher has run.

Additional features allow capturing the values of variables from within the program and
supporting timing:

#pragma tune library NORMALS characterization-params M,N
tune B,L,O wrapper NORMALS EXPORT M,N timer

This would cause the program to be instrumented to export the M,N values and
implement a timer which could be used as the tune metric.

4.7.4 Compiler-­‐based	
 tools	

As discussed in section 3.6.4 this is a complex area and initially we will only support
this by parameterized control flow and describing an interface whereby we could
interact with a compiler that can expose its tuning choices.

For the latter we expect the compiler to create a companion file with the name
“file.ctune” which contains the following DSL:

#pragma tune compiler-export
#pragme tune…

where the second and subsequent lines define tuning parameters.

The compiler should accept as input a file “file.ctune.in” in the same directory that sets
those parameters.

© CRESTA Consortium Partners 2011 Page 17 of 21

5 Sample	
 Configurations	

Here we provide a couple of examples one with pure parameter tuning and one using
source DSL.

5.1 Build	
 and	
 runtime	
 parameter	
 examples	

In this example consider an application that has one tunable parameter, some
blocksize (NB) and that this can be set on the command line.

A possible autotuner configuration to tune for NB is as follows:
begin configuration
 begin tune
 mode: tune
 scope: NB
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 int NB
 end typing
 begin constraints
 range NB 80,90,100,120,140
 end constraints
end parameters
begin build
 command: make
end build
begin run
 command: ./solver NB=$NB
end run

We could have used a run script and picked up the value of NB from a provided input
file (command-param-file) or from an environment variable (the RUN_ENVAR
collection).

In the next example we assume that we have an additional tuning choice which is
controlled at compile time by a preprocessor variable USE_EXTRA_BUFFER:

begin configuration
 begin tune
 mode: tune
 scope: NB EXTRA_BUFFERING
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 int NB
 label EXTRA_BUFFERING
 end typing
 begin collections
 BUILD: EXTRA_BUFFERING
 end collections
 begin constraints
 range NB 80,90,100,120,140
 range EXTRA_BUFFERING “YES”,”NO”
 depends NB EXTRA_BUFFERING
 end constraints
end parameters
begin build
 command: make EXTRA_BUFFERING=$EXTRA_BUFFERING

© CRESTA Consortium Partners 2011 Page 18 of 21

end build
begin run
 command: ./solver NB=$NB
end run

The differences are that we added the new parameter and passed it into the build. We
included it in the BUILD collection to make sure that any changes cause a new build
and we marked NB and EXTRA_BUFFERING as dependent so that the optimizer
would not treat them independently in tuning.

5.2 Example	
 of	
 DSL	
 in	
 source	

This is a simple example to show how a source file may have DSL to control values of
a variable.

!dir$tune parameter bfac type int range 20,40,80
do jb=1,n,bfac
 do ib=1,m,bfac
 do j=jb, min(jb+bfac,n)
 do i=ib, min(ib+bfac,m)
 …
 end do
 end do
 end do
end do

The global configuration would name bfac as a tuning parameter.

5.3 Compiler	
 flag	
 tuning	

This example shows how tuning of compiler flags can be achieved with the framework.
Assume that there are various source files main.c, solver.c, stats.c and that we wish to
explore the use of certain options in the build. A sample configuration is shown below:

begin configuration
 begin tune
 mode: tune
 scope: copts
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 label OPT_strength
 label OPT_fp
 label OPT_default
 label OPT_num
 label FOPT_main.c
 label FOPT_solver.c
 label FOPT_stats.c
 end typing
 begin constraints
 range OPT_base –m64
 range OPT_fp –fp_model=strict,-fp_model=precise
 range OPT_strength –O2,-O3
 product OPT_num OPT_fp OPT_strength
 range FOPT_main.c OPT_num
 range FOPT_solver.c OPT_num
 range FOPT_stats.c OPT_num
 end constraints
 begin collections
 BUILD: OPT_base FOPT_main.c FOPT_solver.c FOPT_stats.c
 end collections
 begin dependencies
 depend: OPT_fp OPT_strength
 end dependencies

© CRESTA Consortium Partners 2011 Page 19 of 21

end parameters
begin build
 command: make
end build
begin run
 command: ./program
end run

In this case the assumption is that the Makefile is expecting to use $OPT_base and the
FOPT_xxx parameters to set the compilation options for each file. Note that in this
example the same options are applied to the files, but if we split OPT_num to
OPT_num1 and OPT_num2 and made those independent then each file would get
distinct choices of OPT_fp and OPT_strength when the parameter search was done.

© CRESTA Consortium Partners 2011 Page 20 of 21

6 References	

[1] Adrian Tate, “Industrial Auto-tuning with CrayATF”, iWAPT, Tokyo, Oct 2009,

(abstract, presentation)

[2] Eds. Ken Naono, Kerita Teranishi, John Cavazons and Riji Suda, Software
Automatic Tuning: From Concepts to State-of-the-Art Results, Springer 2010.

[3] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd ed. Springer 2009.

[4] Sholom M. Weiss, Casimir A. Kulikowski, Computer Systems that Learn:
classification and prediction methods from statistics, neural nets, machine
learning and expert systems. M. Kaufmann Publishers, 1991

[5] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv. 37, 4 (December 2005), 316-
344. DOI=10.1145/1118890.1118892

© CRESTA Consortium Partners 2011 Page 21 of 21

Annex	
 A. Deferred	
 Work	

This document describes the initial DSL specification which will be refined based on
experience gained from the CRESTA applications. The following areas are deferred
for future study:

Table 1: Future work

DSL constructs In-place DSL parsing,
Scoping and null-case (ignore tuning)
templates (based on application use)

Runtime aspects Rank reordering,
template runtime

Mockup implementation Basic parameter exploration scripts
Basic optimizer
Compiler flags

DSL XML Format

Other project interactions What can we learn from other projects?
What software (ML, optimizers etc.) can
we interoperate with and how?

Project interactions Compiler support,

Static autotuning or runtime planning?

CRESTA co-design Nek5000 and parallel FFT perhaps?

Mock-up

