
 
Copyright © CRESTA Consortium Partners 2011 

 

D4.2.1	  –	  Prediction	  Model	  for	  
identifying	  limiting	  Hardware	  

Factors	  

WP4:	  Algorithms	  and	  libraries	  

Due date: 18 

Submission date: 31/03/2013 

Project start date: 01/10/2011 

Project duration: 36 months 

Deliverable lead 
organization University of Stuttgart (USTUTT) 

Version: 1.0 

Status Final 

Author(s): 
Stephen P Booth (UEDIN), Uwe Küster (USTUTT), Stephen 
Sachs (CRAY UK), José Gracia (HLRS), Gregor Matura   (DLR), 

Dmitry Khabi (USTUTT), Mhd. Amer Wafai (USTUTT) 

Reviewer(s) Mark Bull (UEDIN), Jens Doleschal(TUD) 

 

Dissemination level 

PU PU – Public  

Project Acronym CRESTA 

Project Title Collaborative Research Into Exascale Systemware, Tools and 
Applications 

Project Number 287703 

Instrument Collaborative project 

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation 



 
Copyright © CRESTA Consortium Partners 2011 

 

Version	  History	  
Version Date Comments, Changes, Status Authors, contributors, 

reviewers 

0.1 07.01.2013 Definition of document structure 

Dmitry Khabi (USTUTT) 

Uwe Küster (USTUTT) 

 

0.2 12.02.2013 Contributions regarding the read of a 
sparse matrix Gregor Matura  (DLR) 

0.2 15.02.2013 Executive Summary and Introduction Dmitry Khabi (USTUTT) 

0.3 16.02.2013 CPU Performance Dmitry Khabi (USTUTT) 

0.3 22.02.2013 CG Prediction Model 
Dmitry Khabi (USTUTT) 

Uwe Küster (USTUTT) 

0.4 28.02.2013 
Performance models and 

limiting factors for FFTs 

Stephen P Booth 
(UEDIN) 

 

0.5 01.03.2013 Stephen Sachs Stephen Sachs (CRAY 
UK) 

0.6 01.03.2013 Performance of GPU for MvM and 
CG 

Mhd. Amer Wafai 
(STUTT) 

0.7 0.1.03.2013 Network and performance of 
collective operations José Gracia (USTUTT) 

0.8 14-
19.01.2013 Addressing of referee comments All 

0.9 19.03.2013 Changes in Executive Summary and 
Introduction Dmitry Khabi (USTUTT) 

1.0 20.03.2013 Final version Dmitry Khabi (USTUTT) 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



 
Copyright © CRESTA Consortium Partners 2011 

 

Table	  of	  Contents	  
VERSION	  HISTORY	  ................................................................................................................................	  2	  

1	   EXECUTIVE	  SUMMARY	  .................................................................................................................	  1	  

2	   INTRODUCTION	  ...........................................................................................................................	  2	  

2.1	   GLOSSARY	  OF	  ACRONYMS	  ..................................................................................................................	  2	  

3	   HARDWARE	  PERFORMANCE	  ........................................................................................................	  3	  

3.1	   INTRODUCTION	  ................................................................................................................................	  3	  
3.2	   PROCESSORS	  ...................................................................................................................................	  3	  

3.2.1	   State	  of	  the	  art	  ........................................................................................................................	  3	  
3.2.2	   Future	  developing	  ...................................................................................................................	  6	  
3.2.3	   Sparse-‐matrix	  vector	  multiplication	  and	  Bandwidth	  cap	  ........................................................	  6	  
3.2.4	   Sparse-‐matrix	  vector	  multiplication	  (SpMVM)	  on	  NEC	  Nehalem	  cluster	  ................................	  7	  

3.3	   HARDWARE	  ACCELERATORS	  ................................................................................................................	  9	  
3.3.1	   The	  Benchmark	  .......................................................................................................................	  9	  
3.3.2	   Performance	  of	  sparse	  matrix	  vector	  multiplication	  in	  comparison	  .....................................	  10	  
3.3.3	   Performance	  of	  Conjugate	  Gradient	  in	  comparison	  .............................................................	  12	  

3.4	   NETWORK	  AND	  PERFORMANCE	  OF	  COLLECTIVE	  OPERATIONS	  ...................................................................	  13	  
3.5	   IO	  SYSTEM	  ...................................................................................................................................	  15	  

4	   FAULT	  TOLERANCE	  IN	  MPI	  .........................................................................................................	  16	  

4.1	   STATE	  OF	  THE	  ART	  .........................................................................................................................	  16	  
4.2	   PROPOSITION	  ................................................................................................................................	  16	  
4.3	   APPLICATION	  TO	  EXASCALE	  ..............................................................................................................	  17	  

5	   PERFORMANCE	  PREDICTION	  MODELS	  ........................................................................................	  18	  

5.1	   PERFORMANCE	  PREDICTION	  MODEL	  FOR	  FFTS	  .....................................................................................	  18	  
5.1.1	   Hardware	  model	  ...................................................................................................................	  19	  
5.1.2	   Latency	  minimisation	  ............................................................................................................	  20	  
5.1.3	   Communication	  overlap	  ........................................................................................................	  21	  
5.1.4	   Limiting	  factors	  for	  Exascale	  .................................................................................................	  21	  

5.2	   ITERATIVE	  SOLVER	  FOR	  SPARSE	  LINEAR	  SYSTEMS	  ...................................................................................	  23	  
5.3.1	   Blocked	  sparse	  matrix	  overview	  ...........................................................................................	  23	  
5.3.2	   Sparse	  matrix	  file	  and	  data	  layout	  ........................................................................................	  23	  
5.3.3	   Sparse	  matrix	  parallel	  read	  chain	  .........................................................................................	  24	  
5.3.4	   Sparse-‐matrix	  vector	  multiplication	  and	  dot	  product	  on	  Exascale	  system	  ...........................	  25	  

6	   CONCLUSION	  .............................................................................................................................	  27	  

7	   BIBLIOGRAPHY	  ...........................................................................................................................	  31	  

Index	  of	  Figures	  

Figure 1 - Performance of a[i]=b[i]+c[i]; data is in L1, L2, L3 and RAM; 1, 4 and 8 cores;
 ........................................................................................................................................ 5	  

Figure 2 - Electric power of E5-2687W and RAM (4x4 GiB) by computation on 1- 8 
cores ............................................................................................................................... 6	  

Figure 3 - Dependencies of Power, Performance and CPU Frequency on Intel E5 
2687W; Profile of CG for sparse matrix of size  (~ 10 GiB data) ............ 7	  

Figure 4 - Aggregated and per core performance of matrix vector multiplication on NEC 
Nehalem cluster .............................................................................................................. 7	  

Figure 5 – Calculation and communication time of the matrix vector multiplication and 
MPI_Allreduce command per core / mpi process by calculation on 16, 32, ..., 1024 
cores ............................................................................................................................... 8	  



 
Copyright © CRESTA Consortium Partners 2011 

 

Figure 6- Time of one iteration of CG for different numbers of core / mpi  processes .... 8	  

Figure 7 - ELLPACK-R Storage Format ......................................................................... 9	  

Figure 8 - Sparse Matrix-Vector Multiplication Performance and Memory BW ............ 10	  

Figure 9 - PCIe x2 bandwidth on NEC Nehalem cluster and Cray XE6 ....................... 11	  

Figure 10 - Kernel Startup Time on NVIDIA Kepler K20X Using CUDA 5.0 ................. 11	  

Figure 11 - CG Performance and Memory Bandwidth on Different Platforms .............. 12	  

Figure 12 - Experimental measurements of the total completion time of the MPI 
collective all_reduce with a payload size of 512 floats and varying number of 
participants taken on Hermit (heavy line). The lighter curves are models with better 
bandwidth, and a second model with better bandwidth and latency, respectively. ...... 14	  

Figure 13 - Distributed file system Lustre on NEC Nehalem ........................................ 15	  

Figure 14 - Data movement graph for a 24 FFT ............................................................ 18	  

Figure 15 - Graph representation of a (22x 22) 2D FFT ................................................ 19	  

Figure 16 - NEC Nehalem Cluster (Laki) ...................................................................... 28	  

Figure 17- Cray XE6 (Hermit) ....................................................................................... 29	  

Index	  of	  Tables	  

Table 1 – Aggregated performance of the Intel E5-2687W for two examples: Add and 
Dot product ..................................................................................................................... 4	  

Table 2 – NEC Nehalem cluster / Cray XE6 nodes and K20X Properties ...................... 9	  

Table 3 - Sparse matrix characteristic constants .......................................................... 23	  

Table 4 - File data layout for a typical sparse matrix. ................................................... 24	  

Table 5 – Performance of the MV multiplication ........................................................... 25	  



 

© CRESTA Consortium Partners 2011  Page 1 of 32 

  

1 Executive	  Summary	  
Hardware is one of the main factors to consider for the efficient use of massive parallel 
systems. It is also important to understand the main limiting factors that influence the 
efficiency of existing and developing programs. To successfully exploit an exascale 
system both hardware and software need consideration. 

The purpose of this document is to support the further implementation of library 
“exascale algorithms and solvers” in the CRESTA work package 4 (WP4). We have 
performed many tests on different platforms to determine their differences and most 
important limiting factors (A description of the hardware used can be found in the 
attachment “Platforms” at the end of this document).   

In the first part of this deliverable we report performance data for  the newest 
processors and their nearest future development. This allows us to predict what new 
features in the local computation will appear, and what restrictions will not change. We 
will show how hardware features impact the performance and power consumption of a 
set of kernel operations (add, dot product and sparse matrix vector multiplication). 
These kernels are the basic operations, which will be used in the developing libraries. 
We will not consider the embedded processors (e.g. ARM) although these are also of 
great interest. There are many projects that attempt to integrate such processors into a 
supercomputer. For example the aim of the Green Flash Project (a development at 
Berkeley Lab) is to design a special-purpose supercomputer to perform climate 
simulations (1). However, there are still many unresolved questions. One of the most 
important is that these processors are difficult to integrate into a high performance 
network (2). The other problem is that compilers, operating systems, applications and 
libraries must be partially rewritten for such kinds of processor. 

On other hand network performance is key to most application loads on HPC systems. 
That is also true for the numerical library, which is under developing in WP4. In the 
section “Network and performance of collective operations” of this document we 
consider not only the current features of the hardware but also it’s nearest future 
developing. The main question is, what are the main issues that need to be considered 
in the development of new collective operations within the CRESTA project for its 
successful usage in the numerical library "exascale algorithms and solvers". 

Hardware accelerators are already being used for a while for the numerical 
calculations. We examined its weak and strong sides in the section “Hardware 
accelerators”. 

The IO System is as important as the other components of an HPC system. However, 
we use the IO server rather to debug and test purposes. Nerveless we briefly describe 
the state of the art of the IO Server in this deliverable too. 

Hardware failures are becoming a more important issue with increasing levels of 
parallelism. In this deliverable we consider “fault tolerant MPI” as a possible remedy for 
this limiting hardware factor and explore its influence on possible exascale systems. In 
the development of "exascale algorithms and solvers" we must not forget this issue. 
The suggested model will help us to consider this. 

Furthermore we compare a set of results of numerical calculations on modern 
hardware with their theoretical performance. The performance prediction model of a set 
of numerical algorithms from the "exascale algorithms and solvers" library is also the 
part of this document. These and the discussions in the CRESTA Deliverable 2.1.1 
“Architectural developments towards exascale” allows us to draw conclusions about 
limiting hardware factors for current petaflop platforms and their next generations and 
will allow us to choose the best way for the implementation of the library. 

 



 

© CRESTA Consortium Partners 2011  Page 2 of 32 

  

2 Introduction	  
 

Parallel computation uses a variety of streams to deliver the data via network, memory 
channels, cache and registers to the distributed arithmetic components and to store the 
results of its calculation on different storage units. Streams may consist of single 
numbers as well as arrays of numbers. Each of these streams has its own qualitative 
and quantitative properties. It depends not only on the characteristics of the hardware 
and the algorithm, but also on the programming model, compilers and runtime-system. 
The developers have to provide enough information to the compiler about 
dependencies between streams, destination of streams (ex. temporal, non-temporal) 
and other useful and necessary information. In this case the efficiency of a compiled 
program is limited generally by the “intelligence” of the compiler and the underlying 
hardware (which is involved in transport of these streams). In chapter “Hardware 
performance” we determine the most important performance characteristics of the 
hardware. 

On the other hand, one of the biggest challenges of distributed system is that the 
performance of different parts is very different: performance of processors, memory, 
networks, hard disks differ by several times. Therefore it is important for each algorithm 
to develop a prediction model that considers it. With it, we cannot only choose the best 
algorithm for the problem, but also the best way of its usage. Several examples of such 
models can be found in chapter “Performance prediction models”. 

At the end of this document in the chapter ”Conclusion” we summarize the key limiting 
factors an major trends in the hardware developments and its influence on the 
developing of "exascale algorithms and solvers" library. 

 

2.1 Glossary	  of	  Acronyms	  
cronym Definition 
AVX Advanced Vector Extensions 
Cores Hardware cores - In terms of possible hyper-threading, we 

consider in this document, only the actual number of cores on 
the chip. 

CPU Central processing unit 
FP Floating point number 
CG Conjugate Gradient – Krylov subspace solver 
GPU Graphics processing unit 
GiB 2^30 = 1024*1024*1024 Bytes 
KiB 2^10 = 1024 Bytes 
MiB 2^20 = 1024*1024 Bytes 
MPI_Allreduce Reduce operation; its result is returned to all processes. 
MPI_Alltoall All processes send the same amount of data to each other 
MV  Matrix vector (e.g. multiplication) 
RAM Main memory  
MDS Metadata Server 

OSS Object Storage Server 
SpMVM Sparse Matrix-Vector Multiplication 
 

 



 

© CRESTA Consortium Partners 2011  Page 3 of 32 

  

3 Hardware	  performance	  
3.1 Introduction	  
In this chapter we look at the individual components of a parallel system: processors, 
hardware accelerators (GPU), network and IO system.  

The determined performance and limitation factors of the hardware components will be 
used by us in the implementation of the library, for example: to determine whether a 
time consuming function should be executed on CPU or GPU, we have to consider not 
only the performance but also the transfer time, kernel calls, and so on (see sections 
“Processors” and “Hardware accelerators”). 

It is also important to know how large the optimal number of computational nodes for a 
particular job is. In addition to the CPU / GPU performance, it is important to know how 
the network behaves depends on the number of nodes (see sections “Network and 
performance of collective operations” and “Sparse-matrix vector multiplication 
(SpMVM) on NEC Nehalem cluster”). 

In this chapter we wish also to express our opinion about the nearest future 
development of the hardware components. 

3.2 Processors	  
Intel processors currently appear to have a lead in the area of high performance 
computing. This confirms the fact that the latest CRAY XC30 supercomputer uses 
Sandy Bridge processors. CRAY XC30 is designed to scale high performance 
computing (HPC) workloads of more than 100 petaflops. (3) 

In sections “State of the art” we consider some important features of the Intel Sandy 
Bridge processor. A detailed study (4) of the most recent processors architectures 
shows that the Sandy Bridge processor has much in common with his successor 
Haswell. 

In section “Future developing“ we will not explicitly predict limiting factors for the 
Haswell, but a view of certain features of Sandy Bridge will give a good overview for 
future processor development, due to their similarity.  

In the last two sections we will consider one of the most important and time-consuming 
operations in the scientific computation, namely the sparse matrix vector multiplication.  

The received information will be used in section “Iterative solver for sparse linear 
systems” of chapter “Performance prediction models”. 

3.2.1 State	  of	  the	  art	  
There is always a difference between theoretical peak performance and the 
performance, which can be achieved in the applications. But it should be noted that the 
slowdown of Moore’s Law (5) leads to the architecture of the processor becoming more 
and more complex and “smarter”, which leads to better utilization of the CPU 
resources. On the other hand, this increasing complexity requires more effort for 
compiler designer and also for the programmers. 

One of the most important limiting factors of the processors is the bandwidth and the 
latency of the different hierarchical levels of cache and memory. 

We consider the performance of two simple examples: 

• Add: a[i] = b[i] + c[i] 
• Dot product: dot += b[i] * c[i] 

The intrinsic functions and loop unrolling were used in the implementation of these 
examples (Intel compiler flag -O1). This gives us the opportunity to better control the 
hardware. On the other hand the compiler is limited in the optimization of the code. 
This is clearly visible in the comparison of the results, which will be carried out below. 



 

© CRESTA Consortium Partners 2011  Page 4 of 32 

  

The length of the arrays is chosen so that 80% percent of the cache or memory was 
used. 

The performance measurements were done on the processor Intel E5-2687W (Sandy 
Bridge 3.1 GHz, Turbo 3.4-3.8 GHz, 8 cores, 4 memory channels by 1600 MHz, 
Launch Date Q1'12). In the example, we change the active hierarchy level of cache 
and memory (L1, L2, L3 and RAM – via different length of arrays) and the number of 
the cores. We change also the frequency of the processor for each test. For a better 
overview, we use the metric aggregated CPU frequency for the x-axis. The aggregated 
CPU frequency depends on the number of active cores and their frequency. For 
example if two cores are used for the calculation and each runs with 1.2 GHz, the 
aggregated frequency is equal to 2.4 GHz. The performance of the calculation on 1, 4 
and 8 cores is shown on the Figure 1. The y-axis is logarithmic. The achieved 
bandwidth can be calculated by the multiplication of the performance, size of the data 
type and number of streams needed for the calculation: 

 
Before the data will be stored it must be read. The consequence is that the store 
access requires two streams. . The theoretical and calculated bandwidth by usage of 
all cores is shown in Table 1. 

.  

Mem. Latency 
(cycles) 

Size Theoretical 
Bandwidth 

(bytes/cycle or 
GiB/sec) 

Bandwidth 
Add 

Bandwidth 
dot 

read write 

L1 2 256 KiB 384 (1216 GiB/sec) 1181 GiB/sec 668 GiB/sec 

256 128 

L2 16 2 MiB 256 (811 GiB/s) 508 GiB/sec 313 GiB/sec 

L3 30+ 20 MiB 256 (811 GiB/s) 289 GiB/sec 230 GiB/sec 

RAM 100 <750 GiB 47.7 GiB/s 39 GiB/sec 43 GiB/sec 
Table 1 – Aggregated performance of the Intel E5-2687W for two examples: Add and Dot product 

The RAM bandwidth of 39GiB/s is approximately 80% of the theoretical one. The 
bandwidth of memory depends mostly on two factors: the memory frequency and 
number of memory channels. The maximum bandwidth was achieved in both cases 
(add and dot) by 12 virtual GHz. That is nearly twice of the bus memory frequency (4 x 
1600 MHz) and less than half of the maximum CPU frequency: Technological trends 
have produced a large gap between CPU speeds and RAM speeds. This trend will 
most likely continue. One other important fact is that the memory bandwidth cannot be 
fully exploited with one or two cores. But there is some progress in compare to the 
older multi-core processors; the performance of one core of older processors was 
worse relative to the memory bandwidth. 



 

© CRESTA Consortium Partners 2011  Page 5 of 32 

  

 
Aggregated CPU frequency (GHz) 

Figure 1 - Performance of a[i]=b[i]+c[i]; data is in L1, L2, L3 and RAM; 1, 4 and 8 cores; 

In contrast to the memory bandwidth, the cache bandwidth is directly related to the 
frequency of the CPU and increases in a linear manner, because L1 and L2 caches run 
at the same core clock speed. In addition, the bandwidth of L3 is almost three times 
smaller than the theoretical one. This is explained by the fact that the newest Intel 
processors provide the rings in L3 cache. Each core is connected to the local segment 
of the L3 cache. The adjacent segments are connected via different busses called 
rings. If the data for the calculation is stored in the owned segment of L3, it can be 
immediately delivered to the core. Otherwise the required data will hop through the ring 
until it reaches the core. The data in L3 cache is cyclically distributed across all 
segments. Each core transports 32-bytes of data per cycle and per direction (this will 
be increased in Haswell to 64 bytes (4)). The benefit of the rings is that the number of 
cores can be more easily increased as in older processor models. As shown in Table 1, 
the bandwidth of the operation "dot" is lower than that of the addition. Although the 
CPU does not store the data by calculation of the dot product, its bandwidth is lower 
than that of the add operation.  This is explained by the fact that there is a dependency 
in the calculation, resulting in additional waiting times. The waiting times are hidden if 
the data come from memory and will be prefetched. By using of multiple accumulation 
registers the performance of the dot product can be further increased.  Unfortunately it 
is not so simple to express this via the intrinsic functions. The alternative version of “dot 
product” with the compiler optimizations1 has approximately 20% (L1), 10% (L2) and 
5%(L3) higher performance. On other hand the alternative version of "add" with the 
same compiler optimizations has less performance than the implementation with the 
intrinsic functions. 

It is unrealistic to derive a general formula for the performance of each kind of the 
operation. It is necessary to consider not only the bandwidth, frequency, latency the 
size of the pipeline and a lot of other features, but also the dependencies within the 
computation and compiler features. This is a complex problem that can be only solved 
with help of the complex hardware simulation. 

                                                
1 Intel® C++ Compiler XE 2013; Optimizations flags: -O3 -axAVX  -openmp -restrict -
ansi-alias –unroll-aggressive 

L1 

L2 

L3 

RAM 

1 core 
4 cores 
8 cores 



 

© CRESTA Consortium Partners 2011  Page 6 of 32 

  

 

3.2.2 Future	  developing	  
Unfortunately, the performance of the CPU cores cannot be enlarged by the increasing 
of the frequency due to the power constraints: by the frequency increasing the electric 
power increases disproportionately (6). This is clearly visible on Figure 2.  On this 
figure is shown, the approximated processor’s electric power by the intensive 
calculation (a[i]=b[i]+c[i]) depending on the frequency and number of cores. The ”work 
area” of E5-2687W is marked by thick lines: If eight cores are active the “work area” 
begins with 8x1.2 GHz = 9.6 GHz and ends with 8x3.4GHz=27.2 GHz. 

W
at

t 

  
Aggregated CPU frequency (GHz) 

data in L1 cache data in RAM 
Figure 2 - Electric power of E5-2687W and RAM (4x4 GiB) by computation on 1- 8 cores 

The solution of the problem, that the frequency cannot be increased, is to increase the 
numbers of cores. In this case, not only the performance of the CPU as well as the 
cache size will be increased. The newest processors with 12 or even 16 cores on a 
chip are already appearing (e.g. Intel Ivy Bridge and Haswell). Unfortunately, the 
memory bandwidth is not so “easy” to double. The memory bus frequency can be 
increased up to 50% (DDR4 SDRAM), but increasing the memory channels requires 
additional layers on the motherboard. Whether this will be done or not is currently not 
clear. 

3.2.3 Sparse-‐matrix	  vector	  multiplication	  and	  Bandwidth	  cap	  	  
As discussed above the electric power increases disproportionately by increasing of 
the CPU frequency. On other hand the memory bandwidth is the one of the main 
limiting factor for the performance even if the CPU frequency is stark increased. The 
dependency of the performance and electric power on the aggregated CPU frequency 
is shown in Figure 3. As already mentioned above, the aggregated CPU frequency is 
simply summation of individual core frequency. If the lowest possible frequency is 
assigned to the CPU (8 x = 1.2GHz 9.6GHz), the bandwidth of the calculation is less 
than 50 GiB/sec. The speed of calculation is increased by the increasing of the 
frequency (blue line). However, the electrical power of the CPU and memory increases 
(red line) faster than the speed of calculation. The electrical power of the whole 
workstation (black line) increased a little slower. This is explained by the fact that the 
efficiency of the power supply depends on the load.  

In addition, beginning from 21.6 GHz (8 x 2.7 GHz) there is no increasing in the 
performance. But the power consumption increases rapidly. 

1 core 

8 cores 8 cores 

1 core 

4 cores 4 cores 



 

© CRESTA Consortium Partners 2011  Page 7 of 32 

  

B
an

dw
id

th
 G

iB
/s

ec
 

 

W
att 

Aggregated CPU frequency (GHz) 

Figure 3 - Dependencies of Power, Performance and CPU Frequency on Intel E5 2687W; Profile of 
CG for sparse matrix of size  (~ 10 GiB data) 

One can expect that such cases will be automatically detected in future processors and 
the frequency will be automatically reduced. However a great deal of work still needs to 
be done. The switching frequency of the CPU still takes far too long.  

3.2.4 Sparse-‐matrix	  vector	  multiplication	  (SpMVM)	  on	  NEC	  Nehalem	  cluster	  
The computation was done on NEC Nehalem cluster with Sandy Bridge E5-2670 @ 
2.60GHz processors and Infiniband QDR node-node interconnector. Each node has 
two processors and memory size of 32 GiB (see section A.1.1. for more details). 

The performance of the matrix vector multiplication is shown on the Figure 4. The 
SpMVM was launched on 1, 2, 4, 8,…, 64 nodes. Each node has 16 cores. On each 
core one mpi process was started. The connecting lines between the measurement 
points are only guides for the eye.  The aggregated performance increases with the 
number of used cores. If 256 and more processes are used the data fits in the cache. 
This is the reason while the performance on each core increases from 12.5 GiB/sec to 
22.5 GiB/sec as the reader can see on the right diagram of the Figure 4. 

 Aggregated performance Performance per core 

G
iB

/s
ec

 

  
 

number of cores / mpi processes 
Figure 4 - Aggregated and per core performance of matrix vector multiplication on NEC Nehalem 

cluster 

Figure 5 shows two diagrams. On the left the time of the SpMVM for each core for the 
launch with different numbers of processes is shown. The time axis is logarithmic. On 
the right the time of an MPI_Allreduce operation is shown. The computational time of 
these two operations changes inversely. If the calculation occurs on many cores the 
time of MV multiplication decreases, but the time of MPI_Allreduce increases. The load 
imbalance of the MPI_Allreduce is clearly visible on the diagram: The measured time 
on the mpi process with rank 0 was always less than on the process with the last mpi 
rank.   



 

© CRESTA Consortium Partners 2011  Page 8 of 32 

  

 AX time MPI_Allreduce Time 

se
co

nd
s 

  
 

core id / mpi ranks 
Figure 5 – Calculation and communication time of the matrix vector multiplication and 

MPI_Allreduce command per core / mpi process by calculation on 16, 32, ..., 1024 cores 

The result of poor scaling of the MPI_Allreduce operation is that the improvement in 
performance when adding additional nodes tails off quickly. This can be seen in the 
Figure 6. 

se
co

nd
s 

 
number of cores / mpi processes 

 
Figure 6- Time of one iteration of CG for different numbers of core / mpi  processes 

Often this is not considered by the user, which leads to additional unnecessary power 
consumption. 



 

© CRESTA Consortium Partners 2011  Page 9 of 32 

  

 

3.3 Hardware	  accelerators	  
To test the limiting factors of hardware accelerators, a Conjugate Gradient (CG) 
algorithm has been chosen with both a NEC Nehalem Cluster and a Cray XE6. 

Our results are based on the GPU K20X (Kepler Architecture) and on both Intel Xeon 
E5-2670 (Sandy Bridge) and AMD Opteron 6276 (Interlagos) processors. 

The table Error! Reference source not found. shows a series of properties of the 
compute node on the NEC Nehalem Cluster, on the Cray XE6 and of the NVIDIA K20X 
can be found (see section A.1. for more details). 

Categories 2 x Intel E5 2670 2 x AMD Opteron 6276 K20X 

Peak Perf. (DP) 332.8 GFLOPS 332.8 GFLOPS 1.31 TFLOPS 

Peak Perf (SP) 665.6 GFLOPS 665.6 GFLOPS 3.95 TFLOPS 

# of Cores 32 (2 x 8 HT) 32 (2x16) 2688 (4x192) 

RAM size 32GB 32GB 6GB (GDDR5) 

Memory BW 102.4 GB/S 102.4 GB/S 250 GB / S 
Table 2 – NEC Nehalem cluster / Cray XE6 nodes and K20X Properties 

 

3.3.1 The	  Benchmark	  
From the software side, a Conjugate Gradient (CG) algorithm has been chosen. CG is 
an iterative algorithm for solving systems of linear equations and is widely used to 
solve sparse linear systems. The other powerful Krylov subspace methods are very 
similar in the programming techniques and computational effort. 

The heart of this algorithm is the Sparse Matrix-Vector Multiplication (SpMVM), which is 
one of the most important kernels in scientific computing. In SpMVM many problems 
arise starting from storage format and ending with data localities. Indirect addressing 
causes another problem which makes SpMVM a memory bound problem. 

 
Figure 7 - ELLPACK-R Storage Format 

Based on a previous study on SpMVM, an aligned-ELLPACKR storage format has 
been chosen, as this was shown to be a suitable format on GPGPU accelerators (7). 
Figure 7 depicts the ELLPACK-R storage format. In this storage format, all non-zero 
elements are shifted left and another matrix is generated to include all column-indices 
of all non-zero elements and a vector, which includes row lengths. In both matrices 
(Col_Idx and A), all the remaining zeros after the maximum row length are truncated 



 

© CRESTA Consortium Partners 2011  Page 10 of 32 

 

because they hold no important information. Those elements are stored column-wise in 
memory. The storage needed to store the matrix in this format is: 

Storage = N * (MAX * (Idx_ele_size + Mat_ele_size) + 1); Where 

N is the matrix dimension; MAX is the maximum row length; Idx_ele_size is the index-
matrix element size; Mat_ele_size is the matrix element size.  

For SpMVM (y = A.x), two more vectors are needed (x and y). It means the required 
storage becomes 

Storage = N * (MAX * (Idx_ele_size + Mat_ele_size) + 3)  

3.3.2 Performance	  of	  sparse	  matrix	  vector	  multiplication	  in	  comparison	  

	  
Figure 8 - Sparse Matrix-Vector Multiplication Performance and Memory BW 

Figure 8 shows the performance in MFLOPS and the memory BW in GB/s on both 
CPU and GPU. The GPU results are for the K20X and the CPU results for the Sandy 
Bride and Interlagos processors. The superiority of GPU over the CPUs is obvious for 
the SpMVM kernel without data transfer between the GPU and CPU. The GPU is 
attached to the CPU though PCIex2, which has a transfer BW up to 6GB/S when 
transferring data to/from pinned memory on the CPU side. Figure 9 depicts the latency 
of PCIex2 on the NEC Nehalem cluster and the Cray XE6. This test is based on 
transferring chunks of data in KBytes to and from the GPU. Although the GPU on the 
NEC Nehalem cluster is not the same as on the Cray XE6, the latency of the PCIe on 
the Cray XE6 is larger than on the NEC Nehalem cluster. PCIe on the NEC Nehalem 
cluster requires 64 KBof data to saturate on 6 GB/S but the Cray XE6 needs at least 2 
MB to saturate.  



 

© CRESTA Consortium Partners 2011  Page 11 of 32 

 

1

2

3

4

5

6

7

16 48 80 11
2

14
4

17
6

20
8

24
0

27
2

30
4

33
6

36
8

40
0

43
2

46
4

49
6

52
8

56
0

59
2

62
4

65
6

68
8

72
0

75
2

78
4

PCIe

GB
/S

KB

H2D LAKI D2H LAKI H2D Hermit D2H Hermit

 
Figure 9 - PCIe x2 bandwidth on NEC Nehalem cluster and Cray XE6 

The GPUs offer a very high memory bandwidth, which is larger than the CPU's. In spite 
of the high performance and memory bandwidth, the GPU is most suitable for 
applications that are computationally intensive tasks with fine grain parallelism. The 
GPU has a complex design and many memory architecture features such as on-chip, 
off-chip, coherent and non-coherent memories. This complexity makes the task for 
software developers difficult. Moreover, the GPU is attached to the CPU through PCI-
Express with 6 GB/S bandwidth and different latency timings as seen in Figure 9.  This 
bandwidth is very low compared to the main memory bus on either the CPU or GPU. 
Transferring data from and to the GPU often during the same run will degrade the 
performance dramatically. When the CPU and GPU operate at the same time a very 
high amount of electrical power is required. This requires very strong power supplies, 
which will have a low efficiency under low load conditions. 

Moreover, GPU kernel startup overhead has been tested on K20X and Figure 10 
shows the overhead function with respect to number of thread-blocks. 

StartupTime = 4.2 + 0.52 * X  

0

12.5

25

37.5

50

1
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00
13

50
15

00
16

50
18

00
19

50
21

00
22

50
24

00
25

50
27

00
28

50
30

00
31

50
33

00
34

50

y = 0.5183x + 4.1581

Kernel Startup Overhead

µs

# of Blocks

Time in µs Trend 1

 
Figure 10 - Kernel Startup Time on NVIDIA Kepler K20X Using CUDA 5.0 

It was noticed that the overhead increases 520 nanoseconds each 50 thread-blocks. 
From one to 150 thread-blocks the overhead is constant and it is around 5.5 µs. 



 

© CRESTA Consortium Partners 2011  Page 12 of 32 

 

3.3.3 Performance	  of	  Conjugate	  Gradient	  in	  comparison	  
The implementation of CG for solving Poisson matrix problem using double precision 
on GPU is based on the implementation of SpMVM and is designed to keep the 
communication as few as possible. The only thing, which has to be transferred to CPU 
each iteration is sigma_new and the result vector at the end once. Figure 11 depicts 
the Performance and memory BW, which has been reached on CPU and GPU. The 
CPU version is parallelized only for SpMVM and all others are serial on one core which 
could be slow for big systems. 

 

0

3.00

6.00

9.00

12.00

15.00

18.00

21.00

24.00

27.00

30.00

9.60E+03

3.92E+04

8.88E+04

1.58E+05

2.48E+05

3.58E+05

4.87E+05

6.37E+05

8.06E+05

9.96E+05

1.21E+06

1.44E+06

1.68E+06

1.95E+06

2.24E+06

2.55E+06

2.88E+06

3.23E+06

3.60E+06

3.99E+06

4.40E+06

4.83E+06

5.28E+06

5.75E+06
0

50.00

100.00

150.00

200.00
CG Solving Poisson Matrix on K20X Using DP

G
FL

O
PS

Problem Size

G
B/

S

GFLOPS GPU GB/S K20X
GFLOPS CPU (Interlagos) GB/S Interlagos
GFLOPS CPU (SandyBridge) GB/S SandyBridge

 
Figure 11 - CG Performance and Memory Bandwidth on Different Platforms 

It means that it is recommended to minimize the communication between CPU and 
GPU and reduce the number of kernel calls. Also the software developers should pay 
attention to the performance of PCIe, which may differ depending on the vendor and 
model. 

 



 

© CRESTA Consortium Partners 2011  Page 13 of 32 

 

 

3.4 Network	  and	  performance	  of	  collective	  operations	  
Network performance is key to most application loads on HPC systems. This is 
particularly true for applications making heavy usage of collective operations. In a very 
naïve way, networks can be characterizes by two parameters, the network bandwidth 
(B) and the latency (L). In this picture the total time required to transfer a single 
message from one node to another is T1 = L + m/B, where m is the size of the message 
in appropriate units. Other more complex models, as for instance the logGP model (8), 
have been used to do quantitative analysis of collective operations (9) and (10). 
However, for the purpose of highlighting future hardware limitations, it is sufficient to 
illustrate them using the simpler model above. 

In MPI, collective operations are operations in which data is sent or received from 
many nodes simultaneously. Note, that simultaneously refers to the programmer’s 
perspective only. In reality, networks of any type can only send a limited number of 
messages at the same time because the number of independent network channels is 
limited to a few, typically. For the remainder of this section we will assume that only a 
single channel is available, i.e. only one message can be sent or receive the same 
time.  

The most straightforward implementation of single-rooted collective operations - as for 
instance barrier, broadcast, gather, reduce - is to have the root node of the collective 
sent and receive messages from every participant one after the other. Then, the time to 
complete the (single-rooted) collective is proportional to n*T1, where n is the number of 
participants. The next best implementation is to forward messages along a (binary) 
tree, which results in a completion time proportional to log(n)*T1. In fact, this seems to 
be the basic strategy chosen by the Cray MPI implementation as suggested by our 
experiments below. 

More complex collectives, as for instance all-to-all, can be modelled as a superposition 
of multiple single-rooted collectives (here multiple gathers). A straightforward 
implementation of those would be to do the basic single-rooted collectives one after the 
other which results in a completion time of n*log(n)*T1. The issues and conclusions 
presented below apply equally to these complex collectives, even though we have not 
yet analysed the runtime behaviour of these in great detail. 

In addition the network on HPC systems in practise is always a hierarchical one, each 
level characterized by its own unique latency and bandwidth (and number of channels). 
The most obvious level transition is from communication on a node (through i.e. shared 
memory, which here is considered a part of the communication network) to 
communication across different nodes. In the former case, latency is theoretically in the 
range of nanoseconds, across nodes it is in the range of microseconds. The bandwidth 
does not wary as much and is in the range of 100 Mb/s. 

In the past we have seen steep increases in the available network bandwidth, but only 
relatively little improvement in the network latency. The latency is physically limited by 
the speed of light. For a distance of 10 metres this translates into a ping-pong latency 
of roughly 0.1 microseconds. There is no such limit for the bandwidth - we might go on 
adding channels to increase it. 

Using the Collectives Microbenchmark Suite(11) we have measured the total 
completion time for the MPI collective operation all_reduce, which typically is the one 
consuming most resources in the set of CRESTA applications(11). Results taken on 
Hermit (Cray XE6) are shown in Figure 12. 

 



 

© CRESTA Consortium Partners 2011  Page 14 of 32 

 

 0.1

 1

 10

 100

 1000

 10000

 1  2  4  8  16  32  64  128  256  512  1024  2048

tim
e 

[µ
s]

MPI ranks

today
better BW

better BW + latency

 
Figure 12 - Experimental measurements of the total completion time of the MPI collective 
all_reduce with a payload size of 512 floats and varying number of participants taken on Hermit 
(heavy line). The lighter curves are models with better bandwidth, and a second model with better 
bandwidth and latency, respectively.   

The sudden increase of total completion time at 32 MPI ranks is due to the much larger 
latency across nodes compared to the latency on the node (Hermit has 32 cores per 
node). We have fitted this data with a binary tree model as discussed above. In order to 
estimate the impact of future developments we have dialled up bandwidth and/or 
latency (see model curves in the figure). Increasing the network bandwidth, as is likely 
to happen in the future, will results in only modest performance improvements, 
particularly at large number of communication participants. On the other side, bringing 
down the latency to its physical limit, will improve the performance by an order of 
magnitude for the case studied. 

This conclusion in principle holds for most HPC workloads, where the amount of data 
transferred collective operations is relatively small. The expected increase in network 
bandwidth (and number of communications participants) will only strengthen the trend 
and push collective operations into a mode where it is latency-dominated. 

Part of the communication latency is not caused by the network hardware, but rather by 
the various software layers, as MPI library or high-level network drivers. These 
software latencies are particularly severe if the software layers need to be traverse to 
do only relatively little computation as reducing a vector to a scalar. Hardware 
capabilities for reduction operations would allow to effectively by-pass the software 
stack thus potentially improving latency significantly. 

Another approach is to overlap communication with calculation. This is particularly 
promising in situations where load imbalance causes some nodes to arrive at collective 
communication points earlier than others. Currently the collective communication tree 
is traversed in a specific order and late arrivals will delay the whole process. A more 
suitable out-of-order traversal of the tree, as is subject to investigation in this project, 
could potentially allow to mitigate the late-arrival problem, as caused for instance by 
load-imbalance. 

 

 



 

© CRESTA Consortium Partners 2011  Page 15 of 32 

 

3.5 IO	  System	  
The IO System is as important as the other components of an HPC system. The 
temporal data as well as the results of the simulation have to be maintained for future 
analysis and use. The Lustre system is often used as a parallel distributed file system 
and dominates the TOP 500. An example of Lustre integration is shown in Figure 13. 
The files with the data will be stripped over the Object Storage Server (OSS). Thus, 
several independent streams can be read by the processes simultaneously. The 
bandwidth is generally limited by network connection. The most costly operation is 
often the “open” and “close” of the files. The bottleneck is the Metadata Server (for 
example see (12)). When one opens a file, a lot of information is retrieved from a 
database (e.g which OSS contains the file, how big is the stride and so on). Additionally 
some locking must also be done in the file system. If several thousands of processes 
are trying to open one or more files at the same time, the waiting time may be several 
hours. To escape it one uses a nested approach: only a few processes read the data 
from the IO system and send it to the rest of the processes (for example see (13)).  

 

 
Figure 13 - Distributed file system Lustre on NEC Nehalem 

There are some new ideas how to improve the performance of the file storage system 
(e.g. see http://www.eiow.org/).  

As mentioned above we use the IO server rather to debug and test purposes. 
Therefore, we will not include further details about IO Servers to this document. 



 

© CRESTA Consortium Partners 2011  Page 16 of 32 

 

4 Fault	  Tolerance	  in	  MPI	  
4.1 State	  Of	  the	  Art	  
By raising computational performance through increased parallelism, single component 
failures in modern supercomputers have become a more important and more 
expensive issue. This is due to the fact that with core count the number of overall 
components within a system rises. Thus, as the mean time to failure (MTTF) of every 
single component does not grow as fast as the number of components in a 
supercomputer, the overall MTTF of the system shrinks. A study (14) including 22 
system at LANL over a time span of 9 years has shown, that the average MTTF of 
some current systems is less than 8 hours. 

A manifold of current applications oppose untreated errors with checkpoint/restart 
techniques. Regarding the constantly growing parallelism, these techniques 
continuously turn deprecated as the implicated overhead is growing to a significant 
portion of the run time with increasing core count. Therefore, in exascale applications 
the error treatment will become stringently dynamic. 

Fault tolerant design has permeated the majority of computer hard and software 
construction including CPU exception handling, RAID, adaptive routing, and others. 
This design choice is virtually absent in the predominant standard for parallel 
communication. The default error behaviour in MPI is to treat it as fatal, which in turn 
causes the parallel program to abort at any reported failure. The only other predefined 
error handler returns after an error without any information concerning the immediate 
fault. 

4.2 Proposition	  
Making efficient use of future hardware implies optimizing some metric to measure 
computational costs. In the following restart and dynamic fault tolerant techniques are 
compared with respect to expected CPU time of an exemplary exascale application. 

Let  be the overall run time for an application to complete and  the primary core 
death, i.e. there exists a probability distribution  with probability 
density function  describing core death time, with mean value and deviation 
dependent on the MTTF. For the restart case the CPU time function dependent on  
can be described as 

 
For the sake of simplicity we assume the second run to be successful in any case. 
Then, the expected value of the CPU time for an application of size  dependent on 
core death is: 

 
In the latter equation the second part of the right hand side is constant and the rest is 
equal to one by definition. 

For the fault tolerant case it is assumed that the number of spare cores is sufficient for 
successful application termination. Hence, the expected value of the core death time 
dependent CPU time is: 

 
For the sake of simplicity the power savings of an idle core is neglected, thus the 
expression above is independent of . 



 

© CRESTA Consortium Partners 2011  Page 17 of 32 

 

Subtracting the minimal application run time from the two above statements results in 
the overheads 

 
In order to illustrate the dependency of the left hand term on  some example 
assumptions are made. The MTTF of every core is set to ten years,  is a normal 
distribution with standard deviation of 1, the runtime of our example code is 1 hour and 
one extra core is allocated in the fault tolerant case for every CPU day.  

 
The figures above show the expected additional CPU seconds for the two methods. 
For small core numbers the restart technique outperforms the constant number of 
additional cores, but for large core count the restart technique needs orders of 
magnitude more CPU seconds. For very large core counts the slopes of the two 
methods converge, but the absolute values are still separated by more than an order of 
magnitude. 

4.3 Application	  to	  Exascale	  
This shows, that for increasing core count the energy-efficient choice is to incorporate 
spare cores, which will be used in case of a core failure. Especially in relation to 
exascale computing we have to revaluate the priorities and take allegedly idle cores in 
an application into account. For a machine running exascale applications this will be a 
crucial design decision with regard to improving overall utilization. 

 
 



 

© CRESTA Consortium Partners 2011  Page 18 of 32 

 

5 Performance	  prediction	  models	  
The following descriptions of the numerical algorithms will help us to understand the 
hardware limitations that will inhibit scalability of them.  

 

5.1 Performance	  prediction	  model	  for	  FFTs	  
The parallel performance of the FFT algorithm is best understood by considering the 
data movement graph for the algorithm. For the FFT this is the “butterfly” pattern (see 
Figure 14).  As can clearly be seen from the graph representation a 2n FFT has a 
computational complexity of O(N log(N)). The algorithm has a potential parallelism of 
O(N) with good load-balance but is also a non-local algorithm requiring a high degree 
of data movement. The computation performed by each node of the graph is quite 
small so the time to execute these communication steps will dominate performance at 
large numbers of nodes.  

 
Figure 14 - Data movement graph for a 24 FFT 

The most common use of Fourier transforms in HPC applications are as multi-
dimensional FFTs. 

If we consider a d dimensional FFT with sides  the total number of data-points in the 
FFT is given by  and the computational time on P processors is given by: 

 
Multi-dimensional FFTs are usually implemented by performing each dimension of the 
FFT in turn. This gives rise to the same graph representation as a single large FFT 
consisting of the same number of points, the only difference between the two 
algorithms being the phase factors applied at each computational stage. In a multi-
dimensional FFT there are no constraints on the order that each dimension is 
processed. In fact, stages of the FFT algorithm from different dimensions can be 
interleaved, provided the order within a dimension is preserved. However this only 
changes the assignment of initial data points to the initial graph nodes. The topological 
structure of the graph always remains equivalent to a graph for a single FFT of the 
same size. 

A parallel implementation strategy for any FFT calculation therefore depends on 
choosing a set of data decompositions for each stage of the FFT so as to minimize the 
amount of data that needs to cross node boundaries. In general, an initial 
communication stage is required to place the data in the correct starting decomposition 
but in some cases it is possible to adapt the surrounding application to use this same 
decomposition.   

Parallel multi-dimensional FFTs usually avoid this initial communication phase by 
starting from data decompositions where at least one of the dimensions are local to a 
node. Node-local FFT implementations are then applied to each dimension in turn 
interspersed by communication phases where necessary to change the data 
decomposition so that the FFTs in the next dimension become local(see Figure 15). 



 

© CRESTA Consortium Partners 2011  Page 19 of 32 

 

This also has the practical advantage that existing single node FFT libraries can be 
used to implement the computational phases. 

 

 
Figure 15 - Graph representation of a (22x 22) 2D FFT 

Where the data can be equally distributed across processors this communication stage 
is equivalent to a MPI MPI_Alltoall collective operation. If the data cannot be equally 
distributed this corresponds to an MPI_Alltoallv operation. 

This requires one fewer communication stage than the number of dimensions in the 
FFT. At low numbers of nodes this can be reduced by having decompositions where 
more one of the dimensions are local at the same time.  

In principle it is also possible to decompose the global data graph in a way that the 
transformations over some of the dimensions are spread over more than one data 
decomposition. This gives greater freedom of choice in the number of processors that 
can be used. Unfortunately it is unlikely that the initial data redistribution phase can be 
avoided in this case, so this approach will only be appropriate for high dimensional 
transformations or applications where other constraints on the data decomposition 
already require an initial communication stage to be used. 

5.1.1 Hardware	  model	  
We can model the communication network interface using a modified 
Latency/Bandwidth model where the message latency may depend on the number of 
active messages so the time to send x messages of size S is given by: 

 
We can expand the latency factor as a power series in x: 

 
• l0 can be interpreted as a pipelined latency including the network transfer time. 
• l1 can be interpreted as non-pipelined latency or per-message overhead; for 

example representing critical sections in the MPI library or the additional time 
needed to send message headers. 

• l2 can be interpreted as a cost associated with searching internal message 
queues (each message incurs a cost proportional to the number of outstanding 
messages). 

The impact of the number of active messages is included in the model to capture the 
difference between sending a small number of large messages and sending a large 
number of small messages. 

In practice it may be necessary to fit these parameters separately for different 
communication mechanisms (e.g. within and between nodes) and possibly for different 
message size regimes corresponding to different underlying communication protocols. 

We also need to take account of contention with the network. This is a complex 
problem that can really only be addressed via simulation but a simple model can be 



 

© CRESTA Consortium Partners 2011  Page 20 of 32 

 

developed using an estimate of the bisection bandwidth B(x) available between a group 
of x processors.  

For a single communication stage of the FFT calculation implemented as an all-to-all 
over P nodes this gives: 

 
The total communication time is then given by: 

 
If we include an estimate of the impact of network contention: 

 
where 

 

5.1.2 Latency	  minimisation	  
When using multiple communication steps, the number of simultaneous messages can 
be reduced by choosing decompositions that minimise the number of nodes that need 
to communicate at each step. 

One way to achieve this is in multi-dimensional FFTs is to perform the decomposition 
dimension by dimension onto a (d-1) dimensional process grid then the data passes 
through the following decompositions: 

Global volume  Processor grid Local volume 

N1 ,N2 . . .  Nd 1, p1, . . . pd-1 N1, N2/p1, . . . Nd/pd-1 

N1 ,N2 . . .  Nd p1, 1,. . . pd-1 N1/p1, N2, . . . Nd/pd-1 

N1 ,N2 . . .  Nd p1, p2,1,. . . pd-1 N1/p1, N2/p2, . . . Nd/pd-1 

Etc.   

 

This breaks each communication step into disjoint sub-sets of nodes (of size pi), 
reducing the number of messages each node has to handle at each step. 

For a single communication stage of the FFT calculation this gives: 

 
With the total communication time given by: 

 
If we include an estimate of the impact of network contention: 

 
where 

 
 



 

© CRESTA Consortium Partners 2011  Page 21 of 32 

 

5.1.3 Communication	  overlap	  
There is some room for communication/calculation overlap in the FFT calculation, but 
only when the potential parallelism of a decomposition strategy is not fully exploited. If 
multiple independent sub-graphs are allocated to the same processor, then the results 
from one sub-graph can be communicated in parallel with the evaluation of subsequent 
sub-graphs, but at the cost of increasing the number messages. Without any overlap 
the time to solution is given by: 

 
With overlap  

 
so this is only significant if the computation and communication costs are roughly 
equal. 

5.1.4 Limiting	  factors	  for	  Exascale	  
There are a number of factors that will limit the performance of FFT calculations at the 
exascale. The primary challenge is to support the very high levels of concurrency in 
exascale systems. 

Due to power constraints, exascale systems are expected to be built out of GHz 
processors with a total system concurrency of 109. This means that for a single FFT to 
fully utilise this concurrency it will need to be of a similar size e.g. at least a 10003. This 
is a relatively large system for many current uses of FFTs. 

Current proposals for exascale systems are scaling up communication capabilities to a 
lesser degree than floating point performance. The inevitable consequence of these 
designs is that the fraction of application run-time spent in communication bound 
operations like FFTs will be expected to increase. Even if the full computational 
concurrency of the system is not utilised, an FFT may still provide better time to 
solution and energy usage than alternatives. On current petascale systems FFT 
performance is primarily determined by number of nodes rather than number of 
processors. It could easily be argued that on exascale systems, where power 
consumption is a major part of the overall cost, the correct design choice for FFTs is to 
achieve the minimum time to solution that the network allows, and it is a positive 
feature if this allows unused cores on to enter power saving sleep states. This would be 
particularly advantageous if the hardware was capable of re-assigning the saved power 
to increase the speed of the communication sub-system. 

The main lack of scaling in the algorithm comes from the need to increase the number 
of communication stages as the number of nodes increases. Even in the worst case 
(equivalent to directly implementing the butterfly pattern) the number of communication 
stages only increases as log(P). This is not totally unacceptable scaling behaviour, as a 
1000-fold increase in node count would still result in a factor of 100-performance 
increase. However as energy costs associated with communication will also increase 
proportional to the number of stages, this will result in an approximate 10-fold increase 
in the energy consumption for the same calculation. For this reason the node counts 
used to implement the FFT will probably have to be limited to values where only a 
small number of communication stages are used. 

A cubic 3D FFT can be fully decomposed in 2 dimensions using the “pencil” 
decomposition while still only requiring 2 communication steps and exposing 

parallelism of: . Parallelism of  can be achieved with 2 communication 
steps for any FFT by using an initial data redistribution step and decomposing the data 
graph as if it was a 2D transform.  

Network contention is also a likely bottleneck at high processor counts. The network 
contention factor F in our model is inversely proportional to the bisection bandwidth of 
the network. For this factor to scale, the bisection bandwidth needs to increase linearly 
with number of nodes. This is not true for most commonly used network topologies, so 



 

© CRESTA Consortium Partners 2011  Page 22 of 32 

 

network contention is likely to become a limiting factor at some point. There will be no 
advantage to increasing the number of nodes beyond the point where network 
bisection bandwidth becomes the limiting factor on performance. If this crossover point 
occurs for  then the best available solution might be to use a two-stage strategy 
where the FFT calculation only uses a sub-set of the available nodes. The performance 
of the FFT will be ultimately determined by the bisection bandwidth of the network but 
the use of an initial data redistribution step means that the data decomposition used by 
the rest of the application can be chosen independently of the requirements of the FFT. 

For a fixed problem size the network interface bandwidth costs for a single 
communication scale with the number of nodes. 

The number of simultaneous messages in each communication step increases as the 
number of nodes increases so non-constant terms in the latency factor are also 
expected to become significant at exascale.



 

© CRESTA Consortium Partners 2011  Page 23 of 32 

 

 
 

5.2 Iterative	  solver	  for	  sparse	  linear	  systems	  
One iteration of a typical iterative solver consists of sparse-matrix vector multiplication 
and some vector operations. The sparse-matrix vector multiplication is one of the most 
important computational kernels in the numerical simulation. There are many different 
formats for the storage of the matrix. However, the greatest improvement in the 
performance on a CPU can be achieved by a block oriented storage format. In the next 
section we describe the format of the matrix. So it is possible to determine how much 
memory will be used by different numbers of computational nodes, matrix sizes and 
matrix block sizes. This information is also useful to calculate the effort for transferring 
of the data to the external library or between different simulation modules (13). In the 
last section we describe the effort to solve numerical problem (large sparse linear 
system).  

5.2.1 Blocked	  sparse	  matrix	  overview	  
Sparse matrices are characterised by a huge amount of vanishing elements and it is 
obviously desirable to store and access only the nonzero elements. One of the most 
popular formats to save and transfer sparse matrices is CSR format. For each sparsely 
populated row a part of the col array lists the column indices of the matrix entries. The 
matrix entries are stored in the val array in ascending column index order. Evidently, 
both arrays cover an equal number of matrix entries. Last but not least the row array is 
a list of indices pointing to each new row in the column index list. 

Additionally, every matrix entry can consist of not only one element but of a dense 
block of values. In this case, the row and column indices remain unchanged as do the 
corresponding arrays. However, the value array enlarges by a factor of block size 
squared. 

Main characteristic constants are listed in the following Table 3. 

 Matrix dimension 

 Number of nonzero matrix entries 

 Block size 

 
Density / sparse factor 

Table 3 - Sparse matrix characteristic constants 

5.2.2 Sparse	  matrix	  file	  and	  data	  layout	  
The following table summarises a typical file data layout for blocked sparse matrices 
and lists the MPI file access method needed as well as the number of bytes to be read. 
It assumes a parallel file reading with p MPI threads. 

Var Count Type (Bytes) Description Read access method 

 20 char(1) Name File_read_all 

 1 int(4) Dimension File_read_all 

 1 int(4) Block size File_read_all 

row  int(4) Row pointer array File_read_at_all 

val  double(8) Values File_read_at_all 

col  int(4) Column pointer array File_read_at_all 

rhs  double(8) Rhs vector File_read_at_all 

res  double(8) Residual File_read_at_all 



 

© CRESTA Consortium Partners 2011  Page 24 of 32 

 

Table 4 - File data layout for a typical sparse matrix. 

5.2.3 Sparse	  matrix	  parallel	  read	  chain	  
In contrast to a dense matrix, the read chain of a sparse matrix serialises inherently 
due to the inner dependencies of the sparse matrix data parts. The header including 
the matrix dimension needs to be known to read the proper amount of the row pointer 
array. Respectively, this applies to the row and column pointer arrays. 

Also, the later usage of the data influences the reading strategy. If the matrix data will 
be used in its native format each part, possibly partitioned further over threads, can be 
read in entirely. However, the matrix data will commonly be processed in a way or 
passed to other, even outer, structures that want to arrange the data their way. E.g., 
this happens when using external libraries like PETSc or Trilinos. In this case a 
complete matrix read is not necessary or may be impossible because twice the 
memory is required. Here, a chunk size  is specified denominating a number of rows. 
Each thread reads and passes his chunks individually to the external library. 

In total, the reading chain covers the header first, followed by row and col arrays, the 
values and the vectors. Main header information, namely dimension and block size, 
must be present on every thread. The row array gets partitioned among all threads 
each one holding  bytes. It is either stored in local-type (every part 
starts with a fresh 0 index) or global-type (consecutively numbered across all parts) 
indexing. Respectively, the global number of nonzero entries must be collectively 
added (Allreduce) or broadcasted by the last thread. 

The col and val arrays consist of  number of distinct reads where  number of 
rows are processed. The estimated number of entries within each of these rows equals 
in average the product of the sparse factor  and the matrix dimension .This yields 

 
+ 

  
bytes. 

Both vectors are small enough to spare a further per-thread partitioning and cost 2 
collective reads with 

 
bytes read each. 

 Network latency for collectives 

 File access latency 

 Network bandwidth 

 File I/O bandwidth for identical data (MPI_File_read_all) 

 File I/O bandwidth for disjoint data (MPI_File_read_at_all) 

 

 
with 

 



 

© CRESTA Consortium Partners 2011  Page 25 of 32 

 

 

 

 

5.2.4 Sparse-‐matrix	  vector	  multiplication	  and	  dot	  product	  on	  exascale	  system	  
If the matrix is distributed between computational nodes by rows, the communication 
part can be in most cases overlapped. The local part of the vector has to be sent 
mostly to the neighbor’s processes. The next important operation is the dot product. 
After the local part of the dot product has been calculated an MPI_Allreduce operation 
must be done.  This operation is usually the bottleneck for iterative solvers. In the next 
section we compare the performance of these two operations for different system sizes 
and numbers of processes. 

The bone matrix was assembled by static 3D finite element simulations of a bone-
implant system (see (13) for more details). The block size of the original matrix was 
changed from 3x3 to 4x3 via additional zero elements. This is because the processors 
use the AVX registers. One register contains four values. The new block size allows 
the compiler or programmer to unroll the main loop of the matrix vector multiplication. 
This leads to a great improvement in performance. The additional effort is much 
smaller than the resulting benefits. 

The computation was done on the Intel E5-2687W.The results are listed in Table 5 for 
two cases: when the data fits in RAM and in L3 cache. 

Matrix 
dim. 

Nd        
(block 
4x3) 

Matrix size 

GiB 

Size of streams 

(block 4x3) 

Bandwidth 

GiB/sec 

Time of Ax 

sec 

Load GiB Store GiB 

54’537 268.262e-3 269.888e-3 1.625e-03 32.4 8.3e-03 

1’704 6.8155e-03 6.866e-03 50.783e-6 88.9 77.32e-06 
Table 5 – Performance of the MV multiplication 

Let us assume that an exascale system could have about 10 million nodes each with 
two such processors. The size of the streams increases linearly with the matrix 
dimension and one node with 16 cores has 32 GiB RAM and 40 MiB cache. If we want 
to keep the data in cache on all nodes the size of such matrix ( ) is about 

.If we want to keep the data of the same matrix in the memory we need a lot 
fewer nodes: 8,646.We assume that 50% of the RAM can be used for the matrix vector 
multiplication. 

The efficiently calculation requires that the calculation time should be much greater as 
the communication time: 

 
 

The performance and time of the calculation depends mostly whether the data is in 
cache or in RAM. The time of matrix vector multiplication for =  is: 

 

 



 

© CRESTA Consortium Partners 2011  Page 26 of 32 

 

Assume that the communication time depends logarithmic on the number of nodes(15) 
with Latency 1µs: 

 

 
Now we have to check the efficiency of the parallelization: 

 

 
 

It is clear that the efficiency of the parallelization is much better if the data is in RAM. 
During the calculation the electric power of the processors and RAM would be about 

 Watt if the data is in RAM and about 5 Watt if the data is in cache. 
The other components of the node consume about 100 Watt. The electric power of the 
whole node is about 300 Watt during the communication. By these assumptions we 
can calculate the amount of energy, which we need for one iteration step: 

 

 

 

 

 

 

 

 

 

 

Despite the fact that more than one thousand times more nodes have been involved in 
the calculation the energy consumption was two times lower. Even if the latency time 
would be higher by 10 times, we would not consume more energy with 10 million nodes 
as with almost 10 thousand. Solving the sparse linear system would still faster.  

Ax MPI_Allreduce 

Ax MPI_Allreduce 



 

© CRESTA Consortium Partners 2011  Page 27 of 32 

 

6 Conclusion	  
 

Firstly we summarize the major trends in hardware developments, which we will 
consider in more detail through the use of our developing "exascale algorithms and 
solvers” library: 

• The performance of each node in an HPC system will continue to rise. This is 
realised by the increasing number of cores and their vector units (AVX). 

• However memory bandwidth reduces the efficiency of computation greatly. An 
increase in the gap in performance between cache and memory can also be 
expected in the foreseeable future. On other hand the memory bandwidth 
cannot be fully exploited with only few cores. 

• Communication latency is one of the main limiting factors for scalability. Part of 
the communication latency is not caused by the network hardware, but rather 
by various software layers, such as the MPI library or high-level network drivers. 

• Hardware accelerators can be faster than one or even two processors. 
However, the accelerators also have clear disadvantages compared to a 
processor. This is especially true if the computation is launched on distributed 
systems where there is a lot communication, which cannot be overlapped. 

• The hardware consumes a lot of power, even though its efficiency increases. 
• We have also shown that the efficient use of exascale hardware should include 

active fault handling in message passing. If the cumulative runtime of a parallel 
application draws near processor lifetime, fault tolerant MPI implementations 
using spare cores will need to be considered. 

Regarding limiting factors, the following points have been identified through the use of 
our developing "exascale algorithms and solvers” library: 

• We should use the vector components of the processors (by using of suitable 
data structures and controlling of the compiler). This increases the performance 
and energy efficient of today's processors. It is also essential for the next 
generation of the hardware. 

• We must clearly distinguish between the calculations in memory and in cache. 
This gives us the opportunity for better parameterisation and extension of the 
implementation for various cases. It makes also possible the integration of the 
future work in CRESTA Work package 2 "Power measurement across 
algorithms" into the library. 

• It's strongly recommended to use only one maximal two (by dual socket system) 
communication processes (mpi process) per node. The threads and processes 
must be pinned to the cores. 

• It is necessary not only to have a better network hardware, but also a better 
implementation of the collective operations (with possibility of direct use of 
network driver e.g. API for CRAY Aries interconnect). These are also being 
developed in WP4. 

• Use every opportunity to overlap the communication and computation. 
• Use the GPU only for such algorithms, which do not require frequent exchange 

of data with the host. 
• It is also necessary to consider the dynamic allocation of resources (such as the 

active number of cores, usage of GPU) depending on the size of the problem, 
algorithms and allocated nodes. The usage of fault tolerant MPI 
implementations using spare cores should be considered as far as possible. 

In order to achieve efficiency on exascale platforms, power consumption must be 
reduced not only at the hardware level but also at the software level. Some of the 
above items have expected efficiency improvements. Others, such as the switching of 
CPU frequency require further research. 

 



 

© CRESTA Consortium Partners 2011  Page 28 of 32 

 

A.1 Platforms	  
 

All systems, which are mentioned in the deliverable, are in-house systems in HLRS 
Stuttgart. 

 

A.1.1 NEC	  Nehalem	  Cluster	  

 

 
Figure 16 - NEC Nehalem Cluster (Laki) 

 

NEC Nehalem is consists with around 700 nodes. Each node is equipped with dual 
socket Intel Xeon X5560 @ 2.80GHz quad cores. Some of nodes are replaced with 
Intel Xeon E5-2670 @ 2.60GHz 8-cores each socket and some with 4 sockets AMD 
Interlagos, AMD Opteron Processor 6238, 12-cores each. RAM ranges from 12 to 256 
GB. 20 nodes are powered with 2x NVIDIA tesla C1060 each and 2 nodes with GTX 
680. Nodes are interconnected with InfiniBand and GigaEthernet. 

 

Technical description 

Peak Performance 62 TFlops 

Number of Nodes 700 Dual Sockel Quad Core 

Processor I Intel Xeon (X5560) Nehalem @ 2.8 GHz, 8MB 
Cache 

Processor II Intel Xeon (E5-2670) Sandy Bridge @ 
2.60GHz 8, 20MB Cache 

  

Memory/node 12 GB 

Disk 80 TB shared scratch (lustre) 

Node-node interconnect infiniband, GigE 

Accelerators 20 nodes provide 2x Nvidia Tesla C1060  
2 provides GTX 680 

graphical pre- and post processing nodes 6 nodes provide NvidiaQuadro 5800FX 
graphics card 

 



 

© CRESTA Consortium Partners 2011  Page 29 of 32 

 

 
A.1.2 CrayXE6	  

 

 
Figure 17- Cray XE6 (Hermit) 

 

Cray XE6 (Hermit) is the modern system with 3552 compute nodes. Each node has an 
AMD 2 sockets Interlagos 16 cores each. Each node is equipped with 32 or 64 GB 
RAM. 28 nodes are powered with NVIDIA K20X. The nodes with GPGPU are with one 
CPU socket which means only 16-cores. All nodes are interconnected with Gemini 
interconnect. 

	  
Technical description (installation step 1) 

Peak performance 1.045 PFlops 

Cabinets 38 with 96 nodes each 

Number of compute nodes 3552 

Number of compute cores per node 2 sockets with 16 cores each: 113 
664 

Number of service nodes 96 

Processor compute nodes Dual Socket AMD Interlagos @ 2.3GHz 16 
cores each 

Accelerators 28 nodes with NVIDIA K20X 

Memory/node 32 GB and 64 GB 

Disk capacity 2.7 PB 

Node-node interconnect Cray Gemini 

Special nodes External Access Nodes, Pre- & Post 
processing Nodes, Remote Visualization 
Nodes 

Power consumption 2 MW maximal 

	  



 

© CRESTA Consortium Partners 2011  Page 30 of 32 

 

	  
A.1.3 Workstation	  (Intel	  E5	  2687W)	  

	  

This station is equipped by the latest hardware. It is used not only for performance but 
also for power measurements. 

	  

Components Model 
Motherboard Supermicro® X9SRA 
CPU Sandy Bridge Intel® E5 2687W (20 M Cache, up to 3.8 GHz, 

8 cores, stepping C2)  
RAM Kingston® Server Premier ®  4x4 GB, DDR3-1600, ECC 
Video HD5450, 1GB DDR3 , PCI Express® 
Power supply Antec®  EarthWatts® EA-450 Platinum, 450 Watt 
Hard disc WD Caviar® Black™ WD7502AAEX, 1 TB 
Fans One cpu fan Dark Rock Pro, and 3 chassis fan 
Monitor No 
OS Scientific Linux 6.x (Carbon); Kernel 2.6.32 
	  



 

© CRESTA Consortium Partners 2011  Page 31 of 32 

 

7 Bibliography	  
1. Wan, Ucilia. http://www.lbl.gov/Science-Articles/Archive/NE-climate-
predictions.html. Berkeley Lab Researchers Propose a New Breed of Supercomputers 
for Improving Global Climate Predictions. [Online] 2008.  

2. Ramirez, Alex. The Mont-Blanc approach toward Exascale. [Online] 2012. 
http://www.montblanc-project.eu. 

3. Davis, Nick. Cray Unveils the Cray XC30 Supercomputer -- the Next Generation of 
Its High-End Supercomputing Systems. http://www.cray.com. [Online] CRAY Inc., 
2012. http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-
newsArticle&ID=1755982. 

4. Kanter, David. Intel’s Haswell CPU Microarchitecture. real world technologies. 
[Online] November 2012. http://www.realworldtech.com/haswell-cpu/. 

5. Booth, Stephen. D2.1.1 Architectural developments towards exascale. s.l. : 
CRESTA Consortium Partners 2011, 2012. 

6. Power consumption of kernel operations. Uwe Küster, Dmitry Khabi. [ed.] Michael 
Resch, et al. Stuttgart : Springer, forthcoming (Novermber, 2013). Sustained Simulation 
Performance. 

7. Wafai, Mhd. Amer. Sparse matrix vector multiplications on graphic processors. 
Dokumentenserver der Universität Stuttgart . [Online] 2009. http://elib.uni-
stuttgart.de/opus/volltexte/2010/5033/. 

8. LogGP: incorporating long messages into the LogP model—one step closer towards 
a realistic model for parallel computation. Alexandrov, Albert et al. s.l. : Proceedings 
of the seventh annual ACM symposium on Parallel algorithms and architectures 
(1995), ACM, NewYork..http://doi.acm.org/10.1145/215399.215427., 1995. 

9. Low-Overhead LogGP Parameter Assessment for Modern Interconnection 
Networks. Hoefler, T., Lichei,A. and Rehm W. s.l. : In Proceedings of the 21st IEEE 
International Parallel & Distributed Processing Symposium (2007).IEEE Computer 
Society. 

10. LogGP in Theory and Practice- An In-depth Analysis of Modern Interconnection 
Networks and Benchmarking Methods for Collective Operations. Hoefler, Torsten, 
Schneider, Timo and Lumsdaine, Andrew. 9, October 2009, Simulation Modelling 
Practice and Theory, Vol. 17, pp. 1511-1521. 

11. José Gracia, Christoph Niethammer, Wahaj Sethi. D4.5.2 Microbenchmark 
Suite. CRESTA Consortium Partners 2011. 2012. 

12. The National Institute for Computational Sciences. IO Lustre Tips. [Online] National 
Institute for Computational Sciences, 2013. http://www.nics.tennessee.edu/computing-
resources/file-systems/io-lustre-tips. 

13. Stephen P Booth, Dmitry Khabi, Gregor Matura, Christoph Niethammer, 
Harvey Richardson. Overview of major limiting factors of existing algorithms and 
libraries. s.l. : https://cresta-project.eu, 2012. 

14. A large scale study of failures in high-performance-computing systems. Gibson, 
Bianca Schroeder and Garth A. s.l. : International Symposium on Dependable 
Systems and Networks (DSN 2006). , 2006. 

15. Torsten Hoefler, William Gropp , Rajeev Thakur , and Jesper Larsson. Toward 
Performance Models of MPI Implementations for Understanding Application Scaling 
Issues. 2010. 



 

© CRESTA Consortium Partners 2011  Page 32 of 32 

 

	  


