

Copyright © CRESTA Consortium Partners 2011

D4.3.1	
 –	
 Initial	
 prototype	
 of	
 exascale	

algorithms	
 and	
 solvers	
 for	
 project	

internal	
 validation	

WP4:	
 Algorithms	
 and	
 Libraries	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization HLRS

Version: 1.0

Status Final

Author(s):
Dmitry Khabi (HLRS),

Stephen P Booth (UEDIN)

Reviewer(s) Lorna Smith (EPCC), George Mozdzynski (ECMWF)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 18/08/2013 First draft for comments Dmitry Khabi (HLRS)

0.2 30/08/2013 FFT part Stephen Booth (UEDIN)

0.3 07/09/2013 Linear-Solver Part Dmitry Khabi (HLRS)

0.4 09/09/2013 Final draft version Dmitry Khabi (HLRS)

0.5 16/09/2013 Updated due to the internal review Dmitry Khabi (HLRS)

0.6 17/09/2013 Updated due to the internal review Stephen Booth (UEDIN)

1.0 19/09/2013 Final version Dmitry Khabi (HLRS)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 3	

3	
 CRESTA-­‐FFT	
 LIBRARY	
 ..	
 4	

3.1	
 FFT	
 ALGORITHMS	
 ..	
 4	

3.2	
 USE	
 OF	
 CRESTA-­‐FFT	
 LIBRARY	
 ...	
 5	

3.3	
 PERFORMANCE	
 COMPARISON	
 OF	
 DIFFERENT	
 IMPLEMENTATIONS	
 ...	
 6	

3.4	
 FURTHER	
 WORK	
 ..	
 6	

4	
 CRESTA-­‐LINEAR-­‐SOLVER	
 LIBRARY	
 ..	
 7	

4.1	
 SPARSE	
 MATRIX	
 AND	
 VECTOR	
 DISTRIBUTION	
 ..	
 7	

4.2	
 USE	
 OF	
 CRESTA-­‐LINEAR-­‐SOLVER	
 LIBRARY	
 ...	
 8	

4.3	
 FURTHER	
 WORK	
 ..	
 9	

5	
 CONCLUSION	
 ...	
 10	

6	
 REFERENCES	
 ..	
 11	

Index	
 of	
 Figures	

Figure 1 - Data movement graph for a 2^4 FFT ... 4	

Figure 2 - Graph representation of a (2^2x 2^2) 2D FFT ... 5	

Figure 3 - The time to solution of two different sizes of 3D FFT on HECToR 6	

Figure 4 - Parallel programming modelof CEL-Linear-Solver library 7	

Figure 5 - Distribution of the sparse matrix A and the vectors x, y by the matrix vector
multiplication A*x=y implemented in the CEL-Linear-Solver library 8	

	

Unknown
Field Code Changed
Unknown
Field Code Changed
Unknown
Field Code Changed
Unknown
Field Code Changed

© CRESTA Consortium Partners 2011 Page 1 of 11

1 Executive	
 Summary	

Deliverable D4.3.1 is a software deliverable. This document describes the software, a
prototype parallel numerical library targeted at Exascale systems. The software is
available on the CRESTA SVN server at:

https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp4/cresta_libraries/cel

As previously discussed in the deliverables of WP4 “D4.1.1 Overview of major limiting
factors of existing algorithms and libraries”(1)and “D4.2.1 Prediction Model for
identifying limiting Hardware Factors” (2) the Exascale is going to require an increase
in the efficiency, in the sense of scalability and performance, of algorithms due to the
very large degree of parallelism that will be required. As well as efficient algorithms
highly efficient implementations of those algorithms are also required. In addition to the
increase in the degree of parallelism Exascale systems are expected to be significantly
more complex than current systems with many different levels of memory and
communication hierarchies. This will make it very difficult to optimize codes for
Exascale systems. Many codes will require significant rewriting to make the best use of
these systems. The availability of parallel numerical libraries designed for Exascale
systems should significantly reduce the development costs of this process. We have
evaluated a number of existing numerical libraries that implement linear solvers (such
as PETSc (3) or Trilinos (4)) though these are scalable on current hardware they
haven’t achieved, in our opinion, the highest possible efficiency (see more details in (2)
and (1)). In addition current solver libraries do not properly address key issues at the
Exascale such as the overlap of communication and calculation. Though Fourier
transforms are an important part of many simulations and node-local FFT libraries are
widely used, most major applications implement their own distributed FFTs using a
combination node-local FFT libraries and explicit MPI communications. We believe that
this is because the currently available parallel FFT libraries place too many constraints
on the data decomposition of the rest of the application.

For all of the above reasons we are developing a new library (the CRESTA Exascale
Library, CEL in short) addressing these two important classes of numerical problem:
linear solvers and multi-dimensional Fourier transforms. This initial prototype of the
library will form the basis for further testing and improvements. Ultimately the optimized
library will be integration with the CRESTA applications:

The Spectral Transformations used within the GROMACS application requires complex
collective communication to perform changes in the data decomposition. This kind of
communication seems to be one of the weak links for exascale computing. Therefore,
our approach emphasizes the communication component of the FFT problem.

One of the challenging areas for exascale computing in the applications OpenFOAM
and ELMFIRE is the use of linear solvers. It’s necessary to use a fast scalable linear
solver especially in the simulation of an entire hydraulic machine using Large Eddy
Simulation (see (5) for more details). In this deliverable we describe a model for the
distribution of the matrix and vectors, which allows carrying out the matrix vector
multiplication with an emphasis on overlapping of computation and communication.

The CEL also provides a framework for the development and evaluation of some of the
other new and promising disruptive technologies being developed within the CRESTA
project for example:

• WP2: The power measurement across algorithms

It should be possible not only to measure the power consumption of the CEL library
algorithms but also to optimize it for efficient power consumption: for example by
adjusting of the CPU frequency during execution and analyzing the effect on
performance and power consumption. The details of our first investigations in this
field can be found in (6).

© CRESTA Consortium Partners 2011 Page 2 of 11

• WP4: CRESTA Collective Communication Library (CCL) (7) and CRESTA
Microbenchmark suite (8)

The non-blocking collectives are a new development in HPC. The CEL library uses
new approaches for collective communication bymatrix vector multiplication in
combination with remote-memory access. Together with the developers of the CCL
library we are going to investigate, how it would be possible to integrate the CCL
Library into CEL library and what is the best way to organize the overlapping during
the multiplication.

• WP4: Optimized Reduction Approach

It’s not always clear how far the distributed reduction approach affects the
numerical calculations in the case of a real application. It is planned to continue the
investigation using the CEL library to collect the necessary statistics. The details
relating to the previous investigation of using multi-precision software can be found
in (1).

© CRESTA Consortium Partners 2011 Page 3 of 11

2 Introduction	

The deliverable software is called CRESTA Exascale Library. The library consists of
two parts: Linear solver and Multi-dimensional FFT. The CEL-FFT library is intended to
make it easier to implement FFT implementations in particular to allow the data
decompositions used elsewhere in the applications to be less constrained by the needs
of the FFT. The CEL-Linear-Solver is used to solve large linear systems. It’s planned,
that the final version will contain a set of the iterative solvers with Jacobi- and AMG-
preconditioner.

The CEL library is being developed using the parallel paradigms Hybrid MPI/OpenMP
and Coarray. The initial prototype of the library can be found in the CRESTA SVN. The
library is still in its early development state. More alternative implementations,
optimizations and features will be added into it.

We have a set of the data from real applications that will be used for the internal
validation. The re-implementation of the bespoke FFT code and linking of the Linear-
Solver library into the selected CRESTA applications are the further steps in the
development and validation process.

The first part of this document contains the description and the development state of
the CEL-FFT library. The second partprovides detailson the CEL-Linear-Solver
library.The descriptionof the interface, compiling and runtime parameters of the first
public version will beprovided in the next deliverable D4.3.2 of work package 4 after
further improvement and validation.

© CRESTA Consortium Partners 2011 Page 4 of 11

3 CRESTA-­‐FFT	
 library	

The CRESTA Exascale FFT library is intended to make it easier to implement FFT
implementations in particular to allow the data decompositions used elsewhere in the
applications to be less constrained by the needs of the FFT. We have been developing
a generic library (reshape) to support changes in data decomposition that can then be
used to quickly optimize the FFT strategy for the available hardware.

In the next two sections we describe the advantages of this library and how it works.

3.1 FFT	
 algorithms	

The parallel performance of the FFT algorithm is best understood by considering the
data movement graph for the algorithm. For the FFT this is the “butterfly” pattern (see
Figure 1). As can clearly be seen from the graph representation a 2n FFT has a
computational complexity of O(N log(N)). The algorithm has a potential parallelism of
O(N) with good load-balance but is also a non-local algorithm requiring a high degree
of data movement. The computation performed by each node of the graph is quite
small so the time to execute these communication steps will dominate performance at
large numbers of nodes.

Figure 1 - Data movement graph for a 2^4 FFT

The most common use of Fourier transforms in HPC applications are as multi-
dimensional FFTs.

Multi-dimensional FFTs are usually implemented by performing each dimension of the
FFT in turn. This gives rise to the same graph representation as a single large FFT
consisting of the same number of points. The only difference between the two
algorithms being the phase factors applied at each computational stage. In a multi-
dimensional FFT there are no constraints on the order that each dimension is
processed. In fact stages of the FFT algorithm from different dimensions can be
interleaved provided the order within a dimension is preserved. However this only
changes the assignment of initial data points to the initial graph nodes. The topological
structure of the graph always remains equivalent to a graph for a single FFT of the
same size.

An efficient parallel implementation strategy for any FFT calculation therefore depends
on choosing a set of data decompositions for each stage of the FFT so as to minimize
the amount of data that needs to cross node boundaries. For an Exascale architecture
with multiple levels of communication hardware this optimization may take place on
many levels. In general an initial communication stage is required to place the data in
the correct starting decomposition but in some cases it is possible to adapt the
surrounding application to use this same decomposition.

Current parallel multi-dimensional FFTs usually avoid this initial communication phase
by starting from data decompositions where at least one of the dimensions are local to
a node. Node-local FFT implementations are then applied to each dimension in turn
interspersed by communication phases where necessary to change the data
decomposition so that the FFTs in the next dimension become local (see Figure 2).

© CRESTA Consortium Partners 2011 Page 5 of 11

This also has the practical advantage that existing single node FFT libraries can be
used to implement the computational phases. Unfortunately a similar approach is not
usually possible within a single dimension because the initial stage of the FFT is over
the longest length scale and the initial communications step can only be avoided if the
rest of the application is able to utilize data in a cyclic decomposition.

Figure 2 - Graph representation of a (2^2x 2^2) 2D FFT

These transpose based implementations require one less communication stage than
the number of dimensions in the FFT (pencil decomposition). At low numbers of nodes
this can be reduced by having decompositions where more than one of the dimensions
are local at the same time (slab decomposition).

It is also possible to decompose the global data graph in a way that the transformations
over some of the dimensions are spread over more than one data decomposition (a
split-transform). This gives greater freedom of choice in the number of processors that
can be used. Unfortunately it is unlikely that the initial data redistribution phase can be
avoided in this case so at low node counts a slab-decomposition with a single
communication step will be preferable. At higher node counts (up to the square root of
the total number of points in the FFT) this approach will be comparable to the pencil
decomposition but will not constrain the data decompositions of the rest of the
application. Depending on the balance of the communication and computational
abilities of the target hardware at very high node counts it might be more advantageous
to run the internal phases of the FFT on a subset of the computational nodes rather
than introduce more communication steps.

3.2 Use	
 of	
 CRESTA-­‐FFT	
 library	

All of these different strategies for the implementation of distributed FFTs come down
to changes in data decomposition. Current practice is to laboriously hand code each
strategy within each application making it difficult to explore new strategies as
hardware changes. We have been developing a generic library (reshape) to support
changes in data decomposition that can then be used to quickly optimize the FFT
strategy for the available hardware.

In general any data decomposition can be represented at run-time by an object with the
following interface:

• A method that maps global coordinates to a process rank
• A method that maps global coordinates to a local memory offset.

To start with, we are only considering decompositions where each dimension of the
data-set is decomposed independently. We can therefore represent the decomposition
along each dimension as a separate object and combine them using a set of
processor-rank and memory-offset stride values. This is still capable of representing a

© CRESTA Consortium Partners 2011 Page 6 of 11

far more general set of decompositions than most parallel libraries. The downside is
that these general decompositions are a little more expensive to use.

To mitigate this, we use an interface which uses decomposition descriptors to build re-
usable communication plans for switching between data decompositions (essentially
these are lists of MPI datatypes corresponding to the necessary messages). Any
additional overhead only takes place in the initial planning stage and should have little
impact on the overall performance of the code. As an added bonus virtually the same
code can be used to build MPI-IO file-view datatypes to support parallel IO to the
different decompositions.

3.3 Performance	
 comparison	
 of	
 different	
 implementations	

To validate this approach our first step was to reproduce the capabilities of the
distributed FFT provided by the FFTW-3 library on HECToR. The parallel FFTW library
only supports decomposition in one dimension so it is relatively easy to reproduce. The
following graph shows the time to solution of two different sizes of 3D FFT. These tests
were run with one MPI task per node but with multi-threading enabled within the local
FFTs.

Figure 3 - The time to solution of two different sizes of 3D FFT on HECToR

3.4 Further	
 work	

The following work is planned to be performed for improvingthe performance and
libraryinterface:

• Compare the performance of a reshape based implementation with a hand
coded pencil decomposition.

• Implement and benchmark the new split-transform strategies
• Validate the ease-of-use of the library interface by re-implementing the bespoke

FFT code in real applications (e.g. GROMACS) and comparing performance.

0.0001	

0.001	

0.01	

0.1	

1	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	

Ti
m
e	

(s
ec
)	

Nodes	

Ew	
 64	

reshape	
 64	

Ew	
 128	

reshape	
 128	

© CRESTA Consortium Partners 2011 Page 7 of 11

4 CRESTA-­‐Linear-­‐Solver	
 library	

The CEL-Linear-Solver library runs with at least two threads per process. The master
threads are responsible for the communication between processes, allocation of the
data structures on the shared memory and some mandatory short calculations. The
worker threads perform calculation in parallel using the shared memory. The
synchronization between threads occurs through omp barriers and protected variables
in the shared memory. The master threads read the data from the remote memory and
store it in the shared memory (e.g. by MPI_Get).Figure 4 illustrates the parallel
programming model used in the CEL-Linear-Solver library.

Figure 4 - Parallel programming modelof CEL-Linear-Solver library

4.1 Sparse	
 matrix	
 and	
 vector	
 distribution	

The execution of the matrix-vector multiplication (A*x=y) is one of the most complex
and time consuming operationsfor solving the linear system. Overlapping computation
with communication is one of the basic techniques to improve its efficiency. To make it
possible we have to distribute the matrix, vectors data and the calculation on it in a
particular way that has some important differences to the most widely used methods.
The sparse matrix A is divided into the sub-block matrices with number of rows and
columns equal to block_size =num_chunks x chunk_size. The chunk_size is equal to
the number of elements of the vector x, which will be read from the remote memory at
once (e.g. by MPI_Get(...,chunk_size,…)). Figure 5 shows the example for the case of
two processes and a sparse matrix of size 16 x 16. The chunk consists of two
elements. Two chunks compose one block. Since the matrix is sparse, there are many
zero sub-blocks. Depending on the distribution of the non-zero elements in the sparse
matrix and the parameters num_chunks and chunk_size will be decided what part of
the vector x that will be read by the master thread from the remote memory. When the
transfer operation is completed, the master thread changes the state of the chunk from
remote to the local. If all needed chunks of the block are available locally one of the
worker threads perform the multiplication of the sub-matrix and vector x.

© CRESTA Consortium Partners 2011 Page 8 of 11

Figure 5 - Distribution of the sparse matrix A and the vectors x, y by the matrix vector
multiplication A*x=y implemented in the CEL-Linear-Solver library

Figure illustrates five possible states of data distribution regarding one vector block:

• The block vector is local and no data must be transferred
• The sub matrices are not zero and all chunks must be transferred from the

second processor.
• The sub matrices are zero and no data must be transferred
• One of the sub matrices is zero but all chunks must be transferred
• One of the sub blocks is not zero but only half of the block (one chunk) must be

transferred for the calculation

4.2 Use	
 of	
 CRESTA-­‐Linear-­‐Solver	
 library	

To validate this approach our first step was to implement the conjugate gradient
method and generation code for several test sparse matrices. The test cases can be
found in the example in the CRESTA SVN repository. The library can be compiled with
the GNU, Cray and Intel compilers. Please note, the initial prototype of the library is
the basis for further improvement,, testing and linking into real applications. The library
needs to be optimized and extended to use it in production mode. As previously
mentioned the descriptionof the interface, compilation and runtime parameters of the
first public version will be provided in the next deliverable D4.3.2 of work package 4
after the further improvement and validation.

© CRESTA Consortium Partners 2011 Page 9 of 11

4.3 Further	
 work	

The following work is planned to be performed for improving the efficiency and library
interface:

• Improve the performance of the synchronization between master and worker
threads

• compare the MPI one-sided against MPI_ISend / MPI_IRecv, SHMEM or
Coarrays

• Improve the performance of the matrix vector multiplication by use different
formats for sub matrices (depending on the number of non zero elements)

• Implement Jacobi (or diagonal) preconditioner
• Implement AMG preconditioner
• Linking of the library into CRESTA applications
• Extension of the library to dynamically adjust the CPU frequency for

optimization of power consumption
• Dynamic load balancing through exchange of the sub matrices between the

processes

© CRESTA Consortium Partners 2011 Page 10 of 11

5 Conclusion	

The CEL library is in the initial state. The numerical algorithms have been implemented
based on the promising new HPC approaches. Nerveless further improvements and
optimization needs to be done to achieve the best possible performance. After that we
will integrate the library in selected CRESTA applications and use it for some important
experiments to test what can be achieved by use of new disruptive technologies.

© CRESTA Consortium Partners 2011 Page 11 of 11

6 References	

[1] Stephen P Booth, Dmitry Khabi, Gregor Matura, Christoph Niethammer, Harvey
Richardson.D4.1.1 Overview of major limiting factors of existing algorithms and
libraries. s.l. : CRESTA Consortium Partners, 2012.

[2] Uwe Küster, Stephen P Booth, Stephen Sachs, Dmitry Khabi, Gregor Matura, Mhd.
Amer Wafai.D4.2.1 Prediction Model for identifying limiting Hardware Factors. s.l. :
CRESTA Consortium Partners, 2013.

[3] Portable, Extensible Toolkit for Scientific Computation. [Online] 09 08, 2011.
http://www.mcs.anl.gov/petsc/.

[4] An overview of the Trilinos project. Michael A. Heroux, Roscoe A. Barlett, Vicki E.
Howle. s.l. : ACM Press, 2005.

[5] J.A. Åström (CSC), Adam Carter (EPCC),Konstantinos Ioakimidis (USTUTT),
Rupert W. Nash (UCL), James Hetherington (UCL), Artur Signell (ABO), Jan
Westerholm (ABO).Needs analysis. s.l. : CRESTA Consortium Partners, 2012.

[6] Uwe Küster, Dmitry Khabi. Power consumption of kernel operations. Sustained
Simulation Performance. s.l. : Springer, scheduled at the end of 2013.

[7] Manninen, Pekka.D4.5.3 – Non-Blocking Collectives Runtime Library. s.l. : CRESTA
Consortium Partners, 2013.

[8] José Gracia, Christoph Niethammer, Wahaj Sethi.D4.5.2 Microbenchmark Suite.
s.l. : CRESTA Consortium Partners, 2012.

	

