

Copyright © CRESTA Consortium Partners 2011

D4.4.1	
 –	
 Initial	
 prototype	
 for	

optimized	
 reduction	
 approaches	
 for	
 	

Project	
 internal	
 validation	

WP4:	
 Algorithms	
 and	
 Libraries	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization HLRS

Version: 1.0

Status Final

Author(s): José Gracia (HLRS), WahajSethi (HLRS)

Reviewer(s) Luis Cebamanos (EPCC), Gregor Matura (DLR), Jan
Westerholm (ABO)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 01/09/2013 Initial version J. Gracia (HLRS), W.
Sethi (HLRS)

0.2 10/09/2013 Draft version, submitted for internal
review

J. Gracia (HLRS), W.
Sethi (HLRS),

0.3 15/09/2013 Incorporated recommendations from
1st review

J. Gracia (HLRS), W.
Sethi (HLRS), Luis
Cebamanos (UEDIN)

0.4 19/09/2013 Incorporated recommendations from
reviews 2 & 3

J. Gracia (HLRS), W.
Sethi (HLRS), G. Matura
(DLR), J. Westerholm
(ABO)

1.0 19/09/2013 Final version D. Khabi (HLRS)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 REDUCTIONS	
 AND	
 NUMERICAL	
 ACCURACY	
 ...	
 2	

2.2	
 REDUCTIONS	
 IN	
 MPI	
 APPLICATIONS	
 ..	
 2	

3	
 SUMMATION	
 ALGORITHMS	
 ...	
 4	

3.1	
 KAHAN	
 SUMMATION	
 ...	
 4	

3.2	
 KNUTH	
 SUMMATION	
 ..	
 4	

3.3	
 HIGH	
 FLOATING-­‐POINT	
 PRECISION	
 SUMMATION	
 ...	
 5	

3.4	
 DISCUSSION	
 ...	
 6	

4	
 HIGH-­‐PRECISION	
 REDUCTION	
 SUMMATION	
 LIBRARY	
 FOR	
 MPI	
 ..	
 7	

4.1	
 AVAILABILITY	
 OF	
 THE	
 LIBRARY	
 ..	
 7	

4.2	
 USAGE	
 OF	
 THE	
 LIBRARY	
 ...	
 8	

5	
 CONCLUSIONS	
 AND	
 FURTHER	
 WORK	
 ...	
 9	

6	
 REFERENCES	
 ..	
 10	

	

	

© CRESTA Consortium Partners 2011 Page 1 of 10

1 Executive	
 Summary	

Collective reduction operations such as global summation of a collection of floating
point numbers is an important operation in numerical simulations and used for instance
as convergence criterion to control iterative numerical solvers.

Particularly the summation of floating point numbers suffers from inaccuracy due to
limited numerical precision and round-off errors. While there are numerical schemes to
mitigate these effects as for instance the Kahan Summation algorithm (see chapter 3
for a discussion of this and other algorithms), collective summations in an MPI
application are beyond the control of the user and may introduce large error for large
numbers of MPI ranks. However, a priori it cannot be determined whether an
application is affected by these numerical inaccuracies and to what extent. The user
needs to verify this, possibly for every input data set.

As we move to Exascale computing, with possibly millions of MPI processes, the
number of terms in a summation reduction approaches the limit were numerical errors
will reach a level that can no longer be disregarded a priori.

We have developed a prototypical version of a library that allows the user to replace
the MPI collective reduction, specifically for summation, with a high-precision version.
This can be used to test whether an application or a use-case is affected by
inaccuracies in the MPI summations.

However, this will only show difference due to inaccuracies in the MPI part, not the
computations done locally. To analyse those, we also provide a set of routines to do
local summation of a vector of values at high precision. These routines can be used by
the application developer in critical sections of the code.

It is worth noting, that the high-precision optimized version of MPI reduce as well as the
routine to do local summations are slower than their standard counterparts. The user
thus needs to trade off performance for accuracy on a case-by-case basis.

This deliverable has not evaluated possible support of the networking hardware for
summation or other reduction operations. Nonetheless, we recommend adding
computing capabilities using high-precision math to the networking interfaces of future
Exascale systems as well as to use high-precision buffers for data transport in
reduction operations. The performance impact should be minimal with dedicated
hardware.

This document is organized as follows: section 2 gives a brief introduction to the topic,
section 3 discusses three different summation schemes, section 4 introduces briefly the
design of the summation library for MPI and explains its usage.

© CRESTA Consortium Partners 2011 Page 2 of 10

2 Introduction	

In computer science, or more specifically in the area of functional programming,
reduction is defined as a higher-order function which analyses a given data structure,
and combines its data elements through use of a given combining operation in order
build up a return value (1). The mathematical expression

𝐴 = 𝑎!
! ∈ !

can be interpreted as 𝐴 being the result of the reduction with the operation “ ” (sum)
over the sequence of numbers 𝑎! 𝑖 ∈ 𝐶 in a given collection 𝐶.

In computational science, i.e. numerical simulations, etc., typical examples for the
collection are vectors and multidimensional arrays, while sum, product, or minimum
and maximum are typical operations.

2.1 Reductions	
 and	
 Numerical	
 Accuracy	

One particularly important use of reductions in numerical simulations is the calculation
of a single value as a global representative of the individual values in the computation
domain. For instance, the average temperature might be used to represent the value of
temperature in all individual discretization cells. Also, such global values are frequently
used to drive the termination of a recursive algorithm or as convergence criterion in
iterative algorithms. Specifically, the L-norm, defined as the sum of the elements of a
sequence raised to the power of L, is frequently used as a convergence criterion.

In mathematics, reductions, as any operations, can be evaluated exactly with infinite
precision. In numerical analysis, calculations are done at a finite precision, which are
affected by round-off errors. So-called single precision numbers (float in C, 32 bits) can
represent roughly only 8 significant digits; double precision numbers (double in C, 64
bits) can represent roughly 16 significant digits. In other words, the smallest
representable relative difference between two numbers is 𝜀 ≈ 10!! and 𝜀 ≈ 10!!",
respectively. Adding a number relatively smaller than 𝜀 to another larger one will
numerically result in a value, which is identical to the larger one due to the limited
precision. This is true also if one adds a small number repeatedly to a larger one. For
instance let 𝑐 be 𝑐 = 𝜀 2 = 0.01 (corresponding to a factious precision of 𝜀 = 0.02) then

 exact: 1 + 𝑐 + 𝑐 + 𝑐 = 1 + 𝑐 + 𝑐) + 𝑐) + 𝑐) = 1 + 4𝑐 = 1.04

 numerical: 1 + 𝑐 + 𝑐 + 𝑐 = 1 + 𝑐 + 𝑐) + 𝑐) + 𝑐) = 1 + 𝑂 𝑒𝑟𝑟𝑜𝑟 .

The numerical result is inaccurate and additionally affected by a round-off error of order
𝑂 𝑒𝑟𝑟𝑜𝑟 . Both issues, i.e. inaccuracy and round-off error, are particularly severe for
summations (and thus subtractions). Multiplication (and division) is considered save
due to the way errors propagate (2) (3).

It is worth stressing that any numerical calculation is affected by round-off errors and
the aggregated round-off error in most cases increases with the number of terms. The
result of a reduction, particularly summation, over large computational domains with
billions or even trillions of degrees of freedom is prone to be affected by round-off
errors.

It is possible to mitigate the issue of round-off error using special algorithms. A few
numerical schemes for summation are discussed in section 3 below.

2.2 Reductions	
 in	
 MPI	
 applications	

The message-passing interface MPI provides reductions as collective operations.
Each MPI process holds a single element of the global collection. The MPI library will
take care of applying the given operation to the global collection while doing
communication in the background. However, the user cannot control the numerical

© CRESTA Consortium Partners 2011 Page 3 of 10

scheme to perform for instance the summation and thus cannot control the round-off
error (unless the user is prepared to write a custom user-defined reduce function and
register this with MPI). In addition, the round-off error depends also on the order in
which terms are evaluated. The issue of numerical errors is particularly severe, as MPI
reduction collectives are frequently used to calculate global convergence criteria. The
inaccuracy of these convergence criteria might have a critical influence on the
application’s result or its performance.

As we move to Exascale computing, with possibly millions of MPI processes, the
number of terms in a summation reduction approaches the limit were numerical errors
will reach a level that can no longer be disregarded a priori.

© CRESTA Consortium Partners 2011 Page 4 of 10

3 Summation	
 Algorithms	

For a naïve implementation, left to right direct summation, the numerical worst-case
error grows proportional to the number of terms,𝑛, the mean-square error grows as the
square root of the number of terms, i.e. 𝑛 (1). Further, the round-off errors are also
proportional to the precision of the representation of floating-point numbers, 𝜀. For
single and double precision floating-point numbers this is roughly 𝜀 ≈ 10!! and
𝜀 ≈ 10!!", respectively.

3.1 Kahan	
 Summation	

Kahan summation (4) keeps a separate running compensate to increase the precision
of summation of a sequence of floating-point numbers. With compensated summation,
the worst-case error bound is independent of 𝑛, so a large number of values can be
summed with an error that only depends on the floating-point precision (5).

The running compensate, correction, keeps track of the round-off errors lost in the
current summation step of the sequence, and is used as an correction term in the next
step. The summation routine is roughly:

sum = 0;
correction = 0;

for (i = 0; i< size; i++) {
 corrected_next_term = input[i] - correction;
 new_sum = sum + corrected_next_term;
 correction = (new_sum - sum) - corrected_next_term;
 sum = new_sum;
}

Advantages and disadvantages:

• Kahan summation works well for long sequences of summations. It is useless if
only two terms are summed up, as the correction can only be applied to the
next term in the sequence.

• The worst-case and mean-square round-off errors are proportional to 𝑂 𝜀 . The
naïve implementation has worst-case and mean-square round-off errors of the
order of 𝑂 𝜀𝑛 and 𝑂 𝜀 𝑛 , respectively.

• The computational effort is four times as high as compared to the naïve
implementation.

• Kahan summation cannot be parallelized. In order to compensate over a large
distributed sequence, one would have to calculate sub-sequences in order and
transfer the correction term from one the next parallel process to correct across
the full sequence. Alternatively one might use Kahan summation only locally
and ignore correction across multiple distributed sub-sequences.

3.2 Knuth	
 Summation	

Knuth summation works on the same principle as Kahan summation. It calculates the
correction term during the summation of two numbers and then this correction term is
accounted in next summation. Knuth summation is based on the more detailed formal
analysis of precision arithmetic, done by Knuth. This analysis is presented as Theorem
B in (6).

Also in this case a correction term is applied to the next summation step. The specifics
of the correction term (7) differ from Kahan summation:

𝑢 + 𝑣 = 𝑢 ⊕ 𝑣 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑢 ⊕ 𝑣 + (𝑢 ⊖ 𝑢𝑝 + 𝑣 ⊖ 𝑣𝑝𝑝)

with

© CRESTA Consortium Partners 2011 Page 5 of 10

𝑢𝑝 = 𝑢 ⊕ 𝑣 ⊖ 𝑣

𝑣𝑝 = 𝑢 ⊕ 𝑣 ⊖ 𝑢𝑝

Here “ “ and “ “ represent exact mathematical arithmetic, and “ ” and “ ” represents
numerical finite-precision arithmetic.

The pseudo code for summation routine is:

sum = 0;
c = 0;

for (i = 0; i< size; i++) {
 u = sum;
 v = input [i] + correction;
 upt = u + v;
 up = upt – v;
 vpp = upt – up;
 sum = upt;
 correction = (u – up) + (v -vpp);
}

Advantages and disadvantages:

• Similar to the Kahan summation approach, Knuth summation becomes viable,
when a large number of arithmetic operations are performed. As the correction
term is minute improvements will become visible only as arithmetic operations
grow.

• Knuth summation is computationally 7 times more expensive as the normal
summation.

• The correction term's absolute value increases as the absolute difference
between the operands becomes larger. This makes this summation approach
suitable for applications, where data has high variations.

•

3.3 High	
 Floating-­‐point	
 Precision	
 Summation	

Doubling the number of significant bits of floating-point numbers, say of precision 𝜀, will
yield a precision of 𝜀!. Often it is relatively simple to use higher precision variables for
calculation of intermediate results and thus avoid large round-off errors (relative to the
original precision). The pseudo-code for a summation of a sequence of numbers is:

float input[n];
float sum = 0;
double dsum = 0;

for (i = 0; i< size; i++)
 dsum = dsum + input[i]; // high precision intermediate result
sum = (float) dsum; // low precision final result

In a distributed setting, one would convert the numbers in the communication buffers to
higher precision before actually doing data transfer in order not to lose precision on
intermediate results across communication partners.

Advantages and disadvantages:

• Higher precision summation is very flexible and yields better results than lower
precision summation in all (but pathological) cases.

• Compared to single precision summation the round-off errors are 𝑂 𝜀! , as
opposed to 𝑂 𝜀 .

© CRESTA Consortium Partners 2011 Page 6 of 10

• On modern architectures the floating-point operations on 64-bit (double) are
nearly as fast as 32-bit (float) operations. Many architectures, as for instance
x86_64 support an 80-bit extended precision mode (long double) at no
additional cost.

• In a distributed setting the simplest approach is to convert data to high-precision
data types at entry to communication routines, do all operations at high
precision, and convert back to low-precision on exit from communication
routines.

3.4 Discussion	

Kahan and Knuth summation algorithms both apply a correction term to the next
summation in a sequence and are useless if only two numbers need to be added. They
are thus best applicable for large numbers of terms. In a distributed environment one
would have to serialize the summation and also transmit the correction terms between
processes. This makes these summation schemes very inefficient particularly for large
number of processes, as is the target of CRESTA.

On the other hand, increasing the storage size of intermediate results from single to
double precision, or double to extended precision, will yield the same or better
accuracy (particularly for large number of operations) than Kahan and Knuth
summation at little to no additional cost. This is also true in a distributed setting if one
uses higher-precision storage formats for all intermediate calculations and messages.
The additional time to transfer larger messages might not be very critical, as the
latency is dominating message transfer time up to reasonably large message sizes.
However, this needs to be judged on a case-by-case basis.

We therefore suggest to use extended precision storage formats for calculation and
data communication in MPI collective reduce operations.

© CRESTA Consortium Partners 2011 Page 7 of 10

4 High-­‐Precision	
 Reduction	
 Summation	
 Library	
 for	
 MPI	

As discussed above, we have decided to use normal numerical summation but using
higher precision, specifically x86_64 extended precision (long double in C, 80-bits), as
our summation scheme. This yields comparable accuracy as Knuth and Kahan
summation at a higher performance and less complexity of the implementation.

We have developed a library for implementing MPI reduction collectives, in particular
we wrap the routines MPI_Reduce() and MPI_Allreduce(). The wrappers analyse the
arguments of the function call and will delegate summation operations on floating-point
numbers to a special routine delegate_summation(). The structure of
delegate_summation() is

delegate_summation(sendbuf, recvbuf, count,comm) {
 high_sendbuf = convert2highprecission(sendbuf);

high_recvbuf = allocate_highprecission();

op = high_precission_summation;

 ierr = MPI_Reduce(high_sendbuf, high_recvbuf, op, comm);

recvbuf = convert2lowprecission(high_recvbuf);

returnierr;
}

The send and receive buffers are converted to buffer capable of holding higher
precision floating-point numbers. Then the reduce operation is done using the high-
precision buffers with a custom reduce operation op. For some architectures and
compilers/MPI libraries, the operation op can be the standard sum operator.

Notably the Cray compiler and Cray MPI do not support extended precision floating-
point numbers, and we had to provide a custom sum_extended_precision operation
compiled with the GNU compiler.

In addition we provide routines to sum up a vector of float or double values,
respectively, using the three algorithms Knuth summation, Kahan summation, and
high-precision summation. The last uses extended precision floating point numbers
internally. The names and signatures of the routines are:

• float sum_vec_kahan_float(float *vec)
• double sum_vec_kahan_double(double *vec)
• float sum_vec_knuth_float(float *vec)
• double sum_vec_knuth_double(double *vec)
• float sum_vec_highprecision_float(float *vec)
• double sum_vec_highprecision_double(double *vec)

4.1 Availability	
 of	
 the	
 library	

At the time of delivery of this document the source code of the library is available
through the CRESTA SVN code repository at

https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp4/optimized_reduction

Access to the CRESTA SVN is subject to the policies of the project. Instructions on
obtaining credentials and access to the SVN are available on the project BSCW.

After a testing and evaluation period, the library will be made available through the
CRESTA project website or a public code repository and will be distributed under an
open source license as e.g. (L)GPL or BSD.

© CRESTA Consortium Partners 2011 Page 8 of 10

4.2 Usage	
 of	
 the	
 library	

Building the library is as simple as executing the command make in the distribution
directory:

$>cd optimized_reduction
$>make

This will result in a library file

 libmpi_optimized_reduction.so

which needs to be copied into the library path, i.e. any directory listed in
LD_LIBRARY_PATH. The target test will build a small test application
test_optimized_reduction

$>make test
$>aprun –n 32 ./test_optimized_reduction

There are two possibilities to use the optimized reduction in a user-provided
application. Either the library is used at compile/link time and replaces the
corresponding MPI routines for all invocations of the application. To do so compile with
the parameters:

$>cc –o a.out –loptimized_reductionsource_code.c
$>aprun –n 32 ./a.out

Note, that on non-Cray systems the library optimized_reduction needs to be invoked
after –lmpi as:

$>gcc –o a.out –lmpi –loptimized_reductionsource_code.c
$>aprun –n 32 ./a.out

This is not necessary when using the Cray compiler wrappers (CC, cc, ftn) as they load
the MPI library, etc, before any user provided library is loaded.

The second option is to overload the MPI reduce functions at the time when the
application is executed. This is particularly useful if one wants to test the impact of
summation on one’s application without need to recompile it. Use the following
commands to accomplish this:

$>LD_PRELOAD=liboptimized_reduction.so aprun –n 32 ./a.out

© CRESTA Consortium Partners 2011 Page 9 of 10

5 Conclusions	
 and	
 further	
 work	

The accumulation of numerical errors in the summation of large sequences of floating-
point numbers can introduce non-negligible errors, particularly as these errors increase
in magnitude with the number of summation terms. While there are techniques to
mitigate these errors, sometimes the summation is done outside of the control of the
user. This is the case for MPI reduction operations.

We have presented three different ways to mitigate the problem and briefly discussed
respective advantages and disadvantages. We conclude, that the simplest approach in
our context is to transparently convert the payload of MPI reduction operations to
extended precision (80 bits) floating-point numbers and the do the summation at this
high precision. The result is converted back to lower precision and returned to the user.

The performance impact of this technique has not been evaluated yet and depends
also on the optimization done by the compiler. The basic performance difference is
doing 64 bits precision math with SSE instructions versus 80 bits precision math with
x87 instructions.

This deliverable has not evaluated possible support of the networking hardware for
summation or other reduction operations. Nonetheless, we recommend adding
computing capabilities using high-precision (a least 80 bits) math to the networking
interfaces of future Exascale systems as well as to use high-precision buffers for data
transport in reduction operations. The performance impact should be minimal with
dedicated hardware.

In collaboration with the application optimization team, we will analyse the impact of
optimized reduction, currently summation, on the set of CRESTA applications. We will
focus on aspects as:

• binary difference in application results
• scientific relevant difference in application results
• performance impact
• impact convergence behaviour

Depending on the outcome of this analysis, we will tune the implementation of the
library to better trade off performance impact for accuracy and allow to user to control
this.

Also, we might extend the work to other operations as for instance multiplication, etc.

© CRESTA Consortium Partners 2011 Page 10 of 10

6 References	

[1] Fold (higher-order function). [Online] September 2013.
http://en.wikipedia.org/wiki/Reduce_(higher-order_function).

[2] What every computer scientist should know about floating-point arithmetic.
Goldberg, David. s.l. : ACM Comput.Surv. 23(1): 5-48, 1991.
doi=10.1145/103162.103163.

[3] Goldberg, David. What every computer scientist should know about floating-point
arithmetic. [Online] September 2013. http://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html.

[4] Kahan, William. Communications of the ACM 8 (1): 40 : s.n., 1965.
doi:10.1145/363707.363723.

[5] The accuracy of floating point summation. Higham, Nicholas J. s.l. : SIAM Journal
on Scientific Computing 14 (4): 783–799, 1993. doi:10.1137/0914050.

[6] Knuth, D.E. The Art of Computer Programming, vol 2. s.l. : Addison-Wesley Press.

[7] Robert W. Robey, Jonathan M. Robey, Rob Aulwes. In search of numerical
consistency in parallel programming. s.l. :
http://dx.doi.org/10.1016/j.parco.2011.02.009, 2011.

