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1 Executive	
  Summary	
  
Collective reduction operations such as global summation of a collection of floating 
point numbers is an important operation in numerical simulations and used for instance 
as convergence criterion to control iterative numerical solvers.  

Particularly the summation of floating point numbers suffers from inaccuracy due to 
limited numerical precision and round-off errors. While there are numerical schemes to 
mitigate these effects as for instance the Kahan Summation algorithm (see chapter 3 
for a discussion of this and other algorithms), collective summations in an MPI 
application are beyond the control of the user and may introduce large error for large 
numbers of MPI ranks. However, a priori it cannot be determined whether an 
application is affected by these numerical inaccuracies and to what extent. The user 
needs to verify this, possibly for every input data set. 

As we move to Exascale computing, with possibly millions of MPI processes, the 
number of terms in a summation reduction approaches the limit were numerical errors 
will reach a level that can no longer be disregarded a priori. 

We have developed a prototypical version of a library that allows the user to replace 
the MPI collective reduction, specifically for summation, with a high-precision version. 
This can be used to test whether an application or a use-case is affected by 
inaccuracies in the MPI summations. 

However, this will only show difference due to inaccuracies in the MPI part, not the 
computations done locally. To analyse those, we also provide a set of routines to do 
local summation of a vector of values at high precision. These routines can be used by 
the application developer in critical sections of the code. 

It is worth noting, that the high-precision optimized version of MPI reduce as well as the 
routine to do local summations are slower than their standard counterparts. The user 
thus needs to trade off performance for accuracy on a case-by-case basis.  

This deliverable has not evaluated possible support of the networking hardware for 
summation or other reduction operations. Nonetheless, we recommend adding 
computing capabilities using high-precision math to the networking interfaces of future 
Exascale systems as well as to use high-precision buffers for data transport in 
reduction operations.  The performance impact should be minimal with dedicated 
hardware.  

This document is organized as follows: section 2 gives a brief introduction to the topic, 
section 3 discusses three different summation schemes, section 4 introduces briefly the 
design of the summation library for MPI and explains its usage.  
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2 Introduction	
  
 

In computer science, or more specifically in the area of functional programming, 
reduction is defined as a higher-order function which analyses a given data structure, 
and combines its data elements through use of a given combining operation in order 
build up a return value (1). The mathematical expression  

𝐴 =    𝑎!
!  ∈  !

 

can be interpreted as 𝐴 being the result of the reduction with the operation “ ” (sum) 
over the sequence of numbers 𝑎!   𝑖   ∈ 𝐶  in a given collection 𝐶. 

In computational science, i.e. numerical simulations, etc., typical examples for the 
collection are vectors and multidimensional arrays, while sum, product, or minimum 
and maximum are typical operations. 

2.1 Reductions	
  and	
  Numerical	
  Accuracy	
  
One particularly important use of reductions in numerical simulations is the calculation 
of a single value as a global representative of the individual values in the computation 
domain. For instance, the average temperature might be used to represent the value of 
temperature in all individual discretization cells. Also, such global values are frequently 
used to drive the termination of a recursive algorithm or as convergence criterion in 
iterative algorithms. Specifically, the L-norm, defined as the sum of the elements of a 
sequence raised to the power of L, is frequently used as a convergence criterion. 

In mathematics, reductions, as any operations, can be evaluated exactly with infinite 
precision. In numerical analysis, calculations are done at a finite precision, which are 
affected by round-off errors. So-called single precision numbers (float in C, 32 bits) can 
represent roughly only 8 significant digits; double precision numbers (double in C, 64 
bits) can represent roughly 16 significant digits. In other words, the smallest 
representable relative difference between two numbers is 𝜀 ≈ 10!! and 𝜀 ≈ 10!!", 
respectively. Adding a number relatively smaller than 𝜀 to another larger one will 
numerically result in a value, which is identical to the larger one due to the limited 
precision. This is true also if one adds a small number repeatedly to a larger one. For 
instance let 𝑐  be 𝑐 = 𝜀 2 = 0.01 (corresponding to a factious precision of 𝜀 = 0.02) then 

 exact:        1 + 𝑐 + 𝑐 + 𝑐 = 1 + 𝑐 +   𝑐) +   𝑐) + 𝑐) = 1 + 4𝑐 = 1.04 

 numerical: 1 + 𝑐 + 𝑐 + 𝑐 = 1 + 𝑐 +   𝑐) +   𝑐) + 𝑐) = 1 + 𝑂 𝑒𝑟𝑟𝑜𝑟 .   

The numerical result is inaccurate and additionally affected by a round-off error of order 
𝑂 𝑒𝑟𝑟𝑜𝑟 . Both issues, i.e. inaccuracy and round-off error, are particularly severe for 
summations (and thus subtractions). Multiplication (and division) is considered save 
due to the way errors propagate (2) (3). 

It is worth stressing that any numerical calculation is affected by round-off errors and 
the aggregated round-off error in most cases increases with the number of terms. The 
result of a reduction, particularly summation, over large computational domains with 
billions or even trillions of degrees of freedom is prone to be affected by round-off 
errors. 

It is possible to mitigate the issue of round-off error using special algorithms. A few 
numerical schemes for summation are discussed in section 3 below. 

2.2 Reductions	
  in	
  MPI	
  applications	
  
The message-passing interface MPI provides reductions as collective operations.  
Each MPI process holds a single element of the global collection. The MPI library will 
take care of applying the given operation to the global collection while doing 
communication in the background. However, the user cannot control the numerical 
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scheme to perform for instance the summation and thus cannot control the round-off 
error (unless the user is prepared to write a custom user-defined reduce function and 
register this with MPI).  In addition, the round-off error depends also on the order in 
which terms are evaluated. The issue of numerical errors is particularly severe, as MPI 
reduction collectives are frequently used to calculate global convergence criteria. The 
inaccuracy of these convergence criteria might have a critical influence on the 
application’s result or its performance.  

As we move to Exascale computing, with possibly millions of MPI processes, the 
number of terms in a summation reduction approaches the limit were numerical errors 
will reach a level that can no longer be disregarded a priori.  
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3 Summation	
  Algorithms	
  
For a naïve implementation, left to right direct summation, the numerical worst-case 
error grows proportional to the number of terms,𝑛, the mean-square error grows as the 
square root of the number of terms, i.e. 𝑛 (1). Further, the round-off errors are also 
proportional to the precision of the representation of floating-point numbers, 𝜀. For 
single and double precision floating-point numbers this is roughly 𝜀 ≈ 10!! and 
𝜀 ≈ 10!!", respectively. 

3.1 Kahan	
  Summation	
  
Kahan summation (4) keeps a separate running compensate to increase the precision 
of summation of a sequence of floating-point numbers. With compensated summation, 
the worst-case error bound is independent of 𝑛, so a large number of values can be 
summed with an error that only depends on the floating-point precision (5). 

The running compensate, correction, keeps track of the round-off errors lost in the 
current summation step of the sequence, and is used as an correction term in the next 
step. The summation routine is roughly: 

sum = 0; 
correction = 0; 
 
for (i = 0; i< size; i++) { 
 corrected_next_term = input[i] - correction; 
 new_sum = sum + corrected_next_term; 
 correction = (new_sum - sum) - corrected_next_term; 
 sum = new_sum;   
} 
 

Advantages and disadvantages: 

• Kahan summation works well for long sequences of summations. It is useless if 
only two terms are summed up, as the correction can only be applied to the 
next term in the sequence. 

• The worst-case and mean-square round-off errors are proportional to 𝑂 𝜀 . The 
naïve implementation has worst-case and mean-square round-off errors of the 
order of 𝑂 𝜀𝑛  and  𝑂 𝜀 𝑛 , respectively. 

• The computational effort is four times as high as compared to the naïve 
implementation. 

• Kahan summation cannot be parallelized. In order to compensate over a large 
distributed sequence, one would have to calculate sub-sequences in order and 
transfer the correction term from one the next parallel process to correct across 
the full sequence. Alternatively one might use Kahan summation only locally 
and ignore correction across multiple distributed sub-sequences. 
 

3.2 Knuth	
  Summation	
  
Knuth summation works on the same principle as Kahan summation. It calculates the 
correction term during the summation of two numbers and then this correction term is 
accounted in next summation. Knuth summation is based on the more detailed formal 
analysis of precision arithmetic, done by Knuth. This analysis is presented as Theorem 
B in (6). 

Also in this case a correction term is applied to the next summation step. The specifics 
of the correction term (7) differ from Kahan summation:  

𝑢 + 𝑣 =    𝑢  ⊕ 𝑣 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =    𝑢  ⊕ 𝑣 + ( 𝑢  ⊖ 𝑢𝑝 +    𝑣  ⊖ 𝑣𝑝𝑝 ) 

with 
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𝑢𝑝 =    𝑢  ⊕ 𝑣 ⊖ 𝑣 

𝑣𝑝 =    𝑢  ⊕ 𝑣 ⊖ 𝑢𝑝 

 

Here “ “ and “ “ represent exact mathematical arithmetic, and “ ” and “ ” represents 
numerical finite-precision arithmetic. 

The pseudo code for summation routine is: 

sum = 0; 
c = 0; 
 
for (i = 0; i< size; i++) { 
 u = sum; 
 v = input [i] + correction; 
 upt = u + v; 
 up = upt – v; 
 vpp = upt – up; 
 sum = upt; 
 correction = (u – up) + (v -vpp);    
} 

 

Advantages and disadvantages: 

• Similar to the Kahan summation approach, Knuth summation becomes viable, 
when a large number of arithmetic operations are performed. As the correction 
term is minute improvements will become visible only as arithmetic operations 
grow. 

• Knuth summation is computationally 7 times more expensive as the normal 
summation.  

• The correction term's absolute value increases as the absolute difference 
between the operands becomes larger. This makes this summation approach 
suitable for applications, where data has high variations. 

•  

3.3 High	
  Floating-­‐point	
  Precision	
  Summation	
  
Doubling the number of significant bits of floating-point numbers, say of precision 𝜀, will 
yield a precision of 𝜀!. Often it is relatively simple to use higher precision variables for 
calculation of intermediate results and thus avoid large round-off errors (relative to the 
original precision). The pseudo-code for a summation of a sequence of numbers is: 

float input[n];  
float sum = 0; 
double dsum = 0; 
 
for (i = 0; i< size; i++) 
 dsum = dsum + input[i];   // high precision intermediate result 
sum = (float) dsum;                     // low precision final result 

 

In a distributed setting, one would convert the numbers in the communication buffers to 
higher precision before actually doing data transfer in order not to lose precision on 
intermediate results across communication partners. 

Advantages and disadvantages: 

• Higher precision summation is very flexible and yields better results than lower 
precision summation in all (but pathological) cases. 

• Compared to single precision summation the round-off errors are 𝑂 𝜀! , as 
opposed to 𝑂 𝜀 . 
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• On modern architectures the floating-point operations on 64-bit (double) are 
nearly as fast as 32-bit (float) operations. Many architectures, as for instance 
x86_64 support an 80-bit extended precision mode (long double) at no 
additional cost. 

• In a distributed setting the simplest approach is to convert data to high-precision 
data types at entry to communication routines, do all operations at high 
precision, and convert back to low-precision on exit from communication 
routines. 

 

3.4 Discussion	
  
Kahan and Knuth summation algorithms both apply a correction term to the next 
summation in a sequence and are useless if only two numbers need to be added. They 
are thus best applicable for large numbers of terms. In a distributed environment one 
would have to serialize the summation and also transmit the correction terms between 
processes. This makes these summation schemes very inefficient particularly for large 
number of processes, as is the target of CRESTA. 

On the other hand, increasing the storage size of intermediate results from single to 
double precision, or double to extended precision, will yield the same or better 
accuracy (particularly for large number of operations) than Kahan and Knuth 
summation at little to no additional cost. This is also true in a distributed setting if one 
uses higher-precision storage formats for all intermediate calculations and messages. 
The additional time to transfer larger messages might not be very critical, as the 
latency is dominating message transfer time up to reasonably large message sizes. 
However, this needs to be judged on a case-by-case basis. 

We therefore suggest to use extended precision storage formats for calculation and 
data communication in MPI collective reduce operations. 
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4 High-­‐Precision	
  Reduction	
  Summation	
  Library	
  for	
  MPI	
  
As discussed above, we have decided to use normal numerical summation but using 
higher precision, specifically x86_64 extended precision (long double in C, 80-bits), as 
our summation scheme. This yields comparable accuracy as Knuth and Kahan 
summation at a higher performance and less complexity of the implementation. 

We have developed a library for implementing MPI reduction collectives, in particular 
we wrap the routines MPI_Reduce() and MPI_Allreduce(). The wrappers analyse the 
arguments of the function call and will delegate summation operations on floating-point 
numbers to a special routine delegate_summation(). The structure of 
delegate_summation() is 

delegate_summation(sendbuf, recvbuf, count,comm) { 
 high_sendbuf = convert2highprecission(sendbuf); 

high_recvbuf = allocate_highprecission(); 
 
op = high_precission_summation; 

  ierr = MPI_Reduce(high_sendbuf, high_recvbuf, op, comm); 
  

recvbuf = convert2lowprecission(high_recvbuf); 
  

returnierr; 
} 

 

The send and receive buffers are converted to buffer capable of holding higher 
precision floating-point numbers. Then the reduce operation is done using the high-
precision buffers with a custom reduce operation op. For some architectures and 
compilers/MPI libraries, the operation op can be the standard sum operator.  

Notably the Cray compiler and Cray MPI do not support extended precision floating-
point numbers, and we had to provide a custom sum_extended_precision operation 
compiled with the GNU compiler. 

In addition we provide routines to sum up a vector of float or double values, 
respectively, using the three algorithms Knuth summation, Kahan summation, and 
high-precision summation. The last uses extended precision floating point numbers 
internally. The names and signatures of the routines are: 

• float sum_vec_kahan_float(float *vec) 
• double sum_vec_kahan_double(double *vec) 
• float sum_vec_knuth_float(float *vec) 
• double sum_vec_knuth_double(double *vec) 
• float sum_vec_highprecision_float(float *vec) 
• double sum_vec_highprecision_double(double *vec) 

4.1 Availability	
  of	
  the	
  library	
  
At the time of delivery of this document the source code of the library is available 
through the CRESTA SVN code repository at 

https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp4/optimized_reduction 

Access to the CRESTA SVN is subject to the policies of the project. Instructions on 
obtaining credentials and access to the SVN are available on the project BSCW. 

After a testing and evaluation period, the library will be made available through the 
CRESTA project website or a public code repository and will be distributed under an 
open source license as e.g. (L)GPL or BSD. 
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4.2 Usage	
  of	
  the	
  library	
  
Building the library is as simple as executing the command make in the distribution 
directory: 

$>cd optimized_reduction 
$>make 

 

This will result in a library file 

 libmpi_optimized_reduction.so 

which needs to be copied into the library path, i.e. any directory listed in 
LD_LIBRARY_PATH. The target test will build a small test application 
test_optimized_reduction 

$>make test 
$>aprun –n 32 ./test_optimized_reduction 

 
There are two possibilities to use the optimized reduction in a user-provided 
application. Either the library is used at compile/link time and replaces the 
corresponding MPI routines for all invocations of the application. To do so compile with 
the parameters:  

$>cc –o a.out –loptimized_reductionsource_code.c 
$>aprun –n 32 ./a.out 

 
Note, that on non-Cray systems the library optimized_reduction needs to be invoked 
after –lmpi as: 

$>gcc –o a.out –lmpi –loptimized_reductionsource_code.c 
$>aprun –n 32 ./a.out 

 
This is not necessary when using the Cray compiler wrappers (CC, cc, ftn) as they load 
the MPI library, etc, before any user provided library is loaded. 
 
The second option is to overload the MPI reduce functions at the time when the 
application is executed. This is particularly useful if one wants to test the impact of 
summation on one’s application without need to recompile it. Use the following 
commands to accomplish this: 

 
$>LD_PRELOAD=liboptimized_reduction.so aprun –n 32 ./a.out 
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5 Conclusions	
  and	
  further	
  work	
  
The accumulation of numerical errors in the summation of large sequences of floating-
point numbers can introduce non-negligible errors, particularly as these errors increase 
in magnitude with the number of summation terms. While there are techniques to 
mitigate these errors, sometimes the summation is done outside of the control of the 
user. This is the case for MPI reduction operations. 

We have presented three different ways to mitigate the problem and briefly discussed 
respective advantages and disadvantages. We conclude, that the simplest approach in 
our context is to transparently convert the payload of MPI reduction operations to 
extended precision (80 bits) floating-point numbers and the do the summation at this 
high precision. The result is converted back to lower precision and returned to the user.  

The performance impact of this technique has not been evaluated yet and depends 
also on the optimization done by the compiler. The basic performance difference is 
doing 64 bits precision math with SSE instructions versus 80 bits precision math with 
x87 instructions. 

This deliverable has not evaluated possible support of the networking hardware for 
summation or other reduction operations. Nonetheless, we recommend adding 
computing capabilities using high-precision (a least 80 bits) math to the networking 
interfaces of future Exascale systems as well as to use high-precision buffers for data 
transport in reduction operations. The performance impact should be minimal with 
dedicated hardware.  

In collaboration with the application optimization team, we will analyse the impact of 
optimized reduction, currently summation, on the set of CRESTA applications. We will 
focus on aspects as: 

• binary difference in application results 
• scientific relevant difference in application results 
• performance impact 
• impact convergence behaviour 

Depending on the outcome of this analysis, we will tune the implementation of the 
library to better trade off performance impact for accuracy and allow to user to control 
this.  

Also, we might extend the work to other operations as for instance multiplication, etc. 
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