

Copyright © CRESTA Consortium Partners 2011

D4.5.2	
 –Microbenchmark	
 Suite	

(Software)	
 	

WP4:	
 Algorithms	
 and	
 libraries	

Due date: M15

Submission date: 31/12/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization USTUTT

Version: 1.0

Status Final

Author(s): José Gracia, Christoph Niethammer & Wahaj Sethi (USTUTT)

Reviewer(s) Erik Lindahl (KTH), Mats Hamrud (ECMWF)

Dissemination level

PU PU – Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 22/11/2012 First version of the deliverable José Gracia (USTUTT)

0.2 30/11/2012 Final draft, submitted for internal
review

José Gracia, Christoph
Niethammer & Wahaj
Sethi (USTUTT)

0.3 14/12/2012 Document slightly revised José Gracia (USTUTT)

1.0 15/12/2012 Final version of the deliverable José Gracia (USTUTT)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

3	
 AVAILABILITY	
 OF	
 THE	
 BENCHMARK	
 SUITE	
 ..	
 3	

4	
 DESIGN	
 OF	
 THE	
 BENCHMARK	
 SUITE	
 ...	
 4	

4.1	
 SET	
 OF	
 PARAMETERS	
 FOR	
 THE	
 COLLECTIVE	
 OPERATION	
 ...	
 4	

4.2	
 SCENARIOS	
 ...	
 4	

4.3	
 TIME	
 TO	
 COMPLETION	
 ...	
 5	

5	
 USAGE	
 OF	
 THE	
 BENCHMARK	
 SUITE	
 ..	
 6	

6	
 CONCLUSION	
 ...	
 8	

	
 	

© CRESTA Consortium Partners 2011 Page 1 of 8

1 Executive	
 Summary	

Task 4.5 is concerned, amongst others, with the optimisation of collective
communication operations. Collective operations involve multiple participants rather
than only two as is found in point-to-point communication operations. Examples of
collective operations are synchronisation barriers, or reductions over the full
computational domain in order to find the sum/min/max of a particular quantity. Such
operations are very common in most distributed applications.

This document briefly describes the software deliverable Collectives Microbenchmark
Suite which is used within the CRESTA project firstly to assess progress of the
optimisation work on collective operations, but also secondly as a tool to analyse the
characteristics of the implementation of collectives. For the users or developers of
parallel applications, the benchmark suite may help in assessing which implementation
of collective should be chosen in a specific use-case.

After a short introduction and details on the availability of the source code, Section 4
describes the basic concepts and design of the benchmark suite. The document
concludes with short usage instructions.

© CRESTA Consortium Partners 2011 Page 2 of 8

2 	
 Introduction	

The objective of work package WP4 is to address the limitations of existing algorithms
and libraries, including communication libraries, for exascale computing systems on
various levels. Task 4.5 Realising collectives at extreme scale, is particularly
concerned with collective communication operations, i.e. those communication
operations which involve multiple participants. Examples of collective operations are
synchronisation barriers, or reductions over the full computational domain in order find
the sum/min/max of a particular quantity. Such operations are very common in most
distributed applications.

The approach is to initially investigate the limitations of existing collective
communication libraries in order to identify the key areas where completely new
approaches are necessary and where optimisation can be realised focused on the
implementation level.

Based on this analysis, research on new approaches will be undertaken with the goal
to support the work packages on application and User Tools. Our focus is on
developing new implementations of collective operations, which will yield step-wise
improvements in the application codes as we go along.

Part of this task is to provide a Collectives Microbenchmark Suite. This benchmark
suite serves three purposes:

Firstly, it is meant to track the progress over time of the work done in task 4.5
by deriving metrics that characterise the efficiency of an implementation of a
given collective.

Secondly, it allows the user to assess the respective efficiency of a set of
implementations of a collective for his particular use-case (e.g. number of
communicating processes, size of payload, rank layout and communication
pattern) in order to choose the most suitable implementation.

Lastly, it also allows the developer of a collective operation to analyse the
characteristics and the efficiency of a particular under very controlled and
reproducible test conditions.

While this Collectives Microbenchmark Suite is initially used to assess MPI collectives
in the three ways mentioned above, it is not restricted to MPI, but rather designed in a
way that should allow it to be used with other programming paradigm supporting
collective communication operations.

Several other MPI benchmarks suites exist, as, for instance, the Intel MPI
Benchmarks,1 or the Ohio State University Micro-Benchmarks.2 These benchmarks,
however, measure the timing of communication operations (including collectives) in
isolation only. In contrast, the Collectives Microbenchmark Suite described here
explicitly embeds the collective operations into a given context, something we refer to
as scenario. This allows us to mimic, to a certain degree, the context in which an
application might use collective operations to derive metrics that model the
performance of collective in a (application) context.

1 http://software.intel.com/en-us/articles/intel-mpi-benchmarks
2 http://mvapich.cse.ohio-state.edu/benchmarks/

© CRESTA Consortium Partners 2011 Page 3 of 8

3 Availability	
 of	
 the	
 benchmark	
 suite	
 	

At the time of preparing this document the source code of the benchmark suite is
available through the CRESTA SVN code repository at

 https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp4/microbenchmark_suite

Access to the CRESTA SVN is subject to the policies of the project. Instructions on
obtaining credentials and access to the SVN are available on the project BSCW.

After a testing and evaluation period, the benchmark suite will be made available
through the CRESTA project website or a public code repository and will be distributed
under an open source licence.

© CRESTA Consortium Partners 2011 Page 4 of 8

4 Design	
 of	
 the	
 benchmark	
 suite	

The benchmark suite is a framework to measure and assess arbitrary implementations
of collective operations under specific, reproducible scenarios. At this stage in the
project it is being used to test and analyse implementations of MPI collectives.
However, collectives in other programming paradigms, as for instance PGAS-like
models, should be supported as well.

In order to be as general as possible, we treat the collective operation as a black-box
and restrict ourselves at measuring only time, specifically the global completion time of
a scenario (see below). Further, in order to minimise effects that might influence the
completion time, the benchmark should be as unbiased towards, for example, cache
effects or memory latency.

The benchmark suite defines:

• Which time difference to measure, i.e. location of start and completion
timestamps within the code.

• Standard scenarios (think communication pattern) to be timed.
• A set of parameters to be varied. We distinguish parameters of the collective

operation and parameters of the scenario.

4.1 Set	
 of	
 parameters	
 for	
 the	
 collective	
 operation	

The following parameters for collective operations have been chosen. Some of them
might take a range of values and the suite will take care to sweep through them. Others
take a single specific value for simplicity without loss of generality. The parameters are:

• Number of participants (P) in the collective operation. A single run of the
benchmark will sweep the number of participants from a user specified
minimum to the maximum specified by the user. In MPI runs, the maximum is
taken to be size of the MPI communicator at program start.

• Number of repetitions (nrep) of the timing loop. This is specified by the user.
• Message size (m) refers to the number of elements in the outbound message

buffer (if applicable). It is swept from user-specified minimum to a maximum
value in powers of two.

• The data type of the message is fixed to the single value of byte. This makes
the total size of the payload unambiguous. Message buffers are contiguous.

4.2 Scenarios	

In a nutshell, a scenario just specifies a sequence of actions taken by each participant;
note that sequence of actions may not be the same across participants.

The following actions are possible: start a timer (start), stop the timer (stop), issue a
collective operation (issue-op), wait on the completion of a collective operation (sync),
do useful calculations (comp) between issuing a collective and waiting for its
completion, or be delayed (delay) before issuing the collective operation. Note, that
scenarios may use any collective operation. Also note that for blocking collective
operations the sync-op is a null action.

We define three basic scenarios:

• Scenario 1: collective only
• Scenario 2: collective with delay
• Scenario 3: collective overlapping with computation

More advanced scenarios will be defined later as required. Possible examples are, for
instance, a combination (sequence) of collectives, different (non-blocking) collectives
issued concurrently, etc.

© CRESTA Consortium Partners 2011 Page 5 of 8

Scenario 1: all participants execute the sequence actions

start – issue-coll – sync – stop.

No further scenario parameters are specified.

Scenario 2: a specific participant D executes the sequence of actions

start – delay(tdelay) – issue-coll – sync – stop.

All other participant execute the same sequence as in scenario 1, i.e.

start – issue-coll – sync – stop.

The scenario parameters D and tdelay are user-specified. D can be either D=1 or D=P,
i.e the first or last participant; tdelay sweeps from a user-specified minimum to a user-
specified maximum value in powers of two; values are usually in the range of
microseconds.

Scenario 3: all participants execute the sequence of actions

start – issue-coll – calc(tcalc) – sync – stop.

The scenario parameters tcalc sweeps from a user-specified minimum to a user-
specified maximum value in powers of two; values are usually in the range of
microseconds.

4.3 Time	
 to	
 completion	

Each participant in the collective records timestamps at the start (tstart), and completion
(tend) of a scenario respectively. These timestamps are collected by the master and
used to calculate the global time to completion of the scenario (Tsc) as:

 Tsc = max(<tend>) – min(<tstart>),

where the brackets <> denote the set of values collected from all ranks. The time to
completion is then the timespan between the first participant entering the scenario up
to the last participant completing the scenario. This is illustrated in the figure below for
scenario 2 with three participants P0, P1, and P2. Note that the start time will not the
same exactly for all participants.

© CRESTA Consortium Partners 2011 Page 6 of 8

5 Usage	
 of	
 the	
 benchmark	
 suite	

This section very briefly addresses the usage of the benchmark suite. More specific
instructions can be found in the README file that comes with the source files.

The benchmark suite is distributed with a makefile for easy building. The build process
will generate an executable specific for a given collective that is specified by the
argument coll as

 make coll=barrier

This will generate the executable mbs_barrier.out. The argument coll currently can take
any of the values barrier, broadcast, gather, allGather, allReduce.

The executable is started with mpirun or aprun respectively as

 aprun –n P_max mbs_${coll}.out \

P_min \

nreps \

m_min m_max \

delay delay_P > out.log

where P_max and P_min are the maximum and minimum number of participants,
nreps the number of repetitions, m_max and m_min the largest and smallest message
size respectively, delay the duration delay for the late-arriving participant in scenario 2
in microseconds, and delay_P the participant number which is being delayed.

The output of the benchmark is quite lengthy and should be piped to a file as in the
example above. The output is suitable for plotting with gnuplot (see output file for
details).

A typical output, here for the broadcast collective with up to 256 participants and
payload of 512 bytes, might look like:

Broadcast:
Data ranks average (us) min (us) max (us) stdDev (us)
512 2 85.365891 37.193298 224.351883 4.814990
512 4 286.627841 234.127045 431.299210 7.668952
512 8 412.119293 355.243683 833.511353 13.162572
512 16 456.163192 403.642654 8327.484131 112.357419
512 32 474.721408 415.563583 601.530075 112.839889
512 64 496.664786 438.451767 609.636307 113.483498
512 128 523.060489 444.412231 640.392303 114.418232
512 256 577.194500 481.367111 781.536102 115.163906

The columns represent payload size, number of participants, average time to
completion, minimum and maximum timing, and standard deviation of the
measurements respectively. These measurements were made on cluster Laki
consisting of Intel Nehalem nodes interconnected by an Infiniband network.

This textual output can be used to produce plots as the one below.

© CRESTA Consortium Partners 2011 Page 7 of 8

Figure 1 Typical plot generated from the textual output of the Collective Microbenchmark suite.

 10

 100

 1000

 1 10 100 1000

Ti
m

e
in

 m
ic

ro
 s

ec
on

ds

Ranks

collective: broadcast, payload: 512

Error bar
average

© CRESTA Consortium Partners 2011 Page 8 of 8

6 Conclusion	

This document described the Collectives Microbenchmark Suite software deliverable.
This is used within the CRESTA project firstly to assess progress of the optimisation
work on collective operations, but also secondly as a tool to analyse the characteristics
of the implementation of collectives. For the users or developers of parallel
applications, the benchmark suite may help in assessing which implementation of
collective should be chosen in a specific use-case.

