

Copyright © CRESTA Consortium Partners 2011

D4.5.3	
 –	
 Non-­‐Blocking	
 Collectives	

Runtime	
 Library	

WP4:	
 Algorithms	
 and	
 Libraries	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization CRAY

Version: 1.0

Status Final

Author(s): Pekka Manninen (CRAY)

Reviewer(s) Jens Doleschal (TUD), Erwin Laure (KTH)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 16/08/2013 First draft for comments Harvey Richardson
(CRAY)

0.2 31/08/2013 Version for internal review Dmitry Khabi (USTUTT)

1.0 30/09/2013 Final version for submission Erwin Laure (KTH), David
Henty (UEDIN), Jens
Doleschal (TUD)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

3	
 CRESTA	
 COLLECTIVE	
 COMMUNICATION	
 LIBRARY	
 ...	
 3	

3.1	
 GENERAL	
 DESCRIPTION	
 ...	
 3	

3.2	
 COLLECTIVE	
 OPERATIONS	
 ..	
 4	

3.3	
 PERFORMANCE	
 ...	
 6	

3.3.1	
 Performance	
 comparison	
 of	
 different	
 implementations	
 ...	
 6	

3.3.2	
 Overlap	
 availability	
 ...	
 9	

4	
 HOW	
 TO	
 USE	
 THE	
 LIBRARY	
 ...	
 10	

4.1	
 BUILDING	
 THE	
 LIBRARY	
 ...	
 10	

4.2	
 USING	
 THE	
 LIBRARY	
 IN	
 AN	
 APPLICATION	
 ...	
 11	

4.3	
 THE	
 SPLIT-­‐PHASE	
 API	
 ...	
 12	

4.4	
 NOTES	
 ON	
 USER	
 SUPPORT	
 ...	
 13	

5	
 SUMMARY	
 ...	
 14	

6	
 REFERENCES	
 ..	
 15	

ANNEX	
 A.	
 FORTRAN	
 AND	
 C	
 BINDINGS	
 OF	
 THE	
 CRESTA	
 COLLECTIVE	
 COMMUNICATION	
 LIBRARY	

FUNCTIONS	
 16	

Index	
 of	
 Figures	

Figure 1: Available implementations of different collective operations (library v.0.1).
These are subject to change in the future versions of the library. 4	

Figure 2: The communication patterns of selected collective operations. 5	

Figure 3: Performance of different implementations of the all-to-all data exchange
operation. .. 7	

Figure 4: Performance of different implementations of the Allreduce collective
communication operation. .. 8	

Figure 5: Overlap availability for Alltoall and Allreduce operations. 9	

Figure 6: An example how to use the split-phase API (Fortran). 12	

	

© CRESTA Consortium Partners 2011 Page 1 of 16

1 Executive	
 Summary	

Most algorithms of scientific computing involve communication patterns that are
performed collectively across a large number of processing elements. Hence, the
scalability of many applications is often bound by collective operations in which even
minor load imbalances or other inefficiencies during these phases can cause a stall
across a significant number of processes. This holds also for the most of the CRESTA
co-design applications.

In order to scale applications to hundreds of thousands of cores, new approaches for
collective communication will be needed. These could be, for example, the use of
asynchronous algorithms in combination with remote-memory access (also called one-
sided) operations, especially when supported by hardware; utilization of non-blocking
collectives that allow for overlapping the communication overhead with computation;
optimization of communication patterns to improve concurrency but avoid interconnect
contention, and so forth.

This document describes a platform for studying scalability bottlenecks caused by
collective operations: the CRESTA Collective Communication Library. It basically
allows for an application developer to experiment with various alternative
implementations for a particular set of collectives with minimal changes into the
application source. These implementations include in addition to the traditional
collective operations of the message-passing interface (MPI) library the non-blocking
collectives as introduced in the most recent version of the MPI standard, collectives
implemented with partitioned global address space (PGAS) languages (yet currently
only with Fortran coarrays) as well as with remote-memory access operations (also
referred to as one-sided communication) available in the MPI library. Furthermore, it
defines an application-programming interface (API) where the initiation and finalization
of a collective operation are performed in separate stages, to allow for performing other
work while the collective communication occurs in the background, here referred to as
the split-phase API. The library itself is free software.

The capabilities of the library are described, together with some performance
measurements, and user documentation is being provided. We found that on the Cray
XC30 platform, applications could obtain substantial performance benefit from
replacing the typical bottleneck collectives – the Alltoall data exchange operation and
collective computation with the Allreduce operation – with the CRESTA Collectives;
and selecting the Alltoall being implemented with Fortran coarrays and making
Allreduce calls to utilize the split-phase API.

© CRESTA Consortium Partners 2011 Page 2 of 16

2 Introduction	

In many supercomputing applications, a significant portion of execution time is spent on
collective communication operations, i.e. communication patterns that involve all or a
part of the parallel processing tasks in a synchronized fashion. In the de facto standard
parallel programming approach, the message-passing interface (MPI), these
communication patterns are available as convenient and optimized standalone library
calls, such as MPI_Bcast for data replication, MPI_Gather for data collection,
MPI_Reduce for collective computation and MPI_Alltoall for data exchange, to mention
a few.

This deliverable documents the CRESTA Collective Communication Library, CCCL in
short. It is a library that allows replacement of the most typical MPI collective
operations with alternative CRESTA collectives, requiring only very minimal intrusion to
the source code, e.g. the API arguments are exactly the same as with the original MPI
collective. These CRESTA collectives perform exactly the same communication pattern
and yield the same outcome as the original corresponding MPI collective. The library
has various implementations available for the collective operations, including original,
“blocking” collective operations as defined in the MPI standard; non-blocking collective
operations introduced in the MPI standard version 3.0 [1]; implementations employing
the coarrays feature of the Fortran 2008 standard [2]; and implementations using
remote-memory access (also called one-sided communication) as defined in the MPI
standard. (Note that the non-blocking MPI collectives were only standardized and an
implementation made available during the course of this work.) The main purpose of
the software is to act as a platform for experimentation of various collectives
implementations, but it may also be directly useful for existing supercomputing
applications.

The user of the software selects the implementation at compile time, makes the
aforementioned minimal sentinel changes to his software and links with the CCCL. The
library is available in separate language versions for applications written in Fortran or
C/C++ programming languages. With some additional effort the library could be usable
in applications written in other languages (e.g. Python) as well.

The motivation for using the alternative implementations is of course improved
application performance. The performance of the alternative implementations is
dependent on the target platform: the MPI library used, compiler used as well as the
underlying hardware.

Additionally, the library defines an application programming interface (API) for initiating
and finalizing a collective operation with two separate calls. The motivation for doing so
is to try to hide the overhead from the operation by performing independent work while
the collective is being progressed. Real-world scenarios benefitting from this feature
include a classical molecular dynamics simulation employing the sc. particle-mesh
Ewald (PME) method to account for long-range interactions – the bottleneck all-to-all
communication pattern encountered in PME can be overlapped with e.g. evaluation of
real-space quantities.

This document is structured as follows: Section 3 describes the features of the library
and discusses its performance on one supercomputer platform (Cray XC30). Section 4
is the user documentation of the library, i.e. how to build the library itself and how to
use it on an application. Some concluding remarks are being drawn in Section 5.

© CRESTA Consortium Partners 2011 Page 3 of 16

3 CRESTA	
 Collective	
 Communication	
 Library	

3.1 General	
 description	

The purpose of the CRESTA Collective Communication Library is to provide an easy
interface for the application programmer to experiment with alternative approaches to
possibly alleviate the bottleneck collectives, with minimal changes to the source code
and fully without having to change algorithms or data structures.

The design is such that the programmer can convert some or all of the collectives to
the CRESTA collectives, and is always able to return to the original MPI collectives with
a simple library recompilation. The implementation is selected separately for different
collectives, but such that all (e.g.) CRESTA_Bcast in the program are using the same
implementation. The user needs to the change of the “MPI_” sentinel in a collective
operation to “CRESTA_”, keeping the same call arguments.

The library is available as C and Fortran versions for easier interoperability with the
program, but they differ in available implementations. In its initial scope, the library may
implement a collective with:

• Original, “blocking” collective operations as defined in the MPI standard (all
operations, both languages).

• Non-blocking collective operations introduced in the MPI standard version 3.0
(all operations, both languages). The completion of the operation is taken care
of by the library – i.e. still no changes to the call arguments.

• Implementations employing the PGAS languages – i.e. coarrays feature of the
Fortran 2008 standard (all non-vector collectives, Fortran only) and the Unified
Parallel C extension of the C language [3] (not available yet).

• Implementations using one-sided operations as defined in the MPI standard
(only few routines available, both languages).

The feature list of the current scope of the library (v.0.1) is presented in 	

Figure 1.

 Fortran C

MPI Non-
blocking
MPI

PGAS One-
sided
comm

MPI Non-
blocking
MPI

PGAS One-
sided
comm

Bcast Y Y Y Y Y Y N Y

Gather Y Y Y Y Y Y N Y

Gatherv Y Y N N Y Y N N

Scatter Y Y Y Y Y Y N

Scatterv Y Y N N Y Y N N

Reduce Y Y Y Y Y Y N

Allgather Y Y Y N Y Y N N

Allgatherv Y Y N N Y Y N N

Allreduce Y Y Y Y Y Y N

Reduce_scatter Y Y Y N Y Y N N

Alltoall Y Y Y Y Y Y N N

Alltoallv Y Y N N Y Y N N

© CRESTA Consortium Partners 2011 Page 4 of 16

The implementation is selected when building the library – see section 4.1, and the
library needs to be linked into the application. Changing an implementation requires

recompilation of the library and re-linking of the application.
Figure 1: Available implementations of different collective operations (library v.0.1). These are

subject to change in the future versions of the library.

In addition to this non-intrusive alteration of implementation of collectives, the library
features an application programming interface (API) for initiating and completing a
collective operation in separate calls to allow for performing computation or other
communication during a collective operation. This is referred to as the split-phase API.
With it, each collective is started with a call to CRESTA_<collective name>_begin.
Then the control returns to the program, allowing for an attempt to perform other work
while the collective communication occurs. The collective has to be finalized with a call
to CRESTA_Coll_end. Currently it is equal to the similar feature as available in recent
MPI library implementations conforming to the 3.0 version of the MPI standard, but the
reason for defining a new API is that also the split-phase API can be based on
alternative implementations in the subsequent versions of the library.

The Fortran library routines are available only for INTEGER, REAL and DOUBLE
PRECISION type data to be communicated. The C version accepts all kinds of
elementary (native to C) data types. User-defined data types as available in MPI are
not supported in the PGAS or one-sided communication implementations.

For the implementations with Fortran coarrays, only collectives over all the processes,
i.e. operating on a communicator equaling to MPI_COMM_WORLD, are available. The
other implementations do support user-defined communicators, however.

3.2 Collective	
 operations	

The collective operations included in CCCL are:

• CRESTA_Bcast
• CRESTA_Gather
• CRESTA_Gatherv
• CRESTA_Scatter
• CRESTA_Scatterv

 Fortran C

MPI Non-
blocking
MPI

PGAS One-
sided
comm

MPI Non-
blocking
MPI

PGAS One-
sided
comm

Bcast Y Y Y Y Y Y N Y

Gather Y Y Y Y Y Y N Y

Gatherv Y Y N N Y Y N N

Scatter Y Y Y Y Y Y N

Scatterv Y Y N N Y Y N N

Reduce Y Y Y Y Y Y N

Allgather Y Y Y N Y Y N N

Allgatherv Y Y N N Y Y N N

Allreduce Y Y Y Y Y Y N

Reduce_scatter Y Y Y N Y Y N N

Alltoall Y Y Y Y Y Y N N

Alltoallv Y Y N N Y Y N N

© CRESTA Consortium Partners 2011 Page 5 of 16

• CRESTA_Reduce
• CRESTA_Allgather
• CRESTA_Allgatherv
• CRESTA_Allreduce
• CRESTA_Reduce_scatter
• CRESTA_Alltoall
• CRESTA_Alltoallv

Their meanings (outcomes) are exactly the same as their MPI_ corresponds. The
topology-aware collectives introduced in the 3.0 version of the MPI standard are not yet
available. Some of them are illustrated in Figure 2. The vector versions of certain
collectives (e.g. Gather/Gatherv) have the same purpose but allow for varying-sized
blocks of data being communicated. For further information on a particular collective,
please consult the corresponding MPI collective from the MPI standard.

Figure 2: The communication patterns of selected collective operations.

(

© CRESTA Consortium Partners 2011 Page 6 of 16

3.3 Performance	

As underlined earlier, the performance of the available realizations is heavily
dependent on the various aspects of the underlying supercomputing platform: CPUs,
interconnect, MPI library, compiler suite and so on, varying even in the same system
over time as the software components evolve. In general, it is expected that the user is
mostly interested in replacing the bottleneck collectives in his application with the
CCCL alternatives; giving him an automated possibility to explore the most efficient
implementation. The PGAS versions of the “cheap” collectives such as the one-to-all
operations Bcast, Scatter and Gather are not optimized but very straightforward ones,
and available mostly for the sake of completeness and as a starting point for further
studies is optimizing these is of importance.

3.3.1 Performance	
 comparison	
 of	
 different	
 implementations	

The typical bottleneck collectives in supercomputing applications in general are
MPI_Alltoall(v) and MPI_Allreduce. Indeed, those have been identified to be the two
bottleneck collectives in the CRESTA application suite [4]. We will discuss the
performance of those. The test platform was a Cray XC30 machine (Intel Sandy Bridge
CPUs, Cray Aries interconnect, Cray MPI library, Cray compiler suite). For the other
collectives, especially fast one-to-all collectives, MPI implementations are much faster
than the alternative implementations made during the course of work (coarrays or one-
sided). The “compute and scatter” operation (MPI_Reduce_scatter) is an exception;
coarrays implementation being comparable or slightly better to MPI.

The average time spent on performing the all-to-all data exchange as a function of the
single message size (the total amount of communication being then #tasks2 x message
size) with 256, 1024 and 4096 PE’s (i.e. a small and a medium-size job on current
standards) is given in Error! Reference source not found.. It can be observed that
the MPI-based approaches (blocking or non-blocking without an overlap) yield similar
performance. The approach based on Fortran coarrays outperforms MPI starting from
message sizes of few tens of bytes. The one-sided approach is an order of magnitude
slower than the others for small messages, but a cross-over with MPI is observed when
the total sendbuffer size (message size * number of PE’s) is around half a megabyte.

© CRESTA Consortium Partners 2011 Page 7 of 16

Figure 3: Performance of different implementations of the all-to-all data exchange operation.

10

100

1000

10000

100000

8 32 128 512 2048 8192

Av
er

ag
e

co
m

pl
et

io
n

tim
e

[µ
s]

Message size [B]

All-to-all data exchange, 256 PE's

MPI

MPI Non-block

Coarrays

MPI One-sided

100

1000

10000

100000

1000000

8 32 128 512 2048 8192

Av
er

ag
e

co
m

pl
et

io
n

tim
e

[µ
s]

Message size [B]

All-to-all data exchange, 1024 PE's

MPI

MPI Non-block

Coarrays

MPI One-sided

1000

10000

100000

1000000

8 32 128 512 2048 8192

Av
er

ag
e

co
m

pl
et

io
n

tim
e

[µ
s]

Message size [B]

All-to-all data exchange, 4096 PE's

MPI

MPI Non-block

Coarrays

MPI One-sided

© CRESTA Consortium Partners 2011 Page 8 of 16

Error! Reference source not found. presents the average time spent on performing
the Allreduce operation (i.e. global reduction operation followed by the result replication
to all tasks) as a function of the amount of data to be reduced with 256, 1024 and 4096
PE’s. Here the approach based on Fortran coarrays is clearly slower than the MPI
implementations. As yet we do not have an explanation for the kink observed at 64
bytes in the coarrays curve.

1

10

100

1000

10000

100000
Av

er
ag

e
co

m
pl

et
io

n
tim

e
[µ

s]

Reduction size [B]

Collective computation, 256 PE's

MPI

MPI Non-block

Coarrays

10

100

1000

10000

100000

Av
er

ag
e

co
m

pl
et

io
n

tim
e

[µ
s]

Reduction size [B]

Collective computation, 1024 PE's

MPI

MPI Non-block

Coarrays

© CRESTA Consortium Partners 2011 Page 9 of 16

Figure 4: Performance of different implementations of the Allreduce collective communication

operation.

3.3.2 	
 Overlap	
 availability	

An important consideration from the point of view of exascale applications is how well
the communication overhead related to collective operations can be “hidden” by doing
something productive while waiting for the collective operation to complete. We define
an “overlap availability time” O as

𝑂 = 𝐶 + 𝑁 − 𝑇

where

• T: a time required for completing a collective operation and an overlapped
computational task

• C (computation time): time required for performing the computational task (i.e.
operations on data not referred by the collective) alone

• N (network i.e. collective time): time required for completing the collective
operation alone.

Further, by defining

ovl% =
𝐶 + 𝑁 − 𝑇

𝐶 + 𝑁 −max (𝐶,𝑁)
∗ 100 =

𝑂
min (𝐶,𝑁)

∗ 100

ovl% would be zero in case of no overlap (the case with blocking MPI collectives) and
100 in case where the communication overhead has completely been hidden (T being
equal to either the computation or collective time, whichever is larger). Negative value
would mean performance penalty from trying the overlap.

We have benchmarked the CCCL split-phase API for the overlap availability of the
Alltoall and Allreduce operations as a function of the size of the communication, as
presented in Figure 5 for a job of 1024 PEs on the Cray XC30, placing 16 MPI tasks
per node (that contains 16 cores).

We observe that roughly half of the CPU resources during an Allreduce for smaller than
four kB data would available for other work. This means an opportunity to cut to half the
fraction of application wall-clock time spent on a bottleneck Allreduce. The overlap
possibility reduces to zero for larger vectors than that. For Alltoall the availability is
around 20%; 40% at the most. We however expect these ratios to improve over time as
the MPI libraries improve.

1

10

100

1000

10000

100000

Av
er

ag
e

co
m

pl
et

io
n

tim
e

[µ
s]

Reduction size [B]

Collective computation,4096 PE's

MPI

MPI Non-block

Coarrays

© CRESTA Consortium Partners 2011 Page 10 of 16

Figure 5: Overlap availability for Alltoall and Allreduce operations.

-20

-10

0

10

20

30

40

50

8 18

32

64

12
8

25
6

51
2

10
24

20

48

40
96

O
ve

rla
p

av
ai

la
bi

lit
y

[%
]

Message size [B]

-10
0

10
20
30
40
50
60
70
80

8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

O
ve

rla
p

av
ai

la
bi

lit
y

[%
]

Reduction size [B]

© CRESTA Consortium Partners 2011 Page 11 of 16

4 How	
 to	
 use	
 the	
 library	

In this section step-by-step instructions on obtaining, building and using the library are
given.

4.1 Building	
 the	
 library	

1. Obtain the source code from the CRESTA subversion repository:

svn co https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp4/cresta_libraries/cccl/trunk

This requires an account to the subversion service. The package will be publicly
available later.

2. Select the language version according to the application with which you intend
to employ the library. Even if it is in theory possible to use the Fortran version of
the library in a C/C++ software, in practice it is much easier to use the Fortran
version of the library with Fortran software and C version within C programs.

3. Edit the corresponding Makefile. Insert the proper MPI compiler (e.g. mpif90) to
the fields F90 and CC and related compiler flags.

4. Edit the field DFLAGS_LIB to select the implementation of certain collectives.
Be aware that the alternative implementations provided by the library may be
slower than the MPI implementations, or even non-functional, on your target
platform. The syntax is –D_<IMPLEMENTATION>_<COLLECTIVE>, where
IMPLEMENTATION is CAF, OS, or NONBLOCK for collectives written with
Fortran coarrays, MPI one-sided operations or MPI 3.0 nonblocking collectives,
respectively. COLLECTIVE is the name of the collective without the “MPI_”
prefix, e.g. ALLREDUCE points to the MPI_Allreduce operation.

• All desired special implementations have to be declared explicitly. If no
request for a special build for a collective is given, the collective will be
equal to blocking MPI. Note that not all collectives are available as
Fortran coarrays or one-sided implementations.

• The wildcard parameter –D_ALL_NONBLOCK will make all collectives to
correspond the MPI 3.0 nonblocking version, unless they are not
explicitly specified to be either CAF or OS.

• Example: DFLAGS	
 =	
 -­‐D_CAF_ALLTOALL	
 -­‐D_OS_BCAST	
 -­‐
D_NONBLOCK_ALLGATHERV would use the Fortran coarrays
implementation for MPI_Alltoall, one-sided operations for MPI_Bcast
and MPI 3.0 nonblocking for MPI_Allgatherv. The rest of the routines
would correspond to their original MPI versions.

5. Once finished with the Makefile, type “make static" (or "make") to build a static
version the library. For a dynamic/shared library, type “make shared”. After
completed, you should have files libcrestacoll.a and/or libcrestacoll.so in the
same folder. Typing “make help” will show all options.

6. There are a couple of small programs for verifying and benchmarking certain
collectives. Type “make test” to build these, and run them in your target
platform. If the output in any of these contains a statement “Error in
CRESTA_<COLLECTIVE>”, modify the Makefile such that this <COLLECTIVE>
is not using any special implementation and rebuild the library. Typing “make
ovl” will compile two benchmarks for the overlap availability when using the
split-phase API.

There are further flags to control how to build the coarrays and one-sided versions.

• In the Fortran side of the library (only), both CAF and OS libraries can be built
using either "static" or "dynamic" coarrays and communication windows. This
means using a pre-allocated Fortran coarray or a common memory area that
has a static communication window pointing to it. The benefits of “static”
coarrays/windows are in avoiding repeated memory allocations, and these are a
priori much faster than the default “dynamic” implementations. Insert flags
–D_STATIC_COARRAYS and/or –D_STATIC_OS_WIN to enable these. When using

© CRESTA Consortium Partners 2011 Page 12 of 16

the one-sided routines, further source code modifications will be needed (see
the next section). Static coarrays do not need any modifications beyond the
Makefile and are a recommended practice.

• The size (memory allocation) of these static coarrays or windows are being
controlled with the D-flags –DTMP_COARRAY_SIZE=N and
–DTMP_OS_WIN_SIZE=N where N is the maximum number of elements in the
coarray or window. Thus the suitable size for this parameter is the anticipated
size of the largest buffer involved in a collective using either the coarrays or
one-sided implementation. Note that in Fortran a separate coarray and memory
window is being reserved throughout the program execution for integers, single-
precision real numbers and double-precision real numbers, meaning that the
memory consumption is (4+4+8)*N (N as in the D flags above) bytes.

4.2 Using	
 the	
 library	
 in	
 an	
 application	

1. Add #include	
 “crestacoll.h” into your C source code files and/or USE	

crestacoll into your Fortran source code files.
2. In the source code of your application, search MPI collective operations you

would like to expose for the change of implementation, and change their
sentinels from MPI_ to CRESTA_, without changing the procedure call
arguments. All collectives are recognized by the library. For example, all calls to
MPI_Alltoall routines are being replaced with calls to CRESTA_Alltoall, not
touching the list of arguments. It is safe to do this for all collectives, since it will
be always possible to use the original MPI implementations.

• A recommended practice is to employ pre-processor directives to enable
co-existence with a version not requiring the CCCL. For example a call
to MPI_ALLTOALL(...) would be replaced with
#if	
 defined(_CRESTA_COLLECTIVES)	

CALL	
 CRESTA_ALLTOALL(...)	

#else	

CALL	
 MPI_ALLTOALL(...)	

#endif	

Then the CCCL would be enabled by inserting –
D_CRESTA_COLLECTIVES onto the compilation command of the file in
question (and linking the library, see below).

• This is the only modification needed besides when using one-sided
implementations together with the "static" communication windows (see
the building instructions). In this case one will need to insert a call to a
routine CRESTA_Win_init before the first collective that employs the
one-sided implementations. The comm argument is the MPI
communicator the collective takes place at, and rc is an optional return
code. In addition, one should add a call to CRESTA_Win_finalize after
all operations have been completed. See the library or the annex of this
document for the call syntax. A recommended practice is to add the
CRESTA_Win_init call right after MPI_Init, and CRESTA_Win_finalize
just before MPI_Finalize.

3. Build and link your software with adding a linker flag –lcrestacoll (possibly
together with a pointer to the location of the library with –L<directory path>). In
C programs, also the location of the CCCL .h files has to be provided to the
compiler with –I <directory path>.

At this stage the application should be using the collective implementations selected
during the library build phase.

Remember to validate the results and track the performance of your application,
reverting back to the MPI implementations in case of any problems in either of those.

© CRESTA Consortium Partners 2011 Page 13 of 16

4.3 The	
 split-­‐phase	
 API	

The instructions outlined in Section 4.2 describe the basic, non-source-code-intrusive
usage of the library. On top of that, the library features an application-programming
interface (API) for initiating and ending a collective in two separate calls. The purpose
of this API is to allow for overlapping computation or some other work while the
collective communication takes place.

The intended use of the API is as follows:

1. Add USE cresta_sp_coll (Fortran) or #include “cresta_sp_coll.h” (C) into the
beginning of the program unit utilizing the API.

2. Start communication by calling CRESTA_<COLLECTIVE>_begin. This will
initiate the communication but return immediately in the similar fashion with MPI
non-blocking communication, i.e. MPI_Isend/Irecv and the MPI 3.0 non-blocking
collectives. The arguments for the function are equal to the ones of the
corresponding collective, besides that the routine will return a request handle
(of INTEGER type in Fortran, an MPI_Request struct in C) that the programmer
has to store manually. The request parameter will always be the second last
argument, just before the (optional) return value “rc”.

3. Do computation or other meaningful work (communication, I/O, etc). The buffer
communicated in the first step cannot be read or written in this stage.

4. Call CRESTA_Coll_end with the following input arguments: the number of
requests and the request parameters (multiple parameters stored in an array).
After this call returns, the communication initiated in the first step has been
finished. This corresponds to calling MPI_Wait/Waitall. This one routine is being
used for all the collectives. No status parameter will be returned. It is important
to keep in mind that the communication is not guaranteed to have finished
without completing this step. Omitting this step may lead to hard-to-trace
deviations in results. Also any addressing of the buffers of the collective is not
permitted before the CRESTA_Coll_end returns (unless the
–D_PROTECTED_BUFFER	
 flag has been enabled, see below).

An example code snippet utilizing the steps is presented in Figure 6.

...	

use	
 cresta_sp_coll	

...	

real(kind=8),	
 dimension(:),	
 allocatable	
 ::	
 sendbuf,	
 recvbuf	

integer	
 ::	
 n,	
 request,	
 rc	

call	
 CRESTA_Alltoall_begin(sendbuf,	
 n,	
 MPI_DOUBLE_PRECISION,	
 &	

	
 	
 	
 	
 	
 recvbuf,	
 n,	
 MPI_DOUBLE_PRECISION,	
 MPI_COMM_WORLD,	
 request,	
 rc)	

!	
 do	
 some	
 computation,	
 I/O	
 or	
 other	
 communication	
 not	
 reading	
 nor	

!	
 writing	
 sendbuf	
 or	
 recvbuf	
 here	

...	

call	
 CRESTA_Coll_end(1,	
 request)	

!	
 start	
 utilizing	
 information	
 in	
 recvbuf	

...	

Figure 6: An example how to use the split-phase API (Fortran).

Currently, the split-phase collectives that allow for the overlap are being realized only
with the non-blocking MPI collectives – i.e. the user would get exactly the same
functionality and performance by calling directly the corresponding non-blocking MPI
collective in the step #1 and MPI_Wait (or MPI_Waitall for several on-going
communication routines) in the step #3. The API has been defined to allow for selecting

© CRESTA Consortium Partners 2011 Page 14 of 16

also other implementations (based e.g. on Fortran coarrays) for realizing the overlap in
the future. These implementations are to be added to the library in its subsequent
versions.

There is one D-flag to control the building of the library: inserting
-­‐D_PROTECTED_BUFFER into the Makefile will compile the library such that it is safe to
read or write over the send buffer involved in the collectives also before making a call
to CRESTA_Coll_end. Without the flag the typical MPI rules of non-blocking
communication apply (the buffers cannot be read or rewritten before the
communication has been finished). This involves an additional memory copy, so it
should be enabled only if being able to read or reuse the send buffer would bring some
other benefit for the algorithm. This feature is not available for routines where the send
and receive buffers are the same (Bcast). The receive buffer cannot be ever read or
written before CRESTA_Coll_end has been called. Currently the feature is available
only on the Fortran side of the library.

4.4 Notes	
 on	
 user	
 support	

The library is being distributed assuming the user understands its essence as
experimental software, and that no warranties whatsoever are being given or implied
about its performance or reliability. We also highlight that more than a directly
applicable and polished API for supercomputing applications; it is a platform for
benchmarking and experimenting with implementations of collective communication
patterns and the primary initial use is within the CRESTA project itself

All bug reports, requests for enhancements, user experiences, benchmark data, code
contributions etc. are gratefully received by the author, manninen@cray.com.

© CRESTA Consortium Partners 2011 Page 15 of 16

5 Summary	

This document describes the capabilities and the usage of a new CRESTA Collective
Communication Library.

• The library has been written to provide an easy interface for supercomputing
application developers into various implementations of the typical collective
communication operations, together with overlap of computation and collective
communication.

• Enabling the CRESTA Collective Communication Library requires only minimal
changes to the application source code. Changing an implementation needs
recompilation of the library and relinking of the application with it.

• On the supercomputer platform where the performance was evaluated – a Cray
XC30 supercomputer - the alternative implementation of the All-to-all data
exchange based on Fortran coarrays outperforms those available in the
message-passing interface library. It was also observed that another typical
bottleneck collective, the Allreduce operation, can be overlapped with
computation such that roughly one half of the execution time needed for an
Allreduce operation can be utilized otherwise.

• The library is still in its early development state. More alternative
implementations will be added into it and implementations optimized in the
future.

© CRESTA Consortium Partners 2011 Page 16 of 16

6 References	

[1] Message Passing Interface Forum, MPI: A Message-Passing Interface

Standard version 3.0 (2012).
[2] R. W. Numrich, J. Reid, SIGPLAN Fortran Forum 17, 1-31 (1998).
[3] UPC Language Specifications, v1.2, Technical Report LBNL-59208, Lawrence

Berkeley National Lab, (2005).
[4] J. Nowell, D2.6.1 – CRESTA benchmark suite. CRESTA Project deliverable

(2012).

© CRESTA Consortium Partners 2011 Page 17 of 17

Annex	
 A. Fortran	
 and	
 C	
 bindings	
 of	
 the	
 CRESTA	
 Collective	

Communication	
 Library	
 functions	

A.1 Fortran	
 bindings	

For the CRESTA collective operations, refer to the corresponding collective operations
of the MPI standard [1]. The routine is converted by changing the MPI_ sentinel into
CRESTA_.

For the collectives using the split-phase API, an additional _begin suffix will be added
to the collective name. E.g. MPI_Bcast becomes CRESTA_Bcast_begin. The argument
list is the same in the corresponding collective, besides an extra request handle of type
integer (output) as the second last argument. (That is, the list of arguments is the same
as in a corresponding non-blocking collective).

For example
CRESTA_Bcast_begin	
 (buffer,	
 count,	
 datatype,	
 root,	
 comm,	
 request,	
 rc)	

<type>,	
 dimension(...)	
 ::	
 buffer	

integer,	
 intent(in)	
 ::	
 count,	
 datatype,	
 root,	
 comm.	

integer,	
 intent(out)	
 ::	
 request	

integer,	
 intent(out),	
 optional	
 ::	
 rc
	

The additional routines (that are a part of the API) introduced by CCCL are:

• CRESTA_Win_init(comm,	
 rc)	

integer,	
 intent(in)	
 ::	
 comm	

integer,	
 intent(out),	
 optional	
 ::	
 rc
Generates static memory areas used for the one-sided operations. Using them
avoids generating a communication window every time a collective is posted.

• CRESTA_Win_finalize(rc)	

integer,	
 intent(out),	
 optional	
 ::	
 rc
Frees the memory allocated for the static communication windows.

• CRESTA_Coll_end(count,	
 request,	
 rc)	

integer,	
 intent(in)	
 ::	
 count	

integer,	
 dimension(...),	
 intent(in)	
 ::	
 request	

integer,	
 intent(out),	
 optional	
 ::	
 rc
Completes the collective computation controlled by the request (single request
or an array of requests).

A.2 C	
 bindings	

For the CRESTA collective operations, refer to the corresponding collective operations
of the MPI standard [1]. The routine is converted by changing the MPI_ sentinel into
CRESTA_.

For the collectives using the split-phase API, an additional _begin suffix will be added
to the collective name. E.g. MPI_Bcast becomes CRESTA_Bcast_begin. The argument
list is the same in the corresponding collective, besides an extra request handle of type
integer (output) as the second last argument. (That is, the list of arguments is the same
as in a corresponding non-blocking collective).

For example:

int	
 CRESTA_Bcast_begin(void	
 *buffer,	
 int	
 count,	
 MPI_Datatype	
 datatype,	
 	

int	
 root,	
 MPI_Comm	
 comm,	
 MPI_Request	
 request	
)	

The additional routine (that is a part of the API) introduced by CCCL is:

• int	
 CRESTA_Coll_end(int	
 count,	
 MPI_Request	
 requests[])
Completes the collective computation controlled by the request (single request
or an array of requests).

