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1 Executive	
  Summary	
  
With exascale computing, pre-processing becomes ever more important in order to 
increase overall performance and thus to lower costs. In this deliverable we focus on 
the usage and usability of partitioners in an exascale environment. Specifically, the 
data structures used, the underlying algorithms and coupling to other parts of 
simulation codes are tackled. 

A distributed CSR format combines several advantages. Here data distribution 
information of the graph to be partitioned is spread among all processes. Graph data 
needed for the local calculation is kept local. However duplicated data on all cores is at 
a minimal level. This results in a light-weight yet complete graph data layout. The 
memory burden is therefore minimised, perfectly matching exascale demands. 

State-of-the-art partitioning algorithms - like the multilevel k-way method described 
here – already produce quite good load balance in a reasonable amount of computing 
time. Additionally they have several features inevitable for exascale. Repartitioning is 
able to incorporate an old partitioning to gain a calculation time benefit. Mesh or graph 
refinement tasks get faster and thus feasible. 

Native workload and communication patterns are default parameters for the algorithms. 
However they can also be adjusted in various ways. Multiple simulation phases and 
diverse constraints can be considered by passing corresponding weights. For example, 
this includes distinction of surface or inner cells. It is particularly useful for all sorts of 
particle-in-cell codes or contact-impact simulations which already cover a large portion 
of exascale codes. 

Especially important is another aspect: The algorithms are mainly weight-driven. As 
such they can be tuned for heterogeneous system architectures with ease. Regarding 
exascale this surely is very convenient as it is unclear what future systems will look like 
in terms of hardware detail. 

Lastly the demand for a closer coupling of pre-processing rises. Techniques like 
computational steering and remote rendering get integrated further into the simulation 
and alter load equation(s). The primary goal of an overall load balance can only be 
reached by forwarding vital information on to pre-processing. An interface to do so is 
needed. 
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2 Introduction	
  
By definition, exascale systems perform very large simulations. In fact, the amount of 
calculations is tremendous. Underlying meshes get finer and finer. Resulting graphs 
have many vertices and edges. Particle numbers rise. Input and output data masses. 

This mere size introduces various risks to proper simulation execution. Here a failed 
load balance is of particular interest, not only from a pre-processing point of view. 
Simulation lifespan is directly proportional to overall costs. Now, if one processor 
unnecessarily sets back calculation of hundreds of thousands of cores even for a short 
time real money is wasted. 

Here partitioners’ responsibilities are clearly formulated: Calculated partitioning must be 
particularly good in the sense of load balancing, although it has to be computed in a 
reasonable amount of time. Pre-processing shall not dominate the whole simulation. 
Overall a fast and good partitioner is fundamental, as well as the data structures and 
algorithms used within. 

Pre-processing requires various pieces of information. Input data with graph or mesh 
details is processed. Computational methods must be considered. Post-processing 
might afford other constraints. These data flows have to be minimal. Hence, data 
structures must be kept reasonably small to facilitate every data exchange. Ease of 
handling these structures is essential as too much effort on decoding again increases 
overall computing time. 

In general, algorithms’ requirements are fairly obvious: The primary objective is a well-
balanced load during the whole simulation run. Nevertheless, some conditions should 
be mentioned. In an exascale environment simulation steering will be useful. This of 
course results in repeated simulation cycles and therefore repeated partitioning may be 
necessary. Algorithms which are able to benefit from the consideration of old or 
estimated partitionings are preferred. They have to be adjustable in many forms: 
Adaptive mesh refinement will alter partitioning constraints in between simulation 
cycles. Multiple stages of computation might be necessary but the costs might not be 
determinable at simulation start. Heterogeneous architectures of exascale systems 
must be matched. Fault tolerance mechanisms may shut down parts of hardware.  

Another important aspect was already mentioned and concerns coupling of simulation 
parts. Until now, simulation phases are divided in most codes, and pre-processing and 
post-processing is not accounted for in the core computation. Demand for 
computational steering, however, increases (see [1]). This forces coupling between 
core computation and pre- and post-processing. Here, too, the main advantage is a 
well-balanced overall simulation which in turn results in decreased costs. 

Links between simulation parts therefore have to be implemented. Regarding pre-
processing an interface should manage the information flow. Core processing 
measures or estimates workload and memory needs, and passes them to the pre-
processor. Post-processing gathers the same values and calls the interface as well. 
Now pre-processing is provided with individual data for the complete simulation and is 
therefore able to calculate an efficient partitioning. 

In this deliverable we first take a close look at the partitioning tool ParMETIS (see 
section Error! Reference source not found. and [2]). Data structures needed in 
ParMETIS calls are examined for suitability. The main algorithm of ParMETIS is based 
on a multilevel k-way partitioning method and is described in subsection Error! 
eference source not found.. Here we do not focus on the well-established core, we 
rather search for possibilities to adjust it to pre-processing. The specific requirements 
of an exascale simulation are covered separately and in detail in subsection Error! 
eference source not found.. 
In section Error! Reference source not found. we proceed with an investigation of 
emeLB [4]. We describe the current state of pre-processing within this CRESTA co-
design application. Geometries and the file model used are tackled before we get to an 
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explicit description of algorithms. Initial reading and decomposition, partitioning calls 
and redistribution strategy are detailed. Afterwards, HemeLB’s pre-processing is 
analysed with respect to its exascale capabilities. 

Finally section Error! Reference source not found. summarises the gathered aspects 
of pre-processing through the description of a required interface. Needs for a proper 
interface arise in different parts of a simulation and are addressed accordingly.  

2.1 Purpose	
  2.1 Purpose	
  
The purposes of this deliverable are as follows: 

• Investigate ParMETIS as an  exemplar for a partitioning tool, regarding 
o the data structures used and their exascale potential, as well as 
o the algorithms implemented and their usability within exascale 

computing. 
• Investigate HemeLB, as an example of a co-design application, in terms of its 

pre-processing use and needs 
• Narrow down specifications of an interface to pre-processing 
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3 Case	
  study:	
  ParMETIS	
  
3.1 Data	
  structures	
  
3.1.1 Format	
  of	
  the	
  input	
  graph	
  
In ParMETIS, the structure of the graph is represented by a compressed storage 
format. As every processor holds a disjoint part of the graph locally, we describe first 
this local and thus serial part of the format. 

The adjacency structure of the locally present n vertices is encoded in the two arrays 
xadj and adjncy. The latter one holds a list of vertex numbers describing to which 
vertex the current vertex under consideration is connected to. Hence it represents the 
edges of the graph. This strategy obviously leads to a double counting of the edges, so 
this number is denoted by 2m. 

The former array separates the vertices under consideration. Therefore it holds a list of 
indices pointing into adjncy. At every one of these indices a new vertex and its edges 
starts in the adjncy array. 

 
Figure 1: A sample graph (without weights); [2] 

Figure 1 depicts an example graph (for a start without weights, see below), while 
Figure 2 shows the array content of the CSR format distributed across 3 processors. 
As we can see on processor 0 the first 2 (=2-0) entries of adjncy lists the two edges 
(1 and 5) of vertex 0. Because of 5-2=3 the next three edges (to 0, 2 and 6) belong to 
the next vertex 1 and so on.  

 
Figure 2: Array content of distributed CSR format for sample graph using 3 processors; [2] 

Furthermore ParMETIS allows weights to be provided for both edges and vertices (they 
are not shown in the example, but accompany xadj and adjncy in a straight forward 
manner). Here vwgt holds the n vertex weights linked to the vertices in xadj. adjwgt 
is as long as adjncy and contains the corresponding edge weights. 

So far the described structure is fine for a serial representation of the graph. To get a 
parallel extension we distribute the vertex and edge arrays, xadj and adjncy 
respectively, equally to all processors. Then, every process needs only one additional 
piece of information: which process holds how many vertices is stored in vtxdist. 
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Present on every processor, vtxdist can be used to determine whether a vertex or 
edge is local to the processor or not. This completes the format. 

3.1.2 Format	
  of	
  the	
  partitioning	
  array	
  
The output of ParMETIS partitioning routines is the array part. Its size equals the 
number of local vertices and after the routine returns, it holds the target processor for 
every local vertex. This fact also implies that ParMETIS is only responsible for 
calculating the partition, but not for distributing data. Thus it is necessary to 
communicate data correspondingly if one or more array values do not match the local 
processor number. 

Furthermore ParMETIS does have built-in routines for repartitioning graphs or meshes. 
Old partitionings have to be supplied and are conveniently passed via part in the 
routine calls. So these routines obtain the old distribution structure from part, compute 
the new one and store it back to part. 

3.2 Algorithms	
  
3.2.1 Main	
  computing	
  algorithm:	
  multilevel	
  k-­‐way	
  
The main computing algorithm within ParMETIS is based on a multilevel k-way 
partitioning method. Whether (re-)partitioning of a graph, adaptation of a mesh or 
similar operations are performed, almost every routine uses this algorithm by some 
means or other for its basic computation. Of course, this is hidden behind the 
respective routine call for user’s convenience. 

The algorithm is split in three phases. First, a series of steadily coarser graphs is 
constructed from the input graph (see Figure 3). The initial partitioning is computed on 
the coarsest level. Since this is also the smallest graph the calculation time is small, 
too. The final phase consists of refinement steps of the partition for each finer graph. 
The result is a fast and high quality partitioning of the finest, i.e. original, graph. 

 
Figure 3: Multilevel k-way graph partitioning; [2] 
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3.2.2 Use	
  cases	
  
Computing partitionings of unstructured graphs or meshes is the main use case of a 
partitioning library like ParMETIS. Nevertheless ParMETIS offers more options 
covering additional functionality tightly coupled to the needs of applications using 
partitionings. 

3.2.2.1 Adaptively	
  refined	
  meshes	
  
Some applications need to alter the underlying meshes continuously. Although a new 
partitioning could be computed from scratch it can be significantly faster to do so by 
taking into account the old one. For that reason ParMETIS provides a routine to get a 
new partitioning for a refined mesh. 

There are two competing methods to do so. The first one tries to diffuse computing 
load away from highly loaded sub-domains. Opposite to that, the second method 
computes a new partitioning and tries to map this onto the old one while minimising 
redistribution costs. 

To determine which method is currently the best one the routine accepts the so called 
ITR factor (see [3]) as a parameter. This factor describes the ratio between the time 
required for performing the inner-processor communications incurred during parallel 
processing, and the time to perform the data redistribution associated with balancing 
the load. The ITR factor can be estimated by division of two times measured during a 
simulation run. Namely, these are the time for all inter-processor communications that 
have occurred since the last repartitioning and the time for data redistribution 
associated with the last repartitioning/load balancing phase. 

The ITR factor is passed to ParMETIS’ routines. By its nature it is a single metric 
describing the quality of the repartitioning which technically is a multi-objective 
optimisation problem. Thus it is a convenient technique to decide what the best type of 
method for the repartitioning is. 

In general, repartitioning is assumed to be done after the refinement. ParMETIS, 
however, also offers the possibility to do this in advance as well. If the degree of 
refinement of each element can be estimated beforehand these values can be used as 
weights of the vertices. If these weights are available, repartitioning and so 
redistributing can take place preceding the refinement. Depending on the refinement, 
communication for redistributing data can be significantly reduced. 

3.2.2.2 Partitioning	
  for	
  multi-­‐phase	
  
Another feature of ParMETIS is given by the optional use of multiple weights. Say we 
have separated stages in our simulation, e.g., first particle movement followed by force 
computation based on stationary sites. Then, a partition has to optimise load balance 
over the full simulation, taking all stages into account. Workloads for each stage can be 
passed as further vertex weights and will be included in the partition calculation. 
Communication costs in between stages can be incorporated, too. 

This technique of multiple weights per vertex or edge is not limited to separate stages. 
Likewise it can be used for multi-constraint graph partitioning problems. As an 
example, a contact-impact simulation indicates the possibilities. The dashed 
partitioning in Figure 4 shows only a balance of the number of mesh elements. On the 
other hand the solid partitioning balances the number of mesh elements as well as the 
number of surface elements. 
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Figure 4: Computational mesh for a contact-impact simulation. The surface elements are lightly 

shaded. [2] 

3.2.2.3 Heterogeneous	
  computing	
  architectures	
  
Most of ParMETIS’ partitioning routines also accept another optional parameter called 
tpwgts. It stores weights for every computing (sub-)domain. Therefore it can be used 
to reflect a varying computing power across a whole computing network. Hence a 
complex, heterogeneous cluster can be considered within every partitioning. 

3.3 ParMETIS	
  and	
  exascale	
  
Regarding exascale aspects, ParMETIS’ data structures have advantageous 
properties. The information stored is minimal in the sense that it only includes 
information that is needed. Furthermore it can be computed simply from data each 
processor has to have anyway (or even is already present in the required form). It 
helps to keep memory requirements low thereby helping to address the predicted 
growing gap between higher computational power and weaker memory (i.e., 
comparatively lower speed and smaller size) per node in future exascale systems. 

In addition the small memory requirement of ParMETIS’ data structures enables a 
possible copy of the current partitioning. In the next cycle the simulation benefits from 
this copy as a new partition can be built upon the old one. This repartitioning saves not 
only computation time for the new partitioning;data redistribution costs in terms of inter-
process communication might be lowered, too. 

As for algorithms, ParMETIS provides some valuable features. Exascale simulations 
are evolving an increasing need for steering possibilities in some form. Real-time 
visualisation enables the user to spot regions of interest. An automated post-
processing technique like feature extraction can mark these regions as well. Here the 
simulation can react immediately and adaptively refine the underlying mesh. 
ParMETIS’ repartitioning functionalities then help to lower the redistribution costs and 
so increase overall performance. 

Exascale simulation codes will have cost-intensive cycles, within which care should be 
taken to avoid any bottlenecks. They will tend to include the whole computational chain 
from pre-processing, through calculation, to post-processing, in order to get a direct 
response. So at least post-processing has to be included in load-balancing besides 
core calculation itself. This is a major employment of multi-phase partitioning. 

As exascale systems become available the variety of codes will increase. Even now 
CRESTA co-design applications show different code structures with different 
calculations. So in addition to weighting core and post processing for an overall good 
load-balance, the main computation itself may unravel into various stages. Further 
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constraints may complicate the situation. The possibility for adapted multi-phase and 
multi-constraint partitioning will be of particular importance. 

At present, the specifics of the architecture of exascale computing resources is still 
unclear. Heterogeneous architectures could play a key role. ParMETIS is already able 
to accommodate for varying computing power at different domains, although capability 
to include costs for heterogeneous network communication is missing.  

3.4 Other	
  partitioning	
  tools	
  
So far we have focussed solely on the partitioning tool ParMETIS. Another widely-used 
tool is PTScotch [5]. Here we briefly describe main differences between those tools. 

PTScotch uses ParMETIS-compatible data structures. There are distributed arrays for 
local vertex and edge information and one array containing global vertex distribution 
information. They equal exactly the ones used in ParMETIS. Additionally, PTScotch 
maintains additional structures which can be constructed directly from the three main 
arrays mentioned above. A simple conversion is possible. In fact, PTScotch already 
provides compatibility routines to ParMETIS. 

Regarding algorithms, the setting changes a little bit. Some algorithms used in 
ParMETIS and PTScotch differ in their basic method. The kind of routine calling, 
however, the resulting output format and provided additional functionality (see section 
3.2.2) are again similar. In principal, this leads to similar behaviour in usage and 
implementation. 

Overall these partitioning tools operate very similarly. Data structures are compatible 
and convertible. Code integration is almost identical. This opens up a possibility to 
cover different partitioning tools in one piece of software. In turn, this interface to 
partitioners could be a consistent footing to implement other needed functionalities (see 
section 5). 

For dynamic applications, which require re-partitioning for load balancing, Sandia 
National Laboratories developed the Zoltan library [6]. Zoltan is a collection of data 
management services for unstructured, adaptive and dynamic applications such as 
adaptive finite-element methods, particle methods, and crash simulations. It includes a 
suite of parallel partitioning algorithms, data migration tools, parallel graph colouring 
tools, distributed data directories, unstructured communication services, and dynamic 
memory management tools. Zoltan's data-structure neutral design allows it to be used 
by a variety of applications without imposing restrictions on application data structures. 
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4 Case	
  study:	
  HemeLB	
  
4.1 Introduction	
  
HemeLB [4] has a complex task in loading the structure of the sparse domain in which 
the simulation will take place, distributing this information to each cooperating process, 
and deciding which processes will be responsible for which elements of the simulation 
domain. This pre-processing stage is discussed here, focusing on the data-structures 
and algorithms used.  

The input to this process is a HemeLB geometry file, describing the domain. The output 
is a memory structure on each process describing the simulation sites that each 
process is responsible for, and, on each process, the identity of the processes who 
manage neighbouring sites. 

The purpose of this section is not a detailed description which can be engineered 
against, but to specify the state of the art of HemeLB pre-processing, as a basis for 
analysis of potential improvements towards enabling HemeLB for the exascale. A sister 
document provides a similar overview of post-processing in HemeLB (see [1]). 

4.2 Geometries	
  
In this section, we introduce the semantic model used by HemeLB to describe the 
simulation domain, a geometry. Specific syntactic realisations as data files and memory 
structures are described in later sections. 

4.2.1 Site	
  
The basic unit of HemeLB geometry is the site, a location where Lattice-Boltzmann 
simulation will take place. The information for a site consists of its location in the 
domain (a coordinate triple) and an indication of whether it is a fluid site which should 
be simulated or a solid site outside the simulation domain.  

4.2.2 Link	
  
Each site also includes content regarding the nature of the link to each neighbouring 
site. Which sites are considered neighbours varies, and will be discussed below. Link 
information consists of whether the link crosses outside the simulation domain, how far 
along that link the solid/fluid boundary lies, and, if the link crosses outside the 
simulation via an open boundary (fluid inlet or outlet “iolet”), the identifier of the specific 
iolet. 

4.2.3 Blocks	
  
A block is an 8x8x8 cube of sites. 

4.3 File	
  model	
  
We now turn to an overview of the syntactic realisation of the geometry used to 
represent it as a file on disk. This is an XDR binary representation. Engineering details 
can be found in HemeLB developer documentation. 

4.3.1 Header	
  
The file begins with a header. This first provides filetype and version information, and 
then gives the size of the problem domain in blocks, and transformation information 
relating the block/site coordinate system to the spatial domain. 

4.3.2 Blocks	
  
There then follows a table of information describing each block, giving the number of 
fluid sites in the block, and the compressed and uncompressed sizes of the block data, 
which varies from block to block. Data for all blocks in the cuboid domain is given, 
blocks being striped with z changing most frequently, thus block coordinates can be 
deduced. These vary, as we will see. 
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If a block contains no fluid sites, no data is recorded for it, and this is reflected as a 
zero in the header table. Otherwise, for each site, solid or fluid, site data is given, 
compressed using zlib. 

4.3.3 Site	
  and	
  links	
  
An unsigned integer is recorded, indicating whether the site is solid (0) or fluid (1). If a 
site is solid, no further data is given. Otherwise, a representation of link data is given 
for each link to all neighbours, using a 26-member 3-D Moore Neighbourhood. 

4.4 Geometry	
  class	
  model	
  
HemeLB contains a set of classes used to represent the geometry information during 
parsing and analysis of the geometry file. These classes (GeometrySiteLink, 
GeometrySite, GeometryBlock, and Geometry) provide a simple de-serialised 
representation of the geometry file, each using STL vectors of the contained elements. 
(A geometry contains a vector of blocks, a block one of sites, and a site one of links.)  

In this representation, the model is only partially sparse: either a block contains an 
empty site vector, if it is empty of fluid sites, or it contains a site vector with a site object 
for all 83 sites. Similarly, a fluid site contains either 25 link objects, or none. Site and 
block coordinates can thus be inferred from their location in the vector. On all 
processes, the full set of block objects is instantiated, but a block will contain no sites 
on processes where it is not needed. 

In addition, the geometry site model also contains, for each site, the rank of the 
process to which that site is allocated by the domain decomposition. 

4.5 Lattice	
  data	
  class	
  model	
  
The Geometry class model, being a simple object representation of the geometry, is 
not appropriate to efficient computation. HemeLB therefore uses a second 
representation of the same geometry information for the Lattice-Boltzmann and 
visualisation components. This representation uses a flyweight pattern: a LatticeData 
object contains vectors, separately, of each piece of data that might be stored about a 
site. A Site object contains a single data field, an index into these arrays, and a series 
of access methods, providing an object-oriented reflection of this flat data. Only the 
links in the Boltzmann lattice subset of the Moore neighbourhood selected for this build 
at compile time are used.  

This representation is not used in the pre-processing stage – the LatticeData constructor 
takes a Geometry object as a parameter, and builds this representation. This 
representation will therefore be discussed further in the post-processing sister 
document. We will not discuss how the Geometry Class Model is transformed into the 
Lattice Data Class Model. 

4.6 Pre-­‐processing	
  algorithms	
  
4.6.1 Overview	
  
Having provided an overview of the data structures used in HemeLB we now turn to the 
algorithms used to build the Geometry Class Model from the File Model. The simplest 
parsing of the file format into the basic objects is straightforward, and we will not 
discuss it in detail. However, several more complex tasks must be addressed: we must 
efficiently load a large file, in parallel, into multiple processes (parallel I/O), we must 
determine which sites belong to which processes (domain decomposition), and we 
must ensure that the sites and block information is made available to those processes 
which need it (information distribution). 

The process is broken down as follows: we make an arbitrary initial decomposition of 
blocks to each of several processes. Then, we use a subset of processes to read the 
blocks, and distribute the data to the processes which need them. Next, we re-
decompose using the now loaded site information, and finally, we re-distribute the data 
according to the new decomposition. 
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4.6.2 Domain	
  decomposition	
  1:	
  initial	
  decomposition	
  
Domain decomposition suffers from a “bootstrap problem”: We cannot efficiently load 
and analyse the geometry without some distribution of the geometry across parallel 
processes, and we cannot determine an appropriate decomposition of the geometry 
without loading and analysing it. 

We therefore make an initial decomposition which does not require detailed information 
about the geometry, only an indication of size of the cuboid bounding box of blocks, 
and whether a given block is wholly solid. This information can be obtained using only 
the headers of the geometry file.  

This initial decomposition is carried out by the BasicDecomposition class, and uses 
a simple domain-growing algorithm. Improvements to this algorithm are unlikely to be 
of significant benefit, as it is only used to get some starting parallelism for block reading 
and is thrown away after being used as a seed for the geometry-aware second 
decomposition.  

This algorithm is carried out on all processes, with no parallelism: the same answer is 
obtained on all processes. For each process, we start a domain, and grow it by adding 
neighbouring blocks, using neighbours based on the Lattice-Boltzmann lattice subset of 
the Moore neighbourhood. Once the domain contains enough blocks to give that 
process a fair share, we start a domain for the next process. Blocks which contain no 
fluid sites are not assigned, but are treated as barriers to the growing domain. It may 
therefore be necessary to start more than one growth region to achieve the required 
number of blocks per process. 

4.6.3 Parallel	
  I/O:	
  reading	
  cores	
  
We assume that the geometry file resides on a parallel file system, with the file capable 
of being accessed in pieces by multiple processes. Rather than load from the file, the 
blocks and sites assigned to it by the domain decomposition, we choose to limit 
reading from files to a limited subset of cores, known as Reading Cores. Information 
from the file appropriate to each process is then passed to the relevant processes 
through appropriate messages. This approach has been seen to allow parallelism in 
the reading of large files, while at the same time avoiding slow-down due to excessive 
numbers of processes contesting for the file. The optimum proportion of total processes 
used to read the file depends on the file system being used and many other factors, 
can be set at compile time for HemeLB, and is an ideal target for autotuning, which we 
do not yet do. 

Since we use a subset of processes to read the file (see below) these processes must 
learn which blocks contain sites used on which processes, so that they can send this 
information to those processes after it has been read. The class Needs handles this 
through a series of MPI Gathers to each reading core, gathering first the number of 
blocks needed on each process, then the identities of those blocks. Then, as blocks 
are read on each reading core, the compressed data is sent from reading process to 
needing process. 

4.6.4 Domain	
  Decomposition	
  2:	
  Optimised	
  Decomposition	
  
Having loaded a full description of the geometry, we can now make a proper domain-
decomposition. We use the ParMETIS library to do this. The resulting decomposition is 
on the level of individual sites: sites from a single block could be allocated to multiple 
processes. The task of HemeLB here is to transform the Geometry Class Model of the 
geometry into a graph-based representation suitable for use by ParMETIS. The 
ParMETIS library used for the optimised domain decomposition requires its own 
representation of the geometry, using a different semantic model, representing the 
geometry as a set of nodes and arcs.   

In this data structure, not represented as classes but as a series of arrays created in 
order to call ParMETIS, LB sites become nodes, and the links become arcs. Only links 
in the Lattice-Boltzmann lattice subset are used. Each process is provided only part of 
the graph, based on the blocks assigned to it by the initial decomposition. ParMETIS 
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uses global site IDs to reconcile this data between processes. In preparing to call 
ParMETIS, therefore, we must traverse all sites and links in the blocks assigned to a 
given process, and, where a link joins two fluid sites, include it in the arrays used to call 
ParMETIS. 

ParMETIS returns its results in a partial form, returning to each process, the new 
processor rank for each of the sites provided to it on that process on input. Where this 
differs from the initial assignment, therefore, HemeLB must inform the new assignee of 
that new assignment. These changes of assignment between the initial and optimised 
decompositions are called Moves. Following the call to ParMETIS, therefore, a series 
of MPI calls (all to all and point to point) is used to share this information, and reassign 
the sites to appropriate places. 

Following this, it is then necessary to re-load the geometry information for sites and 
blocks following the new assignment. Potentially, this data could be transferred 
between blocks. Instead, for simplicity, the whole data-file is re-parsed using the same 
code as following the initial decomposition, repeating the Needs sharing process, the 
reading on the Reading Cores, and the transfer of compressed data from reading 
process to needing process. 

4.7 HemeLB	
  and	
  exascale	
  
Regarding exascale aspects initial decomposition done in HemeLB marks a good 
starting point. Not only one core is doing the whole work of  file reading for input data, 
but not every core has to access the file system either. So in total there is no I/O 
bottleneck and not too much fragmentation. This can be suitably adjusted to a variety 
of file system and communication network architectures on clusters. 

The specific type of initial distribution ensures a well-balanced memory load. No data is 
duplicated, so no memory is lost. Every processor gets its fair share, there is no 
overburdened one. 

The amount of gather and scatter calls to and from the reading cores is not avoidable 
but adjustable. According to the specific exascale system and its ratio between file 
system performance and network communication speed the number of reading cores 
can be configured to locate the optimum. 

This optimisation gain pays out twice. As soon as ParMETIS calculates the final 
partitioning HemeLB does the whole reading chain again, but now corresponding to the 
final partitioning. This procedure saves coding time and lines. Nevertheless it might be 
advantageous to include a proper redistribution of data rather than a new file read. The 
performance of the file system of the particular exascale hardware could be 
unfavourable compared to that of the communication network. In this case 
redistributing via gather and scatter results directly in shorter pre-processing time. 

Following initial decomposition ParMETIS is responsible for a proper partitioning. For a 
Lattice Boltzmann code computation time is equal on inner and boundary sites, 
respectively. Hence only neighbouring information is needed for partitioning, and so 
this already qualifies for a good load-balance for the core calculation. 

Another aspect, however, might have to be taken into account. So far uniform load-
balance is almost guaranteed for the computation. Possible computation time for 
visualisation may alter this situation. Depending on the method used in post-processing 
overall computation time can increase significantly on only a part of all cores. If for 
example a certain point and direction of view is selected some parts of the model may 
remain unseen. Inside these parts additional calculations are then not necessary. 
Cores assigned to these parts end up with a much lower work load. In total this could 
lead to even a very poor load-balance. This should be considered carefully. 

To sum up, pre-processing as described is done only once in HemeLB. From the 
Lattice Boltzmann solver point of view there is no need for repartitioning because load 
stays the same for every processor. Additionally solving dominates the computation 
time. Thus HemeLB offers sufficient parallelism for efficient execution on exascale 
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systems. However this only holds true for HemeLB as is. The situation changes if post-
processing comes into play. This can shift work load significantly as detailed above. 
Repartitioning will very likely be needed. 
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5 Interface	
  to	
  pre-­‐processing	
  
The HemeLB case study shows a clear need for an adaptive pre-processing. Methods 
used in post-processing can have a serious impact on load balance, yet core 
computation remains constant. It is likely, however, that this will not be true for other 
applications. These will have an intrinsic need for repeated repartitioning and 
redistribution. Likewise, post-processing will also impose further constraints. 

This results in a strong demand for an interface supplying the pre-processing phase 
with additional performance relevant information. It should take care of passing 
information on work and memory load of the simulation parts to the pre-processing 
stage. Load balance can then be adjusted appropriately. Important aspects of this 
interface are discussed below. 

5.1 Post-­‐processing	
  needs	
  
Volume rendering and streak lines are techniques which can be performed fully in-situ 
(see [1]). Communication between processors is not needed. Thus, only local 
computation time increases. Particle tracing, on the other hand, demands additional 
communication overhead. 

In the graph representation discussed in section 3 for the ParMETIS case study, 
computational costs for volume rendering and streak line techniques can obviously be 
considered by vertex weights while edge weights can describe communication costs 
used in particle tracing. The data structures from section 3 are well suitable to store 
these additional weights. Thus, once provided to pre-processing, the partitioning library 
of choice incorporates this information. A better load balance, also for post-processing, 
can be achieved. 

Measurement of these weights is straightforward and can be performed every cycle. 
Estimations for the very first cycle of a simulation can be obtained from former runs. 
Weights are then passed to the interface. This sounds simple; however, there is other 
post-processing information, e.g., a real-time change of view. How this complex 
information should be passed along is not that clear. Here more investigation is 
needed. 

5.2 Computation	
  needs	
  
Unlike HemeLB with its Lattice Boltzmann ansatz, other applications provide a variety 
of calculation methods. Multiple stages are possible, and communication may be 
needed in between. Other constraints also come into play. Therefore, computation and 
communication time change distinctly in the course of the simulation. Repeated 
repartitioning is required to obtain a good load balance at all times. 

Here, again, calculation time and communication costs can be mapped to vertex and 
edge weights, respectively. Both quantities have to be monitored and passed to the 
interface. For an exascale simulation, this will be quite challenging. Here, forwarding of 
the gathered information on weights is not the main problem. Data structures 
mentioned earlier are pretty capable of doing this. Measurement – or a good prediction 
- of both quantities may be problematic. It requires decent code adaptation, yet is 
necessary to achieve well-balanced load for the simulation. 

5.3 Additional	
  needs	
  
An open issue of the interface layout is its scope. The interface has to couple core 
computation and post-processing to pre-processing. This already covers almost the 
whole simulation. Here another particular aspect of exascale software comes to mind: 
Huge clusters will have to provide fault tolerance and a corresponding framework, 
toolbox or interface. Started before the simulation, it will do its work until the last line of 
code. Hence it will also cover the entire simulation run. A combination of both 
interfaces is imaginable as both of them exchange information among different parts of 
the simulation and different parts of the system. 
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A major benefit of linking fault tolerance and pre-processing interfaces surely is 
uniformity. One framework for both interfaces enables synergies which otherwise would 
not be there. Adaptive restarting with old data but recent partitioning information due to 
hardware failure is one example. Instant repartitioning and redistributing after a loss of 
a specific core or network connection would be possible.  

This would not come easily; the main drawback in this technique concerns the amount 
of code change needed. Fault tolerance and steered pre-processing will have their 
individual impact in coding which cannot be bypassed. In order to really make use of 
synergies in a combined framework more effort will have to be put into the code. 

 



 

© CRESTA Consortium Partners 2011  Page 19 of 19 

 

6 References	
  
[1] CRESTA Deliverable 5.2.2, post-processing: data format (hierarchical, multi-

resolution) and algorithms definition 

[2] ParMETIS, Parallel graph partitioning and fill-reducing matrix ordering, 
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview 

[3] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing 
adaptive scientific simulations. In Proc. Supercomputing 2000, 2000. 

[4] Mazzeo, MD and Coveney, PV (2008) HemeLB: A high performance parallel 
lattice-Boltzmann code for large scale fluid flow in complex geometries. 
COMPUT PHYS COMMUN , 178 (12) 894 - 914. 10.1016/j.cpc.2008.02.013. 

[5] Scotch, Software package and libraries for sequential and parallel graph 
partitioning, static mapping, and sparse matrix block ordering, and sequential 
mesh and hypergraph partitioning, http://www.labri.fr/perso/pelegrin/scotch/ 

[6] Zoltan, Data-Management Services for Parallel Applications, 
http://www.cs.sandia.gov/Zoltan/Zoltan_phil.html  


