

© CRESTA Consortium Partners 2011 Page 1 of 11

D5.1.3	
 –	
 Pre-­‐processing:	
 first	

prototype	
 tools	
 for	
 exascale	
 mesh	

partitioning	
 and	
 mesh	
 analysis	

WP5:	
 User	
 tools	

Due date: M18

Submission date: 31/03/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization DLR

Version: 1.0

Status Final

Author(s): Gregor Matura (DLR)

Reviewer(s) George Mozdzynski (ECMWF), David Henty (UEDIN)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

© CRESTA Consortium Partners 2011 Page 2 of 11

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 20/09/2012 First notes. Gregor Matura (DLR)

0.2 26/02/2013 First version of the deliverable Gregor Matura (DLR)

0.3 28/02/2013 First revision Gregor Matura (DLR)

0.4 15/03/2013 Merging first internal revisions Gregor Matura (DLR)

1.0 20/03/2013 Final version of the deliverable for
submission

Gregor Matura (DLR)

© CRESTA Consortium Partners 2011 Page 3 of 11

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 4	

2	
 INTRODUCTION	
 TO	
 PPSTEE	
 –	
 A	
 PRE-­‐PROCESSING	
 INTERFACE	
 ...	
 5	

2.1	
 PROPERTIES	
 ..	
 5	

2.2	
 INTEGRATION	
 INTO	
 SIMULATION	
 WORK	
 FLOW	
 ..	
 5	

2.3	
 ADVANTAGES	
 ..	
 7	

2.4	
 DISADVANTAGES	
 ..	
 7	

3	
 IMPLEMENTATION	
 DETAILS	
 ...	
 8	

3.1	
 BASIC	
 USAGE	
 ...	
 8	

3.2	
 SOFTWARE	
 STATUS	
 ...	
 9	

3.3	
 FUTURE	
 WORK	
 ..	
 9	

4	
 REFERENCES	
 ..	
 10	

ANNEX	
 A.	
 ...	
 11	

Index	
 of	
 Figures	

Figure 1: PPStee flow chart .. 6	

	

© CRESTA Consortium Partners 2011 Page 4 of 11

1 Executive	
 Summary	

This deliverable is a software deliverable, providing a first prototype interface for pre-
processing steering named PPStee. In this document we provide a brief overview of
the software.

The analysis (and system definition) of pre-processing ([1]) illustrated the main target of
pre-processing: an overall simulation load-balance. All simulation costs, for example
work load and communication time, must be included in the calculation of load-balance
to guarantee the best-possible system performance. Work load and communication
costs do not only arise in the simulation core, i.e. the solver and its associated tasks,
but also in the other parts surrounding a simulation. Input data preparation, post-
processing and (remote) rendering move closer to the simulation core and likewise the
system, especially in the exascale regime.

This has to be addressed properly by a tighter coupling of pre-processing within the
simulation cycle. Pre-processing cannot be seen as an external pre-simulation
component any more. Simulation-intermediate interaction is necessary.

To facilitate this new role of pre-processing, an exchange of information with the
simulation core, post-processing and other simulation parts is needed. These
interfaces must be designed and installed. They pass useful data between these
components and introduce the option of steering. This enables direct performance
gains for each part because of better adaption to the input data. Furthermore the
simulation becomes a lot more interactive and thus user friendly.

As the simulation parts merge, new capabilities emerge. For example, the transition
from a run-and-stop fashion to a repeating simulation loop allows for the possibility of
an optimised repartitioning. Timing measurements of the old cycle can be used directly
to improve the partition quality of the following cycle and additionally determine whether
it is reasonable to redistribute the data in this cycle in the first place. In contrast to a
non-interactive simulation, calculation costs may vary in between cycles and so has the
partitioning.

With a pre-processing interface in mind, a suitable data format has to be specified
(described in D5.1.2, pre-processing: data format and algorithms, [2]). The main
constraint is the desire for a minimal amount of data, but that is sufficiently large to
retain all the details of the input data. This ensures both low communication times
during data transfer and a minimal memory footprint.

Based on this simulation input data and its layout, pre-processing should provide an
algorithm properly adjustable to the unique simulation data structure and its needs. It
may be necessary to compare different load-balancing methods in terms of scalability
and performance of the resulting partitioning.

This deliverable is a software deliverable, providing a first prototype interface for pre-
processing steering named PPStee. This software feeds into the simulation cycle a
graph or mesh data and various communication costs and work load from all simulation
loop components. It uses state-of-the-art partitioning libraries to provide an overall
simulation load-balance and can be extended with further functionality such as mesh
manipulation methods or connection to a fault tolerance framework.

In this document we sketch features and properties of PPStee and show advantages
and disadvantages of its architecture. We illustrate the integration into a simulation
work flow in terms of both data flow in combination with PPStee and actual
implementation using a basic usage example. We point out the current software status
and future work.

The PPStee source code and its documentation can be found in the CRESTA SVN
(/wp5/preprocessing/).

© CRESTA Consortium Partners 2011 Page 5 of 11

2 Introduction	
 to	
 PPStee	
 –	
 a	
 pre-­‐processing	
 interface	

PPStee is an interface for pre-processing steering. It ships as a library and is
implemented in the pre-processing phase of a simulation. Supplied with information on
simulation data, its main purpose is to optimise the overall simulation load-balance
starting with initial data distribution and not necessarily ending after visualisation of the
simulation results.

2.1 Properties	

PPStee is built around various partitioning tools, namely ParMETIS[3], PTScotch[4]
and Zoltan[5]. These are established and widely used libraries. They provide
partitioning capabilities which are mostly congruent among each other. Each of them
can be used to retrieve a decent load-balance for a simulation. Yet they have been
developed independently and use different approaches to compute the partitioning.
This leads to a partitioning of different quality depending on the input data and
therefore on the simulation. PPStee offers an easy-to-implement mechanism to swap
the choice of partitioning tool with only slight changes to the code. By doing so, the
obtained timings can lead to a better choice of partitioner for the simulation and
therefore directly improve load-balance.

The data format of PPStee orientates towards compatibility and a minimal footprint.
The possibility of direct data access without additional copy operations and a minor
overhead for internally used data improves memory consumption. The overhead is not
entirely needed but can save on cost-intensive collective communications. These can
occur if a conversion of the native partitioner data format is calculated. Nevertheless,
the PPStee data format is designed to be capable of this conversion and to do it quickly
and cheaply.

PPStee's main task is to balance the simulation load. This is not a new approach; all
the mentioned partitioners do so. Yet, PPStee provides a disruptive feature: it
incorporates different simulation stages by default. Hence not only the computation of
the simulation core is balanced. Other parts, such as visualisation, can provide their
calculation and communication load on the data too. These parts are naturally present
in exascale simulations due to the unfeasibility of off-situ processing of the huge data
amounts. A true simulation-covering load-balance is gained.

The modular architecture and the flexible data format make PPStee easily adjustable.
New partitioning tools, whether they are developed directly in PPStee or stand-alone,
can be integrated with minor effort. Further stages can be added if the need arises.
PPStee offers several places to introduce fault tolerance techniques. For example, an
extension to PPStee could take care of a redundant backup of the graph data which in
turn is used to recover lost data if one processor dies. In addition, PPStee could
prevent the usage of this processor and the simulation can continue with minimal
delay. Furthermore, mesh refinement routines are conceivable which can alter the
submitted graph data automatically or adjusting it to the system’s structure.

2.2 Integration	
 into	
 the	
 simulation	
 work	
 flow	

In general, PPStee does not allocate any memory (with the exception of a tiny amount
of private data) and is not responsible for any data movement1. The simulation keeps
track of the graph or mesh data and the accessibility of this data throughout the
simulation lifetime. This way the integration of PPStee into an existing code is kept
simple and the least disruptive for the simulation’s data flow. The responsibility for the
data belongs completely to the simulation.

1 Obviously, more advanced features such as mesh manipulation techniques break this
general rule.

© CRESTA Consortium Partners 2011 Page 6 of 11

The work and data flow is illustrated in Figure 1: PPStee flow chart. The simulation
core reads the initial data, usually some kind of geometry, from the file system and
submits this data in the form of a graph to PPStee. Additionally, it provides the work
load and communication costs that it will use as (graph) weights, where work load
matches weights for the vertices and communication is mapped onto the edges. These
weights can be estimates based on former simulation runs or precise prediction based
on a proper investigation of the code. Also, a posteriori measurement should be used
to improve the reliability of these figures.

Furthermore, all other simulation components should submit their weights too,
whenever possible. For example, this includes the work load of any result data analysis
carried out in the post-processing phase. This is especially interesting for cost-intensive
calculation and communication in in-situ visualisation, as these presumably are of the
same order of magnitude as the solver costs. Basically, every task done within the
simulation code and executed on the cluster should provide its cost to guarantee a
gapless load-balance throughout the full simulation loop.

Finally, the simulation core retrieves a partitioning either directly after the initial
submission of the graph and all corresponding weight estimates or, in subsequent
cycles, triggers a calculation of an updated partitioning. This repartitioning should be
based on timing and costs measurements of previous cycles and thus is better
balanced than the initial partitioning. Due to the data responsibility, the simulation core
compares the re-partition to the current partition and decides whether it is worth the
effort to move the corresponding data.

Figure 1: PPStee flow chart Figure 1: PPStee flow chart

© CRESTA Consortium Partners 2011 Page 7 of 11

In summary, the result is a load-balance covering the complete simulation loop. For a
single-loop simulation this result requires estimates from former runs, for a simulation
traversing multiple cycles the result becomes even better using adaption and
repartitioning.

Apart from this main data flow, some insertions will be possible in the future. Mesh
manipulation techniques could be applied after initial graph submission or between
cycles. After initial graph submission, the mesh could be smoothed or used to generate
a finer mesh. Between the cycles, the result of a previous data analysis in the post-
processing component could trigger a refinement of spots in the mesh where this
modification leads to a more accurate or faster solution.

Additionally, a fault tolerance framework could interact with PPStee and steer the
distribution of data. If, for example, some nodes drop out graph and load data could be
adjusted to the new cluster status. Obviously, a decent data backup and recovery
mechanism would be required.

2.3 Advantages	

PPStee’s main advantage is the standardised partitioner access. Once PPStee’s data
structures are created and filled with the according graph data the partitioner is chosen
arbitrarily. This introduces the option to independently change the partitioner used.
Then, timing measurements and other tests can be used to reveal the best-suited
partitioner for the simulation.

PPStee relies mainly on established external partitioning tools. Their mature and
methodologically sound algorithms are used and provide partitioning at a state-of-the-
art level. Additionally, PPStee’s basic data containers can be used to manufacture a
partitioning routine particularly tailored for the user’s needs. Later, a direct integration in
PPStee is possible.

PPStee comes with little programming overhead. If a partitioner is already implemented
in a simulation the changes required to make use of PPStee is minimal. PPStee
provides function signatures very similar to those native to the partitioners. All data
structures can be kept and used, making data handover and reception of the resulting
partition relatively easy.

PPStee requires only a small amount of additional memory. PPStee uses only a little
auxiliary data for internal book keeping. The full graph data can be passed by reference
thus keeping memory obligations at the simulation side. Data access is read-only;
whether it can be freed afterwards depends on its usage: for example stage weights
should be kept alive if the simulation will do more than one cycle and thus needs a later
repartitioning.

2.4 Disadvantages	

PPStee accesses only basic routines of the partitioning libraries although most of them
provide extended features which may improve the partitioning quality. This certainly is
a side effect of the standardised access. On the other hand, this very access helps to
indicate whether a further investigation of these extended features is reasonable. Also,
if a specific extended routine becomes crucial in the future it can be integrated into
PPStee.

Another point to mention is the insertion of another software layer by PPStee. Although
this should not negatively affect the simulation, it does increase the complexity and
may lead to undesired or faulty behaviour which may become harder to track.

© CRESTA Consortium Partners 2011 Page 8 of 11

3 Implementation	
 details	

3.1 Basic	
 usage	

In this section we describe how to use PPStee based on an example implementation.
We assume an existing code that initialises its data and then does a standard
ParMETIS call:

 ParMETIS_V3_PartKway(

vtxdist, xadj, adjncy,

vwgt, adjwgt,

wgtflag, numflag, ncon, nparts,

tpwgts, ubvec, options, edgecut,

part,

comm);

to retrieve a partitioning named part. Other partitioners can be used analogously.

We start by initialising a PPSteeGraph object with the graph data we have, i.e.
vtxdist for the global vertex distribution and xadj and adjncy for the thread-local
adjacency structure:

 // get graph (as ParMETIS type)

 PPSteeGraph graph =

PPSteeGraphParmetis(MPI_COMM_WORLD, vtxdist, xadj, adjncy);

Next, we construct weights objects derived from the graph as these have to be
compatible. We fill in weights for the computation and visualisation part. These weights
denote the work load (vertex weights, xadj) and communication time (edge weights,
adjncy) each simulation part needs.

 // construct and set weights for computation

 PPSteeWeights wgtCmp(&graph);

 wgtCmp.setWeightsData(vwgt_c, adjwgt_c);

 // construct and set weights for visualisation

 PPSteeWeights wgtVis(&graph);

 wgtVis.setWeightsData(vwgt_v, adjwgt_v);

Now, we establish an instance of the interface’s main object and submit our graph and
weights data.

 // get interface

 PPStee ppstee;

 // submit graph

 ppstee.submitGraph(graph);

 // submit weights

© CRESTA Consortium Partners 2011 Page 9 of 11

 ppstee.submitNewStage(wgtCmp, PPSTEE_STAGE_COMPUTATION);

 ppstee.submitNewStage(wgtVis, PPSTEE_STAGE_VISUALISATION);

Finally, we trigger the calculation of the partitioning and get the desired partitioning.

 // calculate partitioning

 PPSteePart* part;

 ppstee.getPartitioning(&part);

3.2 Software	
 status	

PPStee is shipped as source code with a CMake build system configuration for cross-
platform support. The source code contains Doxygen mark-ups for automated
generation of the documentation and example files to demonstrate usage. The current
version 0.1.0 supports ParMETIS and PTScotch; Zoltan support will be available soon.
Basic functionality is proven in a standalone system test. Mesh manipulation methods
and fault tolerance techniques are not implemented.

The first CRESTA co-design application that will use PPStee is HemeLB with
integration of PPStee still on-going. Currently we are testing the interaction of HemeLB
and PPStee to guarantee an eventual operational availability. A switch of the partitioner
will be tested; load-balance and performance measurements are planned to compare
the quality of partitioning results. In conclusion, we obtain the partitioner that suits
HemeLB data the best.

3.3 Future	
 work	

Future work focuses on further tests and a revision of PPStee. We will test PPStee
components and functions in detail, both separately and in combination with the
CRESTA co-design applications. HemeLB will be of prime interest; later, the integration
of a more evolved version of PPStee will be tested with other applications such as
OpenFOAM or Elmfire.

We wish to analyse PPStee by comparing the stated aims versus achieved goals.
Does PPStee really provide a better overall simulation performance, especially
regarding load-balance? Is the integration of PPStee into an existing project simple
enough? Is it too simple because it misses relevant advanced features of the
partitioners? We will also compare PPStee with other frameworks for pre-processing
that cover similar features to PPStee. For example, Interoperable Technologies for
Advanced Petascale Simulations (ITAPS, [6]) focuses on various mesh manipulation
techniques and load-balance but the provided visualisation support is not included in
the load-balance calculation.

This revision process of PPStee and its functionality will be examined in-depth in
CRESTA Deliverable 5.1.4 “pre-processing: revision of system, data format and
algorithms definition for exascale systems” [7].

© CRESTA Consortium Partners 2011 Page 10 of 11

4 References	

[1] CRESTA Deliverable 5.1.1, pre-processing: analysis and system definition

[2] CRESTA Deliverable 5.1.2, pre-processing: data format and algorithms

[3] ParMETIS, Parallel graph partitioning and fill-reducing matrix ordering,
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[4] PTScotch, Software package and libraries for sequential and parallel graph
partitioning, static mapping, and sparse matrix block ordering, and sequential
mesh and hypergraph partitioning, http://www.labri.fr/perso/pelegrin/scotch/

[5] Zoltan, Data-Management Services for Parallel Applications,
http://www.cs.sandia.gov/Zoltan/Zoltan_phil.html

[6] ITAPS, Interoperable Technologies for Advanced Petascale Simulations,
http://www.itaps.org

[7] CRESTA Deliverable 5.1.4, pre-processing: revision of system, data format and
algorithms definition for exascale systems

© CRESTA Consortium Partners 2011 Page 11 of 11

Annex	
 A. 	

A.1 Documentation	

PPStee documentation is provided in a separate PDF file or can be downloaded in the
CRESTA SVN (/wp5/preprocessing/).

	

