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1 Executive	  Summary	  
In CRESTA Deliverable 5.1.1, [1], we analysed the current situation of simulations 
regarding pre-processing and gave a system definition: main aim is a closer simulation 
cycle including all simulation parts and an improved overall simulation load balance. 
CRESTA Deliverable 5.1.2, [2] studied algorithms of partitioning libraries used for pre-
processing so far and pointed at basic properties required for the graph data format. 
These requirements culminated in the development of the prototype pre-processing 
steering interface PPStee introduced in CRESTA Deliverable 5.1.3, [3]. 

Here we review the design of PPStee and collect performance data to evaluate this 
prototype tool. The integration of PPStee into HemeLB was relatively simple, as 
intended, and allows for performance tests of HemeLB with various geometries and all 
three by PPStee supported partitioners, ParMETIS [4], PTScotch [5]and Zoltan [6]. 
Runtime measurements with up to 2048 cores on HECToR are presented as first 
results. PPStee’s runtime overhead vanishes and ensures usage of PPStee without a 
priori drawbacks. The configuration using PTScotch performs, in general, slightly worse 
but reveals scalability issues starting at 512 cores. HemeLB with PPStee using Zoltan 
suffers from a constant loss in runtime, the reason is yet unknown. Further 
investigations will, in particular, focus on graph data conversion, scalability and usage 
of partitioner-characteristic routines and parameters to enable a better match to 
specific simulation data. 

Lastly, we address CRESTA’s co-design vehicle OpenFOAM. Simulations using 
OpenFOAM are not a priori suited for application of PPStee due to the nature of 
OpenFOAM being a box of separated tools of solvers and utilities. However, PPStee 
may be applicable if each phase of a simulation using the OpenFOAM framework is 
aggregated into one monolithic program. The OpenFOAM co-design team is currently 
investigating the feasibility of this monolithic program.. 
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2 Introduction	  
A simulation can be logically divided into several parts, pre-processing, simulation core, 
and post-processing are examples. So far, i.e. up to the petascale regime, these parts 
are often separated strongly, e.g., by large IO operations or even by separation into 
different programs. Such cuts in the simulation work and data flow are not alone very 
expensive but become unbearable when core counts rise above hundreds of 
thousands; they have to be overcome if a simulation wants to perform in an exascale 
environment. 

We identify a delicate point: All simulation parts cannot stay apart and have to grow 
together or an exascale system will not be exploitable to its full performance. This is the 
task of CRESTA’s work package 5 and its subtasks pre-processing, post-processing 
and remote rendering. Here, pre-processing focuses on balancing the load of the 
simulation including all parts and not the simulation core alone. 

In previous deliverables (see [1] and [2]) we analysed the current situation. 
Communication and calculation costs of all simulation parts must be included in the 
calculation of the overall simulation load balance. Since pre-processing usually is 
invoked only once and only at the beginning it cannot interact with simulation or post-
processing results. Thus the desired inclusion of the costs requires a tighter integration 
of pre-processing into the simulation cycle. Convenient interfaces for information flow 
between the simulation parts, pre-processing, simulation core and post-processing, are 
needed. Steering methods can be integrated there as well to allow for an active 
influence of one simulation part to the other. A repeatedly passed simulation cycle 
facilitates additional chances for performance and convenience gains, for example, 
repartitioning capabilities, automated mesh refinement techniques and other. 

The amount of data used must be kept minimal: exascale systems will presumably 
suffer from a further decrease in the ratio of memory size to computation power per 
node. Hence a small memory footprint is vital and additionally lowers communication 
time when data are exchanged between the nodes. Algorithms for partitioning must 
stay universally applicable and simply comparable as their performance and scalability 
may depend critically on the specific simulation data structure. 

To address these requirements, we introduced the pre-processing steering interface 
PPStee (see [3]). Its main purpose is the achievement of an optimised overall 
simulation load balance and its main feature is the exchange of the partitioning library 
used regardless of the input data (ParMETIS [4], PTScotch [5] and Zoltan [6] are 
supported). PPStee provides a flexible data format that is both, minimal and compatible 
to all three partitioners. It comprises different simulation stages and their 
communication and calculation costs, like computation (equals simulation core or 
solver) and visualisation. However, PPStee stays easily adjustable to new partitioning 
tools, different kinds of stages, even fault tolerance or an automated mesh refinement 
can be integrated as well. 

Now, we want to evaluate this prototype tool and, here for, use CRESTA’s co-design 
application HemeLB as a test bed. We describe and carry out the integration of PPStee 
into HemeLB and start an analysis of PPStee’s functionality and performance. 
Following some small tests, we do runtime measurements on HECToR with up to 2048 
cores. These will shows us if PPStee works as intended and provide first information 
on usability and performance of PPStee for a real-life example. 

With these first lessons learned, we try to expand our set of test cases to another 
CRESTA co-design application, OpenFOAM. In contrast to the self-contained Lattice-
Boltzmann code HemeLB, OpenFOAM is only a toolbox for the development of 
customised numerical solvers and utilities for the solution of continuum mechanics 
problems. Thus, our primary task concerning OpenFOAM is an examination of how 
OpenFOAM can benefit from PPStee and how and where PPStee can be integrated 
into a simulation using OpenFOAM. 



 

© CRESTA Consortium Partners 2011  Page 3 of 16 

  

We begin this deliverable with short summaries on previous work in section 3. An 
outline of analysis and system definition and data format and algorithms is given 
followed by a description of the pre-processing steering interface PPStee. Section 4 
describes the integration of PPStee into the lattice-Boltzmann code HemeLB and 
shows a first proof of concept integration for small core counts. Measurements for large 
core counts on HECToR are depicted and analysed. Our work with OpenFOAM 
regarding usage of PPStee is explained in section 5. The last section summarises 
PPStee properties we were able to confirm and points to issues that need further 
investigation. 

2.1 Purpose	  
The purpose of this deliverable is a revision of the submitted prototype pre-processing 
tool PPStee (cf. D5.1.3, [3]) considering the definition and analysis of system, data 
format and algorithms done earlier (cf. deliverables D5.1.1 and D5.1.2, [1] and [2], 
respectively). 

2.2 Acknowledgement	  
This work made use of the facilities of HECToR, the UK's national high-performance 
computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, 
Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through 
EPSRC's High End Computing Programme. 
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3 Previous	  work	  
3.1 Analysis	  and	  system	  definition	  
CRESTA Deliverable 5.1.1, Pre-processing: analysis and system definition for exascale 
systems [1] demands the following property that is crucial for an exascale-ready 
simulation: main target of pre-processing is to guarantee a good overall simulation load 
balance. In particular, this claim implies that the term load balance is not only applied to 
the solver. Load balance has to treat all parts of a simulation and therefore includes all 
simulation costs of pre-processing, solution calculation and post-processing. 

All simulation parts must be brought closer together. Separate tools for pre-processing 
of simulation data or solver data, for post-processing of the results and for visualisation 
will corrupt the overall simulation performance. An awareness of a complete simulation 
cycle rather than just a solver must evolve. 

A tighter integration of pre-processing and post-processing becomes vital in the 
exascale regime. This can be achieved by extension of information flow between the 
specific simulation parts. Interfaces among pre-processing and simulation core, 
simulation core and subsequent result analysis and to visualisation routines can 
provide needed information. Additionally, the interfaces can implement methods for 
steering that enforce specific behaviour. 

A closely linked simulation cycle performs better in general and offers additional 
chances of performance improvement, both, automated or user-steered. Result 
analysis as part of the post-processing can, for example, automatically initiate a 
repartitioning of the mesh following a specific event or time step thereby optimising the 
load balance mid-simulation. Using remote-rendering techniques, it is possible to 
inspect the simulation and intermediate results and thus adjust solver parameters, 
mesh properties or result analysis properties.  

3.2 Data	  format	  and	  algorithms	  
CRESTA Deliverable 5.1.2, Pre-processing: data format and algorithms [2] analyses 
pre-processing tools and, in particular, partitioning libraries and data formats and 
algorithms the partitioners use. The primary recommendation focuses on the specific 
layout of data. A minimal set of graph data helps to keep down the memory footprint of 
huge geometries or other input data; this becomes more important for exascale 
simulations where the ratio of memory to computational power is predicted to decrease 
further. Moreover, it lowers necessary intercommunication of threads that will also 
suffer from computational power leaving communication network speed behind. 
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Figure 1: Multilevel k-way graph partitioning; [4] 

Another crucial fact concerns algorithms used. Partitioners implement different 
strategies in their algorithm to solve the NP-complete problem of distributing input data 
to all threads (Figure 1 shows an example of one of those algorithm strategies, the 
multilevel K-way partitioning approach of ParMETIS; for details see [2]). A particular 
partitioner and its method may suit a specific simulation on a specific system quite well. 
However, simulations designed today must be adaptable to system and system 
architectures that are not yet built. Thus a chance to compare and fit algorithms to the 
simulation and its input on a given system in terms of scalability and performance must 
be preserved. 

3.3 PPStee	  
PPStee is an interface for pre-processing steering (a detailed description can be found 
in CRESTA Deliverable 5.1.3, Pre-processing: first prototype tools for exascale mesh 
partitioning and mesh analysis, [3]). Its main purpose is to optimise the overall 
simulation load balance and can be extended by further steering capabilities covering 
other important exascale-relevant duties like automated mesh manipulation or fault 
tolerance. Figure 2 shows a chart for information flow for a simulation using PPStee. 
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Figure 2: PPStee flow chart; [3] 

PPStee offers a standardised access to three different partitioning tools, i.e. ParMETIS, 
PTScotch and Zoltan. Exchange of the partitioner used is designed to be as easy as 
possible to facilitate convenient access to all partitioners. Data format is kept simple 
and compatible among all partitioners, yet it is (almost) minimal satisfying 
recommendations listed in [2]. 

Different simulation phases, called stages, are supported. Computation, visualisation 
and other simulation parts can submit their communication and computation costs 
separately. This way PPStee is able to ensure a load balance for the entire simulation 
cycle. 

Additionally, PPStee remains adjustable to future requirements. New partitioning tools 
can be integrated easily; stages and stage setup can be altered to match simulation 
needs. Mesh refinement techniques, user-driven or automated, can be built into the 
pre-processing step. An interface to a fault tolerance framework providing system 
health and status data could steer partitioning of simulation data in future. 
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4 PPStee	  and	  HemeLB	  
4.1 Integration	  
The specific integration of the pre-processing steering interface PPStee into a mature 
code such as HemeLB is straight forward (cf. [3], section 2.2). The integration is 
divided into two steps, bare code changes and some additional changes in the build 
system. In the first step, PPStee substitutes the partitioner call. HemeLB already uses 
the library ParMETIS to evenly distribute computational domains among all processes. 
Thus, we have all mesh data set up correctly and we save the trouble to assemble the 
arrays needed. We simply replace the ParMETIS call as shown in [3], section 3.1 and 
make sure to include PPStee's header file instead of ParMETIS' header. 

Additionally, we adjust HemeLB's build system according to the needs of PPStee. 
Since ParMETIS is already included, we add PPStee and all other partitioners we want 
to use to the dependencies of the build target HemeLB. For an update of include and 
library directory settings, the very entries for ParMETIS are well-used as guides. Put 
altogether, the code changes are small and it is easy to find the right places, in spite of 
the size of a project like HemeLB. 

4.2 Proof	  of	  concept	  
For a proof of concept, we have integrated and built HemeLB with PPStee and two 
partitioners, ParMETIS and PTScotch. Our first test system is a small one and provides 
an Intel Xeon E5520 with 8 real and 16 virtual cores. We used five different process 
counts between 4 and 16 and the minimal time of three runs for each data set. Figure 
3, Figure 4 and Figure 5 depict the runtime results of the three different HemeLB data 
sets R15-L45, R15-450 and R30-L900, respectively. 

 
Figure 3: HemeLB runtimes for data set R15-L45 with plain HemeLB, HemeLB with PPStee using 
ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon E5520 
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Figure 4: HemeLB runtimes for data set R15-L450 with plain HemeLB, HemeLB with PPStee using 
ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon E5520 

 
Figure 5: HemeLB runtimes for data set R30-L900 with plain HemeLB, HemeLB with PPStee using 
ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon E5520 
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Concluding for low process counts, we see no penalty in runtime when using PPStee. 
On the one hand, this proves that PPStee does not introduce any significant overhead 
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improvement in runtime when using another partitioner or other data sets, in particular 
in case of large data sets and high process counts. 

4.3 Measurements	  
The following measurement data were collected on HECToR. In its current stage 
(Phase 3), HECToR is a CRAY XE6 system and contained in 30 cabinets and 
comprise of a total of 704 compute blades. Each blade contains four compute nodes 
giving a total of 2816 compute nodes, each with two 16-core AMD Opteron 2.3GHz 
Interlagos processors. Each 16-core processor shares 16 GB of memory. 

HemeLB was modified as described in section 4.1 to incorporate PPStee in three 
different versions. Each version uses the initial HemeLB mesh data setup in ParMETIS’ 
data layout and passes these data to one of the three partitioners ParMETIS, PTScotch 
and Zoltan. We used a plain, i.e. unmodified, HemeLB version as a reference and 
always used fully populated nodes adding up to the specified thread count. 

The data sets “data_01M” and “data_02M” are cylindrical test geometries with about 1 
million and 2 million lattice sites, respectively. They run for three cycles and 1000 steps 
per cycle. The third data set is a bifurcation geometry with approximately 650 thousand 
lattice sites and runs for 1000 time steps. 

Figure 6, Figure 7 and Figure 8Error! Reference source not found. depict runtime 
values in seconds on 32 up to 2048 (512 for bifurcation) cores for all four configurations 
and data sets “data_01M”, “data_02M” and bifurcation, respectively. 

 
Figure 6: HemeLB runtimes for data set data_01M with plain HemeLB and HemeLB with PPStee 
using ParMETIS PTScotch and Zoltan on HECToR 
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Figure 7: HemeLB runtimes for data set data_02M with plain HemeLB and HemeLB with PPStee 
using ParMETIS PTScotch and Zoltan on HECToR 

 
Figure 8: HemeLB runtimes for bifurcation (50um) data set with plain HemeLB and HemeLB with 
PPStee using ParMETIS PTScotch and Zoltan on HECToR 
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simulation. Thus PPStee is safely applicable in the matter of runtime even if later 
change of the partitioner used does not prove to be beneficial for the simulation at 
hand. 

PPStee with PTScotch is level-pegging with both ParMETIS versions for both 
cylindrical geometries and loses ground for the bifurcation dataset. The reason for this 
behaviour is unclear but could be related to the reduced regularity of the bifurcation 
geometry as compared to the cylindrical ones. 

On the other hand, HemeLB with PPStee using PTScotch shows scaling problems: 
starting at 256 cores, runtime begins to increase slightly for the bifurcation dataset and 
more drastically in case of the cylindrical geometries. For the bifurcation dataset, this 
effect diminishes the aforementioned general deficiency of this geometry, yet it is 
impossible to predict which of both will dominate for larger core numbers. This scaling 
behaviour could also be caused by regularity issues of the underlying geometries. 

The Zoltan configuration draws attention by constant gap in runtime compared to both 
ParMETIS versions. The shapes of the curves for the Zoltan versions match the 
corresponding ParMETIS curves quite well and thus indicate a correct, i.e. equivalent, 
scaling for both partitioners. Therefore, the reason for the gap, in particular, because it 
is constant over core counts, could be ascribed to the data layout issues: HemeLB 
passes its mesh data in ParMETIS’ data format and a conversion is needed to pass 
these data on to Zoltan. 

In total, we experienced an easy integration of PPStee into HemeLB. It is comfortable 
to switch the partitioner used and consequently easy to obtain partitioning results with 
other partitioners beside the one that was used originally. We see no drawbacks in 
runtime for the initially used partitioner ParMETIS and got the chance to compare it to 
PTScotch and Zoltan. For core numbers up to at least 512, the results encourage the 
use ParMETIS within HemeLB. 
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5 PPStee	  and	  OpenFOAM	  
5.1 OpenFOAM	  characteristics	  
An analysis of simulations with OpenFOAM (compare [7], CRESTA Deliverable 6.1.1, 
Roadmap to exascale) exhibits crucial points regarding any modifications to the 
OpenFOAM simulation chain. A simulation based on OpenFOAM is not to be seen as a 
monolithic simulation, i.e. each part of the simulation process that leads to the end 
result is a distinct phase in the simulation (Figure 9 depicts a possible sequence of 
simulation phases) and moreover a distinct executable program. Additionally, each of 
these simulation part programs is not necessarily parallel. 

 
Figure 9: Schematic view of the overall work process of OpenFOAM 

These phases are separated by design but, of course, have to exchange their input 
and output data respectively. This data transfer between two phases is done via hard 
disk and there is currently no way to bypass this behaviour. It’s hardly surprising that 
this exposes a really bad scalability as seen for the simulation in its entirety. 

5.2 Applicability	  of	  PPStee	  
The specific design of a simulation using OpenFOAM (cf. section 5.1) reveals that 
computational load balance of, for example, the solver is not the primary problem when 
trying to improve scalability of this simulation. The inevitable disk IO between the 
phases has a much higher impact on the overall performance of the simulation. If this 
problem is not resolved properly, an integration of PPStee in one of the parallel 
simulation parts will not increase overall simulation performance. 

However, there is way to use PPStee to improve the situation a little bit. If there was a 
monolithic program that aggregates each phase of a simulation based on OpenFOAM, 
PPStee could be at least used to balance the disk IO of the parallel phases. PPStee’s 
stages and their intrinsic weights (cf. section 2.1, Properties, in [3]) introduce the 
possibility to consider each phase’s amount of disk IO separately. At the end of the 
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day, this might lead to an overall performance gain while, of course, never reach the 
exascale regime. 
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6 Revision	   of	   system,	   data	   format	   and	   algorithms	  
definition	  

6.1 Confirmed	  properties	  
In section 4.1 we demonstrated the integration of PPStee into a mature code, i.e. 
CRESTA’s co-design application HemeLB. The integration is straight forward when the 
application, as in the case of HemeLB, already uses a partitioner. The changes in the 
actual code are minimal. The position of modifications needed do not require deep 
code insights as they are easy to find by the partitioner call. And slight additions in the 
build system complete the simple integration. 

Runtime results of HemeLB with PPStee, presented in sections 4.2 and 4.3, confirm 
the claim of almost no overhead introduced by usage of PPStee. Additional memory for 
graph data, beside the memory used anyway, is not required, thus PPStee’s minimal 
data layout works out well as intended. Much more conveniently, there are no runtime 
drawbacks when using PPStee; at least this is true (as demonstrated in section 4.3) for 
the partitioner used originally. For the other partitioners, it may be necessary to tune 
the partitioners’ parameters, see section 6.3 below. 

The detailed analysis of the case study of HemeLB (see section 4) also shows one of 
PPStee’s primary features: a switch of the partitioner used among the partitioners 
supported is easy. This way, the simulation and its graph and input data can be tested 
for its compatibility with ParMETIS, PTScotch or Zoltan quite similarly and without 
further effort. 

6.2 Comparison	  with	  ITAPS	  
The Center for Interoperable Technologies for Advanced Petascale Simulations 
(ITAPS, [8]) delivers interoperable and interchangeable mesh, geometry, and field 
manipulation services. The identically named set of tools and libraries, ITAPS, focuses 
on various mesh manipulation techniques including front tracking, mesh quality 
improvement via smoothing and swapping, adaptive mesh refinement and dynamic 
load balancing. 

However, ITAPS mostly pursues the classical character of pre-processing, i.e. a 
simulation part located prior to the simulation core essentially providing various 
improvement methods to the initially-raw input mesh. Although visualisation tools are 
included, there is currently no automated way to analyse and re-use visualisation 
output in a subsequent simulation cycle. Here, the difference to PPStee becomes 
apparent: PPStee, along with the other WP5 tools, is designed to close the simulation 
cycle thereby gaining overall simulation performance over dedicatedly-separate 
simulation architectures. 

6.3 Further	  investigation	  needed	  
Beside the confirmed properties of PPStee described so far, we stumbled upon points 
where further investigation is needed. For a start, we have seen that swap of the 
partitioning library used is easy. However, the measurements (see section 4.3) also 
show a constant deficiency when using Zoltan. This may correlate to the specific graph 
data structure of HemeLB, but it may point to inherent conversion problems concerning 
Zoltan’s graph data, too. Additional examination could improve the way PPStee 
organises its data. 

When graph data conversion is excluded as the underlying problem, the constant gain 
in runtime of HemeLB with PPStee and Zoltan could indicate an issue with the default 
partitioner values. Currently, PPStee calls Zoltan, and the other two partitioning 
libraries, without a specification of special parameters, hence default parameters are 
applied. If these default parameter set does not interact well with the simulation graph 
data it has to be customised accordingly. Additionally, partitioners offer individual 
routines that can be used to adapt to the graph data. It is an open question which 
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specific routines and parameters can be applied to adjust a partitioner to a simulation. 
A significant performance gain may be possible and thus it should be investigated. 

The measurements of runtime of HemeLB with PPStee and PTScotch (compare, 
particularly, Figure 6 and Figure 7) reveal another aspect that needs further attention. 
The figures show a serious problem with scalability for PTScotch starting around 512 
threads. Analogous to Zoltan, reasons may be an incompatibility of unmodified 
HemeLB graph data with PTScotch or the lack of usage of individual routines and 
parameters PTScotch provides and needs to be set. Further runtime measurements 
with higher thread counts are necessary to investigate the scaling behaviour beyond 
2048 cores, primarily for PTScotch but for ParMETIS and Zoltan as well. 
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