

Copyright © CRESTA Consortium Partners 2011

D5.1.4	 –	 Pre-‐processing:	 revision	 of	
system,	 data	 format	 and	

algorithms	 definition	 for	 exascale	
systems	

WP5:	 User	 tools	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization DLR

Version: 1.0

Status Final

Author(s): Gregor Matura (DLR)

Reviewer(s) Berk Hess (KTH), Mats Hamrud (ECMWF)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 06/09/2013 First version of the deliverable Gregor Matura (DLR)

0.2 09/09/2013 Final version for internal submission Gregor Matura (DLR)

1.0 20/09/2013 Addressed reviews – final version for
submission

Gregor Matura (DLR)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 PURPOSE	 ...	 3	
2.2	 ACKNOWLEDGEMENT	 ...	 3	

3	 PREVIOUS	 WORK	 ...	 4	
3.1	 ANALYSIS	 AND	 SYSTEM	 DEFINITION	 ...	 4	
3.2	 DATA	 FORMAT	 AND	 ALGORITHMS	 ...	 4	
3.3	 PPSTEE	 ...	 5	

4	 PPSTEE	 AND	 HEMELB	 ...	 7	
4.1	 INTEGRATION	 ...	 7	
4.2	 PROOF	 OF	 CONCEPT	 ...	 7	
4.3	 MEASUREMENTS	 ...	 9	
4.4	 ANALYSIS	 ...	 10	

5	 PPSTEE	 AND	 OPENFOAM	 ...	 12	
5.1	 OPENFOAM	 CHARACTERISTICS	 ...	 12	
5.2	 APPLICABILITY	 OF	 PPSTEE	 ...	 12	

6	 REVISION	 OF	 SYSTEM,	 DATA	 FORMAT	 AND	 ALGORITHMS	 DEFINITION	 ..	 14	
6.1	 CONFIRMED	 PROPERTIES	 ...	 14	
6.2	 COMPARISON	 WITH	 ITAPS	 ...	 14	
6.3	 FURTHER	 INVESTIGATION	 NEEDED	 ...	 14	

7	 REFERENCES	 ..	 16	

Index	 of	 Figures	
Figure 1: Multilevel k-way graph partitioning; [4] .. 5	
Figure 2: PPStee flow chart; [3] .. 6	
Figure 3: HemeLB runtimes for data set R15-L45 with plain HemeLB, HemeLB with
PPStee using ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon
E5520 ... 7	
Figure 4: HemeLB runtimes for data set R15-L450 with plain HemeLB, HemeLB with
PPStee using ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon
E5520 ... 8	
Figure 5: HemeLB runtimes for data set R30-L900 with plain HemeLB, HemeLB with
PPStee using ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon
E5520 ... 8	
Figure 6: HemeLB runtimes for data set data_01M with plain HemeLB and HemeLB
with PPStee using ParMETIS PTScotch and Zoltan on HECToR 9	
Figure 7: HemeLB runtimes for data set data_02M with plain HemeLB and HemeLB
with PPStee using ParMETIS PTScotch and Zoltan on HECToR 10	
Figure 8: HemeLB runtimes for bifurcation (50um) data set with plain HemeLB and
HemeLB with PPStee using ParMETIS PTScotch and Zoltan on HECToR 10	
Figure 9: Schematic view of the overall work process of OpenFOAM 12	

	

© CRESTA Consortium Partners 2011 Page 1 of 16

1 Executive	 Summary	
In CRESTA Deliverable 5.1.1, [1], we analysed the current situation of simulations
regarding pre-processing and gave a system definition: main aim is a closer simulation
cycle including all simulation parts and an improved overall simulation load balance.
CRESTA Deliverable 5.1.2, [2] studied algorithms of partitioning libraries used for pre-
processing so far and pointed at basic properties required for the graph data format.
These requirements culminated in the development of the prototype pre-processing
steering interface PPStee introduced in CRESTA Deliverable 5.1.3, [3].

Here we review the design of PPStee and collect performance data to evaluate this
prototype tool. The integration of PPStee into HemeLB was relatively simple, as
intended, and allows for performance tests of HemeLB with various geometries and all
three by PPStee supported partitioners, ParMETIS [4], PTScotch [5]and Zoltan [6].
Runtime measurements with up to 2048 cores on HECToR are presented as first
results. PPStee’s runtime overhead vanishes and ensures usage of PPStee without a
priori drawbacks. The configuration using PTScotch performs, in general, slightly worse
but reveals scalability issues starting at 512 cores. HemeLB with PPStee using Zoltan
suffers from a constant loss in runtime, the reason is yet unknown. Further
investigations will, in particular, focus on graph data conversion, scalability and usage
of partitioner-characteristic routines and parameters to enable a better match to
specific simulation data.

Lastly, we address CRESTA’s co-design vehicle OpenFOAM. Simulations using
OpenFOAM are not a priori suited for application of PPStee due to the nature of
OpenFOAM being a box of separated tools of solvers and utilities. However, PPStee
may be applicable if each phase of a simulation using the OpenFOAM framework is
aggregated into one monolithic program. The OpenFOAM co-design team is currently
investigating the feasibility of this monolithic program..

© CRESTA Consortium Partners 2011 Page 2 of 16

2 Introduction	
A simulation can be logically divided into several parts, pre-processing, simulation core,
and post-processing are examples. So far, i.e. up to the petascale regime, these parts
are often separated strongly, e.g., by large IO operations or even by separation into
different programs. Such cuts in the simulation work and data flow are not alone very
expensive but become unbearable when core counts rise above hundreds of
thousands; they have to be overcome if a simulation wants to perform in an exascale
environment.

We identify a delicate point: All simulation parts cannot stay apart and have to grow
together or an exascale system will not be exploitable to its full performance. This is the
task of CRESTA’s work package 5 and its subtasks pre-processing, post-processing
and remote rendering. Here, pre-processing focuses on balancing the load of the
simulation including all parts and not the simulation core alone.

In previous deliverables (see [1] and [2]) we analysed the current situation.
Communication and calculation costs of all simulation parts must be included in the
calculation of the overall simulation load balance. Since pre-processing usually is
invoked only once and only at the beginning it cannot interact with simulation or post-
processing results. Thus the desired inclusion of the costs requires a tighter integration
of pre-processing into the simulation cycle. Convenient interfaces for information flow
between the simulation parts, pre-processing, simulation core and post-processing, are
needed. Steering methods can be integrated there as well to allow for an active
influence of one simulation part to the other. A repeatedly passed simulation cycle
facilitates additional chances for performance and convenience gains, for example,
repartitioning capabilities, automated mesh refinement techniques and other.

The amount of data used must be kept minimal: exascale systems will presumably
suffer from a further decrease in the ratio of memory size to computation power per
node. Hence a small memory footprint is vital and additionally lowers communication
time when data are exchanged between the nodes. Algorithms for partitioning must
stay universally applicable and simply comparable as their performance and scalability
may depend critically on the specific simulation data structure.

To address these requirements, we introduced the pre-processing steering interface
PPStee (see [3]). Its main purpose is the achievement of an optimised overall
simulation load balance and its main feature is the exchange of the partitioning library
used regardless of the input data (ParMETIS [4], PTScotch [5] and Zoltan [6] are
supported). PPStee provides a flexible data format that is both, minimal and compatible
to all three partitioners. It comprises different simulation stages and their
communication and calculation costs, like computation (equals simulation core or
solver) and visualisation. However, PPStee stays easily adjustable to new partitioning
tools, different kinds of stages, even fault tolerance or an automated mesh refinement
can be integrated as well.

Now, we want to evaluate this prototype tool and, here for, use CRESTA’s co-design
application HemeLB as a test bed. We describe and carry out the integration of PPStee
into HemeLB and start an analysis of PPStee’s functionality and performance.
Following some small tests, we do runtime measurements on HECToR with up to 2048
cores. These will shows us if PPStee works as intended and provide first information
on usability and performance of PPStee for a real-life example.

With these first lessons learned, we try to expand our set of test cases to another
CRESTA co-design application, OpenFOAM. In contrast to the self-contained Lattice-
Boltzmann code HemeLB, OpenFOAM is only a toolbox for the development of
customised numerical solvers and utilities for the solution of continuum mechanics
problems. Thus, our primary task concerning OpenFOAM is an examination of how
OpenFOAM can benefit from PPStee and how and where PPStee can be integrated
into a simulation using OpenFOAM.

© CRESTA Consortium Partners 2011 Page 3 of 16

We begin this deliverable with short summaries on previous work in section 3. An
outline of analysis and system definition and data format and algorithms is given
followed by a description of the pre-processing steering interface PPStee. Section 4
describes the integration of PPStee into the lattice-Boltzmann code HemeLB and
shows a first proof of concept integration for small core counts. Measurements for large
core counts on HECToR are depicted and analysed. Our work with OpenFOAM
regarding usage of PPStee is explained in section 5. The last section summarises
PPStee properties we were able to confirm and points to issues that need further
investigation.

2.1 Purpose	
The purpose of this deliverable is a revision of the submitted prototype pre-processing
tool PPStee (cf. D5.1.3, [3]) considering the definition and analysis of system, data
format and algorithms done earlier (cf. deliverables D5.1.1 and D5.1.2, [1] and [2],
respectively).

2.2 Acknowledgement	
This work made use of the facilities of HECToR, the UK's national high-performance
computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh,
Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through
EPSRC's High End Computing Programme.

© CRESTA Consortium Partners 2011 Page 4 of 16

3 Previous	 work	
3.1 Analysis	 and	 system	 definition	
CRESTA Deliverable 5.1.1, Pre-processing: analysis and system definition for exascale
systems [1] demands the following property that is crucial for an exascale-ready
simulation: main target of pre-processing is to guarantee a good overall simulation load
balance. In particular, this claim implies that the term load balance is not only applied to
the solver. Load balance has to treat all parts of a simulation and therefore includes all
simulation costs of pre-processing, solution calculation and post-processing.

All simulation parts must be brought closer together. Separate tools for pre-processing
of simulation data or solver data, for post-processing of the results and for visualisation
will corrupt the overall simulation performance. An awareness of a complete simulation
cycle rather than just a solver must evolve.

A tighter integration of pre-processing and post-processing becomes vital in the
exascale regime. This can be achieved by extension of information flow between the
specific simulation parts. Interfaces among pre-processing and simulation core,
simulation core and subsequent result analysis and to visualisation routines can
provide needed information. Additionally, the interfaces can implement methods for
steering that enforce specific behaviour.

A closely linked simulation cycle performs better in general and offers additional
chances of performance improvement, both, automated or user-steered. Result
analysis as part of the post-processing can, for example, automatically initiate a
repartitioning of the mesh following a specific event or time step thereby optimising the
load balance mid-simulation. Using remote-rendering techniques, it is possible to
inspect the simulation and intermediate results and thus adjust solver parameters,
mesh properties or result analysis properties.

3.2 Data	 format	 and	 algorithms	
CRESTA Deliverable 5.1.2, Pre-processing: data format and algorithms [2] analyses
pre-processing tools and, in particular, partitioning libraries and data formats and
algorithms the partitioners use. The primary recommendation focuses on the specific
layout of data. A minimal set of graph data helps to keep down the memory footprint of
huge geometries or other input data; this becomes more important for exascale
simulations where the ratio of memory to computational power is predicted to decrease
further. Moreover, it lowers necessary intercommunication of threads that will also
suffer from computational power leaving communication network speed behind.

© CRESTA Consortium Partners 2011 Page 5 of 16

Figure 1: Multilevel k-way graph partitioning; [4]

Another crucial fact concerns algorithms used. Partitioners implement different
strategies in their algorithm to solve the NP-complete problem of distributing input data
to all threads (Figure 1 shows an example of one of those algorithm strategies, the
multilevel K-way partitioning approach of ParMETIS; for details see [2]). A particular
partitioner and its method may suit a specific simulation on a specific system quite well.
However, simulations designed today must be adaptable to system and system
architectures that are not yet built. Thus a chance to compare and fit algorithms to the
simulation and its input on a given system in terms of scalability and performance must
be preserved.

3.3 PPStee	
PPStee is an interface for pre-processing steering (a detailed description can be found
in CRESTA Deliverable 5.1.3, Pre-processing: first prototype tools for exascale mesh
partitioning and mesh analysis, [3]). Its main purpose is to optimise the overall
simulation load balance and can be extended by further steering capabilities covering
other important exascale-relevant duties like automated mesh manipulation or fault
tolerance. Figure 2 shows a chart for information flow for a simulation using PPStee.

© CRESTA Consortium Partners 2011 Page 6 of 16

Figure 2: PPStee flow chart; [3]

PPStee offers a standardised access to three different partitioning tools, i.e. ParMETIS,
PTScotch and Zoltan. Exchange of the partitioner used is designed to be as easy as
possible to facilitate convenient access to all partitioners. Data format is kept simple
and compatible among all partitioners, yet it is (almost) minimal satisfying
recommendations listed in [2].

Different simulation phases, called stages, are supported. Computation, visualisation
and other simulation parts can submit their communication and computation costs
separately. This way PPStee is able to ensure a load balance for the entire simulation
cycle.

Additionally, PPStee remains adjustable to future requirements. New partitioning tools
can be integrated easily; stages and stage setup can be altered to match simulation
needs. Mesh refinement techniques, user-driven or automated, can be built into the
pre-processing step. An interface to a fault tolerance framework providing system
health and status data could steer partitioning of simulation data in future.

© CRESTA Consortium Partners 2011 Page 7 of 16

4 PPStee	 and	 HemeLB	
4.1 Integration	
The specific integration of the pre-processing steering interface PPStee into a mature
code such as HemeLB is straight forward (cf. [3], section 2.2). The integration is
divided into two steps, bare code changes and some additional changes in the build
system. In the first step, PPStee substitutes the partitioner call. HemeLB already uses
the library ParMETIS to evenly distribute computational domains among all processes.
Thus, we have all mesh data set up correctly and we save the trouble to assemble the
arrays needed. We simply replace the ParMETIS call as shown in [3], section 3.1 and
make sure to include PPStee's header file instead of ParMETIS' header.

Additionally, we adjust HemeLB's build system according to the needs of PPStee.
Since ParMETIS is already included, we add PPStee and all other partitioners we want
to use to the dependencies of the build target HemeLB. For an update of include and
library directory settings, the very entries for ParMETIS are well-used as guides. Put
altogether, the code changes are small and it is easy to find the right places, in spite of
the size of a project like HemeLB.

4.2 Proof	 of	 concept	
For a proof of concept, we have integrated and built HemeLB with PPStee and two
partitioners, ParMETIS and PTScotch. Our first test system is a small one and provides
an Intel Xeon E5520 with 8 real and 16 virtual cores. We used five different process
counts between 4 and 16 and the minimal time of three runs for each data set. Figure
3, Figure 4 and Figure 5 depict the runtime results of the three different HemeLB data
sets R15-L45, R15-450 and R30-L900, respectively.

Figure 3: HemeLB runtimes for data set R15-L45 with plain HemeLB, HemeLB with PPStee using
ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon E5520

0	

20	

40	

60	

80	

100	

120	

140	

160	

4	 6	 8	 12	 16	

ru
nE

m
e	
[s
]	

threads	

R15-‐L45	

ParMETIS	

plain	 HemeLB	

PTScotch	

© CRESTA Consortium Partners 2011 Page 8 of 16

Figure 4: HemeLB runtimes for data set R15-L450 with plain HemeLB, HemeLB with PPStee using
ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon E5520

Figure 5: HemeLB runtimes for data set R30-L900 with plain HemeLB, HemeLB with PPStee using
ParMETIS and HemeLB with PPStee using PTScotch on Intel Xeon E5520

In all three charts we find a close match of runtimes for all three methods, i.e. plain
HemeLB (using ParMETIS), HemeLB with PPStee using ParMETIS and HemeLB with
PPStee using PTScotch. There are slight performance gains and losses here and
there; however, a general tendency with respect to a method or process count cannot
be identified.

Concluding for low process counts, we see no penalty in runtime when using PPStee.
On the one hand, this proves that PPStee does not introduce any significant overhead
in computation time. On the other hand, PPStee offers the possibility for an

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

4	 6	 8	 12	 16	

ru
nE

m
e	
[s
]	

threads	

R15-‐L450	

ParMETIS	

plain	 HemeLB	

PTScotch	

0	

10000	

20000	

30000	

40000	

50000	

60000	

4	 6	 8	 12	 16	

ru
nE

m
e	
[s
]	

threads	

R30-‐L900	

ParMETIS	

plain	 HemeLB	

PTScotch	

© CRESTA Consortium Partners 2011 Page 9 of 16

improvement in runtime when using another partitioner or other data sets, in particular
in case of large data sets and high process counts.

4.3 Measurements	
The following measurement data were collected on HECToR. In its current stage
(Phase 3), HECToR is a CRAY XE6 system and contained in 30 cabinets and
comprise of a total of 704 compute blades. Each blade contains four compute nodes
giving a total of 2816 compute nodes, each with two 16-core AMD Opteron 2.3GHz
Interlagos processors. Each 16-core processor shares 16 GB of memory.

HemeLB was modified as described in section 4.1 to incorporate PPStee in three
different versions. Each version uses the initial HemeLB mesh data setup in ParMETIS’
data layout and passes these data to one of the three partitioners ParMETIS, PTScotch
and Zoltan. We used a plain, i.e. unmodified, HemeLB version as a reference and
always used fully populated nodes adding up to the specified thread count.

The data sets “data_01M” and “data_02M” are cylindrical test geometries with about 1
million and 2 million lattice sites, respectively. They run for three cycles and 1000 steps
per cycle. The third data set is a bifurcation geometry with approximately 650 thousand
lattice sites and runs for 1000 time steps.

Figure 6, Figure 7 and Figure 8Error! Reference source not found. depict runtime
values in seconds on 32 up to 2048 (512 for bifurcation) cores for all four configurations
and data sets “data_01M”, “data_02M” and bifurcation, respectively.

Figure 6: HemeLB runtimes for data set data_01M with plain HemeLB and HemeLB with PPStee
using ParMETIS PTScotch and Zoltan on HECToR

0	

20	

40	

60	

80	

100	

120	

140	

160	

32	 64	 128	 256	 512	 1024	 2048	

ru
nE

m
e	
[s
]	

threads	

HemeLB	 on	 HECToR	 with	 data_01M	

parmeOs	

ptscotch	

zoltan	

plain	

© CRESTA Consortium Partners 2011 Page 10 of 16

Figure 7: HemeLB runtimes for data set data_02M with plain HemeLB and HemeLB with PPStee
using ParMETIS PTScotch and Zoltan on HECToR

Figure 8: HemeLB runtimes for bifurcation (50um) data set with plain HemeLB and HemeLB with
PPStee using ParMETIS PTScotch and Zoltan on HECToR

We see a very close match for all datasets between HemeLB with PPStee using
ParMETIS and plain HemeLB that uses ParMETIS by default. PPStee with PTScotch
stays close to both ParMETIS versions for the cylindrical geometries but shows a
growing increase in runtime for large thread counts.

For the bifurcation geometry, this increase is also present and the gap between
PPStee with PTScotch and the ParMETIS versions is slightly bigger.

The runtime graph of PPStee with Zoltan has the same shape as the graph of the
ParMETIS versions for all geometries. However, it lacks an almost constant amount of
runtime of about 20% for all geometries and core numbers.

In general, we detect a far better scaling behaviour for both cylindrical datasets than for
the bifurcation geometry.

4.4 Analysis	
The measurements show a close match of plain HemeLB and PPStee with ParMETIS
for all datasets. Since both versions use ParMETIS’ data format and partitioning
algorithms we can deduce that the only difference between both versions, i.e. the
PPStee modifications, do not impose any noticeable runtime overhead on the

0	

50	

100	

150	

200	

250	

300	

32	 64	 128	 256	 512	 1024	 2048	

ru
nE

m
e	
[s
]	

threads	

HemeLB	 on	 HECToR	 with	 data_02M	

parmeOs	

ptscotch	

zoltan	

plain	

0	

10	

20	

30	

40	

50	

60	

70	

80	

32	 64	 128	 256	 512	

ru
nE

m
e	
[s
]	

threads	

HemeLB	 on	 HECToR	 with	 bifurcaEon	
dataset	

parmeOs	

ptscotch	

zoltan	

plain	

© CRESTA Consortium Partners 2011 Page 11 of 16

simulation. Thus PPStee is safely applicable in the matter of runtime even if later
change of the partitioner used does not prove to be beneficial for the simulation at
hand.

PPStee with PTScotch is level-pegging with both ParMETIS versions for both
cylindrical geometries and loses ground for the bifurcation dataset. The reason for this
behaviour is unclear but could be related to the reduced regularity of the bifurcation
geometry as compared to the cylindrical ones.

On the other hand, HemeLB with PPStee using PTScotch shows scaling problems:
starting at 256 cores, runtime begins to increase slightly for the bifurcation dataset and
more drastically in case of the cylindrical geometries. For the bifurcation dataset, this
effect diminishes the aforementioned general deficiency of this geometry, yet it is
impossible to predict which of both will dominate for larger core numbers. This scaling
behaviour could also be caused by regularity issues of the underlying geometries.

The Zoltan configuration draws attention by constant gap in runtime compared to both
ParMETIS versions. The shapes of the curves for the Zoltan versions match the
corresponding ParMETIS curves quite well and thus indicate a correct, i.e. equivalent,
scaling for both partitioners. Therefore, the reason for the gap, in particular, because it
is constant over core counts, could be ascribed to the data layout issues: HemeLB
passes its mesh data in ParMETIS’ data format and a conversion is needed to pass
these data on to Zoltan.

In total, we experienced an easy integration of PPStee into HemeLB. It is comfortable
to switch the partitioner used and consequently easy to obtain partitioning results with
other partitioners beside the one that was used originally. We see no drawbacks in
runtime for the initially used partitioner ParMETIS and got the chance to compare it to
PTScotch and Zoltan. For core numbers up to at least 512, the results encourage the
use ParMETIS within HemeLB.

© CRESTA Consortium Partners 2011 Page 12 of 16

5 PPStee	 and	 OpenFOAM	
5.1 OpenFOAM	 characteristics	
An analysis of simulations with OpenFOAM (compare [7], CRESTA Deliverable 6.1.1,
Roadmap to exascale) exhibits crucial points regarding any modifications to the
OpenFOAM simulation chain. A simulation based on OpenFOAM is not to be seen as a
monolithic simulation, i.e. each part of the simulation process that leads to the end
result is a distinct phase in the simulation (Figure 9 depicts a possible sequence of
simulation phases) and moreover a distinct executable program. Additionally, each of
these simulation part programs is not necessarily parallel.

Figure 9: Schematic view of the overall work process of OpenFOAM

These phases are separated by design but, of course, have to exchange their input
and output data respectively. This data transfer between two phases is done via hard
disk and there is currently no way to bypass this behaviour. It’s hardly surprising that
this exposes a really bad scalability as seen for the simulation in its entirety.

5.2 Applicability	 of	 PPStee	
The specific design of a simulation using OpenFOAM (cf. section 5.1) reveals that
computational load balance of, for example, the solver is not the primary problem when
trying to improve scalability of this simulation. The inevitable disk IO between the
phases has a much higher impact on the overall performance of the simulation. If this
problem is not resolved properly, an integration of PPStee in one of the parallel
simulation parts will not increase overall simulation performance.

However, there is way to use PPStee to improve the situation a little bit. If there was a
monolithic program that aggregates each phase of a simulation based on OpenFOAM,
PPStee could be at least used to balance the disk IO of the parallel phases. PPStee’s
stages and their intrinsic weights (cf. section 2.1, Properties, in [3]) introduce the
possibility to consider each phase’s amount of disk IO separately. At the end of the

© CRESTA Consortium Partners 2011 Page 13 of 16

day, this might lead to an overall performance gain while, of course, never reach the
exascale regime.

© CRESTA Consortium Partners 2011 Page 14 of 16

6 Revision	 of	 system,	 data	 format	 and	 algorithms	
definition	

6.1 Confirmed	 properties	
In section 4.1 we demonstrated the integration of PPStee into a mature code, i.e.
CRESTA’s co-design application HemeLB. The integration is straight forward when the
application, as in the case of HemeLB, already uses a partitioner. The changes in the
actual code are minimal. The position of modifications needed do not require deep
code insights as they are easy to find by the partitioner call. And slight additions in the
build system complete the simple integration.

Runtime results of HemeLB with PPStee, presented in sections 4.2 and 4.3, confirm
the claim of almost no overhead introduced by usage of PPStee. Additional memory for
graph data, beside the memory used anyway, is not required, thus PPStee’s minimal
data layout works out well as intended. Much more conveniently, there are no runtime
drawbacks when using PPStee; at least this is true (as demonstrated in section 4.3) for
the partitioner used originally. For the other partitioners, it may be necessary to tune
the partitioners’ parameters, see section 6.3 below.

The detailed analysis of the case study of HemeLB (see section 4) also shows one of
PPStee’s primary features: a switch of the partitioner used among the partitioners
supported is easy. This way, the simulation and its graph and input data can be tested
for its compatibility with ParMETIS, PTScotch or Zoltan quite similarly and without
further effort.

6.2 Comparison	 with	 ITAPS	
The Center for Interoperable Technologies for Advanced Petascale Simulations
(ITAPS, [8]) delivers interoperable and interchangeable mesh, geometry, and field
manipulation services. The identically named set of tools and libraries, ITAPS, focuses
on various mesh manipulation techniques including front tracking, mesh quality
improvement via smoothing and swapping, adaptive mesh refinement and dynamic
load balancing.

However, ITAPS mostly pursues the classical character of pre-processing, i.e. a
simulation part located prior to the simulation core essentially providing various
improvement methods to the initially-raw input mesh. Although visualisation tools are
included, there is currently no automated way to analyse and re-use visualisation
output in a subsequent simulation cycle. Here, the difference to PPStee becomes
apparent: PPStee, along with the other WP5 tools, is designed to close the simulation
cycle thereby gaining overall simulation performance over dedicatedly-separate
simulation architectures.

6.3 Further	 investigation	 needed	
Beside the confirmed properties of PPStee described so far, we stumbled upon points
where further investigation is needed. For a start, we have seen that swap of the
partitioning library used is easy. However, the measurements (see section 4.3) also
show a constant deficiency when using Zoltan. This may correlate to the specific graph
data structure of HemeLB, but it may point to inherent conversion problems concerning
Zoltan’s graph data, too. Additional examination could improve the way PPStee
organises its data.

When graph data conversion is excluded as the underlying problem, the constant gain
in runtime of HemeLB with PPStee and Zoltan could indicate an issue with the default
partitioner values. Currently, PPStee calls Zoltan, and the other two partitioning
libraries, without a specification of special parameters, hence default parameters are
applied. If these default parameter set does not interact well with the simulation graph
data it has to be customised accordingly. Additionally, partitioners offer individual
routines that can be used to adapt to the graph data. It is an open question which

© CRESTA Consortium Partners 2011 Page 15 of 16

specific routines and parameters can be applied to adjust a partitioner to a simulation.
A significant performance gain may be possible and thus it should be investigated.

The measurements of runtime of HemeLB with PPStee and PTScotch (compare,
particularly, Figure 6 and Figure 7) reveal another aspect that needs further attention.
The figures show a serious problem with scalability for PTScotch starting around 512
threads. Analogous to Zoltan, reasons may be an incompatibility of unmodified
HemeLB graph data with PTScotch or the lack of usage of individual routines and
parameters PTScotch provides and needs to be set. Further runtime measurements
with higher thread counts are necessary to investigate the scaling behaviour beyond
2048 cores, primarily for PTScotch but for ParMETIS and Zoltan as well.

© CRESTA Consortium Partners 2011 Page 16 of 16

7 References	
[1] CRESTA Deliverable 5.1.1, Pre-processing: analysis and system definition for

exascale systems

[2] CRESTA Deliverable 5.1.2, Pre-processing: data format and algorithms

[3] CRESTA Deliverable 5.1.3, Pre-processing: first prototype tools for exascale
mesh partitioning and mesh analysis

[4] ParMETIS, Parallel graph partitioning and fill-reducing matrix ordering,
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[5] PTScotch, Software package and libraries for sequential and parallel graph
partitioning, static mapping, and sparse matrix block ordering, and sequential
mesh and hypergraph partitioning, http://www.labri.fr/perso/pelegrin/scotch/

[6] Zoltan, Data-Management Services for Parallel Applications,
http://www.cs.sandia.gov/Zoltan/Zoltan_phil.html

[7] CRESTA Deliverable 6.1.1, Roadmap to exascale

[8] ITAPS, Interoperable Technologies for Advanced Petascale Simulations,
http://www.itaps.org

