

Copyright © CRESTA Consortium Partners 2011

D5.2.3	 –	 Post-‐processing:	
first	 prototype	 tools	 for	 exascale	
interactive	 data	 exploration	 and	

visualisation	

WP5:	 User	 tools	

Due date: M18

Submission date: 28/02/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation DLR

Version: 1.0

Status Final

Author(s): Fang Chen (DLR)

Reviewer(s) David Lecomber (ASL), Stephen Booth (UEDIN)

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Dissemination level

PU PU - Public

Version	 History	

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 28/02/2013 First version of the deliverable Fang Chen (DLR)

1.0 20/03/2013 Final version of the deliverable with
review comments considered

Fang Chen (DLR)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	

1	 EXECUTIVE	 SUMMARY	 ...	 1	

2	 INTRODUCTION	 ...	 2	

3	 PROJECT	 HISTORY	 ..	 3	

4	 SOFTWARE	 ARCHITECTURE	 ..	 4	

5	 ON	 THE	 TO-‐DO	 LIST	 ..	 7	

6	 SETTING	 UP	 AND	 RUNNING	 THE	 PROTOTYPE	 ...	 8	

7	 REFERENCES	 ..	 10	

	 	

© CRESTA Consortium Partners 2011 Page 1 of 10

1 Executive	 Summary	
This deliverable is a software deliverable, providing a software prototype for exascale

interactive data exploration and visualisation. The main purpose of this associated

report is to present and document the prototype software, which has been developed

using a co-design process with the HemeLB code.

This software build on two previous deliverables associated with Task 5.2 within Work

Package 5 (D5.2.1 and D5.2.2). These described and studiedthe challenges, system

requirements, system architecture and data structure for exascale data post-

processing. The first two deliverables served as a theoretical foundation for the

upcoming software development and design.

In accordance with the previous deliverable, this software aims to provide in-situ

processing of the simulation data, interactive visualisation for exascale CFD

simulations, and further computational steering capability of the on-going simulation. In-

situ post and interactive visualisation provides the user with the possibility to explore

the simulation result on-the-fly, while computational steering allows the user to change

and modify an on-going simulation process by modifying simulation parameters.

In this deliverable, we deliver a software prototype which was co-designed and

integrated into HemeLB. This prototype provides a fundamental structure of interactive

data post-processing for HemeLB, allowing developers to evaluate the design of our

proposed post-processing system and visualisation algorithms. We present an initial

attempt to visualise a HemeLB simulation with a newly implemented visualisation and

steering client. We also outline future plans and on-going work regarding software

implementation.

© CRESTA Consortium Partners 2011 Page 2 of 10

2 Introduction	
Today’s Computational Fluid Dynamics (CFD) software deals with complex geometries.

Such simulations output numerical data on an extreme scale. For such extreme

simulations it will no longer be possible to store simulation data on disks for post-

processing. Therefore, in-situ data analysis and computational steering becomes

important in exascale data post-processing. These two major concepts provide the

simulation experts with the possibility to inspect their simulation results at run-time, and

to further modify and change the on-going fluid simulation.

HemeLB is one of the important applications within CRESTA. This code aims to

develop algorithms for blood flow simulation. In a co-design process, with the core

HemeLB group, our software focuses on developing post-processing tools tailored for

HemeLB, providing the simulation experts with the possibility of inspecting the on-going

simulation processes, and to further steer simulation parameters.

Three major goals exist in the development of our post-processing software. The first

goal is to provide suitable visualisation of the on-going simulation, visualisation that is

able to handle huge data sets at the interactive frame rate. Our second goal is to

develop rendering architectures that maximize the performance of current available

hardwares, in the sense of visualisation computation. Finally, a steering client should

be available that allows the user to modify the on-going simulation with the visualisation

output.

In this report, we present the current software architecture, as well as the first prototype

of our software. We list the goals and implementation tasks for the on-going software

development in section 6. Minimal, but necessary, information on how to test the

prototype is provided in section 7.

The actual software is available on the CRESTA SVN service.

© CRESTA Consortium Partners 2011 Page 3 of 10

3 Project	 History	
We have previously delivered two related deliverables (see Table 1). These served as

the theoretical basis for our research, while this current deliverable and associated

report provides a first software prototype that demonstrates our software development

practice in data post-processing.

Table 1 Main functions of the three delivered work packages

Deliverable Main function

WP5.2.1 Identify problems and challenges in exascale post processing

WP5.2.2 Define system algorithms and data structures

WP5.2.3 First software prototype developed in a co-design process with

HemeLB for post processing

Deliverable 5.2.1 [1] studied the challenges in post-processing at the exascale. It

provides a foundation and set of guidelines for post-processing experts in the design of

these post-processing algorithms.

The second deliverable [2] provided a detailed study of interactive visualisation tools

and data structures. It highlighted the importance and necessity of applying in-situ and

interactive visualisation for exascale simulation processes. This deliverable also

established a series of co-design tasks with HemeLB.

This deliverable (D5.2.3) is the first software prototype developed by DLR in

collaboration with the HemeLB team. It acts as a demonstration of the proposed

algorithms and system architectures that were presented in the previous deliverables.

© CRESTA Consortium Partners 2011 Page 4 of 10

4 Software	 Architecture	
The current architecture of the prototype software is shown in Figure 1.

In this framework, the simulation and visualisation algorithms share the same cluster.

Simulation geometry is divided into blocks and distributed among nodes. While the

current simulation step is done, a desired visualisation is applied on the same block of

data and produces an image data. Then, all the images are collected by the master

node and presented at the front end.

The main HemeLB code is the simulation computation, which remains unchanged. Our

post-processing extends and modifies the visualisation and steering tools associated

with the HemeLB code. We aim to maintain the visualisation data structure as well as

the parallel computation structure of the original HemeLB code. Minimal changes are

made to the steering client in order to achieve a better interactive and in situ

visualisation.

A large part of this software is aimed at designing and implementing suitable interactive

visualisation algorithms that aid the simulation experts in exploring the on-going

simulation. Interactive visualisation involves visualisations of the simulation data being

computed and rendered at interactive frame rates. In large-scale fluid simulation, it is

crucial to provide interactive visualisation such that simulation experts can inspect and

study their simulation process at run time.

Interaction with users can be incorporated together with virtual reality (VR). Improved

depth perception and free navigation in VR allow the scientist to explore their data in a

more natural and informative way. As a long term goal, we also plan to include the use

of VR in our post-processing.

Figure 1 Software architecture.

© CRESTA Consortium Partners 2011 Page 5 of 10

Computational steering is the ultimate goal of this software project. It is not only a

challenge for post- processing, but also for Task 5.1, pre-processing. Both of these two

tasks will work together to enable simulation experts to steer the computational mesh

and parameters based on the visualisation results.

Further details of the system architecture is published in [3]

© CRESTA Consortium Partners 2011 Page 6 of 10

5 First	 Prototype	
In this prototype, we have implemented a cut-plane example of the on-going

simulation. Installation and compilation of the prototype is presented in the next

section. In this section, we describe the functionality and structure of the prototype.

The current HemeLB code already provides a volume renderer of the flow fields, such

as velocity magnitude, stress magnitude, etc. On top of the given volume renderer, we

have implemented a cut plane example. A cut plane is a user-defined plane which cuts

through the dataset. Fluid properties of the intersecting cells will be presented on a

pixel-based image on the left top corner. The image will be sent together with the

volume rendering pixels as one image to the front-end. With the help of cut planes,

geometry cells that are hidden behind the walls can be revealed. It provides the user

with the possibility to look ‘inside’ the blood vessels.

Figure 2 demonstrates the image output of a cut plane visualisation on a test dataset.

This graphical window shown in Figure 2 shows the in-situ visualisation for the

Regression/difftest simulation. While the simulation is still running, the user can trigger

the steering client. The steering client will connect to the current simulation time steps,

and extract the visualisation output with image transfer. A user-defined cut plane

demonstrates the simulation results of the geometry cross-section in an interactive

manner. In this test simulation, a blood flow is injected from the bottom of the tube, and

the simulation continues until the user pauses it. The four figures shown in Figure 2

represent the stress magnitude of the flow field at different time steps. In this prototype,

we have inserted a cut-plane which is orthogonal to the main flow direction. The image

shown on the top left corner indicates the stress field projected onto this intersecting

plane.

Currently, we have a nearest neighbourhood implementation of the intersecting cell

search. We loop over all pixels on the cut plane window, then find the nearest site point

on the geometry, extract the field value, and map to a colour. Further implementation of

stochastic cut plane sampling [4] and estimation will accelerate the cut plane

computation. This approach will accelerate the search of cell locations while computing

the intersection between the plane and the geometry.

Figure 2. The prototype of cut plane visualization.

© CRESTA Consortium Partners 2011 Page 7 of 10

6 On	 the	 To-‐Do	 List	
The current prototype of our post-processing tool consists of a simple in-situ cut plane
visualisation of the running HemeLB simulation. In order to achieve interactive post-
processing and full steering functionality, there are a number of items on the to-do list.

We divide these goals and targets according to their functionality in the post-processing
pipelines, namely steering, visualisation and user interaction. We list the tasks as
follows:

Category Feature, task Priority

Steering Select multiple time steps at a time Medium

 Select a region of lattice High

 Set a parameter for steering High

 Send the modified parameter back to Simulation High

 Modify simulation according to new parameters Low

 Connect visualization with steering, define a interface Medium

 Define criteria for modifying simulation Medium

Software
achitecture

Incorporate multi-resolution data structure Medium

 Try hybrid rendering Low

 Test remote rendering Low

User
interaction

Allow user to defline cutplane location High

 Combine virtual reality into application. Powerwall,
display all.

Low

 Explore the massive data exploration metaphor on
powerall

low

Visualization Implement stochastic sampling for cut plane points Medium

 Fix streak/line code for hemeLB Medium

 Compare different image streaming techniques Low

 Study other suitable visualization tools for hemeLB Medium

© CRESTA Consortium Partners 2011 Page 8 of 10

7 Setting	 up	 and	 Running	 the	 Prototype	
This section gives a minimal description of how the software prototype works. It
includes the basic steps that you need to install or change, on top of the HemeLB
source code, and the platforms and libraries you might need.

A few things should be checked before starting to install and run the software. The
following tools or packages, preferably the latest versions, are required:

Python-2.7.3

Python-argparse

PyOpenGL

Numpy

cmake

A running version of HemeLB is required (For HemeLB source code, please contact
University College London, The Centre for Computational Science).

Check out a working copy of HemeLB. Then build the dependencies with the following
commands:

cd hemeLb-dev/hemelb/dependencies

mkdir build

cd build

cmake.. –DHEMELB_USE_BOOST=ON

make

Additional files or modified files are available at the SVN repository for Cresta:
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp5/postprocessing/trunk

Then replaced the following files with the new ones: (* means replace both .cc and .h
files):

steering.py in …/hemelb-dev/hemelb/Tools/steering/python/hemelb_steering

Rendering.* in …/hemelb-dev/hemelb/Code/vis

ResultPixel.* in …/hemelb-dev/hemelb/Code/vis

Control.* in …/hemelb-dev/hemelb/Code/vis

Create this folder for cutplane example:

mkdir ~/hemelb-dev/Code/vis/cutPlane

add the following files into the …/cutPlane folder

CutPlane.h

CutPlane.cc

CutPlanePixel.h

CutPlanePixel.cc

Now it should be possible to compile HemeLB with the Cut plane visualisation. If you
have already successfully built HemeLB source code, then you only need to do:

© CRESTA Consortium Partners 2011 Page 9 of 10

cd hemeLb-dev/hemelb/Code/build

make

If HemeLB has not previously been built, a build folder must be created first, followed
by a cmake before the make, i.e.:

mkdir …/hemeLb-dev/hemelb/Code/build

cmake ..

make

A test simulation is started by:

cd …/hemeLb-dev/RegressionTests/difftest

./diffTest.sh

While the simulation is running, the steering client with the cutPlane visualization is
started with:

cd …/hemeLb-dev/hemelb/Tools/steering/python/hemelb_steering

python steering_gl.py –monitor –show localhost

© CRESTA Consortium Partners 2011 Page 10 of 10

8 References	
	

[1] C. W. Fang Chen, „Deliverable 5.2.1: Post-processing: analysis and system
definition for exascale systems,“ 2011.

[2] F. Chen, „Deliverable 5.2.2:Post-processing: data format (hierarchical, multi-
resolution) and algorithms definition,“ 2012.

[3] F. Chen, M. Flatken, A. Basermann, A. Gerndt, J. Hetherington, T. Krüger, G.
Matura und R. Nash, „Enabling In-situ Pre- and Post-Processing for Exascale
Hemodynamic Simulations − A Co-Design Study with the Sparse Geometry Lattice
Boltzmann Code HemeLB,“ in SC 2012, 10.-16. Nov. 2012, Salt Lake City, USA.,
Salt Lake City, 2012.

[4] C. u. G. A. u. H. C. u. H. H. Wagner, „Interactive In-Situ Online Monitoring of Large
Scale CFD Simulations with Cut-Planes. Immersive Visualization Revisited:
Challenges and Opportunities,“ in IEEE Virtual Reality Workshop,, Orange County,
CA, USA., 2012.

