

Copyright © CRESTA Consortium Partners 2011

D5.3.2	 –	 Remote	 hybrid	 rendering:	
protocol	 definition	 for	 exascale	

systems	

WP5:	 User	 Tools	

Due date: M12

Submission date: 22/10/2012

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization Name of USTUTT

Version: 1.0

Status Final

Author(s): Martin Aumüller (USTUTT)

Reviewer(s) Jens Doleschal (TUD), David Lecomber (ASL)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 08/10/2012 First version of the deliverable Martin Aumüller
(USTUTT)

0.2 15/10/2012 Improve according to propositions by
Jens Doleschal and David Lecomber

Martin Aumüller
(USTUTT), Jens
Doleschal (TUD), David
Lecomber (ASL)

0.3 17/10/2012 Clarify reasons for protocol choice
based on suggestions by David
Lecomber

Martin Aumüller
(USTUTT), Jens
Doleschal (TUD), David
Lecomber (ASL)

1.0 18/10/2012 Final version of the deliverable Martin Aumüller
(USTUTT)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 PURPOSE	 ...	 2	
2.2	 GLOSSARY	 OF	 ACRONYMS	 ...	 2	

3	 MOTIVATION	 FOR	 REMOTE	 RENDERING	 AND	 REMOTE	 HYBRID	 RENDERING	 	 3	
4	 LIMITATIONS	 OF	 REMOTE	 HYBRID	 RENDERING	 ..	 4	
5	 CONSIDERATIONS	 FOR	 EXASCALE	 SYSTEMS	 ...	 5	
6	 PROTOCOL	 REQUIREMENTS	 ...	 7	

6.1	 FEATURE	 REQUIREMENTS	 ...	 7	
6.2	 PERFORMANCE	 REQUIREMENTS	 ...	 8	
6.3	 SECURITY	 REQUIREMENTS	 ...	 8	
6.4	 OTHER	 REQUIREMENTS	 ..	 9	

7	 EXISTING	 PROTOCOLS	 ..	 10	
7.1	 RFB	 (VNC)	 ...	 10	
7.2	 INDEPENDENT	 COMPUTING	 ARCHITECTURE	 (ICA)	 ..	 10	
7.3	 HP	 REMOTE	 GRAPHICS	 SOFTWARE	 ...	 10	
7.4	 NX	 ...	 10	
7.5	 VIRTUALGL	 ..	 11	
7.6	 THINC	 ...	 11	
7.7	 SPICE	 ...	 11	
7.8	 APPLIANCE	 LINK	 PROTOCOL	 (SUN	 RAY)	 ...	 11	
7.9	 OVERVIEW	 ...	 11	

8	 PROTOCOL	 DEFINITION	 ..	 13	
8.1	 POSSIBLE	 CHOICES	 ...	 13	
8.2	 RFB	 PROTOCOL	 EXTENSIONS	 ...	 13	

8.2.1	 3D	 Stereo	 Rendering	 ...	 13	
8.2.2	 Multiple	 Display	 Surfaces	 ..	 13	
8.2.3	 Frame	 Barrier	 ..	 13	
8.2.4	 Multi-‐Touch	 Input	 Data	 ...	 13	
8.2.5	 6DOF	 Input	 Device	 Data	 ..	 14	
8.2.6	 Server	 Controlled	 Framebuffer	 Updates	 ...	 14	
8.2.7	 Encodings	 for	 Depth	 and	 Transparency	 Data	 ...	 14	
8.2.8	 Efficient	 Image	 Codecs	 ..	 14	
8.2.9	 Image	 Data	 Back-‐Channel	 ...	 14	

9	 FINAL	 REMARKS	 ...	 15	
10	 REFERENCES	 ..	 16	

Index	 of	 Figures	
Figure 1: Typical network topology for a remote visualization task 5	

	 	

© CRESTA Consortium Partners 2011 Page 1 of 17

1 Executive	 Summary	
In this work we define a protocol for remote hybrid rendering. Remote hybrid rendering
is used to access remote exascale simulations from immersive projection environments
over the Internet. This protocol is used for the flow of communication between the head
node of a visualisation cluster and the head node of a display system. The display
system may range from a desktop computer to an immersive virtual environment such
as a CAVE (Cave Automatic Virtual Environment). The display system forwards user
input to the visualisation cluster, which uses highly scalable methods to render images
of the post-processed simulation data and returns them to the display system. The
display system enriches these with context information before they are shown.

We start by evaluating the benefits of remote versus local rendering as well as
describing the short-comings, which we will not be able to fully address within this
work. We continue by establishing the requirements for such a protocol based on the
intended use case as laid out in the description of work and the requirements of the co-
design vehicles OpenFOAM [1] and HemeLB [2]. We evaluate existing protocols for
similar purposes, mostly protocols for virtual framebuffers, according to our
requirements. Because of its extensibility, its wide-spread use and the possibility of
backwards compatibility of our system with existing clients we choose to base our
protocol on the Remote Frame Buffer (RFB) protocol as used in all Virtual Network
Computing (VNC) based systems. We define the extensions to the RFB protocol which
are necessary to cover our use case, such as the handling of multi-touch and 6DOF
input data, frame synchronisation across several display surfaces, encodings for 2.5D
and opacity images as well as an image back-channel.

© CRESTA Consortium Partners 2011 Page 2 of 17

2 Introduction	
The structure of this document is as follows: Section 3 shows the usefulness of remote
hybrid rendering, the following section addresses the short-comings of this process.
Section 5 summarises the setting in which the protocol defined in this document will be
used. Section 6 establishes the requirements the protocol has to fulfil. Section 7 gives
a short overview of existing similar protocols, before we lay out the protocol in section 8
and conclude with final remarks in the last section.

2.1 Purpose	
The purposes of this deliverable are as follows:

• Establish requirements for a protocol enabling remote hybrid rendering on
exascale systems, taking into account requirements from WP 5.1 and WP 5.2

• Study existing protocols for remote rendering and evaluate them according to
the established requirements

• Define a protocol for remote hybrid rendering

2.2 Glossary	 of	 Acronyms	
cronym Definition
2.5D Image data together with depth data
6DOF 6 degrees of freedom, usually position and orientation
CPU
GPU
HD
JPEG
POV
RFB
TCP
UDP
VNC
WAN
WP
X11
CAVE

Central Processing Unit
Graphics Processing Unit
High Definition
Joint Photographic Experts Group
Point of View
Remote Framebuffer Protocol
Transmission Control Protocol
User Datagram Protocol
Virtual Network Computing
Wide Area Network
Work Package
X Window System Protocol Version 11
Cave Automatic Virtual Environment

© CRESTA Consortium Partners 2011 Page 3 of 17

3 Motivation	 for	 Remote	 Rendering	 and	 Remote	 Hybrid	
Rendering	

The co-design vehicle OpenFOAM as used by the Institut für Strömungsmechanik und
Hydraulische Strömungsmaschinen at the University of Stuttgart for simulating the flow
in an entire hydro turbine [3] produces huge amounts of output data. Based on the
estimated requirement for a dependable simulation of approximately 1 billion nodes for
the whole turbine, the size of a single time step is about ¼ TB. Storing a full turbine
rotation with steps of one degree requires about 90 TB. Transferring that amount of
data across a high-speed link (10 GigE) for off-line processing on a user workstation
would take more than one day – and would require huge amounts of local storage and
processing power. This shows that for exascale data the traditional way of transferring
the post-processed geometry data to the display system for local rendering is not
possible anymore. In comparison, streaming uncompressed HD-resolution (1920x1080
pixels) images at 30 frames/s for a whole day would require less than 15 TB of
bandwidth – and the image the user is interested in is available immediately, not just
after a lengthy preparational transfer. Additionally, this amount of data can be
significantly reduced by employing image compression techniques without even
incurring a visual loss. This technique of transmitting rendered images instead of post-
processed data to the display system is called remote rendering. The much lower
bandwidth and processing requirements of remote rendering allow for making the
efficient use of remote compute resources by a much larger user base.

Head-tracked immersive virtual environments, where the rendering is constantly
updated according to the user’s current head position, require high frame rates and low
reaction latencies to achieve a high sensation of presence and to avoid motion
sickness [16]. These immersive visualisation environments provide more intuitive ways
for specifying the location of regions of interest, cutting planes, seed points for particle
traces, or reference points for iso surface extraction than desktop-based systems. We
aim to enable users to experience exascale simulations in such immersive
environments over the Internet.

As the above example of the turbine simulation shows, transferring the post-processed
simulation data is not viable. To improve frame rate and reaction times, we will try to
decouple interaction from network latencies as far as possible, but still without requiring
the transfer of huge data amounts to the client. Only extracted features from simulation
results will be rendered either directly on the simulation host or on a remote
visualisation cluster employing scalable methods. But “context information” such as
essentially static geometry, as e. g. turbine shapes, interaction cues for the parameters
controlling the visualisation algorithms applied on the visualisation cluster and menus
will be rendered locally, at a rate independent of the remote rendering. As both
remotely and locally rendered images are composited for the final display, we call this
technique “remote hybrid rendering”. This compositing usually takes pixel depth into
account, but it might also use opacity information. In order to account for view point
changes that have occurred after the remote image was rendered, it can be reprojected
before the compositing step.

In the description of work [25], the remote hybrid rendering method was selected as the
mechanism to make the interaction with exascale simulations possible across the
Internet.

© CRESTA Consortium Partners 2011 Page 4 of 17

4 Limitations	 of	 Remote	 Hybrid	 Rendering	
The incentive for employing remote hybrid rendering is to achieve low latency for
interaction and especially in head-tracked environments – even when pure remote
rendering is not possible because the network connection does not provide enough
bandwidth or does not fulfil the latency requirements for immersive virtual
environments.

Hence it seems reasonable to sacrifice rendering accuracy for rendering speed in the
general case in order to build a reactive interactive system. Cases where accuracy
might not be able to be guaranteed include:

• Transparency in rendered data without sufficient depth information makes it
impossible to mix context information into the rendered image at the correct depth.
This might be the case when dealing with ray castings from HemeLB, as the ray
along which data was accumulated into a single colour value might be partially
occluded by the local overlay geometry – and then it is impossible to recover the
contribution from in front of the occluding geometry.

• High latency makes it necessary to take recourse to image based methods, where
2.5D data is warped according to changed view points in order to provide timely
updates in a head tracked environment – but reprojected images are just an
approximation of what would be visible from the updated POV.

However, we will always allow the user to request a rendering with full accuracy, albeit
with increased communication cost and at possibly non-interactive frame rates.

© CRESTA Consortium Partners 2011 Page 5 of 17

5 Considerations	 for	 Exascale	 Systems	
The environments we try to adapt our remote hybrid visualisation system to comprise
the following parts:

• a remote exascale compute resource,

• possibly a remote visualisation cluster, tightly coupled to the compute resource,

• a local display system.

Figure 1: Typical network topology for a remote visualization task

In some cases, e. g. when there are GPUs inside each node of the exascale system,
the compute system and the visualisation system might be the same resource and the
GPUs might be used for both simulation and visualization. For all other cases, we
assume a high-bandwidth low-latency link of a quality comparable to the exascale
cluster interconnect between the compute and visualisation system. The network
connection between the remote visualization cluster and the display system will provide
a considerably lower bandwidth and higher latency. While it is desirable to have a
higher quality link between the visualization and display systems, this will not always be
possible in the case where remote hybrid rendering is used, as this connection will
usually be across the Internet.

The network infrastructure might allow for direct connections from each node of the
visualisation cluster to each node of the display system, but in the general case the
network topology or firewalls might prohibit this. Hence, our system is designed to cope
with a point-to-point connection between the head node of the visualisation cluster and
the head node of the local display system.

The display system may be a traditional desktop computer. But the focus of this work is
to enable access to remote exascale visualizations from within immersive projection
systems. These are distinguished from desktop systems by:

• input devices which record their position and orientation and input methods
which exploit this additional information,

• tracking of the user’s head position and continuously updating the rendered
image according to the changing point of view (POV),

• 3D stereoscopic imagery, where each eye is presented with an image that is
adapted to its position,

• multiple display surfaces, which are used for enhancing the resolution (e. g. in
powerwalls, where several screens are tiled in one plane to form a larger
display area) or to surround the viewer with images (e. g. in a CAVE [17], where
the sides of a cube around the viewer are used as projection surfaces).

Sort-last [18] has been selected [19] as the method for parallelising the render process.
This means that flat pixel images as present in a framebuffer are the result of the
rendering phase. The available data for the remote rendering solution is one colour

exascale compute
resource

visualization
cluster

display
system

© CRESTA Consortium Partners 2011 Page 6 of 17

value including opacity per pixel together possibly one depth value. Remote sort-last
parallel rendering in a system with the described network topology provides the best
performance if compositing happens on the visualisation cluster, as this saves
bandwidth on the slower link between the visualisation and display systems. The
requirement of a point-to-point connection between the head nodes of the visualisation
cluster and the local display system makes it necessary that the composition of the
rendered image data happens on the visualisation cluster.

Integrating the remote rendering facility with the application might enable further
optimisations, as the application has more knowledge about which data is important.
The application might chose to update the significant regions more often or at lower
compression level with higher image fidelity. However, this does not affect the protocol,
if only it is capable of sending sub-regions or images at different compression levels.

© CRESTA Consortium Partners 2011 Page 7 of 17

6 Protocol	 Requirements	
The purpose of the protocol for remote hybrid rendering is to define the communication
between the visualisation cluster and the local display system. I. e., the protocol for
hybrid remote rendering connects the rendering stage to the display stage of the post-
processing phase of the visualisation pipeline. The rendering stage employs parallel
sort-last rendering and produces images with colour, opacity and depth information for
each pixel. Hence, it is mostly independent of the applications that run remotely.
Application independence is also a goal of this protocol, as it should be usable across
multiple applications. Hence, we do not take solutions that require tight coupling with
the application, such as IBRAC [20] or as implemented in Visapult [21] into account.
Only the compositing stage and the handling of transparency in the renderer stage
have an impact on the protocol requirements, as these determine what kind of image
data has to be transmitted.

The protocol merely defines how the data is to be communicated and interpreted. It
does not define how the transmitted data is to be processed. In particular, even though
a certain protocol might not have been developed for an algorithm that reprojects
pixels, this does not mean that it is not applicable or extendable for that use case.

we list how this requirement appears in the table at the end of the section discussing
several virtual framebuffer protocols.

6.1 Feature	 Requirements	
Based on the planned use case of driving desktop systems, tiled display walls and
CAVEs with the remote hybrid rendering protocol, the following input data has to be
handled by the protocol:

• keyboard input (keyboard input)

• 2D mouse input (2D mouse input)

• input from 6DOF devices, such as hand and head tracking devices or a space
mouse (6DOF devices)

• multi-touch input – the protocol must allow for tracking touches across multiple
frames, as the client has more knowledge to achieve this more easily (multi-touch
input)

The topology of the envisioned compute and visualisation system means that it is more
efficient that the compositing happens within the visualisation cluster. However,
rendering context information locally requires a final compositing step in the display
system. Depending on the context information to be shown and the rendered data, this
might require depth (depth channel support) or opacity (alpha channel support) in
addition to the colour information for each image pixel. And even with that information,
it might only be possible to approximate the correct rendering. For those cases, an
option to switch to slower but accurate rendering is necessary. This will require sending
the context data overlay to the visualisation cluster before rendering each frame, such
that it can be taken into account during rendering and compositing (image back
channel).

It is sufficient to serve one display system at a time. But such a system might possibly
consist of several display surfaces (multi-surface support), each of which may be a
stereographic display (3D stereo support). Updates to different display surfaces have to
be synchronised in order to enable correct 3D stereoscopy across all surfaces (frame
barrier support). This might incur longer latencies, when the images for all tiles are not
available at the display client at the same time, but this synchronisation is vital for
immersive display environments.

The protocol should support disconnecting from a running visualisation session and
reconnecting to it from a possibly different and differently configured (different screen

© CRESTA Consortium Partners 2011 Page 8 of 17

sizes, different number of screens, different screen orientations, different input
modalities) display system (connection re-establishment). This also enables error
resilience, as a session can be restarted after crashes.

In order to handle common network configurations where it is not possible to establish
arbitrary connections between nodes in the visualisation cluster to nodes in the display
system, we require that communication be channelled through a render server head
node and a display client head node. At the same time, this simplifies the protocol, as
this means that redistributing events and pixel data is the head nodes’ task and beyond
the scope of this protocol. This also ensures scalability of the protocol from desktop
systems over powerwalls to multi-screen immersive environments with stereographic
rendering. We consciously sacrifice the optimisation possibility of skipping a
communication step by sending image tiles directly from the visualisation node that
generates the image to the display node which is responsible to show this tile.

6.2 Performance	 Requirements	
The protocol should not generate significant communication overhead. Network round
trips, e. g. waiting for acknowledgement of successful delivery of messages, have to be
avoided in order to guarantee good performance (low overhead). User input data has
to be prioritised over bulk data transfers, such as rendered pixels.

Occasionally, not the full image plane is filled with rendered data. In these cases it
should be possible to only send sub-images in order to save bandwidth (sub-image
transmission).

In order to be able to balance visual accuracy against performance, the protocol has to
allow for different encodings and compression algorithms, and for accommodating
changing network circumstances (bandwidth and latency variations), these have to be
switchable at run-time (adaptability to network link quality). Compression should not
visibly decrease image quality for both line drawings and images with huge amount of
gradients, e. g. from volume rendering (high image fidelity).

For local area connections, TCP based protocols have proven superior, whereas in
wide area networks, UDP based protocols seem to have an advantage [4]. We expect
the principal use case to be from within local area networks or within networks
providing a similar connection quality, such that we prefer TCP over UDP.

The protocol should not hinder the off-load of suitable tasks, like image compression or
decompression, to accelerators, such as GPUs. This mostly concerns the image
codecs to be used. Hence, we want to allow for the easy addition of new codecs. This
also allows for using codecs adapted to the requirements of the processing of the
transmitted data on the display system, e. g. when the 2.5D image is reprojected [22].
Additionally, this allows the system to profit easily from algorithmic improvements
available in new video codecs, such as H.265 [23], as soon as GPGPU solutions for
real-time compression at high resolutions are available.

6.3 Security	 Requirements	
As sensitive data might be transmitted, the users connecting to the remote rendering
server have to be authenticated (user authentication). Sometimes, the input data might
contain passwords and other secret information, so the channel from display system to
render system should be encryptable (input data encryption). Because of the
computational costs entailed by encrypting all the streamed image data, encryption of
the channel from the render server to the display client is optional (image data
encryption).

© CRESTA Consortium Partners 2011 Page 9 of 17

6.4 Other	 Requirements	
An existing protocol based on an open standard would be preferable (standardized),
but it has to be documented in order to be usable for our purposes (documented).

The protocol should be extendable in order to accommodate future needs. It is of
special importance that new image codecs can be integrated easily, in order to be able
to make use of better image or video codecs (easy extensibility for new codecs), other
algorithmic improvements or added hardware compression acceleration (extensibility).

The protocol has to be interoperable in heterogeneous environments as arbitrary
display systems might want to connect to the render server (platform independence).

The protocol should keep the number of simultaneous network connections to a
minimum; the establishment of a connection should be possible from client to server
and vice versa in order to cater for all possible circumstances (firewall friendliness).

© CRESTA Consortium Partners 2011 Page 10 of 17

7 Existing	 Protocols	 	
The main task of the protocol to be defined is transmitting remotely rendered pixel data
to the display system. Hence, we only consider protocols where the primitives for
transmitting image data are pixels, not higher-level primitives such as lines or glyphs
from a font. Because of this, we do not take widely used protocols such as RDP
(Remote Desktop Protocol, as used for Windows desktop sharing) [5] or X11 [6] into
consideration.

7.1 RFB	 (VNC)	
The Remote Framebuffer Protocol (RFB) is widely used across many platforms as part
of every VNC installation. The client sends keyboard and mouse input data to the
server and requests updates to screen regions that it wishes to draw. The server
responds with image tiles containing the requested regions, although the responses to
several update requests can be coalesced into a single update. The protocol defines
various encodings for pixel images, some of which reference previous framebuffer
states. The server does not push updates to the client, but delivers updates only upon
request from the client. The protocol specification is open [7] and includes a
mechanism for extensions. There are many implementations available, both open and
closed source, most of them are interoperable, but most often not at full performance.
Because of its wide spread adoption, it has become a de facto standard.

7.2 Independent	 Computing	 Architecture	 (ICA)	
Independent Computing Architecture (ICA) [8] is a proprietary protocol developed by
Citrix for more than 15 years [9]. Communication happens across a single TCP
connection between client and server. ICA can send both pre-rendered pixel data as
well as higher level drawing primitives. The level of compression is adapted
dynamically to the connection quality. Transfers are prioritised into different channels in
order to improve interactivity. To our knowledge, there is no documentation available
and it is only implemented by Citrix.

7.3 HP	 Remote	 Graphics	 Software	 	
HP Remote Graphics Software [10] is a desktop sharing software based on a
proprietary protocol, which transmits pixel data to the viewer. All data is sent encrypted.
It uses a proprietary image codec named HP3, which encodes image areas differently
based on its contents. This allows high fidelity for both line graphics and photographic
images. We do not know of any documentation of this protocol or implementation by
parties other than HP.

7.4 NX	
The NX [11] protocol is used to tunnel the full X11 protocol over low-bandwidth high-
latency links. For minimising client-server round trips, it employs server- and client-side
proxies. Pixmaps (bitmap images) can be compressed using the lossy JPEG or with
other algorithms. Large transfers are split into smaller pieces and are sent with a lower
priority than smaller transfers, in order to increase interactivity. There are closed and
open implementations of the protocol.

© CRESTA Consortium Partners 2011 Page 11 of 17

7.5 VirtualGL	
The VirtualGL [12] protocol is only capable of transferring pixel data from server to
client. It is used to augment the X11 protocol in order to off-load 3D rendering to the
server and enable compressed transmission of the rendered images. It supports
transmission of stereographic images. The protocol only seems to be used within the
VirtualGL project, but it has on open-source implementation.

7.6 THINC	
THINC [13] is a system for desktop virtualisation, which intercepts the drawing
commands at the device driver layer. The basic protocol has similar features as VNC’s
RFB protocol, but it also supports an opacity channel. Later, support for some higher-
level primitives has been added in order to better support video playback [14]. The
source code for THINC is available.

7.7 SPICE	
SPICE is a remote rendering protocol used commercially in Red Hat Enterprise
Virtualization for Desktops [15]. Depending on the capabilities of the display client,
more or less work is off-loaded to the server. The SPICE protocol is also implemented
at the device driver level. For pixel transfers, it also supports an opacity channel.
Several encodings are available. But it also supports higher-level primitives such as
paths and glyphs. The SPICE X server implementation by Red Hat is available as open
source. There is also in implementation for Windows.

7.8 Appliance	 Link	 Protocol	 (Sun	 Ray)	
The Appliance Link Protocol (ALP) is a proprietary protocol used for communication
between the Sun Ray Server Software and a Sun Ray client. It uses a TCP connection
for session communication and several UDP ports for graphics, audio and other binary
data. The UDP port numbers are determined by the server and communicated to the
client over TCP. It is optimised for WAN communication. To our knowledge, there is no
documentation available and it is only implemented by Sun.

7.9 Overview	
A + means that the requirement is met, a – that not, +/- that is met partially (e. g. the
documentation consists of an open source implementation). An empty field means that
we do not possess this information, either because we did not find any documentation
about this feature or did not look into the implementation to assess the availability of
this feature.

Requirement
Importance RFB ICA HP NX Virtual

GL
THINC SPICE ALP

Keyboard input Mandatory + + + + - + + +

2D mouse input Mandatory + + + + - + + +

6DOF devices Mandatory - -

Multi-touch input Mandatory - -

Alpha channel support Mandatory - - + +

Depth channel support Mandatory - - - - - - - -

Multi-surface support Mandatory -

© CRESTA Consortium Partners 2011 Page 12 of 17

3D stereo support Mandatory - +

Frame barrier Mandatory - +

Image back channel High - -

Connection re-
establishment

Mandatory + + +

Adaptability to network link
quality

High - + -

Low overhead Mandatory + + + +

Sub-image transmission Mandatory + +

High image fidelity Mandatory +/- + + +/- +/-

User authentication Mandatory + + + -

Input data encryption High - + + + n/a

Image data encryption Low - + + -

Extensibility Mandatory + -

Easy extensibility for new
codecs

Mandatory + +

Platform independence Mandatory + + + +

Firewall friendliness Mandatory + +/- +/- +/- -

Standardized Low +/- - - - - - - -

Documented Mandatory + - - +/- - +/- +/- -

© CRESTA Consortium Partners 2011 Page 13 of 17

8 Protocol	 Definition	
8.1 Possible	 Choices	
Based on the desire to maintain compatibility with existing software and the wish to use
proven solutions when possible, our choices are, in order of most to least favourable:

1. use an existing protocol that fulfils all the requirements as-is,

2. use an existing protocol that provides an extension mechanism powerful enough to
implement all necessary features,

3. create a new protocol that builds upon an existing protocol, or

4. define a new protocol entirely unrelated to existing protocols.
We do not know of any protocol fulfilling all the requirements. Hence, the second option
is our best choice.

The RFB protocol is extensible and allows the incorporation of the required features
with low overhead. By basing the remote hybrid rendering protocol on RFB, we allow
for universal access to remote visualisation resources by enabling the huge multitude
of existing VNC clients to interact with remote hybrid rendering servers, albeit with
limited features and performance. Hence, we propose to extend the RFB protocol for
our purposes. However, as we do not expect remote hybrid rendering clients to
connect to plain VNC servers, we will not cater for that use case.

Compared to SPICE, RFB has the advantage of being in wide-spread use, it is simpler
to implement than NX, VirtualGL does not have the required features, THINC is still in
the research stage, and all the other protocols would require reverse engineering.
Hence, our choice is to extend the RFB protocol. The following section lays out the
required extensions to RFB.

8.2 RFB	 Protocol	 Extensions	
In order to meet the requirements, we propose the following extensions to the RFB
protocol. The byte level wire protocol will be determined when the extensions are
implemented.

8.2.1 3D	 Stereo	 Rendering	
Additional image codecs for supplying images for both the left and right eye for one
display surface will have to be implemented.

8.2.2 Multiple	 Display	 Surfaces	
Support for handling multiple display surfaces can be added by providing a coordinate
mapping for each surface to the available 65536x65536 pixel coordinate space. The
protocol has to be augmented for establishing this mapping.

8.2.3 Frame	 Barrier	
In order to advance the display to the next rendered frame synchronously on all display
surfaces and for both the left and right eye, the server has to send an event when a
frame is fully transmitted. This should include a frame counter and a time stamp.

8.2.4 Multi-‐Touch	 Input	 Data	
As the display client has the most knowledge about previous touch events, we make it
the display client’s responsibility to track touches across frames. Hence, the protocol
has to support transmitting this information as well as the current position and shape of
touch points. The time stamp or frame counter of the image visible at the time of the
input event should be included in the data returned to the server. RFB’s PointerEvent
will serve as a template for this extension.

© CRESTA Consortium Partners 2011 Page 14 of 17

8.2.5 6DOF	 Input	 Device	 Data	
The protocol shall allow for multiple 6DOF inputs and for defining roles for those, e.g.,
“head of primary viewer” or “dominant hand”. Information about additional input data
such as button press states should be communicated together with the 6DOF data in
order to be able to handle these at the correct position. The frame time stamp and
counter should be returned as well. RFB’s PointerEvent will serve as a template for
this extension.

8.2.6 Server	 Controlled	 Framebuffer	 Updates	
In order to minimise latency, rendered frames should be sent to the client as soon as
they are available. The client has to be able to request continuous framebuffer updates
from the server, i. e. the communication flow has to become more asynchronous than
with standard RFB. For that purpose, TigerVNC [24] already has an extension
containing an EnableContinuousUpdates message, this will be reused.

8.2.7 Encodings	 for	 Depth	 and	 Transparency	 Data	
The available image encodings shall be augmented by appropriate codecs for
transparency and depth data, in order to composite context information display with the
visualisation image on the client.

8.2.8 Efficient	 Image	 Codecs	
Compression quality can be enhanced by employing efficient image and video codecs.
The available image codecs shall be augmented by video streaming codecs for which
GPGPU implementations are available.

8.2.9 Image	 Data	 Back-‐Channel	
In order to be able to generate images where the context information is correctly
composed with the visualisation data, the rendering of the context information together
with corresponding depth and opacity data has to be made available to all visualisation
nodes. The FrameBufferUpdate message, which is normally sent from server to client
only, will be used for that purpose.

© CRESTA Consortium Partners 2011 Page 15 of 17

9 Final	 Remarks	
In the requirements section and the definition of the protocol we listed features which
are essential or desirable for such a protocol for remote hybrid rendering. But this does
not mean that the prototype tool, which is to be implemented as part of deliverable
5.3.3 and 5.3.5, will include all of them. We will select a subset of these features, which
demonstrates the general feasibility of such a system.

© CRESTA Consortium Partners 2011 Page 16 of 17

10 References	
[1]   H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to

computational continuum mechanics using object-oriented techniques,”
Computers in physics, 1998.

[2]   M. D. Mazzeo and P. V. Coveney, “HemeLB: A high performance parallel lattice-
Boltzmann code for large scale fluid flow in complex geometries,” Computer
Physics Communications, vol. 178, no. 12, pp. 894–914, Jun. 2008.

[3]   “Requirements of WP6 (OpenFOAM) to WP5 (Pre- and Postprocessing),”
CRESTA, Jan. 2012.

[4]   B. Jeong, J. Leigh, A. Johnson, L. Renambot, M. Brown, R. Jagodic, S. Nam, and
H. Hur, “Ultrascale Collaborative Visualization Using a Display-Rich Global
Cyberinfrastructure,” Computer Graphics and Applications, IEEE, vol. 30, no. 3,
pp. 71–83, 2010.

[5]   “Remote Desktop Protocol,” Microsoft. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa383015(v=vs.85).aspx. [Accessed: Oct.-2012].

[6]   R. W. Scheifler and J. Gettys, “The X window system,” ACM TOG, vol. 5, no. 2,
Apr. 1986.

[7]   T. Richardson, “  The RFB Protocol,” realvnc.com, 2010. [Online]. Available:
http://www.realvnc.com/docs/rfbproto.pdf. [Accessed: 06-Sep.-2012].

[8]   J. Harder and J. Maynard, “Technical Deep Dive: ICA Protocol and Acceleration,”
citrix.com. [Online]. Available:
http://www.citrix.com/site/resources/dynamic/additional/ICA_Acceleration_0709a.
pdf. [Accessed: Oct.-2012].

[9]   T. Valovic, “The Coming Display Protocol Wars -- Virtualization Review,”
virtualizationreview.com, Jan.-2009. [Online]. Available:
http://virtualizationreview.com/articles/2009/05/01/display-protocol-wars.aspx.
[Accessed: Oct.-2012].

[10]   “Advantages and implementation of HP Remote Graphics Software,”
h20331.www2.hp.com, Apr.-2009. [Online]. Available:
http://h20331.www2.hp.com/Hpsub/downloads/RGS_WP_April09.pdf. [Accessed:
06-Oct.-2012].

[11]   S. Regis, “Introduction to NX Technology,” nomachine.com, Jul.-2009. [Online].
Available: http://www.nomachine.com/documents/pdf/intr-technology.pdf.
[Accessed: 05-Oct.-2012].

[12]   D. R. Commander, “VirtualGL: In Depth Background,” virtualgl.org. [Online].
Available: http://www.virtualgl.org/About/Background. [Accessed: Aug.-2011].

[13]   R. Baratto, L. Kim, and J. Nieh, “THINC: a virtual display architecture for thin-
client computing,” SOSP '05: Proceedings of the twentieth ACM symposium on
Operating systems principles, Oct. 2005.

[14]   R. A. Baratto, “THINC: A Virtual and Remote Display Architecture for Desktop
Computing and Mobile Devices,” systems.cs.columbia.edu, 2011.

[15]   “Spice remote computing protocol definition v1.0,” spicespace.org. [Online].
Available: http://www.spicespace.org/docs/spice_protocol.pdf. [Accessed: 07-
Oct.-2012].

[16] M. Usoh, K. Arthur, M. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks,
“Walking > walking-in-place > flying, in virtual environments,” SIGGRAPH '99:
Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, Jul. 1999.

[17] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-screen projection-

© CRESTA Consortium Partners 2011 Page 17 of 17

based virtual reality: the design and implementation of the CAVE,” Proceedings
of the 20th annual conference on Computer graphics and interactive techniques,
p. 142, 1993.

[18] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification of
parallel rendering,” Computer Graphics and Applications, IEEE, vol. 14, no. 4,
pp. 23–32, 1994.

[19] F. Niebling, J. Hetherington, and A. Basermann, “D5.3.1 – Remote hybrid
rendering: analysis and system definition for exascale systems,” CRESTA, Mar.
2012.

[20] I. Yoon and U. Neumann, “IBRAC: Image-Based Rendering Acceleration and
Compression,” Computer Graphics Forum, 2000.

[21] W. Bethel, B. Tierney, J. Leigh, D. Gunter, and S. Lau, “Using high-speed WANs
and network data caches to enable remote and distributed visualization,”
Supercomputing '00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM, Nov. 2000.

[22] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “Scalable
Remote Rendering with Depth and Motion-flow Augmented Streaming,”
Computer Graphics Forum, vol. 30, no. 2, pp. 415–424, 2011.

[23] G. J. Han, J. R. Ohm, W.-J. Han, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard,” Circuits and Systems for Video
Technology, IEEE Transactions on, no. 99, p. 1, 2012.

[24] tigervnc.org. [Online]. Available: http://www.tigervnc.org. [Accessed: 15-Oct.-
2012].

[25] "Collaborative Research into Exascale Systemware, Tools and Applications -
Annex I: Description of Work", CRESTA, Jun. 2011.

	

