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1 Executive	  Summary	  
In this work we define a protocol for remote hybrid rendering. Remote hybrid rendering 
is used to access remote exascale simulations from immersive projection environments 
over the Internet. This protocol is used for the flow of communication between the head 
node of a visualisation cluster and the head node of a display system. The display 
system may range from a desktop computer to an immersive virtual environment such 
as a CAVE (Cave Automatic Virtual Environment). The display system forwards user 
input to the visualisation cluster, which uses highly scalable methods to render images 
of the post-processed simulation data and returns them to the display system. The 
display system enriches these with context information before they are shown. 

We start by evaluating the benefits of remote versus local rendering as well as 
describing the short-comings, which we will not be able to fully address within this 
work. We continue by establishing the requirements for such a protocol based on the 
intended use case as laid out in the description of work and the requirements of the co-
design vehicles OpenFOAM [1] and HemeLB [2]. We evaluate existing protocols for 
similar purposes, mostly protocols for virtual framebuffers, according to our 
requirements. Because of its extensibility, its wide-spread use and the possibility of 
backwards compatibility of our system with existing clients we choose to base our 
protocol on the Remote Frame Buffer (RFB) protocol as used in all Virtual Network 
Computing (VNC) based systems. We define the extensions to the RFB protocol which 
are necessary to cover our use case, such as the handling of multi-touch and 6DOF 
input data, frame synchronisation across several display surfaces, encodings for 2.5D 
and opacity images as well as an image back-channel. 
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2 Introduction	  
The structure of this document is as follows: Section 3 shows the usefulness of remote 
hybrid rendering, the following section addresses the short-comings of this process. 
Section 5 summarises the setting in which the protocol defined in this document will be 
used. Section 6 establishes the requirements the protocol has to fulfil. Section 7 gives 
a short overview of existing similar protocols, before we lay out the protocol in section 8 
and conclude with final remarks in the last section. 

2.1 Purpose	  
The purposes of this deliverable are as follows: 

• Establish requirements for a protocol enabling remote hybrid rendering on 
exascale systems, taking into account requirements from WP 5.1 and WP 5.2 

• Study existing protocols for remote rendering and evaluate them according to 
the established requirements 

• Define a protocol for remote hybrid rendering 

2.2 Glossary	  of	  Acronyms	  
cronym Definition 
2.5D  Image data together with depth data 
6DOF 6 degrees of freedom, usually position and orientation 
CPU 
GPU 
HD 
JPEG 
POV 
RFB 
TCP 
UDP 
VNC 
WAN 
WP 
X11 
CAVE 

Central Processing Unit 
Graphics Processing Unit 
High Definition 
Joint Photographic Experts Group 
Point of View 
Remote Framebuffer Protocol 
Transmission Control Protocol 
User Datagram Protocol 
Virtual Network Computing 
Wide Area Network 
Work Package 
X Window System Protocol Version 11 
Cave Automatic Virtual Environment  
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3 Motivation	   for	  Remote	  Rendering	  and	  Remote	  Hybrid	  
Rendering	  

The co-design vehicle OpenFOAM as used by the Institut für Strömungsmechanik und 
Hydraulische Strömungsmaschinen at the University of Stuttgart for simulating the flow 
in an entire hydro turbine [3] produces huge amounts of output data. Based on the 
estimated requirement for a dependable simulation of approximately 1 billion nodes for 
the whole turbine, the size of a single time step is about ¼ TB. Storing a full turbine 
rotation with steps of one degree requires about 90 TB. Transferring that amount of 
data across a high-speed link (10 GigE) for off-line processing on a user workstation 
would take more than one day – and would require huge amounts of local storage and 
processing power. This shows that for exascale data the traditional way of transferring 
the post-processed geometry data to the display system for local rendering is not 
possible anymore. In comparison, streaming uncompressed HD-resolution (1920x1080 
pixels) images at 30 frames/s for a whole day would require less than 15 TB of 
bandwidth – and the image the user is interested in is available immediately, not just 
after a lengthy preparational transfer. Additionally, this amount of data can be 
significantly reduced by employing image compression techniques without even 
incurring a visual loss. This technique of transmitting rendered images instead of post-
processed data to the display system is called remote rendering. The much lower 
bandwidth and processing requirements of remote rendering allow for making the 
efficient use of remote compute resources by a much larger user base. 

Head-tracked immersive virtual environments, where the rendering is constantly 
updated according to the user’s current head position, require high frame rates and low 
reaction latencies to achieve a high sensation of presence and to avoid motion 
sickness [16]. These immersive visualisation environments provide more intuitive ways 
for specifying the location of regions of interest, cutting planes, seed points for particle 
traces, or reference points for iso surface extraction than desktop-based systems. We 
aim to enable users to experience exascale simulations in such immersive 
environments over the Internet. 

As the above example of the turbine simulation shows, transferring the post-processed 
simulation data is not viable. To improve frame rate and reaction times, we will try to 
decouple interaction from network latencies as far as possible, but still without requiring 
the transfer of huge data amounts to the client. Only extracted features from simulation 
results will be rendered either directly on the simulation host or on a remote 
visualisation cluster employing scalable methods. But “context information” such as 
essentially static geometry, as e. g. turbine shapes, interaction cues for the parameters 
controlling the visualisation algorithms applied on the visualisation cluster and menus 
will be rendered locally, at a rate independent of the remote rendering. As both 
remotely and locally rendered images are composited for the final display, we call this 
technique “remote hybrid rendering”. This compositing usually takes pixel depth into 
account, but it might also use opacity information. In order to account for view point 
changes that have occurred after the remote image was rendered, it can be reprojected 
before the compositing step. 

In the description of work [25], the remote hybrid rendering method was selected as the 
mechanism to make the interaction with exascale simulations possible across the 
Internet. 
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4 Limitations	  of	  Remote	  Hybrid	  Rendering	  
The incentive for employing remote hybrid rendering is to achieve low latency for 
interaction and especially in head-tracked environments – even when pure remote 
rendering is not possible because the network connection does not provide enough 
bandwidth or does not fulfil the latency requirements for immersive virtual 
environments. 

Hence it seems reasonable to sacrifice rendering accuracy for rendering speed in the 
general case in order to build a reactive interactive system. Cases where accuracy 
might not be able to be guaranteed include: 

• Transparency in rendered data without sufficient depth information makes it 
impossible to mix context information into the rendered image at the correct depth. 
This might be the case when dealing with ray castings from HemeLB, as the ray 
along which data was accumulated into a single colour value might be partially 
occluded by the local overlay geometry – and then it is impossible to recover the 
contribution from in front of the occluding geometry. 

• High latency makes it necessary to take recourse to image based methods, where 
2.5D data is warped according to changed view points in order to provide timely 
updates in a head tracked environment – but reprojected images are just an 
approximation of what would be visible from the updated POV. 

However, we will always allow the user to request a rendering with full accuracy, albeit 
with increased communication cost and at possibly non-interactive frame rates. 
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5 Considerations	  for	  Exascale	  Systems	  
The environments we try to adapt our remote hybrid visualisation system to comprise 
the following parts: 

• a remote exascale compute resource, 

• possibly a remote visualisation cluster, tightly coupled to the compute resource, 

• a local display system. 

 
Figure 1: Typical network topology for a remote visualization task 

In some cases, e. g. when there are GPUs inside each node of the exascale system, 
the compute system and the visualisation system might be the same resource and the 
GPUs might be used for both simulation and visualization. For all other cases, we 
assume a high-bandwidth low-latency link of a quality comparable to the exascale 
cluster interconnect between the compute and visualisation system. The network 
connection between the remote visualization cluster and the display system will provide 
a considerably lower bandwidth and higher latency. While it is desirable to have a 
higher quality link between the visualization and display systems, this will not always be 
possible in the case where remote hybrid rendering is used, as this connection will 
usually be across the Internet. 

The network infrastructure might allow for direct connections from each node of the 
visualisation cluster to each node of the display system, but in the general case the 
network topology or firewalls might prohibit this. Hence, our system is designed to cope 
with a point-to-point connection between the head node of the visualisation cluster and 
the head node of the local display system. 

The display system may be a traditional desktop computer. But the focus of this work is 
to enable access to remote exascale visualizations from within immersive projection 
systems. These are distinguished from desktop systems by: 

• input devices which record their position and orientation and input methods 
which exploit this additional information, 

• tracking of the user’s head position and continuously updating the rendered 
image according to the changing point of view (POV), 

• 3D stereoscopic imagery, where each eye is presented with an image that is 
adapted to its position, 

• multiple display surfaces, which are used for enhancing the resolution (e. g. in 
powerwalls, where several screens are tiled in one plane to form a larger 
display area) or to surround the viewer with images (e. g. in a CAVE [17], where 
the sides of a cube around the viewer are used as projection surfaces). 

Sort-last [18] has been selected [19] as the method for parallelising the render process. 
This means that flat pixel images as present in a framebuffer are the result of the 
rendering phase. The available data for the remote rendering solution is one colour 

exascale compute
resource

visualization
cluster

display
system
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value including opacity per pixel together possibly one depth value. Remote sort-last 
parallel rendering in a system with the described network topology provides the best 
performance if compositing happens on the visualisation cluster, as this saves 
bandwidth on the slower link between the visualisation and display systems. The 
requirement of a point-to-point connection between the head nodes of the visualisation 
cluster and the local display system makes it necessary that the composition of the 
rendered image data happens on the visualisation cluster. 

Integrating the remote rendering facility with the application might enable further 
optimisations, as the application has more knowledge about which data is important. 
The application might chose to update the significant regions more often or at lower 
compression level with higher image fidelity. However, this does not affect the protocol, 
if only it is capable of sending sub-regions or images at different compression levels. 
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6 Protocol	  Requirements	  
The purpose of the protocol for remote hybrid rendering is to define the communication 
between the visualisation cluster and the local display system. I. e., the protocol for 
hybrid remote rendering connects the rendering stage to the display stage of the post-
processing phase of the visualisation pipeline. The rendering stage employs parallel 
sort-last rendering and produces images with colour, opacity and depth information for 
each pixel. Hence, it is mostly independent of the applications that run remotely. 
Application independence is also a goal of this protocol, as it should be usable across 
multiple applications. Hence, we do not take solutions that require tight coupling with 
the application, such as IBRAC [20] or as implemented in Visapult [21] into account. 
Only the compositing stage and the handling of transparency in the renderer stage 
have an impact on the protocol requirements, as these determine what kind of image 
data has to be transmitted. 

The protocol merely defines how the data is to be communicated and interpreted. It 
does not define how the transmitted data is to be processed. In particular, even though 
a certain protocol might not have been developed for an algorithm that reprojects 
pixels, this does not mean that it is not applicable or extendable for that use case. 

we list how this requirement appears in the table at the end of the section discussing 
several virtual framebuffer protocols. 

 

6.1 Feature	  Requirements	  
Based on the planned use case of driving desktop systems, tiled display walls and 
CAVEs with the remote hybrid rendering protocol, the following input data has to be 
handled by the protocol: 

• keyboard input (keyboard input) 

• 2D mouse input (2D mouse input) 

• input from 6DOF devices, such as hand and head tracking devices or a space 
mouse (6DOF devices) 

• multi-touch input – the protocol must allow for tracking touches across multiple 
frames, as the client has more knowledge to achieve this more easily (multi-touch 
input) 

The topology of the envisioned compute and visualisation system means that it is more 
efficient that the compositing happens within the visualisation cluster. However, 
rendering context information locally requires a final compositing step in the display 
system. Depending on the context information to be shown and the rendered data, this 
might require depth (depth channel support) or opacity (alpha channel support) in 
addition to the colour information for each image pixel. And even with that information, 
it might only be possible to approximate the correct rendering. For those cases, an 
option to switch to slower but accurate rendering is necessary. This will require sending 
the context data overlay to the visualisation cluster before rendering each frame, such 
that it can be taken into account during rendering and compositing (image back 
channel). 

It is sufficient to serve one display system at a time. But such a system might possibly 
consist of several display surfaces (multi-surface support), each of which may be a 
stereographic display (3D stereo support). Updates to different display surfaces have to 
be synchronised in order to enable correct 3D stereoscopy across all surfaces (frame 
barrier support). This might incur longer latencies, when the images for all tiles are not 
available at the display client at the same time, but this synchronisation is vital for 
immersive display environments. 

The protocol should support disconnecting from a running visualisation session and 
reconnecting to it from a possibly different and differently configured (different screen 
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sizes, different number of screens, different screen orientations, different input 
modalities) display system (connection re-establishment). This also enables error 
resilience, as a session can be restarted after crashes. 

In order to handle common network configurations where it is not possible to establish 
arbitrary connections between nodes in the visualisation cluster to nodes in the display 
system, we require that communication be channelled through a render server head 
node and a display client head node. At the same time, this simplifies the protocol, as 
this means that redistributing events and pixel data is the head nodes’ task and beyond 
the scope of this protocol. This also ensures scalability of the protocol from desktop 
systems over powerwalls to multi-screen immersive environments with stereographic 
rendering. We consciously sacrifice the optimisation possibility of skipping a 
communication step by sending image tiles directly from the visualisation node that 
generates the image to the display node which is responsible to show this tile. 

 

6.2 Performance	  Requirements	  
The protocol should not generate significant communication overhead. Network round 
trips, e. g. waiting for acknowledgement of successful delivery of messages, have to be 
avoided in order to guarantee good performance (low overhead). User input data has 
to be prioritised over bulk data transfers, such as rendered pixels. 

Occasionally, not the full image plane is filled with rendered data. In these cases it 
should be possible to only send sub-images in order to save bandwidth (sub-image 
transmission). 

In order to be able to balance visual accuracy against performance, the protocol has to 
allow for different encodings and compression algorithms, and for accommodating 
changing network circumstances (bandwidth and latency variations), these have to be 
switchable at run-time (adaptability to network link quality). Compression should not 
visibly decrease image quality for both line drawings and images with huge amount of 
gradients, e. g. from volume rendering (high image fidelity). 

For local area connections, TCP based protocols have proven superior, whereas in 
wide area networks, UDP based protocols seem to have an advantage [4]. We expect 
the principal use case to be from within local area networks or within networks 
providing a similar connection quality, such that we prefer TCP over UDP. 

The protocol should not hinder the off-load of suitable tasks, like image compression or 
decompression, to accelerators, such as GPUs. This mostly concerns the image 
codecs to be used. Hence, we want to allow for the easy addition of new codecs. This 
also allows for using codecs adapted to the requirements of the processing of the 
transmitted data on the display system, e. g. when the 2.5D image is reprojected [22]. 
Additionally, this allows the system to profit easily from algorithmic improvements 
available in new video codecs, such as H.265 [23], as soon as GPGPU solutions for 
real-time compression at high resolutions are available. 

 

6.3 Security	  Requirements	  
As sensitive data might be transmitted, the users connecting to the remote rendering 
server have to be authenticated (user authentication). Sometimes, the input data might 
contain passwords and other secret information, so the channel from display system to 
render system should be encryptable (input data encryption). Because of the 
computational costs entailed by encrypting all the streamed image data, encryption of 
the channel from the render server to the display client is optional (image data 
encryption). 
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6.4 Other	  Requirements	  
An existing protocol based on an open standard would be preferable (standardized), 
but it has to be documented in order to be usable for our purposes (documented). 

The protocol should be extendable in order to accommodate future needs. It is of 
special importance that new image codecs can be integrated easily, in order to be able 
to make use of better image or video codecs (easy extensibility for new codecs), other 
algorithmic improvements or added hardware compression acceleration (extensibility). 

The protocol has to be interoperable in heterogeneous environments as arbitrary 
display systems might want to connect to the render server (platform independence). 

The protocol should keep the number of simultaneous network connections to a 
minimum; the establishment of a connection should be possible from client to server 
and vice versa in order to cater for all possible circumstances (firewall friendliness). 
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7 Existing	  Protocols	  	  
The main task of the protocol to be defined is transmitting remotely rendered pixel data 
to the display system. Hence, we only consider protocols where the primitives for 
transmitting image data are pixels, not higher-level primitives such as lines or glyphs 
from a font. Because of this, we do not take widely used protocols such as RDP 
(Remote Desktop Protocol, as used for Windows desktop sharing) [5] or X11 [6] into 
consideration.  

 

7.1 RFB	  (VNC)	  
The Remote Framebuffer Protocol (RFB) is widely used across many platforms as part 
of every VNC installation. The client sends keyboard and mouse input data to the 
server and requests updates to screen regions that it wishes to draw. The server 
responds with image tiles containing the requested regions, although the responses to 
several update requests can be coalesced into a single update. The protocol defines 
various encodings for pixel images, some of which reference previous framebuffer 
states. The server does not push updates to the client, but delivers updates only upon 
request from the client. The protocol specification is open [7] and includes a 
mechanism for extensions. There are many implementations available, both open and 
closed source, most of them are interoperable, but most often not at full performance. 
Because of its wide spread adoption, it has become a de facto standard. 

 

7.2 Independent	  Computing	  Architecture	  (ICA)	  
Independent Computing Architecture (ICA) [8] is a proprietary protocol developed by 
Citrix for more than 15 years [9]. Communication happens across a single TCP 
connection between client and server. ICA can send both pre-rendered pixel data as 
well as higher level drawing primitives. The level of compression is adapted 
dynamically to the connection quality. Transfers are prioritised into different channels in 
order to improve interactivity. To our knowledge, there is no documentation available 
and it is only implemented by Citrix. 
 

7.3 HP	  Remote	  Graphics	  Software	  	  
HP Remote Graphics Software [10] is a desktop sharing software based on a 
proprietary protocol, which transmits pixel data to the viewer. All data is sent encrypted. 
It uses a proprietary image codec named HP3, which encodes image areas differently 
based on its contents. This allows high fidelity for both line graphics and photographic 
images. We do not know of any documentation of this protocol or implementation by 
parties other than HP. 

 

7.4 NX	  
The NX [11] protocol is used to tunnel the full X11 protocol over low-bandwidth high-
latency links. For minimising client-server round trips, it employs server- and client-side 
proxies. Pixmaps (bitmap images) can be compressed using the lossy JPEG or with 
other algorithms. Large transfers are split into smaller pieces and are sent with a lower 
priority than smaller transfers, in order to increase interactivity. There are closed and 
open implementations of the protocol. 
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7.5 VirtualGL	  
The VirtualGL [12] protocol is only capable of transferring pixel data from server to 
client. It is used to augment the X11 protocol in order to off-load 3D rendering to the 
server and enable compressed transmission of the rendered images. It supports 
transmission of stereographic images. The protocol only seems to be used within the 
VirtualGL project, but it has on open-source implementation. 

 

7.6 THINC	  
THINC [13] is a system for desktop virtualisation, which intercepts the drawing 
commands at the device driver layer. The basic protocol has similar features as VNC’s 
RFB protocol, but it also supports an opacity channel. Later, support for some higher-
level primitives has been added in order to better support video playback [14]. The 
source code for THINC is available. 

 

7.7 SPICE	  
SPICE is a remote rendering protocol used commercially in Red Hat Enterprise 
Virtualization for Desktops [15]. Depending on the capabilities of the display client, 
more or less work is off-loaded to the server. The SPICE protocol is also implemented 
at the device driver level. For pixel transfers, it also supports an opacity channel. 
Several encodings are available. But it also supports higher-level primitives such as 
paths and glyphs. The SPICE X server implementation by Red Hat is available as open 
source. There is also in implementation for Windows. 

 

7.8 Appliance	  Link	  Protocol	  (Sun	  Ray)	  
The Appliance Link Protocol (ALP) is a proprietary protocol used for communication 
between the Sun Ray Server Software and a Sun Ray client. It uses a TCP connection 
for session communication and several UDP ports for graphics, audio and other binary 
data. The UDP port numbers are determined by the server and communicated to the 
client over TCP. It is optimised for WAN communication. To our knowledge, there is no 
documentation available and it is only implemented by Sun. 

 

7.9 Overview	  
A + means that the requirement is met, a – that not, +/- that is met partially (e. g. the 
documentation consists of an open source implementation). An empty field means that 
we do not possess this information, either because we did not find any documentation 
about this feature or did not look into the implementation to assess the availability of 
this feature. 

Requirement 
Importance RFB ICA HP NX Virtual 

GL 
THINC SPICE ALP 

Keyboard input Mandatory + + + + - + + + 

2D mouse input Mandatory + + + + - + + + 

6DOF devices Mandatory -    -    

Multi-touch input Mandatory -    -    

Alpha channel support Mandatory -    - + +  

Depth channel support Mandatory - - - - - - - - 

Multi-surface support Mandatory -        
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3D stereo support Mandatory -    +    

Frame barrier Mandatory -    +    

Image back channel High -    -    

Connection re-
establishment 

Mandatory +   + +    

Adaptability to network link 
quality 

High - +   -    

Low overhead Mandatory + +  + +    

Sub-image transmission Mandatory +    +    

High image fidelity Mandatory +/- + + +/- +/-    

User authentication Mandatory + +  + -    

Input data encryption High - + + + n/a    

Image data encryption Low -  + + -    

Extensibility Mandatory +    -    

Easy extensibility for new 
codecs 

Mandatory +    +    

Platform independence Mandatory + +  + +    

Firewall friendliness Mandatory + +/-  +/- +/-   - 

Standardized Low +/- - - - - - - - 

Documented Mandatory + - - +/- - +/- +/- - 
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8 Protocol	  Definition	  
8.1 Possible	  Choices	  
Based on the desire to maintain compatibility with existing software and the wish to use 
proven solutions when possible, our choices are, in order of most to least favourable: 

1. use an existing protocol that fulfils all the requirements as-is, 

2. use an existing protocol that provides an extension mechanism powerful enough to 
implement all necessary features, 

3. create a new protocol that builds upon an existing protocol, or 

4. define a new protocol entirely unrelated to existing protocols. 
We do not know of any protocol fulfilling all the requirements. Hence, the second option 
is our best choice. 

The RFB protocol is extensible and allows the incorporation of the required features 
with low overhead. By basing the remote hybrid rendering protocol on RFB, we allow 
for universal access to remote visualisation resources by enabling the huge multitude 
of existing VNC clients to interact with remote hybrid rendering servers, albeit with 
limited features and performance. Hence, we propose to extend the RFB protocol for 
our purposes. However, as we do not expect remote hybrid rendering clients to 
connect to plain VNC servers, we will not cater for that use case. 

Compared to SPICE, RFB has the advantage of being in wide-spread use, it is simpler 
to implement than NX, VirtualGL does not have the required features, THINC is still in 
the research stage, and all the other protocols would require reverse engineering. 
Hence, our choice is to extend the RFB protocol. The following section lays out the 
required extensions to RFB. 

 

8.2 RFB	  Protocol	  Extensions	  
In order to meet the requirements, we propose the following extensions to the RFB 
protocol. The byte level wire protocol will be determined when the extensions are 
implemented. 

8.2.1 3D	  Stereo	  Rendering	  
Additional image codecs for supplying images for both the left and right eye for one 
display surface will have to be implemented. 

8.2.2 Multiple	  Display	  Surfaces	  
Support for handling multiple display surfaces can be added by providing a coordinate 
mapping for each surface to the available 65536x65536 pixel coordinate space. The 
protocol has to be augmented for establishing this mapping. 

8.2.3 Frame	  Barrier	  
In order to advance the display to the next rendered frame synchronously on all display 
surfaces and for both the left and right eye, the server has to send an event when a 
frame is fully transmitted. This should include a frame counter and a time stamp. 

8.2.4 Multi-‐Touch	  Input	  Data	  
As the display client has the most knowledge about previous touch events, we make it 
the display client’s responsibility to track touches across frames. Hence, the protocol 
has to support transmitting this information as well as the current position and shape of 
touch points. The time stamp or frame counter of the image visible at the time of the 
input event should be included in the data returned to the server. RFB’s PointerEvent 
will serve as a template for this extension. 
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8.2.5 6DOF	  Input	  Device	  Data	  
The protocol shall allow for multiple 6DOF inputs and for defining roles for those, e.g., 
“head of primary viewer” or “dominant hand”. Information about additional input data 
such as button press states should be communicated together with the 6DOF data in 
order to be able to handle these at the correct position. The frame time stamp and 
counter should be returned as well. RFB’s PointerEvent will serve as a template for 
this extension. 

8.2.6 Server	  Controlled	  Framebuffer	  Updates	  
In order to minimise latency, rendered frames should be sent to the client as soon as 
they are available. The client has to be able to request continuous framebuffer updates 
from the server, i. e. the communication flow has to become more asynchronous than 
with standard RFB. For that purpose, TigerVNC [24] already has an extension 
containing an EnableContinuousUpdates message, this will be reused. 

8.2.7 Encodings	  for	  Depth	  and	  Transparency	  Data	  
The available image encodings shall be augmented by appropriate codecs for 
transparency and depth data, in order to composite context information display with the 
visualisation image on the client. 

8.2.8 Efficient	  Image	  Codecs	  
Compression quality can be enhanced by employing efficient image and video codecs. 
The available image codecs shall be augmented by video streaming codecs for which 
GPGPU implementations are available. 

8.2.9 Image	  Data	  Back-‐Channel	  
In order to be able to generate images where the context information is correctly 
composed with the visualisation data, the rendering of the context information together 
with corresponding depth and opacity data has to be made available to all visualisation 
nodes. The FrameBufferUpdate message, which is normally sent from server to client 
only, will be used for that purpose. 
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9 Final	  Remarks	  
In the requirements section and the definition of the protocol we listed features which 
are essential or desirable for such a protocol for remote hybrid rendering. But this does 
not mean that the prototype tool, which is to be implemented as part of deliverable 
5.3.3 and 5.3.5, will include all of them. We will select a subset of these features, which 
demonstrates the general feasibility of such a system. 
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