

Copyright © CRESTA Consortium Partners 2011

D5.3.3	
 –	
 Remote	
 hybrid	
 rendering:	

first	
 prototype	
 tool	

WP5:	
 User	
 tools	

Due date: M18

Submission date: 31/03/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation USTUTT

Version: 1.0

Status Final

Author(s): Martin Aumüller (USTUTT)

Reviewer(s) Achim Basermann (DLR), Alan Gray (UEDIN), Stefano Markidis
(KTH)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

	

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 28/02/2013 First version of the deliverable Martin Aumüller
(USTUTT)

0.2 06/03/2013
Describe installation and configuration,
add PDF version of documentation
extracted from source code

Martin Aumüller
(USTUTT), Achim
Basermann (DLR)

0.3 20/03/2013 Added usage example and explanation
of remote hybrid rendering

Martin Aumüller
(USTUTT), Alan Gray
(UEDIN), S. Markidis
(KTH)

1.0 20/03/2012 Final version of the deliverable Martin Aumüller
(USTUTT),

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 Executive	
 Summary	
 ...	
 1	

2	
 Remote	
 Hybrid	
 Rendering	
 ..	
 2	

3	
 First	
 Prototype	
 Implementation	
 of	
 Remote	
 Hybrid	
 Rendering	
 	
 3	

3.1	
 Implementation	
 Details	
 ..	
 3	

3.2	
 Obtaining	
 the	
 Software	
 ..	
 3	

4	
 Using	
 the	
 Software	
 ..	
 4	

4.1	
 Configuration	
 of	
 OpenCOVER	
 ...	
 4	

4.2	
 COVISE	
 ...	
 4	

4.3	
 Usage	
 Example	
 ...	
 5	

5	
 Changes	
 to	
 the	
 Protocol	
 Draft	
 ..	
 9	

6	
 Future	
 Work	
 ..	
 10	

7	
 References	
 ...	
 11	

	

	
 	

© CRESTA Consortium Partners 2011 Page 1 of 11

1 Executive	
 Summary	

This document accompanies the software delivered as the first prototype of remote
hybrid rendering.

Remote hybrid rendering is used to access remote exascale simulations from
immersive projection environments over the Internet. The display system may range
from a desktop computer to an immersive virtual environment such as a CAVE. The
display system forwards user input to the visualisation cluster, which uses highly
scalable methods to render images of the post-processed simulation data and returns
them to the display system. The display system enriches these with context information
before they are shown.

Together with the documentation extracted from the source code in the appendix, this
document describes the first prototype for remote hybrid rendering. It has been
implemented as plug-ins to the virtual reality renderer OpenCOVER [5] of the
visualization system COVISE [6]. The source code of these plug-ins is open and can
be retrieved from the CRESTA project subversion repository.

While implementing the prototype, some changes to the protocol draft for remote hybrid
rendering became necessary.

Future versions of the tool will be improved regarding bandwidth requirements and
scalability.

© CRESTA Consortium Partners 2011 Page 2 of 11

2 Remote	
 Hybrid	
 Rendering	

As transferring the results of a large-scale simulation to a local system for rendering is
not viable [2], one often takes recourse to remote rendering: instead of post-processed
data, rendered images are transmitted to the display. The very much lowered
bandwidth and processing requirements of remote rendering allow for making efficient
use of remote compute resources by a much larger user base.

Head-tracked immersive virtual environments, where the rendering is constantly
updated according to the user’s current head position, require high frame rates and low
reaction latencies to achieve a high sensation of presence and to avoid motion
sickness [3]. These immersive visualisation environments provide more intuitive ways
for specifying the location of regions of interest, cutting planes, seed points for particle
traces, or reference points for iso surface extraction than desktop-based systems. We
aim to enable users to experience exascale simulations in such immersive
environments over the Internet.

To improve frame rate and reaction times, we will try to decouple interaction from
network latencies as far as possible, but still without requiring to transfer huge data to
the client. Only extracted features from simulation results will be rendered either
directly on the simulation host or on a remote visualisation cluster employing scalable
methods. But “context information” such as essentially static geometry, as e. g. turbine
shapes, interaction cues for the parameters controlling the visualisation algorithms
applied on the visualisation cluster and menus will be rendered locally, at a rate
independent of the remote rendering. As both remotely and locally rendered images
are composited for the final display, we call this technique “remote hybrid rendering”.
This compositing usually takes pixel depth into account, but it might also use opacity
information.

Please refer to section 4.3 for an illustration of this process by a concrete example.

© CRESTA Consortium Partners 2011 Page 3 of 11

3 First	
 Prototype	
 Implementation	
 of	
 Remote	
 Hybrid	

Rendering	

3.1 Implementation	
 Details	

Both, the client (local) as well as the server (remote) side of the prototype for remote
hybrid rendering are implemented based on the same software: OpenCOVER [5], the
virtual reality renderer of the visualisation system COVISE [6].

The server has to load the VncServer plug-in, while the client needs the plug-in
VncClient. There are no other differences between server and client.

Please refer to the appendix with documentation extracted from the implementation for
further details.

3.1.1 VncServer	
 Plug-­‐in	

The VncServer plug-in for OpenCOVER provides a full implementation of a VNC
server: every VNC client can connect to it and interact with the visualization with
keyboard and mouse. For implementing this functionality, the library LibVNCServer [9]
has been used.

For remote hybrid rendering, it has been augmented with the following features:

• Transmission of depth data (z-buffer) from server to client for enabling
compositing with image contributions rendered on the client

• Reception of 3D viewer and pointer positions sent by client
• Reception of interaction data sent by client

These additional features can only be exploited by specially adapted VNC clients.

Colour image data is compressed using VNC’s possibilities, for compressing depth
data the snappy compressor library is used [8].

There are two methods for copying the image data from GPU to CPU: one that relies
purely on the OpenGL API call glReadPixels, and another one that employs CUDA for
the transfer from GPU to CPU memory. Especially on gaming class hardware, resorting
to CUDA provides better performance [7].

3.1.2 VncClient	
 Plug-­‐in	

The VncClient plug-in for OpenCOVER is such a specially adapted VNC client. It
retrieves both colour image and depth data from the server and renders these as an
additional node in its scenegraph. This achieves compositing of remote and local
content. During each frame, the current values of the matrices describing the positions
of the user’s head and hand are sent to the server. In addition, the results of user
interactions, e.g. new seed points for particle traces, are transmitted to the server.

3.2 Obtaining	
 the	
 Software	

The two plug-ins are available as open source, while OpenCOVER is not. For
compiling and using the plug-ins, at least Subversion revision 24237 of COVISE is
required, as implementing remote hybrid rendering necessitated changes to the plug-in
interface of OpenCOVER. Pre-compiled versions of COVISE for testing the software
can be downloaded from https://fs.hlrs.de/projects/covise/support/download/.

The source code of the software, i.e. the two plug-ins for OpenCOVER, can be
accessed using Subversion at
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp5/remoterendering/trunk. The
documentation can be extracted by running doxygen in the directory RHR/html.
Additionally, this document contains a PDF version of the extracted documentation in
the appendix.

© CRESTA Consortium Partners 2011 Page 4 of 11

4 Using	
 the	
 Software	

4.1 Configuration	
 of	
 OpenCOVER	

In order to use remote hybrid rendering, OpenCOVER has to be configured to load the
VncServer plug-in on the remote system. This is done by adding the tag <VncServer />
within <COVER><Plugin></Plugin></COVER> to the XML configuration file for
COVISE. Additionally, the TCP port, where the server waits for requests, can be
changed from its default 5900 by adding the attribute rfbPort=”portnumber”. In addition,
the precision of the transmitted depth values can be configured with the attribute
depthPrecision. The possible values are 8, 16, 24, and 32 for the corresponding
number of bits. The default is 16.

On the client system, OpenCOVER has to load the VncClient plug-in. Analogously, this
is achieved by adding the tag <VncClient />. In most cases, the attribute rfbHost has to
be given a value, in order to establish a connection to a VncServer plugin running on
another system but localhost. The attribute rfbPort can be used to change the TCP port
to which the client will try to connect.

More detailed information on configuring OpenCOVER in general is available in [1].

4.2 COVISE	

A typical visualization session with remote hybrid rendering will rely on the ability of
COVISE to distribute visualization modules across several systems. The compute and
data intense tasks will be handled on the powerful remote system, while the local
system will only be used to display menus or some static geometry to provide context
for the remote visualization results. Hence, the local system will be configured to run
only OpenCOVER and perhaps very few simple additional modules, while the remote
system will also run OpenCOVER as well as a larger amount of modules for analyzing
the data.

The next subsection describes such a work flow.

© CRESTA Consortium Partners 2011 Page 5 of 11

4.3 Usage	
 Example	

During the implementation of the prototype, a visualization of the simulated air flow
around an Audi A8 has been used. The data flow network of the post-processing
modules has been organized as depicted in Figure 1. Data flows from top, starting with
file input modules, to bottom. The modules depicted in light blue are executed on the
local (i.e. connected to the screen displaying the final image) system, while the
modules coloured in light green are executed on the remote system.

Figure 1: data flow network for remote hybrid rendering.

The remote system is used for post-processing the results of the flow simulation and
rendering the corresponding visualizations, such as stream lines as well as a plane
cutting through the flow field colourized according to air pressure. Figure 2 shows the
resulting image rendered by the modules labeled OpenCOVER_1 in Figure 1.

© CRESTA Consortium Partners 2011 Page 6 of 11

Figure 2: remotely rendered flow visualization.

The local system renders context information. This comprises the menu and interaction
elements, e.g. for moving the cutting plane. But also the static geometry of the car is
rendered locally. Figure 3 shows the corresponding image produced by the module
labeled OpenCOVER_2.

© CRESTA Consortium Partners 2011 Page 7 of 11

Figure 3: locally rendered context information.

In a final step before displaying the result, locally and remotely rendered images are
composited taking the distance to the viewer of the geometry object contributing the
pixel’s colour into account: the closer pixel of the two images is copied into the final
image, as shown in Figure 4.

© CRESTA Consortium Partners 2011 Page 8 of 11

Figure 4: final image resulting from compositing local and remote contributions.

Figure 1 does not show the VNC connection used for transmitting the image and user
interaction between the remote OpenCOVER_1 and the local OpenCOVER_2. This
has to be configured as described in section 4.1.

All the interactive features of the visualization system are available even though parts
of the rendering are delegated to a remote system. E.g. new seed points for stream
lines can be placed by interacting with the visualization. Only the fact that the remote
parts of the image are updated less frequently make this visualization distinguishable
from a purely local visualization.

© CRESTA Consortium Partners 2011 Page 9 of 11

5 Changes	
 to	
 the	
 Protocol	
 Draft	

While implementing the remote hybrid rendering server and client, it became apparent
that the protocol drafted in D5.3.2 [2] has to be revised:

• It is not necessary to send input data, such as from multi-touch or 6DOF
devices, from client to server. Instead, input events have to be processed by the
local client application.

• The state of the local application has to be synchronized with the remote
application, e. g. matrices describing the viewer’s position and the
transformation of objects have to be transmitted to the remote server, such that
locally rendered images and remote images can be matched during
compositing.

• Some operations have to be carried out collectively on the remote and local
renderer, e. g. the scene bounding sphere has to comprise bounding spheres
for both local and remote data, this requires support from the protocol.

• Application state has to be synchronized between client and server
applications, this requires application-specific protocol extensions. E. g., the
rendering and lighting modes configured on the client also have to be applied
on the client.

• Some actions have to be carried out cooperatively between client and server.
E.g. moving a cutting plane to another position requires sending the updated
parameters from client to server, where the application has to extract the
corresponding data and to update the rendered image. This requires protocol
support for sending the data describing the interaction capabilities from server
to client as well as for updating parameters from client to server.

© CRESTA Consortium Partners 2011 Page 10 of 11

6 Future	
 Work	

Future versions of the software will be improved regarding the following aspects:

• resizing of server framebuffer to match client window size,
• improved compression algorithms for depth data,
• integration with the prototype tool for massive parallel visualization that is

currently being developed,
• interoperability with server-side parallel rendering as described in D5.3.1 [4],
• reprojection of 2.5D data according to current view point,
• better synchronization of client and server state.

In addition, the prototype available now will be instrumented to obtain first performance
results and latency measurements. The results will be used for used for improving the
prototype for D5.3.4 (Remote hybrid rendering: revision of system, protocol definition).

© CRESTA Consortium Partners 2011 Page 11 of 11

7 References	

[1] Wössner, U. and Rainer, D.: COVISE Installation & Configuration, 2008,

https://fs.hlrs.de/projects/covise/doc/pdf/cover_inst_config.pdf.

[2] Aumüller, M.: CRESTA D5.3.2: Remote hybrid rendering: protocol definition for exascale
systems, 2012.

[3] M. Usoh, K. Arthur, M. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks, “Walking >
walking-in-place > flying, in virtual environments,” SIGGRAPH '99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, Jul. 1999.

[4] F. Niebling, J. Hetherington, and A. Basermann, “D5.3.1 – Remote hybrid rendering:
analysis and system definition for exascale systems,” CRESTA, Mar. 2012.

[5] U. Woessner, D. Rantzau, and D. Rainer, “Interactive Simulation Steering in VR and
Handling large Datasets,” IEEE Virtual Environments, Jan. 1998.

[6] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Woessner, “COVISE in the CUBE: An
Environment for Analyzing Large and Complex Simulation Data,” 2nd Workshop on
Immersive Projection Technology, 1998.

[7] F. Niebling, A. Kopecki, and M. U. Aumüller, “Integrated Simulation Workflows in Computer
Aided Engineering on HPC Resources”, International Conference on Parallel Computing,
2011, Ghent.

[8] Snappy – a fast compressor/decompressor [Online], Available:
https://code.google.com/p/snappy/, [Accessed: 23 Feb. 2013].

[9] LibVNCServer/LibVNCClient [Online], Available: http://libvncserver.sourceforge.net,
[Accessed: 20 Feb. 2013].

