

Copyright © CRESTA Consortium Partners 2011

D5.3.4	
 –	
 Remote	
 hybrid	
 rendering:	

revision	
 of	
 system	
 and	
 protocol	

definition	
 for	
 exascale	
 systems	

WP5:	
 User	
 tools	

Due date: M24

Submission date: 30/09/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organisation USTUTT

Version: 1.0

Status Final

Author(s): Martin Aumüller (USTUTT)

Reviewer(s) Tobias Hilbrich (TUD), David Lecomber (ASL)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 02/09/2013 First version of the deliverable Martin Aumüller
(USTUTT)

0.2 16/09/2013 Consider reviewer comments

Martin Aumüller
(USTUTT), Tobias
Hilbrich (TUD), David
Lecomber (ASL), Lorna
Smith (UEDIN)

1.0 17/09/2013 Final version for submission Martin Aumüller
(USTUTT)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ..	
 1	

2	
 INTRODUCTION	
 ...	
 Error!	
 Bookmark	
 not	
 defined.	

2.1	
 Glossary	
 of	
 Acronyms	
 ..	
 2	

3	
 Remote	
 Hybrid	
 Rendering	
 ...	
 3	

4	
 First	
 Prototype	
 Implementation	
 of	
 Remote	
 Hybrid	
 Rendering	
 ...	
 4	

4.1	
 Implementation	
 Details	
 ..	
 4	

4.1.1	
 VncServer	
 Plug-­‐in	
 ...	
 4	

4.1.2	
 VncClient	
 Plug-­‐in	
 ..	
 4	

4.2	
 Changes	
 since	
 D5.3.3	
 ..	
 4	

4.3	
 Depth	
 Image	
 Compression	
 Algorithm	
 ...	
 5	

4.3.1	
 GPU	
 Depth	
 Compression	
 ...	
 5	

4.3.2	
 CPU	
 Depth	
 Compression	
 ..	
 5	

4.4	
 Adaptivity	
 to	
 Available	
 Network	
 Bandwidth	
 and	
 Latency	
 ...	
 5	

5	
 First	
 Experience	
 with	
 Remote	
 Hybrid	
 Rendering	
 ...	
 6	

5.1	
 Choice	
 of	
 RFB	
 as	
 Base	
 Protocol	
 ...	
 6	

5.2	
 Implementation	
 of	
 Protocol	
 Draft	
 ..	
 6	

5.3	
 Performance	
 of	
 Prototype	
 ..	
 6	

5.3.1	
 Bandwidth	
 ..	
 6	

5.3.2	
 Frame	
 Rate	
 ...	
 6	

5.3.3	
 Latency	
 ...	
 6	

5.3.4	
 Compression	
 Ratio	
 and	
 Quality	
 ...	
 6	

5.3.5	
 Framebuffer	
 Read-­‐back	
 Performance	
 ..	
 7	

6	
 Revised	
 Protocol	
 ...	
 9	

6.1	
 Summary	
 of	
 Changes	
 to	
 Protocol	
 Drafted	
 in	
 D5.3.2	
 ...	
 9	

6.2	
 Revised	
 List	
 of	
 RFB	
 Protocol	
 Extensions	
 ..	
 9	

6.2.1	
 Multiple	
 Display	
 Surfaces	
 ...	
 9	

6.2.2	
 3D	
 Stereo	
 Rendering	
 ..	
 9	

6.2.3	
 Frame	
 Barrier	
 ...	
 9	

6.2.4	
 Server	
 Controlled	
 Framebuffer	
 Updates	
 ..	
 9	

6.2.5	
 Encodings	
 for	
 Depth	
 and	
 Transparency	
 Data	
 ..	
 10	

6.2.6	
 Efficient	
 Image	
 Codecs	
 ...	
 10	

6.2.7	
 Image	
 Data	
 Back-­‐Channel	
 ..	
 10	

7	
 Future	
 Work	
 ...	
 11	

8	
 References	
 ..	
 12	

	

Copyright © CRESTA Consortium Partners 2011

Index	
 of	
 Figures	

Figure 1: local context information (left), remote simulation data (middle), fused image
shown to the user (right). .. 3	

Figure 2: Reference image for depth buffer compression quality assessment. 7	

Figure 3: Depth buffer compression quality – left: original image, middle: with
compressed depth, right: differences highlighted in red. .. 7	

© CRESTA Consortium Partners 2011 Page 1 of 12

1 Executive	
 Summary	

Remote hybrid rendering (RHR) is developed to access remote exascale simulations
from immersive projection environments over the Internet. The display system may
range from a desktop computer to an immersive virtual environment such as a CAVE.
The display system forwards user input to the visualisation cluster, which uses highly
scalable methods to render images of the post-processed simulation data and returns
them to the display system. The display system enriches these with context information
before they are shown. This technique decouples interaction from rendering of large
data and is able to cope with growing data set sizes as the amount of data transfer
scales with the size of the output images.

Since D5.3.3, a prototype of RHR is available. This document describes its
implementation and the algorithms developed for this prototype, especially for
compressing depth images. Also, while implementing the prototype, some changes to
the protocol draft in D5.3.2 for RHR became necessary. This document lists the
necessary revisions. In addition, the performance of the prototype is examined.

Future versions of the RHR tool will be improved regarding bandwidth requirements
and scalability.

© CRESTA Consortium Partners 2011 Page 2 of 12

2 Introduction	

The structure of this document is as follows: Section 3 gives a short description of
remote hybrid rendering. The following section describes its prototypical
implementation. Section 5 presents the experience gained from implementing and
testing the prototype. The next section summarizes the changes required to the
protocol described in D5.3.2 and gives an updated list of RFB protocol extensions.
Section 7 concludes by listing the work that is planned for the future.

2.1 Glossary	
 of	
 Acronyms	

2.5D image data together with depth data
6DOF 6 degrees of freedom, usually position and orientation
API Application Programming Interface
CPU Central Processing Unit
CUDA Compute Unified Device Architecture (general purpose parallel GPU

programming platform)
Full HD 1920x1080 pixels
GPU Graphics Processing Unit
HD High Definition
JPEG Joint Photographic Experts Group
OpenGL Open Graphics Library (graphics rendering API)
PSNR Peak-Signal to Noise Ratio
QDR Quad-Data Rate (InfiniBand at 40 Gbit/s)
RFB Remote Framebuffer Protocol (used by VNC)
RGBA Red/Green/Blue/Alpha (framebuffer format for colour and opacity)
VNC Virtual Network Computing
WP Work Package

© CRESTA Consortium Partners 2011 Page 3 of 12

3 Remote	
 Hybrid	
 Rendering	

As transferring the results of a large-scale simulation to a local system for rendering is
not viable [1], one often takes recourse to remote rendering: instead of post-processed
data, rendered images are transmitted to the display. The highly lowered bandwidth
and processing requirements of remote rendering allow for making efficient use of
remote compute resources by a much larger user base.

Head-tracked immersive virtual environments, where the rendering is constantly
updated according to the user’s current head position, require high frame rates and low
reaction latencies to achieve a high sensation of presence and to avoid motion
sickness [2]. These immersive visualisation environments provide more intuitive ways
for specifying the location of regions of interest, cutting planes, seed points for particle
traces, or reference points for iso surface extraction than desktop-based systems. We
aim to enable users to experience exascale simulations in such immersive
environments over the Internet.

To improve frame rate and reaction times, we decouple interaction from network
latencies as far as possible, but still without requiring transferring huge data to the
client. Only extracted features from simulation results are rendered either directly on
the simulation host or on a remote visualisation cluster employing scalable methods.
But “context information” – essentially static geometry, as e. g. turbine shapes,
interaction cues for the parameters controlling the visualisation algorithms applied on
the visualisation cluster and menus – is rendered locally, at a rate independent of the
remote rendering. As both remotely and locally rendered images are composited for
the final display, we call this technique “remote hybrid rendering”. This compositing
usually takes pixel depth into account, but it might also use opacity information.

Figure 1 illustrates how the image presented to the user results from local context
information and remote simulation data.

Figure 1: Local context information (left), remote simulation data (middle), fused image shown to

the user (right).

© CRESTA Consortium Partners 2011 Page 4 of 12

4 First	
 Prototype	
 Implementation	
 of	
 Remote	
 Hybrid	

Rendering	

As part of D5.3.3 [10] a prototype demonstrating remote hybrid rendering (RHR) was
implemented.

4.1 Implementation	
 Details	

Both, the client (local) as well as the server (remote) side of the prototype for remote
hybrid rendering are implemented based on the same software: OpenCOVER [4], the
virtual reality renderer of the visualisation system COVISE [5].

The server has to load the VncServer plug-in, while the client needs the plug-in
VncClient. There are no other differences between server and client.

4.1.1 VncServer	
 Plug-­‐in	

The VncServer plug-in for OpenCOVER provides a full implementation of a VNC
server: every VNC client can connect to it and interact with the visualization with
keyboard and mouse. For implementing this functionality, the library LibVNCServer [8]
has been used.

For remote hybrid rendering, it has been augmented with the following features:

• Transmission of depth data (z-buffer) from server to client for enabling
compositing with image contributions rendered on the client

• Reception of 3D viewer and pointer positions sent by client
• Reception of interaction data sent by client

These additional features can only be exploited by specially adapted VNC clients.

Colour image data is compressed using VNC’s possibilities as implemented by
LibVNCServer [8]. For compressing depth data, the methods described in section 4.3
are employed.

There are two methods for copying the image data from GPU to CPU: one that relies
purely on the OpenGL API call glReadPixels, and another one that employs CUDA
for the transfer from GPU to CPU memory. Especially on gaming class hardware,
resorting to CUDA provides better performance [6]. Additionally, this allows for off-
loading parts of the compression algorithm to the GPU and reducing load on the PCI
Express bus.

4.1.2 VncClient	
 Plug-­‐in	

The VncClient plug-in for OpenCOVER is such a specially adapted VNC client. It
retrieves both colour image and depth data from the server and renders these as an
additional node in its scene graph. This achieves compositing of remote and local
content. During each frame, the current values of the matrices describing the positions
of the user’s head and hand are sent to the server. In addition, the results of user
interactions, e. g. new seed points for particle traces, are transmitted to the server.

4.2 Changes	
 since	
 D5.3.3	

Since D5.3.3 [10], a first prototype of the system for remote hybrid rendering is
available. The prototype submitted for D5.3.3 has been improved regarding the
following aspects:

• Server framebuffers are automatically resized to match client window size
• Compression algorithms for depth data have been improved and partially

implemented on the GPU
• Integration with the prototype tool Vistle for massive parallel visualization that is

currently being developed

Additionally, the prototype from D5.3.3 has also been instrumented for analysing run-
time and compression performance.

© CRESTA Consortium Partners 2011 Page 5 of 12

The reported performance and experience is based on this enhanced prototype.

4.3 Depth	
 Image	
 Compression	
 Algorithm	

Most colour image codecs are not viable for depth image compression, as most of
these handle only channels with 8 bit precision. It has been tried to adapt colour image
codecs to depth compression, albeit with limited success [11]. Implementations of
algorithms dedicated to depth image compression do not seem to be widely available.
Hence, we implemented our own.

Our implementation is based on two orthogonal components: a lossy compression
implemented on the GPU followed by a lossless entropy encoding on the CPU.

Due to the limit of one month on the implementation time, we did not consider
developing a compression algorithm taking inter-frame coherence into account. But we
expect huge improvements in compression ratio from such an approach.

4.3.1 GPU	
 Depth	
 Compression	

A novel algorithm for depth data compression has been developed. Similar to S3TC
texture compression [9], the algorithm operates independently on image patches
consisting of 4x4 pixels. For each patch, we store two depth values, the minimum and
maximum within the patch. For each pixel in a patch we store a weight for interpolating
between the two stored depth values. In addition, for the common case where within a
patch the background (maximum framebuffer) depth occurs, an optimization is
implemented: if the maximum depth value is stored first, the highest interpolation
weight is interpreted as background depth. Hence, the algorithm is able to resolve
background and two depth planes.

The regular data pattern allows for an easy and efficient parallel implementation on
GPUs, the lowered data rate reduces the transfer overhead from GPU to CPU.

Compression ratio and quality depend on the precision of the original image and the
precisions of the stored depth values and interpolation weights.

4.3.2 CPU	
 Depth	
 Compression	

Orthogonally to the lossy GPU based depth compression, entropy based compression
is employed for lossless depth compression on the CPU. Because of its high
compression speed, the snappy compressor library [7] has been selected for this
purpose. The implementation of the lossy GPU depth compression tries to ensure good
compression ratios by emitting a uniform pattern for patches consisting of only the
background depth: the compressed data for such a patch has all bits set.

4.4 Adaptivity	
 to	
 Available	
 Network	
 Bandwidth	
 and	
 Latency	

Adapting to network latency is not a necessity for RHR, as RHR naturally hides
network latency by decoupling interaction from receiving the remotely generated
images.

Adapting to limited network bandwidth is easily possible by rendering the remote image
with decreased resolution. We tested our implementation with such a set up
successfully, but we do not have mechanisms for dynamic resolution changes in place.

© CRESTA Consortium Partners 2011 Page 6 of 12

5 First	
 Experience	
 with	
 Remote	
 Hybrid	
 Rendering	

In order to allow for performance measurements, the improved prototype has been
instrumented to collect timing information, compression ratios and image quality
metrics.

5.1 Choice	
 of	
 RFB	
 as	
 Base	
 Protocol	

Due to limited commonalities between VNC and remote hybrid rendering, the choice of
RFB – the protocol employed by VNC – as base protocol did not allow for much
protocol reuse. It still provides backward compatibility with regular VNC clients. Also,
RFB has the advantage of inducing low overhead and providing a mechanism for
protocol extensions. In addition, LibVNCServer [8] provided an extensible
implementation of the RFB protocol on which we could build as well as an established
means for transferring colour data.

5.2 Implementation	
 of	
 Protocol	
 Draft	

During the implementation of the protocol draft, we noticed that remote hybrid
rendering is very well suited for the use case of in-situ visualization: the largest part of
the application logic of the display program resides on the computer receiving user
input, and the remote application may be a rather dumb render server that receives
only updated view points from the client. This allows for easy integration with simulation
codes that already have their own renderer. Also, while we implemented the prototype
based on the same local and remote application, this is not a necessity.

5.3 Performance	
 of	
 Prototype	

5.3.1 Bandwidth	

With LibVNCServer’s default of using JPEG compression for colour images,
transmitting one Full HD frame (1920x1080 pixels) required about 1 MB for both colour
and depth images.

5.3.2 Frame	
 Rate	

Framerate has been measured for Full HD frames when transmitting from a system
with a Quadro 5800 GPU to another over a QDR Infiniband network. The images
received from the remote server have been updated at a rate of about 20 Hz, while the
local renderer updated its contents at a rate of ca. 50 Hz. This shows that the goal of
decoupling local and remote update rates has been achieved.

The low frame rate of 20 Hz is not due to the required bandwidth of about 20 MB/s, but
mostly due to the slow depth buffer read-back performance of about 40 Hz on the
Quadro 5800.

5.3.3 Latency	

In the setting of 5.3.2, latency has been measured to increasy by 0.1 s for a Full HD
frame.

5.3.4 Compression	
 Ratio	
 and	
 Quality	

The implementation of the prototype is based on LibVNCServer [9]. Colour image
transfer relies solely on what is provided by LibVNCServer. Support for depth was
implemented as a VNC extension.

© CRESTA Consortium Partners 2011 Page 7 of 12

Figure 2: Reference image for depth buffer compression quality assessment.

bits/pixel 2 3 4 6 8
24 bits

min/max
compressed size 20.8% 25.0% 29.1% 37.4% 45.8%

PSNR (dB) 67.7 69.4 77.6 86.6 97.4
Table 1: Compression ratio and quality for lossy GPU based depth compression for the image in

Figure 2.
Table 1 shows the compression ratios and qualities for the 24 bit depth image
corresponding to the colour image shown in Figure 2. The peak-signal to noise ratio
(PSNR) is relatively high compared to codecs for colour images. But the visual errors
resulting from wrong reconstructed depth values differ from the errors in colour image
compression: based on the depth value of a pixel, its colour value is chosen from either
the remote colour image or the local rendering. Hence, a pixel is either displayed
correctly or in a completely unrelated colour. As these artefacts can appear and
disappear from frame to frame, they might be more noticeable as the PSNR suggests.
Figure 3 illustrates these artefacts.

Figure 3: Depth buffer compression quality – left: original image, middle: with compressed depth,
right: differences highlighted in red.

5.3.5 Framebuffer	
 Read-­‐back	
 Performance	

A crucial component of the remote hybrid rendering system is retrieving the image data
from the GPU framebuffer. As Table 2 shows, depending on the model of the GPU,
achieving good read-back performance requires different methods.

Whereas OpenGL colour read-back (RGBA (GL)) is fast on Quadro GPUs, it is slow on
GeForce GPUs. However, when transferring the OpenGL colour framebuffer to CUDA
via CUDA-OpenGL-interoperability and using cudaMemcpy to retrieve the image (RGBA
(CUDA)), the GeForce card achieves best performance, while the older Quadro model
falls behind.

OpenGL depth read-back on Quadro GPUs is also fast, and also slow on GeForce
GPUs (Depth (GL)). However, transferring the depth buffer from OpenGL to CUDA
(Depth (CUDA)) is also slow, such that this yields bad performance on all GPUs.

© CRESTA Consortium Partners 2011 Page 8 of 12

Performing the lossy depth compression on the GPU (Depth (CUDA compressed))
entails a slightly reduced read-back rate, however a subsequent entropy compression
step has to work on considerably less data.

Depth read-back is uniformly fastest when the z-buffer is copied to the colour
framebuffer using the NV_copy_depth_to_color OpenGL extension and then read
back as RGB data (Depth (as colour, GL), (as colour, CUDA), (col. CUDA comp.)).

From a performance point of view, the preferable approach in most cases is to copy the
depth to the colour buffer and employ lossy GPU compression before transferring the
data to the CPU.

MPix/s Quadro 5800 Quadro 6000 Quadro K5000
GeForce

GTX 680

RGBA (GL) 470 530 470 150

RGBA (CUDA) 131 570 560 710

Depth (GL) 380 460 395 127

Depth (CUDA) 112 202 159 97

Depth (CUDA compressed) 86 187 149 92

Depth (as colour, GL) 560 740 690 280

Depth (as colour, CUDA) 124 530 550 670

Depth (col., CUDA comp.) 93 420 443 618

Table 2: Framebuffer read-back performance in million pixels per second.

© CRESTA Consortium Partners 2011 Page 9 of 12

6 Revised	
 Protocol	

6.1 Summary	
 of	
 Changes	
 to	
 Protocol	
 Drafted	
 in	
 D5.3.2	

While implementing the remote hybrid rendering server and client, it became apparent
that the protocol drafted in D5.3.2 [1] has to be revised:

• It is not necessary to send input data, such as from multi-touch or 6DOF
devices, from client to server. Instead, input events have to be processed by the
local client application.

• Instead, the state of the local application has to be synchronized with the
remote application, e. g. matrices describing the viewer’s position and the
transformation of objects have to be transmitted to the remote server, such that
locally rendered images and remote images can be matched during
compositing.

• Some operations have to be carried out collectively on the remote and local
renderer, e. g. the scene bounding sphere has to comprise bounding spheres
for both local and remote data, this requires support from the protocol.

• Application state has to be synchronized between client and server
applications, this requires application-specific protocol extensions. E. g., the
rendering and lighting modes configured on the client also have to be applied
on the server.

• Some actions have to be carried out cooperatively between client and server.
E.g. moving a cutting plane to another position requires sending the updated
parameters from client to server, where the application has to extract the
corresponding data and to update the rendered image. This requires protocol
support for sending the data describing the interaction capabilities from server
to client as well as for updating parameters from client to server.

6.2 Revised	
 List	
 of	
 RFB	
 Protocol	
 Extensions	

Based on the requirements established in D5.3.2 and the implementation experience,
we revised the extensions to the RFB protocol that are required for remote hybrid
rendering. Some of them are already implemented in the RHR prototype.

6.2.1 Multiple	
 Display	
 Surfaces	

Support for handling multiple display surfaces can be added by providing a coordinate
mapping for each surface to the available 65536x65536 pixel coordinate space. The
protocol has to be augmented for establishing this mapping.

6.2.2 3D	
 Stereo	
 Rendering	

Additional image codecs for supplying images for both the left and right eye for one
display surface will have to be implemented. If it is not necessary to exploit the
coherence between the images for the left and right eye for better compression
efficiency, then it is sufficient to provide different coordinate mappings for both eyes.

6.2.3 Frame	
 Barrier	

In order to advance the display to the next rendered frame synchronously on all display
surfaces and for both the left and right eye, the server has to send an event when a
frame is fully transmitted. This should include a frame counter and a time stamp.

6.2.4 Server	
 Controlled	
 Framebuffer	
 Updates	

In order to minimise latency, rendered frames should be sent to the client as soon as
they are available. The client has to be able to request continuous framebuffer updates
from the server, i. e. the communication flow has to become more asynchronous than
with standard RFB. For that purpose, TigerVNC [12] already has an extension
containing an EnableContinuousUpdates message, this will be reused.

© CRESTA Consortium Partners 2011 Page 10 of 12

6.2.5 Encodings	
 for	
 Depth	
 and	
 Transparency	
 Data	

The available image encodings shall be augmented by appropriate codecs for
transparency and depth data, in order to composite context information display with the
visualisation image on the client.

6.2.6 Efficient	
 Image	
 Codecs	

Compression quality can be enhanced by employing efficient image and video codecs.
The available image codecs shall be augmented by video streaming codecs for which
GPGPU implementations are available.

6.2.7 Image	
 Data	
 Back-­‐Channel	

In order to be able to generate images where the context information is correctly
composed with the visualisation data, the rendering of the context information together
with corresponding depth and opacity data has to be made available to all visualisation
nodes. The FrameBufferUpdate message, which is normally sent from server to client
only, will be used for that purpose.

© CRESTA Consortium Partners 2011 Page 11 of 12

7 Future	
 Work	

Future versions of the software will be improved regarding the following aspects:

• Improved compression algorithms for depth data
• Selective updates for depth data
• Interoperability with server-side parallel rendering as described in D5.3.1 [3]
• Reprojection of 2.5D data according to current view point
• Better synchronization of client and server state

While the first prototype of remote hybrid rendering has been implemented within
COVISE and OpenCOVER, the light-weight nature of the server side makes it easy to
interoperate with other applications: the main requirements are that the remote
application be able to accept camera parameters (position, orientation, field of view and
off-center projection) and to generate 2.5D images (colour and depth). A simulation
code with an integrated ray-tracer, such as HemeLB [13], meets these requirements.
But as OpenFOAM [14] is our main test-bed for the development of the massively
parallel visualisation tool Vistle, we aim to demonstrate the applicability of RHR by
coupling to a running OpenFOAM simulation and observing it online.

© CRESTA Consortium Partners 2011 Page 12 of 12

8 References	

[1] M. Aumüller: CRESTA D5.3.2: Remote hybrid rendering: protocol definition for exascale

systems, 2012.

[2] M. Usoh, K. Arthur, M. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks, “Walking >
walking-in-place > flying, in virtual environments,” SIGGRAPH '99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, Jul. 1999.

[3] F. Niebling, J. Hetherington, and A. Basermann, “D5.3.1 – Remote hybrid rendering:
analysis and system definition for exascale systems,” CRESTA, Mar. 2012.

[4] U. Woessner, D. Rantzau, and D. Rainer, “Interactive Simulation Steering in VR and
Handling large Datasets,” IEEE Virtual Environments, Jan. 1998.

[5] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Woessner, “COVISE in the CUBE: An
Environment for Analyzing Large and Complex Simulation Data,” 2nd Workshop on
Immersive Projection Technology, 1998.

[6] F. Niebling, A. Kopecki, and M. U. Aumüller, “Integrated Simulation Workflows in Computer
Aided Engineering on HPC Resources”, International Conference on Parallel Computing,
2011, Ghent.

[7] Snappy – a fast compressor/decompressor [Online], Available:
https://code.google.com/p/snappy/, [Accessed: 23 Feb. 2013].

[8] LibVNCServer/LibVNCClient [Online], Available: http://libvncserver.sourceforge.net,
[Accessed: 20 Feb. 2013].

[9] K. I. Iourcha, K. S. Nayak, and Z. Hong, “Fixed-rate block-based image compression with
inferred pixel values,” 2003.

[10] M. Aumüller: CRESTA D5.3.3: Remote hybrid rendering: first prototype tool, 2013.

[11] F. Pece, J. Kautz, and T. Weyrich, Adapting Standard Video Codecs for Depth Streaming.
The Eurographics Association, 2011, pp. 59–66.

[12] “The RFB Protocol,” tigervnc.org. [Online]. Available: http://www.tigervnc.org/cgi-
bin/rfbproto. [Accessed: 15-Oct-2012].

[13] M. D. Mazzeo and P. V. Coveney, “HemeLB: A high performance parallel lattice-Boltzmann
code for large scale fluid flow in complex geometries,” Computer Physics Communications,
vol. 178, no. 12, pp. 894–914, Jun. 2008.

[14] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to computational
continuum mechanics using object-oriented techniques,” Computers in physics, 1998.

