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1 Executive	
  Summary	
  
Remote hybrid rendering (RHR) is developed to access remote exascale simulations 
from immersive projection environments over the Internet. The display system may 
range from a desktop computer to an immersive virtual environment such as a CAVE. 
The display system forwards user input to the visualisation cluster, which uses highly 
scalable methods to render images of the post-processed simulation data and returns 
them to the display system. The display system enriches these with context information 
before they are shown. This technique decouples interaction from rendering of large 
data and is able to cope with growing data set sizes as the amount of data transfer 
scales with the size of the output images. 

Since D5.3.3, a prototype of RHR is available. This document describes its 
implementation and the algorithms developed for this prototype, especially for 
compressing depth images. Also, while implementing the prototype, some changes to 
the protocol draft in D5.3.2 for RHR became necessary. This document lists the 
necessary revisions. In addition, the performance of the prototype is examined. 

Future versions of the RHR tool will be improved regarding bandwidth requirements 
and scalability. 
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2 Introduction	
  
The structure of this document is as follows: Section 3 gives a short description of 
remote hybrid rendering. The following section describes its prototypical 
implementation. Section 5 presents the experience gained from implementing and 
testing the prototype. The next section summarizes the changes required to the 
protocol described in D5.3.2 and gives an updated list of RFB protocol extensions. 
Section 7 concludes by listing the work that is planned for the future. 

2.1 Glossary	
  of	
  Acronyms	
  
2.5D image data together with depth data 
6DOF 6 degrees of freedom, usually position and orientation 
API Application Programming Interface 
CPU Central Processing Unit 
CUDA Compute Unified Device Architecture (general purpose parallel GPU 

programming platform) 
Full HD 1920x1080 pixels 
GPU Graphics Processing Unit 
HD High Definition 
JPEG Joint Photographic Experts Group 
OpenGL Open Graphics Library (graphics rendering API) 
PSNR Peak-Signal to Noise Ratio 
QDR Quad-Data Rate (InfiniBand at 40 Gbit/s) 
RFB Remote Framebuffer Protocol (used by VNC) 
RGBA Red/Green/Blue/Alpha (framebuffer format for colour and opacity) 
VNC Virtual Network Computing 
WP Work Package 
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3 Remote	
  Hybrid	
  Rendering	
  
As transferring the results of a large-scale simulation to a local system for rendering is 
not viable [1], one often takes recourse to remote rendering: instead of post-processed 
data, rendered images are transmitted to the display. The highly lowered bandwidth 
and processing requirements of remote rendering allow for making efficient use of 
remote compute resources by a much larger user base. 

Head-tracked immersive virtual environments, where the rendering is constantly 
updated according to the user’s current head position, require high frame rates and low 
reaction latencies to achieve a high sensation of presence and to avoid motion 
sickness [2]. These immersive visualisation environments provide more intuitive ways 
for specifying the location of regions of interest, cutting planes, seed points for particle 
traces, or reference points for iso surface extraction than desktop-based systems. We 
aim to enable users to experience exascale simulations in such immersive 
environments over the Internet. 

To improve frame rate and reaction times, we decouple interaction from network 
latencies as far as possible, but still without requiring transferring huge data to the 
client. Only extracted features from simulation results are rendered either directly on 
the simulation host or on a remote visualisation cluster employing scalable methods. 
But “context information” – essentially static geometry, as e. g. turbine shapes, 
interaction cues for the parameters controlling the visualisation algorithms applied on 
the visualisation cluster and menus – is rendered locally, at a rate independent of the 
remote rendering. As both remotely and locally rendered images are composited for 
the final display, we call this technique “remote hybrid rendering”. This compositing 
usually takes pixel depth into account, but it might also use opacity information. 

Figure 1 illustrates how the image presented to the user results from local context 
information and remote simulation data. 

   
Figure 1: Local context information (left), remote simulation data (middle), fused image shown to 

the user (right). 
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4 First	
   Prototype	
   Implementation	
   of	
   Remote	
   Hybrid	
  
Rendering	
  

As part of D5.3.3 [10] a prototype demonstrating remote hybrid rendering (RHR) was 
implemented. 

4.1 Implementation	
  Details	
  
Both, the client (local) as well as the server (remote) side of the prototype for remote 
hybrid rendering are implemented based on the same software: OpenCOVER [4], the 
virtual reality renderer of the visualisation system COVISE [5]. 

The server has to load the VncServer plug-in, while the client needs the plug-in 
VncClient. There are no other differences between server and client. 

4.1.1 VncServer	
  Plug-­‐in	
  
The VncServer plug-in for OpenCOVER provides a full implementation of a VNC 
server: every VNC client can connect to it and interact with the visualization with 
keyboard and mouse. For implementing this functionality, the library LibVNCServer [8] 
has been used. 

For remote hybrid rendering, it has been augmented with the following features: 

• Transmission of depth data (z-buffer) from server to client for enabling 
compositing with image contributions rendered on the client 

• Reception of 3D viewer and pointer positions sent by client 
• Reception of interaction data sent by client 

These additional features can only be exploited by specially adapted VNC clients. 

Colour image data is compressed using VNC’s possibilities as implemented by 
LibVNCServer [8]. For compressing depth data, the methods described in section 4.3 
are employed. 

There are two methods for copying the image data from GPU to CPU: one that relies 
purely on the OpenGL API call glReadPixels, and another one that employs CUDA 
for the transfer from GPU to CPU memory. Especially on gaming class hardware, 
resorting to CUDA provides better performance [6]. Additionally, this allows for off-
loading parts of the compression algorithm to the GPU and reducing load on the PCI 
Express bus. 

4.1.2 VncClient	
  Plug-­‐in	
  
The VncClient plug-in for OpenCOVER is such a specially adapted VNC client. It 
retrieves both colour image and depth data from the server and renders these as an 
additional node in its scene graph. This achieves compositing of remote and local 
content. During each frame, the current values of the matrices describing the positions 
of the user’s head and hand are sent to the server. In addition, the results of user 
interactions, e. g. new seed points for particle traces, are transmitted to the server. 

4.2 Changes	
  since	
  D5.3.3	
  
Since D5.3.3 [10], a first prototype of the system for remote hybrid rendering is 
available. The prototype submitted for D5.3.3 has been improved regarding the 
following aspects: 

• Server framebuffers are automatically resized to match client window size 
• Compression algorithms for depth data have been improved and partially 

implemented on the GPU 
• Integration with the prototype tool Vistle for massive parallel visualization that is 

currently being developed 

Additionally, the prototype from D5.3.3 has also been instrumented for analysing run-
time and compression performance. 
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The reported performance and experience is based on this enhanced prototype. 

4.3 Depth	
  Image	
  Compression	
  Algorithm	
  
Most colour image codecs are not viable for depth image compression, as most of 
these handle only channels with 8 bit precision. It has been tried to adapt colour image 
codecs to depth compression, albeit with limited success [11]. Implementations of 
algorithms dedicated to depth image compression do not seem to be widely available. 
Hence, we implemented our own. 

Our implementation is based on two orthogonal components: a lossy compression 
implemented on the GPU followed by a lossless entropy encoding on the CPU. 

Due to the limit of one month on the implementation time, we did not consider 
developing a compression algorithm taking inter-frame coherence into account. But we 
expect huge improvements in compression ratio from such an approach. 

4.3.1 GPU	
  Depth	
  Compression	
  
A novel algorithm for depth data compression has been developed. Similar to S3TC 
texture compression [9], the algorithm operates independently on image patches 
consisting of 4x4 pixels. For each patch, we store two depth values, the minimum and 
maximum within the patch. For each pixel in a patch we store a weight for interpolating 
between the two stored depth values. In addition, for the common case where within a 
patch the background (maximum framebuffer) depth occurs, an optimization is 
implemented: if the maximum depth value is stored first, the highest interpolation 
weight is interpreted as background depth. Hence, the algorithm is able to resolve 
background and two depth planes. 

The regular data pattern allows for an easy and efficient parallel implementation on 
GPUs, the lowered data rate reduces the transfer overhead from GPU to CPU. 

Compression ratio and quality depend on the precision of the original image and the 
precisions of the stored depth values and interpolation weights. 

4.3.2 CPU	
  Depth	
  Compression	
  
Orthogonally to the lossy GPU based depth compression, entropy based compression 
is employed for lossless depth compression on the CPU. Because of its high 
compression speed, the snappy compressor library [7] has been selected for this 
purpose. The implementation of the lossy GPU depth compression tries to ensure good 
compression ratios by emitting a uniform pattern for patches consisting of only the 
background depth: the compressed data for such a patch has all bits set. 

4.4 Adaptivity	
  to	
  Available	
  Network	
  Bandwidth	
  and	
  Latency	
  
Adapting to network latency is not a necessity for RHR, as RHR naturally hides 
network latency by decoupling interaction from receiving the remotely generated 
images. 

Adapting to limited network bandwidth is easily possible by rendering the remote image 
with decreased resolution. We tested our implementation with such a set up 
successfully, but we do not have mechanisms for dynamic resolution changes in place. 
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5 First	
  Experience	
  with	
  Remote	
  Hybrid	
  Rendering	
  
In order to allow for performance measurements, the improved prototype has been 
instrumented to collect timing information, compression ratios and image quality 
metrics. 

5.1 Choice	
  of	
  RFB	
  as	
  Base	
  Protocol	
  
Due to limited commonalities between VNC and remote hybrid rendering, the choice of 
RFB – the protocol employed by VNC – as base protocol did not allow for much 
protocol reuse. It still provides backward compatibility with regular VNC clients. Also, 
RFB has the advantage of inducing low overhead and providing a mechanism for 
protocol extensions. In addition, LibVNCServer [8] provided an extensible 
implementation of the RFB protocol on which we could build as well as an established 
means for transferring colour data. 

5.2 Implementation	
  of	
  Protocol	
  Draft	
  
During the implementation of the protocol draft, we noticed that remote hybrid 
rendering is very well suited for the use case of in-situ visualization: the largest part of 
the application logic of the display program resides on the computer receiving user 
input, and the remote application may be a rather dumb render server that receives 
only updated view points from the client. This allows for easy integration with simulation 
codes that already have their own renderer. Also, while we implemented the prototype 
based on the same local and remote application, this is not a necessity. 

5.3 Performance	
  of	
  Prototype	
  
5.3.1 Bandwidth	
  
With LibVNCServer’s default of using JPEG compression for colour images, 
transmitting one Full HD frame (1920x1080 pixels) required about 1 MB for both colour 
and depth images. 

5.3.2 Frame	
  Rate	
  
Framerate has been measured for Full HD frames when transmitting from a system 
with a Quadro 5800 GPU to another over a QDR Infiniband network. The images 
received from the remote server have been updated at a rate of about 20 Hz, while the 
local renderer updated its contents at a rate of ca. 50 Hz. This shows that the goal of 
decoupling local and remote update rates has been achieved. 

The low frame rate of 20 Hz is not due to the required bandwidth of about 20 MB/s, but 
mostly due to the slow depth buffer read-back performance of about 40 Hz on the 
Quadro 5800. 

5.3.3 Latency	
  
In the setting of 5.3.2, latency has been measured to increasy by 0.1 s for a Full HD 
frame. 

5.3.4 Compression	
  Ratio	
  and	
  Quality	
  
The implementation of the prototype is based on LibVNCServer [9]. Colour image 
transfer relies solely on what is provided by LibVNCServer. Support for depth was 
implemented as a VNC extension. 
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Figure 2: Reference image for depth buffer compression quality assessment. 

bits/pixel 2 3 4 6 8 
24 bits 

min/max 
compressed size 20.8% 25.0% 29.1% 37.4% 45.8% 

PSNR (dB) 67.7 69.4 77.6 86.6 97.4 
Table 1: Compression ratio and quality for lossy GPU based depth compression for the image in 

Figure 2. 
Table 1 shows the compression ratios and qualities for the 24 bit depth image 
corresponding to the colour image shown in Figure 2. The peak-signal to noise ratio 
(PSNR) is relatively high compared to codecs for colour images. But the visual errors 
resulting from wrong reconstructed depth values differ from the errors in colour image 
compression: based on the depth value of a pixel, its colour value is chosen from either 
the remote colour image or the local rendering. Hence, a pixel is either displayed 
correctly or in a completely unrelated colour. As these artefacts can appear and 
disappear from frame to frame, they might be more noticeable as the PSNR suggests. 
Figure 3 illustrates these artefacts. 

   

Figure 3: Depth buffer compression quality – left: original image, middle: with compressed depth, 
right: differences highlighted in red. 

 

5.3.5 Framebuffer	
  Read-­‐back	
  Performance	
  
A crucial component of the remote hybrid rendering system is retrieving the image data 
from the GPU framebuffer. As Table 2 shows, depending on the model of the GPU, 
achieving good read-back performance requires different methods. 

Whereas OpenGL colour read-back (RGBA (GL)) is fast on Quadro GPUs, it is slow on 
GeForce GPUs. However, when transferring the OpenGL colour framebuffer to CUDA 
via CUDA-OpenGL-interoperability and using cudaMemcpy to retrieve the image (RGBA 
(CUDA)), the GeForce card achieves best performance, while the older Quadro model 
falls behind. 

OpenGL depth read-back on Quadro GPUs is also fast, and also slow on GeForce 
GPUs (Depth (GL)). However, transferring the depth buffer from OpenGL to CUDA 
(Depth (CUDA)) is also slow, such that this yields bad performance on all GPUs. 
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Performing the lossy depth compression on the GPU (Depth (CUDA compressed)) 
entails a slightly reduced read-back rate, however a subsequent entropy compression 
step has to work on considerably less data. 

Depth read-back is uniformly fastest when the z-buffer is copied to the colour 
framebuffer using the NV_copy_depth_to_color OpenGL extension and then read 
back as RGB data (Depth (as colour, GL), (as colour, CUDA), (col. CUDA comp.)). 

From a performance point of view, the preferable approach in most cases is to copy the 
depth to the colour buffer and employ lossy GPU compression before transferring the 
data to the CPU. 

MPix/s Quadro 5800 Quadro 6000 Quadro K5000 
GeForce  

GTX 680 

RGBA (GL) 470 530 470 150 

RGBA (CUDA) 131 570 560 710 

Depth (GL) 380 460 395 127 

Depth (CUDA) 112 202 159 97 

Depth (CUDA compressed) 86 187 149 92 

Depth (as colour, GL) 560 740 690 280 

Depth (as colour, CUDA) 124 530 550 670 

Depth (col., CUDA comp.) 93 420 443 618 

Table 2: Framebuffer read-back performance in million pixels per second. 
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6 Revised	
  Protocol	
  
6.1 Summary	
  of	
  Changes	
  to	
  Protocol	
  Drafted	
  in	
  D5.3.2	
  
While implementing the remote hybrid rendering server and client, it became apparent 
that the protocol drafted in D5.3.2 [1] has to be revised: 

• It is not necessary to send input data, such as from multi-touch or 6DOF 
devices, from client to server. Instead, input events have to be processed by the 
local client application. 

• Instead, the state of the local application has to be synchronized with the 
remote application, e. g. matrices describing the viewer’s position and the 
transformation of objects have to be transmitted to the remote server, such that 
locally rendered images and remote images can be matched during 
compositing. 

• Some operations have to be carried out collectively on the remote and local 
renderer, e. g. the scene bounding sphere has to comprise bounding spheres 
for both local and remote data, this requires support from the protocol. 

• Application state has to be synchronized between client and server 
applications, this requires application-specific protocol extensions. E. g., the 
rendering and lighting modes configured on the client also have to be applied 
on the server. 

• Some actions have to be carried out cooperatively between client and server. 
E.g. moving a cutting plane to another position requires sending the updated 
parameters from client to server, where the application has to extract the 
corresponding data and to update the rendered image. This requires protocol 
support for sending the data describing the interaction capabilities from server 
to client as well as for updating parameters from client to server. 

6.2 Revised	
  List	
  of	
  RFB	
  Protocol	
  Extensions	
  
Based on the requirements established in D5.3.2 and the implementation experience, 
we revised the extensions to the RFB protocol that are required for remote hybrid 
rendering. Some of them are already implemented in the RHR prototype. 

6.2.1 Multiple	
  Display	
  Surfaces	
  
Support for handling multiple display surfaces can be added by providing a coordinate 
mapping for each surface to the available 65536x65536 pixel coordinate space. The 
protocol has to be augmented for establishing this mapping. 

6.2.2 3D	
  Stereo	
  Rendering	
  
Additional image codecs for supplying images for both the left and right eye for one 
display surface will have to be implemented. If it is not necessary to exploit the 
coherence between the images for the left and right eye for better compression 
efficiency, then it is sufficient to provide different coordinate mappings for both eyes. 

6.2.3 Frame	
  Barrier	
  
In order to advance the display to the next rendered frame synchronously on all display 
surfaces and for both the left and right eye, the server has to send an event when a 
frame is fully transmitted. This should include a frame counter and a time stamp. 

6.2.4 Server	
  Controlled	
  Framebuffer	
  Updates	
  
In order to minimise latency, rendered frames should be sent to the client as soon as 
they are available. The client has to be able to request continuous framebuffer updates 
from the server, i. e. the communication flow has to become more asynchronous than 
with standard RFB. For that purpose, TigerVNC [12] already has an extension 
containing an EnableContinuousUpdates message, this will be reused. 
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6.2.5 Encodings	
  for	
  Depth	
  and	
  Transparency	
  Data	
  
The available image encodings shall be augmented by appropriate codecs for 
transparency and depth data, in order to composite context information display with the 
visualisation image on the client. 

6.2.6 Efficient	
  Image	
  Codecs	
  
Compression quality can be enhanced by employing efficient image and video codecs. 
The available image codecs shall be augmented by video streaming codecs for which 
GPGPU implementations are available. 

6.2.7 Image	
  Data	
  Back-­‐Channel	
  
In order to be able to generate images where the context information is correctly 
composed with the visualisation data, the rendering of the context information together 
with corresponding depth and opacity data has to be made available to all visualisation 
nodes. The FrameBufferUpdate message, which is normally sent from server to client 
only, will be used for that purpose. 
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7 Future	
  Work	
  
Future versions of the software will be improved regarding the following aspects: 

• Improved compression algorithms for depth data 
• Selective updates for depth data 
• Interoperability with server-side parallel rendering as described in D5.3.1 [3] 
• Reprojection of 2.5D data according to current view point 
• Better synchronization of client and server state 

While the first prototype of remote hybrid rendering has been implemented within 
COVISE and OpenCOVER, the light-weight nature of the server side makes it easy to 
interoperate with other applications: the main requirements are that the remote 
application be able to accept camera parameters (position, orientation, field of view and 
off-center projection) and to generate 2.5D images (colour and depth). A simulation 
code with an integrated ray-tracer, such as HemeLB [13], meets these requirements. 
But as OpenFOAM [14] is our main test-bed for the development of the massively 
parallel visualisation tool Vistle, we aim to demonstrate the applicability of RHR by 
coupling to a running OpenFOAM simulation and observing it online. 
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