

Copyright © CRESTA Consortium Partners 2011

D6.1.2	
 –	
 Roadmap	
 to	
 exascale	

(update	
 1)	
 	

WP6:	
 Co-­‐design	
 via	
 applications	

Due date: M18

Submission date: 01/03/2013

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization CSC

Version: 1.4

Status Final

Author(s):

Mikko Byckling (CSC), Jan Åström (CSC), George Mozdzynski
(ECMWF), Mats Hamrud (ECMWF), Jan Westerholm (ABO),
Adam Peplinski (KTH), Joerg Hertzer (USTUTT), Konstantinos
Ioakimidis (USTUTT), Bastian Koller (USTUTT), Timo Krappel
(USTUTT), Rupert Nash (UCL), Timm Krüger (UCL), Adam
Carter (UEDIN), Jussi Timonen (JYU), Berk Hess (KTH), Mark
Abraham (KTH), Erik Lindahl (KTH)

Reviewer(s) Alistair Hart (CRAY UK), Erwin Laure (KTH)

Dissemination level

<PU/PP/RE/CO> PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 03/01/2013 Template of the deliverable Mikko Byckling (CSC),
Jan Åström (CSC)

0.2 07/02/2013 IFS added George Mozdzynski
(ECMWF), Mats Hamrud
(ECMWF)

0.3 08/02/2013 ELMFIRE added Jan Westerholm (ABO)

0.4 08/02/2013 Nek5000 added Adam Peplinski (KTH)

0.5 08/02/2013 OpenFOAM-extend added Joerg Hertzer (USTUTT),
Konstantinos Ioakimidis
(USTUTT), Bastian Koller
(USTUTT), Timo Krappel
(USTUTT)

0.6 08/02/2013 HemeLB added Rupert Nash (UCL),
Timm Krüger (UCL)

0.7 08/02/2013 OpenFOAM added Adam Carter (UEDIN)

0.75 11/02/2013 Corrections Mikko Byckling (CSC)

0.8 12/02/2013 HemeLB co-design added Jussi Timonen (JYU)

0.85 12/02/2013 OpenFOAM corrections Konstantinos Ioakimidis
(USTUTT), Mikko
Byckling (CSC)

0.9 14/02/2013 GROMACS added Berk Hess (KTH), Mark
Abraham (KTH), Erik
Lindahl (KTH)

1.0 14/02/2013 First version for internal review Mikko Byckling (CSC),
Jan Åström (CSC)

1.1 12/03/2013 Reviewer comments addressed Mikko Byckling (CSC)

1.2 12/03/2013 Co-design section added to Executive
summary Jan Åström (CSC)

1.3 15/03/2013 Reviewer comments addressed Mikko Byckling (CSC)

1.4 15/03/2013 Final version for EC review. Mikko Byckling (CSC)

Copyright © CRESTA Consortium Partners 2011

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

1.1	
 SUMMARY	
 OF	
 PROGRESS	
 AND	
 ROADMAP	
 UPDATE	
 ...	
 1	

1.2	
 SUMMARY	
 OF	
 CO-­‐DESIGN	
 PROGRESS	
 ..	
 1	

2	
 INTRODUCTION	
 ...	
 3	

2.1	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 3	

3	
 ELMFIRE	
 ...	
 5	

3.1	
 SUMMARY	
 OF	
 INITIAL	
 ROADMAP	
 ...	
 5	

3.2	
 ACHIEVEMENTS	
 TOWARDS	
 ONGOING	
 TASKS	
 IN	
 INITIAL	
 ROADMAP	
 ...	
 6	

3.3	
 UPDATED	
 ROADMAP	
 ...	
 6	

3.3.1	
 Implement	
 a	
 3D	
 Domain	
 Decomposition	
 (M22)	
 ...	
 6	

3.3.2	
 Improve	
 Load	
 Balancing	
 (M28)	
 ...	
 7	

3.3.3	
 Improve	
 Memory	
 Usage	
 for	
 Binary	
 Collisions	
 (M36)	
 ..	
 7	

3.3.4	
 Parallelize	
 File	
 Writing	
 (M36)	
 ...	
 7	

4	
 GROMACS	
 ..	
 8	

4.1	
 SUMMARY	
 OF	
 INITIAL	
 ROADMAP	
 ...	
 8	

4.2	
 ACHIEVEMENTS	
 TOWARDS	
 ONGOING	
 TASKS	
 IN	
 INITIAL	
 ROADMAP	
 ...	
 9	

4.3	
 UPDATED	
 ROADMAP	
 ...	
 9	

4.3.1	
 Benchmarking	
 new	
 GROMACS	
 releases,	
 and	
 GPU	
 coding	
 (M18,	
 M30)	
 	
 10	

4.3.2	
 Multi-­‐grid	
 solvers	
 for	
 efficient	
 PME	
 electrostatics	
 (M36)	
 ...	
 10	

4.3.3	
 Efficient	
 large-­‐scale	
 I/O	
 (M36)	
 ..	
 10	

4.3.4	
 Task-­‐based	
 parallelism	
 (M36)	
 ..	
 10	

4.3.5	
 Ensemble	
 computing	
 &	
 parallel	
 adaptive	
 molecular	
 dynamics	
 (M36)	
 	
 11	

5	
 HEMELB	
 ...	
 12	

5.1	
 SUMMARY	
 OF	
 INITIAL	
 ROADMAP	
 ...	
 12	

5.2	
 ACHIEVEMENTS	
 TOWARDS	
 ONGOING	
 TASKS	
 IN	
 INITIAL	
 ROADMAP	
 ...	
 12	

5.3	
 UPDATED	
 ROADMAP	
 ...	
 13	

5.3.1	
 Single	
 core	
 performance	
 enhancement	
 (M20)	
 ...	
 13	

5.3.2	
 Domain	
 decomposition	
 (M24)	
 ..	
 13	

5.3.3	
 Hybrid	
 parallelism	
 (M30)	
 ..	
 13	

5.3.4	
 Steerable	
 property	
 extraction	
 (M30)	
 ..	
 13	

5.3.5	
 Visualisation	
 (M36)	
 ...	
 13	

5.3.6	
 Introspection	
 (M36)	
 ..	
 13	

6	
 IFS	
 ...	
 15	

6.1	
 SUMMARY	
 OF	
 INITIAL	
 ROADMAP	
 ...	
 15	

6.2	
 ACHIEVEMENTS	
 TOWARDS	
 ONGOING	
 TASKS	
 IN	
 INITIAL	
 ROADMAP	
 ...	
 16	

6.3	
 UPDATED	
 ROADMAP	
 ...	
 16	

6.3.1	
 IFS	
 CY38R2	
 port	
 (M18)	
 ..	
 16	

6.3.2	
 Investigate	
 GPGPU	
 use	
 in	
 IFS	
 (M27)	
 ...	
 17	

6.3.3	
 Investigate	
 graph	
 based	
 (DAG)	
 parallelization	
 (M36)	
 ..	
 17	

7	
 NEK5000	
 ..	
 18	

7.1	
 SUMMARY	
 OF	
 INITIAL	
 ROADMAP	
 ...	
 18	

7.2	
 ACHIEVEMENTS	
 TOWARDS	
 ONGOING	
 TASKS	
 IN	
 INITIAL	
 ROADMAP	
 ...	
 18	

7.3	
 UPDATED	
 ROADMAP	
 ...	
 19	

7.3.1	
 Adaptive	
 refinement	
 development	
 (M18)	
 ..	
 19	

7.3.2	
 Implement	
 error	
 estimator	
 and	
 initial	
 refinement	
 code	
 (M24)	
 ..	
 19	

7.3.3	
 Implement	
 load	
 balancing	
 using	
 existing	
 Nek5000	
 tool	
 suite	
 (M30)	
 	
 20	

7.3.4	
 Undertake	
 test	
 and	
 development	
 on	
 large	
 scale	
 applications	
 (M36)	
 	
 20	

7.3.5	
 OpenACC	
 acceleration	
 of	
 Nek5000	
 (M27)	
 ..	
 20	

8	
 OPENFOAM®	
 ..	
 21	

Copyright © CRESTA Consortium Partners 2011

8.1	
 SUMMARY	
 OF	
 INITIAL	
 ROADMAP	
 ...	
 21	

8.2	
 ACHIEVEMENTS	
 TOWARDS	
 ONGOING	
 TASKS	
 IN	
 INITIAL	
 ROADMAP	
 ...	
 22	

8.3	
 UPDATED	
 ROADMAP	
 ...	
 23	

8.3.1	
 Benchmarking	
 of	
 the	
 latest	
 version	
 of	
 the	
 code	
 (M18)	
 ...	
 23	

8.3.2	
 Code	
 analysis	
 of	
 the	
 latest	
 version	
 of	
 the	
 code	
 (M21)	
 ..	
 23	

8.3.3	
 Performance	
 analysis	
 of	
 kernels,	
 libraries	
 (M24)	
 ...	
 24	

8.3.4	
 Iterative	
 performance	
 improvement	
 (M27)	
 ..	
 24	

8.3.5	
 Test	
 case	
 02:	
 pump	
 turbine	
 power	
 plant	
 with	
 OpenFOAM-­‐2.1	
 (M18)	
 	
 24	

8.3.6	
 Test	
 case	
 01:	
 mesh	
 refinement	
 (M20)	
 ..	
 25	

8.3.7	
 Test	
 case	
 02:	
 mesh	
 refinement	
 (M22)	
 ..	
 25	

9	
 REFERENCES	
 ..	
 26	

Index	
 of	
 Figures	

Figure 1 The parallelization task network used in Copernicus. 11	

Figure 2: Geometry of a Francis turbine ... 24	

Index	
 of	
 Tables	

Table 3-1 ELMFIRE: Initial roadmap .. 6	

Table 3-2 ELMFIRE: Achievements towards ongoing tasks in initial roadmap 6	

Table 3-3 ELMFIRE: Updated roadmap ... 6	

Table 4-1 GROMACS: Initial roadmap ... 8	

Table 4-2 GROMACS: Achievements towards ongoing tasks in initial roadmap 9	

Table 4-3 GROMACS: Updated roadmap .. 9	

Table 5-1 HemeLB: Initial roadmap .. 12	

Table 5-2 HemeLB: Achievements towards ongoing tasks in initial roadmap 12	

Table 5-3 HemeLB: Updated roadmap ... 13	

Table 6-1 IFS: Initial roadmap .. 15	

Table 6-2 IFS: Achievements towards ongoing tasks in initial roadmap 16	

Table 6-3 IFS: Updated roadmap ... 16	

Table 7-1 Nek5000: Initial roadmap ... 18	

Table 7-2 Nek5000: Achievements towards ongoing tasks in initial roadmap 19	

Table 7-3 Nek5000: Updated roadmap .. 19	

Table 8-1 OpenFOAM: Initial roadmap ... 21	

Table 8-2 OpenFOAM: Achievements towards ongoing tasks in initial roadmap 22	

Table 8-3 OpenFOAM: Updated roadmap ... 23	

© CRESTA Consortium Partners 2011 Page 1 of 26

1 Executive	
 Summary	

This document contains an update to the initial roadmap for the CRESTA codes
described in Deliverable D6.1.1. The main progress and main updates to the original
roadmaps for the separate codes are summarized in Section 1.1. Actions related to co-
design progress for each application are summarized in Section 1.2.

1.1 Summary	
 of	
 progress	
 and	
 roadmap	
 update	

The main progress and main updates to the original roadmap for each application can
be summarized as follows:

ELMFIRE: The overall progress has been steady, with the majority of the tasks
progressing without significant delays. 3D domain composition has been slightly
delayed. This may cause a slight delay to the remaining tasks as well, but not by any
considerable amount.

GROMACS: The overall progress has been good, with all the tasks progressing as
scheduled. A task related to parallel I/O has been rescheduled to finish by M36.
Fundamental work on O(N) algorithms for PME electrostatics is ongoing. There are no
major updates to the original roadmap.

HemeLB: The overall progress has been good, with all the tasks progressing as
scheduled. Several task in pre- and post-processing have been completed. Several
successful co-design tasks related to GPU implementation, partitioning and inlet/outlet
boundary conditions have been undertaken.

IFS: The overall progress has been excellent, with most of the tasks included in the
original roadmap already completed. The code is well ahead of schedule. In order to
take advantage of the extra effort available, several additional tasks with strong co-
design components have been set up.

NEK5000: The overall progress has been steady, with the majority of the tasks
progressing without significant delays. Implementation of the error-estimator has been
slightly delayed.

OpenFOAM: The overall progress has been fair, with several tasks being delayed. The
test cases have been successfully set up, but attempts to profile the codebase with
standard tools have been unsuccessful. The roadmap has been updated to reflect
upon these difficulties. Improving pre –and post-processing and mesh refinement steps
are currently seen as the main way forward to continue the development towards
exascale.

1.2 Summary	
 of	
 co-­‐design	
 progress	

The co-design progress for each application can be summarized as follows.

Elmfire/ABO: ABO has participation in the Lattice Boltzmann on GPUs co-design effort
with HemeLB and the OpenACC co-design and performance evaluation with Cray.

Gromacs: GROMACS has participation in pre –and post-processing co-design related
to I/O with WP5 and code optimization co-design related to new architectures and
programming paradigms with WP3.

HemeLB: HemeLB has participation in Lattice Boltzmann on GPUs co-design with
ABO, matrix diffusion co-design with JYU and OpenACC co-design with Cray. HemeLB
also does co-design related to pre –and postprocessing with WP5.

IFS: IFS has participation in co-array Fortran co-design with CRAY and development
environment co-design with Allinea. A task graph co-design work is currently in
preparation with KTH.

NEK5000: Nek5000 has participation in global communication co-design with WP3 and
OpenACC co-design with Cray.

© CRESTA Consortium Partners 2011 Page 2 of 26

Openfoam: OpenFOAM has participation in numerical libraries co-design with WP4. A
co-design attempt to resolve problems with profiling tools with WP3 and Cray has been
recently initiated.

© CRESTA Consortium Partners 2011 Page 3 of 26

2 Introduction	

This document contains roadmaps over the actions needed to develop the CRESTA
codes towards exascale performance. The roadmaps of the different codes are
presented in the following chapters. The codes can be summarized as follows:

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and
interaction between high-speed particles in a torus-shaped geometry on a three
dimensional grid. The particles are held together by an external magnetic field. The
objective is to simulate significant portions of large-scale fusion reactors like JET or
ITER.

GROMACS: is a molecular dynamics code that is extensively used for simulation of
biomolecular systems. Useful investigation of this kind of systems is typically limited by
computational capacity. The limitations concern both system sizes and, in particular,
time duration of interesting processes. Also, efficient implementation of ensembles of
simulation is needed for gathering statistical validity.

HemeLB: is intended to form part of a clinically deployed exascale virtual physiological
human. HemeLB simulates blood flow in measured blood vessel geometries. The
objective is to develop a clinically useful exascale tool.

IFS: is the production weather forecasting application used at the European Centre for
Medium Range Weather Forecasts (ECMWF). The objective is to develop more
reliable 10-day weather forecasts that can be run in an hour or less.

NEK5000: is an open-source code for the simulation of incompressible flow in complex
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000.

OpenFOAM®: is an open source application for computational fluid dynamics (CFD).
The program is a “toolbox” which provides a selection of different solvers as well as
routines for various kinds of analysis, pre- and post-processing. Besides general
development of the code, within this project the focus will be on a specialized code for
turbo machinery. The objective is to simulate a whole hydraulic machine on exascale
architectures.

2.1 Glossary	
 of	
 Acronyms	

ACML AMD Core Math Library

AMI Arbitrary Mesh Interface

AMR Adaptive Mesh Refinement

CAF Coarray Fortran

CSC CSC – IT Center for Science Ltd.

CPU Central Processing Unit

DLR Deutschen Zentrums für Luft- und Raumfahrt

ECMWF European Centre for Medium-Range Weather Forecasts

ENDA Ensemble Data Assimilation System

EPCC Edinburgh Parallel Computing Centre

EPS Ensemble Prediction System

FFT Fast Fourier Transform

GGI General Graphics Interface

GNU GNU's Not Unix!

GPL GNU General Public License

© CRESTA Consortium Partners 2011 Page 4 of 26

GPU Graphics Processing Unit

INCITE Innovative and Novel Computational Impact on Theory and Experiment

I/O Input/Output

ITER International Thermonuclear Experimental Reactor

JET Joint European Torus

KTH Kungliga Tekniska Högskolan

LB Lattice Boltzmann

LGPL GNU Lesser General Public License

MPI Message Passing Interface

OpenACC Open Accelerators

OpenMP Open Multiprocessing

PETc Portable, Extensible Toolkit for Scientific Computation

PGAS Partitioned Global Address Space

PME Particle Mesh Ewald

SIMD Single Instruction, Multiple Data

UCL University College London

USTUTT University of Stuttgart

© CRESTA Consortium Partners 2011 Page 5 of 26

3 ELMFIRE	

Elmfire is a particle-in-cell code that simulates the movement and interaction between
extended gyrokinetic particles moving at high speed in a torus-shaped geometry on a
three dimensional grid. The particles are held together by a strong external magnetic
field.

Elmfire approximates the Coulomb interaction between particles by solving a global
electrostatic field on a grid, using the particle charges as sources. Elmfire then
advances particles in time by free streaming along the magnetic field line and particle
drift perpendicular to the magnetic field. Typically, time steps corresponds to 30-50ns
of real time.

The time step based simulation in Elmfire can be roughly divided into seven parts:

• Perform collisions between particles close to each other
• Using a 4th order Runge-Kutta, calculate particle movements in continuous space

during the time step based on the electric field
• Collect grid cell charge data from the particles for the electrostatic field.
• Combine and split the grid charge data so each processor has a smaller part of it
• Construct a large modified gyro kinetic Poisson equation based on the data and

solve it in parallel
• Calculate additional movement caused by magnetic field drift of particles based on

the acquired electric field
• Write diagnostics output

Presently, the most CPU heavy part of the code is calculating particle movements, but,
as each processor is assigned a fixed number of particles this scales linearly with the
number of processors, and is therefore not an issue when scaling to larger systems.
The most problematic part is the collection and distribution of grid cell charge data. In
the current version each processor can have its assigned particles moving in any part
of the torus, leading to all processor contributing charge data to all grid cells in the
system. As a consequence, each processor has the full electrostatic grid data and a
huge sparse matrix, the size of which is the number of grid cells squared, for collecting
charge data. The matrix has been optimized by reducing the second dimension to a
constant, which is the number of cells around a given cell to which charges due to
gyrokinetic motion can be moved from the given cell. This reduces memory usage
significantly but not enough for large-scale simulations. Memory consumption of
ELMFIRE will be addressed after the domain decomposition has been fully
implemented.

Once the grid cell charge data has been combined and split among the processors,
each processor can construct its own part of the Poisson equation individually. The
Poisson equation is then solved in parallel using PETSc. The solution (the electric
potential) is then distributed to all processors to be used in the next time step.

Focus of the work on Elmfire is to continue on basic scalability, mostly related to
memory usage. The version initially provided for the project does not implement any
spatial domain decomposition that leads to massive memory usage and data
duplication. Particles are split between processors but can, during the simulation, be
located in any grid cell in the system, leading to massive memory requirements for
gathering the charge data and large data transfers when combining the data. Initial
proof-of-concept 3D domain decomposition has been already implemented with
promising results.

3.1 Summary	
 of	
 initial	
 roadmap	

Task Scheduled date Status

3D domain decomposition M18 Ongoing

Load balancing M24 In planning

© CRESTA Consortium Partners 2011 Page 6 of 26

Memory usage for binary
collisions

M36 In planning

Parallel file writing M36 In planning
Table 3-1 ELMFIRE: Initial roadmap

Implement a 3D Domain Decomposition: Implementation of a 3D electrostatic grid
cell based domain decomposition of the code, so that each processor can only own
particles inside its own grid cells.

Load balancing: The 3D domain decomposition will introduce load-balancing issues
as the particles are not evenly distributed between all grid cells in the simulation.

Memory usage for binary collisions: Elmfire calculates collisions between randomly
chosen particles close to each other in each time step. In order to assess how close
particles are to each other, a separate collision grid is set up. By introducing data
structures that avoid duplication this will be improved.

Parallelize File Writing: The file writing, which is currently sequential, needs to be
parallelized for Elmfire to scale to exascale sized problems.

3.2 Achievements	
 towards	
 ongoing	
 tasks	
 in	
 initial	
 roadmap	

Task Achievement

3D domain decomposition 1D decomposition into 4 domains: memory requirements
down by ¼.

Table 3-2 ELMFIRE: Achievements towards ongoing tasks in initial roadmap

3.3 Updated	
 roadmap	

Task Scheduled date Status

3D domain decomposition M22 Ongoing

Load balancing M28 In planning

Memory usage for binary
collisions

M36 In planning

Parallel file writing M36 In planning
Table 3-3 ELMFIRE: Updated roadmap

3.3.1 Implement	
 a	
 3D	
 Domain	
 Decomposition	
 (M22)	

The version originally provided for the project does not implement any spatial
decomposition. Particles are distributed evenly among processors but the electrostatic
grid data is duplicated in all processors. This prevents scaling to larger grids than
approximately 120x150x8 regardless of the number of cores available. For large scale
simulations, of e.g. JET or ITER, it would be beneficial to be able to simulate
electrostatic grids up to 3000x4000x16 i.e. almost 1500 times larger than today. An
estimate for an ITER simulation is that 640 000 cores would be needed for 590 billion
particles. With the current version this would require approximately 28TB memory per
core.

We are in the process of implementing an electrostatic grid cell based domain
decomposition of the code so that each processor can only own particles inside its own
grid cells. This will restrict the grid cell data needed in each processor to its own grid
cells and a few surrounding grid cells (in order to propagate the particles in time). It
should also remove the need to communicate large amounts of data for the charge
data, with the downside of having to send particle data between processors in each
time step. This task will be completed by M22. The memory requirements are expected
to be reduced relative to the number of domains used. The slight delay compared to
original roadmap is currently not expected to cause any significant delays to the
completion of other tasks.

© CRESTA Consortium Partners 2011 Page 7 of 26

3.3.2 Improve	
 Load	
 Balancing	
 (M28)	

In the current version, load-balancing is not a large problem but it is expected that the
3D domain decomposition will introduce load-balancing issues as the particles are not
evenly distributed between all grid cells in the simulation. These need to be
investigated and addressed after the initial domain decomposition has been performed.
One approach would be to dynamically reallocate the electrostatic grid based on the
workload, that is, the size of the grid and the number of particles.

3.3.3 Improve	
 Memory	
 Usage	
 for	
 Binary	
 Collisions	
 (M36)	

Elmfire calculates collisions between randomly chosen particles close to each other in
each time step. In order to assess how close particles are to each other, a separate
collision grid is set up. Currently this uses 10 times the memory it really needs. By
introducing data structures that avoid duplication this will be improved.

3.3.4 Parallelize	
 File	
 Writing	
 (M36)	

File writing in Elmfire is presently done by all processes sending data to the master
process, which then writes the data to disk. For small simulations this is typically not an
issue (< 5% of the each time steps goes to writing diagnostics) but it will likely block
large scale simulations and input files for visualizations. The file writing needs to be
parallelized for Elmfire to scale to ITER sized problems.

© CRESTA Consortium Partners 2011 Page 8 of 26

4 GROMACS	

GROMACS is a major open source code that performs classical molecular dynamics
simulations based on interactions between particles moving in space, typically for
biomolecular systems. It has been developed for over 15 years, initially with a large
focus on the highest possible single-core performance, but over the last few years we
have made a complete overhaul of the parallelization approach and the code currently
exhibits some of the best relative scaling in the field.

The main challenge for classical molecular dynamics in general - and GROMACS in
particular - is that it relies on integration of Newton’s equations of motion, and high
performance therefore requires very fast iterations over integration time-steps. This has
largely driven 20 years of development in the field, and current algorithms are very
focused on providing simple interaction forms to reduce the floating-point instruction
bottleneck. Historically, runtime for these types of codes was completely dominated by
the evaluation of interactions between particles. In principle, this lends itself very well to
parallelization, but 20 years of optimization focused on algorithms to avoid floating-
point operations has resulted in complex data structures and inhomogeneity in
interaction density over space that makes efficient parallelization challenging. In this
regard, GROMACS is a particular challenge since the single-core performance is
significantly higher than many other codes, and the code is therefore spending a
relatively larger part of time on communication [14].

The work in GROMACS is focused on achieving significant improvements for real
applications. Seen from the user side, there are three overall important objectives to
advance the state-of-the-art for applications: (i) to reduce the time-step per iteration in
order to achieve longer simulations, (ii) to be able to handle much larger application
systems to model e.g. mesoscopic phenomena, and (iii) to improve accuracy and
results for small application systems through massive sampling.

All three aspects are critically important, but they require slightly different approaches.
The wall-clock time for a single time-step iteration is already today in the range of a few
milliseconds for some systems, and while we have strategies to improve this further we
do not believe this is possible to push more than one order of magnitude beyond
today’s standard. In contrast, handling much larger systems is easier (although not
trivial) from the point of view of a parallelization algorithm, but it will involve challenges
related to handling of data when a single master node no longer can control all input
and output, both when starting execution and for checkpointing or output. Finally, for
small systems, the main approach will be ensemble techniques to handle thousands of
simulations that each will use thousands of cores.

4.1 Summary	
 of	
 initial	
 roadmap	

Task Scheduled date Status

Benchmarking new
GROMACS releases, and
GPU coding

M9 Completed (v.4.5, v.4.6)
Ongoing (development
versions)

Multi-grid solvers for
efficient PME electrostatics

M36 Ongoing

Efficient large-scale I/O M27 Ongoing

Task-based parallelism M36 Ongoing

Ensemble computing &
parallel adaptive molecular
dynamics

M36 Completed (initial release),
Ongoing (development
versions)

Table 4-1 GROMACS: Initial roadmap

© CRESTA Consortium Partners 2011 Page 9 of 26

Benchmarking new GROMACS releases, and GPU coding: GROMACS 4.6 has
been released, delivering higher performance and better strong scaling through
algorithmic improvements, GPU parallelisation and SIMD kernels.
Multi-grid solvers for efficient PME electrostatics: The implementation of the
current standard electrostatics treatment (PME) shows the expected O(N log N)
performance scaling with N atoms. Investigating the feasibility of implementing and
using known O(N) algorithms is ongoing.
Efficient large-scale I/O: I/O demands of petascale simulations, particularly with
algorithms that scale as O(N), will require more efficient I/O techniques. These will
come both from using I/O algorithms that do not require explicit communication stages,
and better compression formats used before writing output.
Task-based parallelism: Maximising usage of compute resources at exascale will
require re-writing algorithms to express their needs and dependencies in a hardware-
agnostic way, so that scheduling of tasks can be truly flexible. The associated
paradigm shift away from simple procedural flow of GROMACS is a major challenge.
Ensemble computing & parallel adaptive molecular dynamics: To exploit
parallelism at the level of multi-simulation ensemble algorithms, we are developing a
parallel computing platform Copernicus that uses GROMACS to run massively parallel
simulations while doing live intermediate processing to guide new runs.

4.2 Achievements	
 towards	
 ongoing	
 tasks	
 in	
 initial	
 roadmap	

Task Achievement

Benchmarking new
GROMACS releases, and
GPU coding

GROMACS 4.6 released. Second generation GPU code
used in production.

Multi-grid solvers for
efficient PME electrostatics

Work in progress.

Efficient large-scale I/O Collaboration to implement compressed I/O format
established.

Task-based parallelism OpenMP-based threading now used in many parts of
GROMACS release 4.6.

Ensemble computing &
parallel adaptive molecular
dynamics

Copernicus 1.0 has been released, and used for
production simulations.

Table 4-2 GROMACS: Achievements towards ongoing tasks in initial roadmap

4.3 Updated	
 roadmap	

Task Scheduled date Status

Benchmarking new
GROMACS releases, and
GPU coding

M18, M30 Ongoing

Multi-grid solvers for
efficient PME electrostatics

M36 Ongoing

Efficient large-scale I/O M36 Ongoing

Task-based parallelism M36 Ongoing

Ensemble computing &
parallel adaptive molecular
dynamics

M36 Ongoing

Table 4-3 GROMACS: Updated roadmap

© CRESTA Consortium Partners 2011 Page 10 of 26

4.3.1 Benchmarking	
 new	
 GROMACS	
 releases,	
 and	
 GPU	
 coding	
 (M18,	
 M30)	

GROMACS version 4.6, which has been developed during the first part of the project,
has been released. It has brought some important new advances in domain
decomposition and scaling over previous versions. We have developed a new set of
computational kernels that have departed from the classical implementation with
neighbour lists. These have made it much easier to parallelize (both with SIMD and
multi-threading), which achieves a higher fraction of the hardware peak floating-point
performance. These kernels are also being implemented on GPUs, and GROMACS
4.6 uses heterogeneous acceleration; some kernels run on the GPU while others
execute simultaneously on the CPU (where the domain decomposition is also done).
Our old style computational kernels have also been upgraded with new SIMD
implementations. It will be an important step to benchmark all these new kernels on
different hardware, in particular large clusters with GPU co-processors (such as Cray
XK6), and in this frame we have also implemented support for the Nvidia Kepler
architecture, which is used in several new Cray installations.

4.3.2 Multi-­‐grid	
 solvers	
 for	
 efficient	
 PME	
 electrostatics	
 (M36)	

The vast majority of biomolecular simulations rely on particle-mesh Ewald (PME) lattice
summation to handle long-range electrostatic interactions. Since this in turn relies on
3D FFTs, the associated all-to-all communication pattern is a major bottleneck for
scaling. We are developing improved FFT algorithms and communication patterns, but
to improve support for heterogeneous architectures such as CPU-GPU parallelism on
each node, we need to develop algorithms that avoid communicating grids over all
processors. This can currently be achieved either through multipole [11] -or multigrid-
based [12] methods, and we are currently investigating both techniques. This part is
targeting "medium" parallelization for normal-size systems (10k-100k cores), and the
O(N) algorithms will provide virtually perfect weak scaling, even for systems including
long range electrostatics (currently this is only true for simple cut-off interactions).

4.3.3 Efficient	
 large-­‐scale	
 I/O	
 (M36)	

With the completion of long-range electrostatics algorithms that exhibit O(N) scaling, it
should be possible to reach multi-petascale for normal simulations of very large
systems such as virus particles, complexes of several molecules, or material science
studies. Typical simulations in this domain might involve a few hundred million
particles. To support this, we need to rewrite the input/output layer of GROMACS so
that a large set of I/O tasks participate in reading the data from files to avoid running
out of memory on the master node, not to mention avoid global communication during
startup. This will ideally use a minimalistic PGAS-like library that is fully portable (or
even included in the code), so that all I/O code does not have to do explicit
communication. We will also implement code for check-pointing and trajectory output
that supports asynchronous output by sending the data to a subset of I/O nodes that
then transpose the data (to be decomposed over time-frames rather than space), and
write it to trajectories while the simulation continues. The completion of this task has
been rescheduled from M27 to M36.

4.3.4 Task-­‐based	
 parallelism	
 (M36)	

One of the most significant long-term changes will be a complete code re-write to
support introduction of task-based parallelism to improve the efficiency inside many-
core nodes, to enable better simultaneous utilization of CPU-GPUs, and to enable
overlap of computation and communication between nodes. The latter will be
particularly critical to increase scaling appreciably, since we are gradually moving into
the realm where more time is spent on communication than computation. We have
incorporated OpenMP thread-based parallelism into many key performance
bottlenecks in GROMACS 4.6, with pleasing results. However, a slightly higher-level
abstraction is required to implement task-based parallelism over the whole iterated
code. We plan to experiment implementing this with Intel's Threading Building Blocks.
Ultimately, such approaches may allow future versions of GROMACS to execute
kernels in a hardware-agnostic way.

© CRESTA Consortium Partners 2011 Page 11 of 26

4.3.5 Ensemble	
 computing	
 &	
 parallel	
 adaptive	
 molecular	
 dynamics	
 (M36)	

The true aim of most molecular dynamics simulations is to explore the statics and
dynamics of thermal systems, which requires combining results from multiple runs into
a single result. This provides an opportunity for parallelism – especially when combined
with adaptive sampling methods such as Markov state modelling with parallel adaptive
kinetic clustering, or free energy perturbation with adaptive optimizations. In order to
fully exploit these adaptive algorithms, we have developed Copernicus, a platform that
executes such high-level algorithms while keeping track of many thousands of
simulations simultaneously. The parallelism is expressed by combining coarse-grained
computable items such as simulations and output processing into a data-flow network,
which is executed on workers that may run on a variety of computational resources,
including multiple high-performance computing facilities simultaneously. While the
coordination is done on Copernicus servers (see Figure 1), the workloads sent to the
workers is matched to their capabilities, optimizing total throughput. Each worker unit
can be a parallel GROMACS simulation using thousands of cores, and by combining
several domains it should be possible to use millions of cores in parallel. Using
Copernicus, we have been able to scale a protein-folding problem to 5730 cores –
reducing time-to-solution from 30 days to 72 hours. We have currently implemented
several adaptive sampling algorithms: Markov state modelling, adaptive free energy
perturbation, and a string method for minimum free energy pathways in Copernicus.
Each of these typically scales to hundreds or thousands of simulations in parallel, each
of which itself can be parallelized to tens to hundreds of cores, making simulations with
greater than 1M cores feasible.

Figure 1 The parallelization task network used in Copernicus.

Cluster 1

Cluster 2

Worker

Worker

Worker

Worker

Server
Projects

msm_villin

fe_heme

Cmd Queue
gen_04_01

gen_04_01

lambda_01

Server
Projects

fe_ala

fe_gly

fe_his

fe_trp

fe_cys

Cmd Queue
lambda_07

lambda_09

lambda_04

lambda_08

lambda_07

lambda_07

Server
Projects Cmd Queue

Server
Projects Cmd Queue

Worker

Worker

Worker

Worker

User

User

Server
Projects Cmd Queue

Worker

Worker

Worker

Worker

© CRESTA Consortium Partners 2011 Page 12 of 26

5 HemeLB	

HemeLB is a tool for fluid flows in complex sparse geometries. Its main focus is
simulating blood flow in parts of the cerebral arterial network. HemeLB employs an
implementation of the lattice Boltzmann (LB) algorithm that, due to its locality, is
intrinsically easy to parallelise. HemeLB uses MPI for communication and has been
shown to have good scalability up to over 32k CPU cores.

5.1 Summary	
 of	
 initial	
 roadmap	

Task Scheduled date Status

Visualisation and Steering M36 Ongoing

Pre-processing M36 Ongoing

Introspection M36 Ongoing
Table 5-1 HemeLB: Initial roadmap

Visualisation and Steering: To enable in situ visualisation and steering of HemeLB at
the exascale, using visualisation libraries from WP5 partners.

Pre-processing: To enhance HemeLB’s domain decomposition such that it is viable at
exascale.

Introspection: Exascale applications will need to be able to monitor their own
execution to be able to report and optimise their performance and the environment.

5.2 Achievements	
 towards	
 ongoing	
 tasks	
 in	
 initial	
 roadmap	

Task Achievement

V&S Collaborated with WP5 partners to define the
visualisation needs of HemeLB.

V&S We have enabled the coupling of HemeLB to other codes
that supply inlet/outlet boundary conditions.

Pre-processing Enhanced HemeLB setup tool performance by a factor of
five with a new algorithm.

Pre-processing Detailed measurements about the performance of the
existing domain decomposition.

Pre-processing Reduction of initialisation by a complete redesign of the
communication patterns for this step.

Pre-processing Worked with DLR to define the interface to a library
(PPStee) that will enable the use of multiple partitioners
without significant code changes.

Introspection Improved performance monitoring functionality of
HemeLB by the addition of multiple, efficient timers to the
code.

Table 5-2 HemeLB: Achievements towards ongoing tasks in initial roadmap

We have made numerous small enhancements to the scaling of HemeLB.

We have introduced unit testing to the HemeLB setup tool in order to increase
confidence and to enable faster development of the software.

As a co-design effort with ABO, a multi-GPU 3DQ19 Lattice Boltzmann code (written in
CUDA) which overlaps communication with computation, achieving 180 million lattice
point updates per second per GPU has been implemented. When a corresponding
code was implemented with OpenACC pragmas to run on multi-GPUs, 160 million
lattice point updates per second per GPU was achieved.

© CRESTA Consortium Partners 2011 Page 13 of 26

As a co-design effort with JYU, two tasks were performed by the JYU group. A tool to
extract the simulation geometry from angiographic images was constructed, and an
interface was constructed. The interface allows running HemeLB in parallel with some
other code that has been parallelized with MPI, so that data can be continuously
exchanged between the two codes. In fact the constructed interface is rather generic
and facilitates parallel running of two MPI parallelized codes with only minimal changes
in these codes.

5.3 Updated	
 roadmap	

Task Scheduled date Status

Single core performance M20 On-going

Domain decomposition M24 On going

Hybrid parallelism M30 In planning

Steerable parameter
extraction

M30 In planning

Visualisation M36 On going

Introspection M36 Complete
Table 5-3 HemeLB: Updated roadmap

5.3.1 Single	
 core	
 performance	
 enhancement	
 (M20)	

Based on our benchmarking and comparison to other Lattice-Boltzmann codes, we
believe that there is scope to increase the single-core performance of HemeLB
significantly. This will be undertaken with a fairly conventional profile-optimize cycle.
We will be particularly interested in exploring the effect of changing the data layout to
improve memory behaviour. This last piece of work will be undertaken in conjunction
with the hybridisation task below.

5.3.2 Domain	
 decomposition	
 (M24)	

Based on recent measurements, we see that some processes end up with a very large
number of neighbours (~100) compared to the average (~25). These processes cause
a load imbalance that is the primary cause of the sub-linear scaling we see at 32k
cores. We are working with partners in WP5 to trial the PPStee domain decomposition
library in order to improve this.

5.3.3 Hybrid	
 parallelism	
 (M30)	

Based on the report by Alan Gray (UEDIN) that was the main output of our co-design
work [9], we will not pursue OpenACC until the software is more mature. However he
has shown that OpenMP is much more feasible and we will work on this further. The
effect of different memory layouts will be explored in detail here.

5.3.4 Steerable	
 property	
 extraction	
 (M30)	

In HemeLB we have implemented a property extraction framework that allows the user
to define regions of interest for output, as well as which fields to output and at what
frequency. Currently this must be specified at simulation start. We propose to make this
part of the code steerable at run time, in order to allow the user to quickly home in on
interesting features that can be recorded for more detailed off-line analysis.

5.3.5 Visualisation	
 (M36)	

We will continue to work with WP5 partners to explore how to couple their visualisation
software with HemeLB.

5.3.6 Introspection	
 (M36)	

We have implemented key introspection abilities ourselves which are sufficient for our
needs. We will continue to monitor developments within this arena, but our judgment is
that applications will need to delegate the responsibility of monitoring and acting to

© CRESTA Consortium Partners 2011 Page 14 of 26

runtime systems, since the complexity and variability of future systems will likely be too
large for an application to find a generic solution. We have therefore paused this
activity until suitable technology is available and there is a compelling need for it.

© CRESTA Consortium Partners 2011 Page 15 of 26

6 IFS	

The Integrated Forecasting System (IFS) is the production numerical weather forecast
application at ECMWF. IFS comprises several component suites, namely, a 10 day
deterministic forecast, a four dimension variational analysis (4D-Var), an ensemble
prediction system (EPS) and an ensemble data assimilation system (ENDA).

The use of ensemble methods are well matched to today’s HPC systems, as each
ensemble application (model or data assimilation) is independent and can be sized in
resolution and by the number of ensemble members to fill any supercomputer.
However, these ensemble applications are only part of the IFS production suite and the
high resolution deterministic model (referred to as ‘IFS model’ from now on) and 4D-
Var analysis applications are equally important in providing forecasts to ECMWF
member states of up to 10 to 15 days ahead.

For the CRESTA project it has been decided to focus on the IFS model to understand
its present limitations and to explore approaches to get it to scale well on future
exascale systems.

6.1 Summary	
 of	
 initial	
 roadmap	

Task Scheduled date Status

Coarray kernel M6 Completed

IFS CY37R3 port M6 Completed

Legendre transform
coarray optimization

M15 Completed

IFS CY38R1 port M15 Cancelled

Semi-Lagrangian coarray
optimization

M21 Completed

Optimization of Fourier
latitude load-balancing
heuristic

M27 Completed

Development of a future
solver for IFS

M36 Ongoing

Fourier Transform coarray
optimization (added).

M15 Completed

Table 6-1 IFS: Initial roadmap

Coarray kernel: Develop kernel to investigate overlapping computation and
communication using Fortran 2008 coarrays in an OpenMP parallel region.

IFS CY37R3 port: Port of IFS model (CY37R3) to HECToR and analysis of
performance for model resolutions up to T2047.
Legendre transform coarray optimization: Optimization to the IFS transform library
to overlap the computation of the Legendre transforms with the associated
communications (TRMTOL/TRLTOM).
IFS CY38R1 port: Port IFS model (CY38R1) to HECToR. This code cycle became
available in 2Q2012 and included support for the T3999 model resolution, Fast
Legendre Transform (FLT) and substantially reduced memory requirements for
computing the associated Legendre coefficients. Two main subtasks associated with
this task are:

1. Run T3999 IFS model (5 km global model)
2. Assess “Legendre transform” optimization at T3999.

© CRESTA Consortium Partners 2011 Page 16 of 26

This task was cancelled due to delays in the installation of ECMWF’s Power7 clusters
that were needed for the initial experimentation of the T3999 model resolution at
ECMWF. In the course of this early experience (during 4Q2012) some optimizations
were made to substantially reduce the cost of model startup and memory use. This
work was included in the IFS CY38R2 release that became available during 4Q2012,
which will be packaged as the RAPS13 benchmark and ported to HECToR during
1Q2013.

Semi-Lagrangian coarray optimization: Developments to the IFS semi-Lagrangian
scheme to use Fortran 2008 coarrays to improve scalability by removing the need to
perform full halo wide communications.
Optimization of Fourier latitude load-balancing heuristic: Optimization of the
heuristic used to statically load-balance the distribution of variable length latitudes in
grid-space. An optimal distribution of latitudes is required to load-balance the cost of
performing Fourier transforms as IFS transforms data from grid to Fourier space. Work
on this task quickly showed that the best static load-balancing heuristic at scale was to
load-balance the latitude data and ignore the FFT computation imbalance. To achieve
the perfect data load-balance required a rewrite of the trans library routine
sumplatb_mod.F90 and was also simulated to beyond 1M cores (assuming 16 threads
per task).
Development of a future solver for IFS: Research into a new multigrid solver for
extreme scaling of IFS and a potential replacement of the spectral method. Such a
solver could be initially tested using a shallow water model code and not IFS. It should
be noted that this development is not part of ECMWF's current research plans and
should be considered more speculative.
Fourier transform coarray optimization: Optimization to the IFS transform library to
overlap the computation of the Fourier transforms and Fourier space calculations with
the associated communications (TRGTOL/TRLTOG). This was omitted from the D6.1.1
schedule.

6.2 Achievements	
 towards	
 ongoing	
 tasks	
 in	
 initial	
 roadmap	

Task Achievement

Development of a future
solver for IFS

Participation in UK Met Office GUNGHO! project to
develop a new dynamical core for their Unified Model.
ECMWF has further added two scientists in its Numerical
Aspects section to progress this long term development.

Table 6-2 IFS: Achievements towards ongoing tasks in initial roadmap

6.3 Updated	
 roadmap	

Task Scheduled date Status

IFS CY38R2 port M18 Ongoing

Investigate GPGPU use in
IFS

M27 In planning

Investigate graph based
(DAG) parallelization

M36 In planning

Table 6-3 IFS: Updated roadmap

6.3.1 IFS	
 CY38R2	
 port	
 (M18)	

Port IFS model code version CY38R2 to HECToR. This code cycle became available in
4Q2012 and included support for the T3999 model resolution, FLT and substantially
reduced memory requirements for computing the associated Legendre coefficients.
This code version will be packaged as a RAPS13 benchmark and will include all the
IFS Fortran 2008 coarray optimizations implemented in the first year of the CRESTA
project. Two main subtasks associated with this task are:

© CRESTA Consortium Partners 2011 Page 17 of 26

1. Run T3999 IFS model (5 km global model)
2. Assess “Legendre transform” optimization at T3999.

6.3.2 Investigate	
 GPGPU	
 use	
 in	
 IFS	
 (M27)	

Some initial experience of using GPGPUs will be made as part of the TITAN INCITE
award to the CRESTA project. Specifically we want to explore intercepting the
DGEMMs that are called in the Legendre transform and executing them on the
GPGPUs. Tests will be performed at the T3999 model resolution to assess the benefit
of this approach as applied to the non-FLT and FLT approaches. As the FLT uses a
butterfly scheme, each stage of the butterfly has a number of independent DGEMMs
that can be run concurrently on the GPGPU with potentially greater efficiency (using
NVIDIA’s HYPER-Q mechanism). Finally, as the DGEMMs in the Legendre transform
involve matrix multiplication by a per spectral wave number constant matrix, it is hoped
that such constant matrices can be located in GPGPU memory, and avoid the need to
be loaded every time from node memory.

6.3.3 Investigate	
 graph	
 based	
 (DAG)	
 parallelization	
 (M36)	

The use of graph-based parallelization in IFS will be investigated. This work will start by
developing a kernel to simulate some of the code features of IFS, including some
random delays to simulate load imbalance and operating system interference. A
number of DAG approaches will then be tested and assessed for ease of use and
performance. Given the code complexity of IFS, it is expected that the graph will be
explicitly specified and not created by compiler pre-processing as in some (possibly all)
DAG implementations. This work will be a co-design effort with WP3 to draw on
existing experience of DAGs in that work package.

© CRESTA Consortium Partners 2011 Page 18 of 26

7 NEK5000	

Nek5000 [1] is an open-source code for the simulation of incompressible flow in
complex geometries. The discretization is based on the spectral-element method
(SEM) that combines the higher-order accuracy from spectral methods with the
geometric flexibility of finite element methods.

Nek5000 is written in mixed Fortran77/C and designed to employ fully large-scale
parallelism. The code has a long history of HPC development. Recently the large-
scale simulations were successful performed on the Cray XE6 system at PDC, KTH
with 32,768 cores [2] and on the IBM BG/P Eugene with 262144 cores [3]. An overview
of the capabilities and recent developments within the Nek5000 community is given in
[4].

7.1 Summary	
 of	
 initial	
 roadmap	

Task Scheduled date Status

Investigate existing code
architecture

M18 Completed

Implement error estimator
and initial refinement code

M12 In planning

Adaptive refinement
development

M18 Ongoing

Implement load balancing
using existing Nek5000
tool suite

M24 In planning

Undertake test and
development on large
scale applications

M36 In planning

Table 7-1 Nek5000: Initial roadmap

Investigate existing code architecture: To gain a fundamental understanding of most
aspects of implementation of NEK5000 with special attention to the large-scale
simulation of incompressible flow.

Implement error estimator and initial refinement code: Adaptive mesh refinement
(AMR) requires identification of the regions in the flow with significant error. Such error
estimators based on the solution of the adjoint equations (dual problem) will be
formulated and implemented into NEK5000.
Adaptive refinement development: AMR gives possibility to increase the accuracy of
numerical simulations with minimal computational cost. There are two ways of
introducing AMR: adaptive p-refinement, i.e. increasing polynomial order in individual
elements, and adaptive h-refinement, i.e. splitting the element into smaller one. We are
focusing on implementing h-type refinement into NEK5000.

Implement load balancing using existing Nek5000 tool suite: NEK5000 obtains full
scaling using static load balancing based on initial element distribution. After
introducing AMR the load balancing become an important issue, as the grid structure
changes during the simulation.

Undertake test and development on large scale applications: By using the
developed software environments to conduct simulations of large-scale real-life and
industrial application. These applications may include the simulation around a full
airplane wing include the transition and separated region, and complex internal flows.

7.2 Achievements	
 towards	
 ongoing	
 tasks	
 in	
 initial	
 roadmap	

Task Achievement

© CRESTA Consortium Partners 2011 Page 19 of 26

Investigate existing code
architecture

Identification of NEK5000 requirements for GPU
acceleration and for h-type refinement.

Adaptive refinement
development

Integration of NEK5000 pre-processing tools with p4est
library completed.

Table 7-2 Nek5000: Achievements towards ongoing tasks in initial roadmap

Investigate existing code architecture: In cooperation with Paul Fischer (the main
developer of NEK5000) we have investigated the code architecture and the possible
improvements that can be developed within CRESTA. Two main directions of
development have been chosen: porting NEK5000 to GP-GPU and introducing
adaptive mesh refinement (AMR). For GP-GPU port the simplified version of the code
NEKBone has been selected. On the other hand we have decided to use the p4est
library [15] for the management of AMR tree grid. A test suite has been done as a part
of this task.

Adaptive refinement development: There are two ways of introducing AMR: adaptive
p-refinement, i.e. increasing polynomial order in element, and adaptive h-refinement,
i.e. splitting the element into smaller one. After discussion with Paul Fisher we have
discarded p-refinement in favor of h-refinement, due to its flexibility. However, in this
case additional software managing variable grid structure is necessary. For this we are
going to use p4est library. Currently we have completed integration of NEK5000 pre-
processing tools with p4est library.

7.3 Updated	
 roadmap	

Task Scheduled date Status

Adaptive refinement
development

M18 Ongoing

Implement error estimator
and initial refinement code

M24 In planning

Implement load balancing
using existing Nek5000
tool suite

M30 In planning

Undertake test and
development on large
scale applications

M36 In planning

OpenACC acceleration of
Nek5000

M27 Ongoing

Table 7-3 Nek5000: Updated roadmap

7.3.1 Adaptive	
 refinement	
 development	
 (M18)	

AMR gives possibility to increase the accuracy of numerical simulations with minimal
computational cost. There are two ways of introducing AMR: adaptive p-refinement, i.e.
increasing polynomial order in individual elements, and adaptive h-refinement, i.e.
splitting the element into smaller one. We are focusing on implementing h-type
refinement into NEK5000.

7.3.2 Implement	
 error	
 estimator	
 and	
 initial	
 refinement	
 code	
 (M24)	

Adaptive mesh refinement requires identification of the regions in the flow with
significant error. Such error estimators will be formulated based on the solution of the
adjoint equations (dual problem) that can be thought as a measure of the sensitivity of
certain observables to the local mesh quality. We are going to create an interface
between the error estimator and NEK5000. Due to the change in the developed AMR
type (h- versus p-refinement) this task has been postponed.

© CRESTA Consortium Partners 2011 Page 20 of 26

7.3.3 Implement	
 load	
 balancing	
 using	
 existing	
 Nek5000	
 tool	
 suite	
 (M30)	

NEK5000 obtains full scaling using static load balancing based on initial element
distribution. After introducing AMR the load balancing become an important issue, as
the grid structure changes during the simulation. We are going to investigate and
analyze the load balancing affected the refinement using the existing analysis tools
developed by WP3 Task 3.3.

7.3.4 Undertake	
 test	
 and	
 development	
 on	
 large	
 scale	
 applications	
 (M36)	

Using the developed software environments we are going to conduct simulations of
large-scale real-life and industrial application. These applications may include the
simulation around a full airplane wing include the transition and separated region, and
complex internal flows. Such simulations are only possible with adaptive mesh
refinement, proper boundary treatment and adapted post-processing tools, all aspects
to be developed during CRESTA

7.3.5 OpenACC	
 acceleration	
 of	
 Nek5000	
 (M27)	

The objective of the task is to enable, for the first time, the use of Nek5000 on
massively parallel hybrid GPU/CPU system. This task will firstly show how to efficiently
use hybrid massively parallel computing on a simplified version of Nek5000. And then it
will outline the possible paths to speed up the full Nek5000 with GPU. In addition, this
project will assess the effectiveness of OpenACC and compiler support for GPU
programming with a view to future hybrid exascale simulations.

© CRESTA Consortium Partners 2011 Page 21 of 26

8 OpenFOAM®	

OpenFOAM® is an open source library for computational multiphysics and especially
computational fluid dynamics (CFD) problems. The library is a "toolbox" which provides
a selection of different solvers as well as routines for various kinds of analysis, pre- and
post-processing. OpenFOAM® is licensed under the GPL. As such, different parties
have made modifications to the code at different times and several versions are in
common use. In this project, we consider the official release from the OpenFOAM®
foundation (a not-for profit organization, wholly owned by OpenCFD Ltd.), and the
release from the OpenFOAM® Extend project.

It is hoped that any changes to the code contributed by the CRESTA project could be
made available for inclusion in both distributions, but if there are good reasons to make
optimizations or improvements to one particular version, we will do so.

Since the code can be used in many different ways, it is challenging to identify ways to
enable the application for exascale systems in general. It is likely that there are some
problems that are much more amenable to large-scale systems, but it is not obvious a
priori that there is much to be gained in making simulations of “simple” systems (such
as Lid-driven Cavity	
 Flow) scale to many more processors than at present.

It has been observed that with OpenFOAM, in many cases the bottleneck does not lie
in the actual solution phase, but in the pre –and post-processing stages of the
computation. It is currently being investigated how to efficiently parallelize these
phases of the solution process in order to enable the scaling of OpenFOAM to
exascale geometries and meshes.

8.1 Summary	
 of	
 initial	
 roadmap	

Task Scheduled date Status

Benchmarking of the latest
version of the code

M12 Ongoing

Code analysis of latest
version of code

M12 On hold

Performance analysis of
kernels, libraries

M15 Delayed

Iterative performance
improvement

M24 Delayed

Test case 01: ercoftac
Square Cylinder with
OpenFOAM-1.6.ext

M10 Completed

Test case 02: pump turbine
power plant with
OpenFOAM-1.6.ext

M11 Completed

Test case 01: ercoftac
Square Cylinder with
OpenFOAM-2.1

M13 Completed

Test case 02: pump turbine
power plant with
OpenFOAM-2.1

M18 Ongoing

Table 8-1 OpenFOAM: Initial roadmap

Benchmarking of the latest version of the code: Detailed benchmarking of the code
has proved considerably more difficult than what was initially assumed. Scaling results
for a number of different test cases have been obtained, but these measurements
relate only to the total run-time of the code. Initially, even these runs proved to be non-

© CRESTA Consortium Partners 2011 Page 22 of 26

trivial, mostly for reasons related to the multiple steps involved in running a test case
(some of which have to run in serial, and others in parallel) and also due to the fact that
not all test cases were fully documented. Efforts to obtain more detailed profiles for the
code have proved unsuccessful to date. Standard tools such as CrayPAT have been
unable to cope with the highly-templated C++ codebase, often crashing during the
code instrumentation stage. For this reason, it has not yet been possible to measure
the performance of the code in detail.

Code analysis of latest version of code: This task was started, but it quickly became
evident that the code was too large and complex to understand in the available time
without such investigations being supported and driven by results from the
benchmarking. Since these results have not yet been obtained, it has not been
possible to extract from the code those sections that are of interest from the point of
view of performance and scalability to exascale problem sizes.

Performance analysis of kernels, libraries: For the same reasons as described
above, a detailed analysis has not been possible. This task will be readdressed once a
better overall understanding of the performance of the code as a whole has been
obtained.
Iterative performance improvement: This task has also been delayed until more
detailed performance analysis can be undertaken.
Test case 01: (ERCOFTAC Square Cylinder with both OpenFOAM-1.6-ext and
OpenFOAM-2.1) To check if the physics is correct and independent from the large
number of cores used for the simulation run, we have prepared the ERCOFTAC square
cylinder with about 15 million grid vertices. The ERCOFTAC square cylinder is a
unique test case that is experimentally measured [7]

Test case 02: (Pump turbine power plant with both OpenFOAM-1.6-ext and
OpenFOAM-2.1) The pump turbine test case was prepared for the OpenFOAM-1.6-ext
version. It has been never been released for performance tests due to OpenFOAM-1.6-
ext not being compiled on HERMIT. For future work OpenFOAM-2.1 will be used, and
therefore the test cases are being converted to the new format to be ready for
performance and scalability tests.

8.2 Achievements	
 towards	
 ongoing	
 tasks	
 in	
 initial	
 roadmap	

Task Achievement

Benchmarking of the latest
version of the code

Scaling results for a selection of cases including
damBreakFine, damBreak3D, motorBike and
motorBikeLarge covering the simpleFoam and interFoam
binaries.

Test case 01: ercoftac
Square Cylinder with
OpenFOAM-1.6.ext

Adequate physical results. Important for comparison with
OpenFOAM-2.1 in the future.

Test case 02: pump turbine
power plant with
OpenFOAM-1.6.ext

Adequate physical results. Important for comparison with
OpenFOAM-2.1 in the future. See Timo Krappel [8]

Test case 01: ercoftac
Square Cylinder with
OpenFOAM-2.1

Adequate physical results. In agreement with
 OpenFOAM-1.6.ext

Table 8-2 OpenFOAM: Achievements towards ongoing tasks in initial roadmap

To check if the physics is correct and independent from the number of cores used for
the simulation run, we have prepared the ERCOFTAC square cylinder with about 15
million grid vertices. The ERCOFTAC square cylinder is a unique test case that is
experimentally measured [7]

© CRESTA Consortium Partners 2011 Page 23 of 26

The flow concerned in the first test case corresponds to turbulent flow of water around
a square cylinder. The size of the square cylinder (H) is 0.04m and it extends along the
width of the channel, the cross-section of which is 0.40x0.56m. The mean velocity at
the inlet, U, is assumed to be 0.535m/s and it is taken as reference value. The
Reynolds number, based on U and H, is 21400. The shedding frequency, f, is
estimated experimentally to be 1.77Hz. The resulting Strouhal number (St=f H/U) is
0.132. The flow produced in that manner is very interesting to use for a Large Eddy
Simulation (LES), since it involves coherent shedding of vortices from the cylinder.
Further details about the flow and this test case can be found on the ERCOFTAC web
site (see test case 43) [7]. This is the first test case that IHS has prepared for
performance and scalability tests of the OpenFOAM® solver, pimpleFOAM.

pimpleFOAM stands for piso-simple-FOAM and is a combination of the piso and simple
algorithms, which are used for the pressure-velocity coupling. Computations made by
IHS (Timo Krappel) show that the pimple algorithm is more stable than the piso
algorithm.

8.3 Updated	
 roadmap	

Task Scheduled date Status

Benchmarking of the latest
version of the code

M18 Ongoing

Code analysis of latest
version of code

M21 Planned

Performance analysis of
kernels and libraries

M24 Planned

Iterative performance
improvement

M27 Planned

Test case 02: pump turbine
power plant with
OpenFOAM-2.1

M18 Ongoing

Test case 01: mesh
refinement

M20 Ongoing

Test case 02: mesh
refinement

M22 In planning

Table 8-3 OpenFOAM: Updated roadmap

8.3.1 Benchmarking	
 of	
 the	
 latest	
 version	
 of	
 the	
 code	
 (M18)	

Version 2.1.0 of OpenFOAM has been released since the CRESTA project started.
There have been some fairly major changes to the code since version 1, including the
incorporation of parallel mesh generation. Benchmarking and profiling of OpenFOAM
have been undertaken on previous versions, but before we know where to concentrate
our efforts in optimization for future systems, we need to understand the impacts of
recent changes on the code’s performance.

In addition to providing an update of previous results on the performance of
OpenFOAM based on current systems and the newest version of the code, we will
adjust parameters of our profiling runs in order to attempt to measure how the
performance would vary as the ratios of computation, communication and memory
access vary. In addition, we will specifically investigate the I/O performance of the code
and seek to identify how these I/O patterns are likely to change when scaling up to
exascale.

8.3.2 Code	
 analysis	
 of	
 the	
 latest	
 version	
 of	
 the	
 code	
 (M21)	

In tandem to measuring the performance of the code, an analysis of the code’s
structure will be undertaken in order to, for example:

© CRESTA Consortium Partners 2011 Page 24 of 26

(i) determine internal interfaces in the code where alternative solvers, libraries,
etc. could be swapped in if it was determined that these could provide better
performance;

(ii) determine the parallelisation patterns currently used in the code and
evaluate these with respect to exascale issues such as fault-tolerance. A
simple example of this might be that a synchronous domain-decomposition
might not be intolerant to a process failing, whereas a tracked task-farm
approach might be able to recover from a process failing. (Note that this is
example is illustrative. At present, there is no evidence that either of these
patterns is directly relevant to OpenFOAM.)

8.3.3 Performance	
 analysis	
 of	
 kernels,	
 libraries	
 (M24)	

In the course of the activities above, we will have been able to quantitatively measure
the characteristics of the sub-problems solved by libraries and routines used for linear
algebra and meshing. We will then engage with the developers of these libraries and
seek comparisons with the other applications investigated in WP6 to determine
possible optimisations.

8.3.4 Iterative	
 performance	
 improvement	
 (M27)	

Concentrating on those parts of the code which have been determined to be potential
future bottlenecks, we will use standard optimisation techniques to seek to improve the
scaling of the code (including, for example, overlapping communication and
computation, possibly through the use of more asynchronous communications,
investigating the effects of compiler optimization, changing memory access patterns,
introducing further (hybrid) levels of parallelisation). For pre –and post-processing,
current sequential tools may have to be replaced with new parallel ones to enable
working with exascale meshes and geometries.

8.3.5 Test	
 case	
 02:	
 pump	
 turbine	
 power	
 plant	
 with	
 OpenFOAM-­‐2.1	
 (M18)	

The geometry of the test case 02 is shown below in Figure 2.

Figure 2: Geometry of a Francis turbine

The application of OpenFOAM® at the Institute of Fluid Mechanics and Hydraulic
Machinery, University of Stuttgart, is the simulation of the flow in an entire hydraulic
turbine using a Large Eddy Simulation (LES). This means that a great part of the
turbulence in the flow will be resolved in the computation up to very fine turbulent
scales. Since the Reynolds number of this flow is very high this simulation needs very
fine computational grids, very fine time steps and long simulation times. Consequently
a very high computational effort is required. According to a publication of Chapman [5]
and Fröhlich [6] the number of vertices in the computational domain can be estimated
to approximately 1000 million for all parts of a hydraulic machine.

The test case consists of stationary and moving parts, both with a complex geometry.
The runner rotates so we have the non-trivial case of rotor-stator interaction.

© CRESTA Consortium Partners 2011 Page 25 of 26

Furthermore, in every part of the hydraulic machine we have turbulence phenomena
that cover the whole range and scales of turbulence. Another topic very difficult to
resolve is the vortex rope which is produced by the runner as it rotates in the draft tube.
The extension of the solver pimpleFOAM to dynamic mesh also exists, it is called
pimpleDyMFOAM. This is the solver to be used in the future work in order to compute
the whole pumpturbine. Another reason to use the pimple algorithm is that the piso
algorithm does not give accurate results for this machine.

A new general Grid Interface (GGI) called Arbitrary Mesh Interface (AMI) exists in
OpenFOAM-2.1. It seems to offer a better performance than the GGI implementation of
OpenFOAM-1.6-ext. Furthermore, the use of OpenFOAM-2.1 allows compatibility with
other OpenFOAM® users and developers in the CRESTA framework.

Furthermore, the standard simulation technique in OpenFOAM® for incompressible
flows is an implicit time discretization with a SIMPLE or PISO type pressure-velocity
coupling. These algorithms could be computationally time expensive because of the
need to repeatedly solve global systems of linear equations in an iterative loop. The
solution of these global linear equation systems could be a bottleneck for a LES on
very fine grids. Performance and scale up tests will be carried out in order to identify if
the algorithms mentioned before are able to get good results, as well as a good
performance with OpenFOAM-2.1. If it is not the case, the algorithms will be changed
towards an explicit formulation. A version of the Fractional Step Method would be
proposed to solve the equations. It is well known that the Fractional Step Method
(FSM) is used for Direct Numerical Simulation (DNS) and LES to enhance the stability
of the solution. It is expected, that this method will reach a higher performance for very
large computational grids.

8.3.6 Test	
 case	
 01:	
 mesh	
 refinement	
 (M20)	

In OpenFOAM® uses various utilities for mesh preprocessing. For our usage scenarios,
the utilities required are decomposePar, refineMesh and mapFields.

The decomposePar utility is used for the domain decomposition and is coupled with the
PT-Scotch [10] library. To our knowledge, partitioning of extremely large meshes with
the PT-Scotch library has been performed for academic cases, our purpose is to
investigate the usability of the library for real-world problems. Furthermore, either the
refinement tool refineMesh, or the mapFields utility, are not parallelized. It is essential
to perform analysis with these tools and check for possible bottlenecks.

The mesh refinement effort enables co-design opportunities with partners in WP3, WP4
and WP5. It will be paramount to parallelize refineMesh and mapFields tools in order to
perform simulations at an exascale.

8.3.7 Test	
 case	
 02:	
 mesh	
 refinement	
 (M22)	

The relevant test case (Testcase 02) is the Large Eddy Simulation (LES) of the flow in
an entire hydraulic machine. A realistic simulation requires very fine computational
grids and consequently a very high computational effort.

The flow in a hydraulic machine is characterized by relative high Reynolds numbers
(Highly Turbulent Flow) in test rig of about 3*106 to 5*106. We estimate that the number
of vertices (from 750000 to a billion vertices) and the small time step size will lead to a
requirement of approximately 80 million core hours to get a fully converged simulation.
This would mean a usage of 60000 cores for about 60 days.

© CRESTA Consortium Partners 2011 Page 26 of 26

9 References	

[1] Nek5000 web page, Available online at: http://nek5000.mcs.anl.gov

[2] J. Malm, P. Schlatter and D. S. Henningson, “Coherent structures and dominant
frequencies in a turbulent three-dimensional diffuser”, J. Fluid Mech. 2012.

[3] Bernd Mohr, Wolfgang Frings, “Extreme Scaling Workshop 2010 Report”, Jülich
Supercomputing Centre, 2010. Available online at:
http://juser.fz-juelich.de/record/9600/files/ib-2010-03.pdf.

[4] Paul Fischer, “Nek5000 Tutorial”, 2010. Available online at:
http://www.mcs.anl.gov/~fischer/nek5000/fischer_nek5000_dec2010.pdf.

[5] Chapman D., “Computational Aerodynamics Development and Outlook”, AIAA
Journal, Vol. 17, No.12, pp. 1293-1313, 1979.

[6] Fröhlich J., “Large Eddy Simulation turbulenter Strömungen“, Teubner Verlag, 1.
Auflage, 2006.

[7] ERCOFTAC web site. Available online at: http://www.ercoftac.org/

[8] 7th OpenFOAM Workshop web site. Available online at:
http://www.openfoamworkshop.org/2012/OFW7.html/

[9] Alan Gray, “A Feasibility Study on the Hybridisation of HemeLB”, CRESTA
internal report, 2013.

[10] François Pellegrini, “Scotch & PT-Scotch”, 2013. Available online at
http://www.labri.fr/perso/pelegrin/scotch/

[11] Greengard, L., Rokhlin, V., “A fast algorithm for particle simulations”, J.
Comput. Phys. 73, 325, 1987.

[12] Izaguirre, J.A., Hampton, S.S., Matthey, T., “Parallel multigrid summation for
the N-body problem”, J. Parallel Dist Comp 65, 949-962, 2005.

[13] Pronk et al., “Copernicus: a new paradigm for parallel adaptive molecular
dynamics”, SC11 High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for. IEEE, 2011.

[14] Hess B, Kutzner C, Van Der Spoel D, Lindahl E, ”GROMACS 4: Algorithms for
Highly Efficient, Load-Balanced, and Scalable Molecular Simulation”. J. Chem.
Theory Comput., 4 (3), pp 435–447, 2008.

[15] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas, “p4est: Scalable
Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees”, SIAM
Journal on Scientific Computing, 33(3), pp 1103-1133, 2011.

