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1 Executive	
  Summary	
  
This document contains an update to the initial roadmap for the CRESTA codes 
described in Deliverable D6.1.1. The main progress and main updates to the original 
roadmaps for the separate codes are summarized in Section 1.1. Actions related to co-
design progress for each application are summarized in Section 1.2. 

1.1 Summary	
  of	
  progress	
  and	
  roadmap	
  update	
  
The main progress and main updates to the original roadmap for each application can 
be summarized as follows: 

ELMFIRE: The overall progress has been steady, with the majority of the tasks 
progressing without significant delays. 3D domain composition has been slightly 
delayed. This may cause a slight delay to the remaining tasks as well, but not by any 
considerable amount. 

GROMACS: The overall progress has been good, with all the tasks progressing as 
scheduled. A task related to parallel I/O has been rescheduled to finish by M36. 
Fundamental work on O(N) algorithms for PME electrostatics is ongoing. There are no 
major updates to the original roadmap. 

HemeLB: The overall progress has been good, with all the tasks progressing as 
scheduled. Several task in pre- and post-processing have been completed. Several 
successful co-design tasks related to GPU implementation, partitioning and inlet/outlet 
boundary conditions have been undertaken. 

IFS: The overall progress has been excellent, with most of the tasks included in the 
original roadmap already completed. The code is well ahead of schedule. In order to 
take advantage of the extra effort available, several additional tasks with strong co-
design components have been set up. 

NEK5000: The overall progress has been steady, with the majority of the tasks 
progressing without significant delays. Implementation of the error-estimator has been 
slightly delayed. 

OpenFOAM: The overall progress has been fair, with several tasks being delayed. The 
test cases have been successfully set up, but attempts to profile the codebase with 
standard tools have been unsuccessful. The roadmap has been updated to reflect 
upon these difficulties. Improving pre –and post-processing and mesh refinement steps 
are currently seen as the main way forward to continue the development towards 
exascale. 

1.2 Summary	
  of	
  co-­‐design	
  progress	
  
The co-design progress for each application can be summarized as follows.  

Elmfire/ABO: ABO has participation in the Lattice Boltzmann on GPUs co-design effort 
with HemeLB and the OpenACC co-design and performance evaluation with Cray. 

Gromacs: GROMACS has participation in pre –and post-processing co-design related 
to I/O with WP5 and code optimization co-design related to new architectures and 
programming paradigms with WP3. 

HemeLB: HemeLB has participation in Lattice Boltzmann on GPUs co-design with 
ABO, matrix diffusion co-design with JYU and OpenACC co-design with Cray. HemeLB 
also does co-design related to pre –and postprocessing with WP5. 

IFS: IFS has participation in co-array Fortran co-design with CRAY and development 
environment co-design with Allinea. A task graph co-design work is currently in 
preparation with KTH. 

NEK5000: Nek5000 has participation in global communication co-design with WP3 and 
OpenACC co-design with Cray. 
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Openfoam: OpenFOAM has participation in numerical libraries co-design with WP4. A 
co-design attempt to resolve problems with profiling tools with WP3 and Cray has been 
recently initiated. 
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2 Introduction	
  
This document contains roadmaps over the actions needed to develop the CRESTA 
codes towards exascale performance. The roadmaps of the different codes are 
presented in the following chapters. The codes can be summarized as follows: 

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and 
interaction between high-speed particles in a torus-shaped geometry on a three 
dimensional grid. The particles are held together by an external magnetic field. The 
objective is to simulate significant portions of large-scale fusion reactors like JET or 
ITER. 

GROMACS: is a molecular dynamics code that is extensively used for simulation of 
biomolecular systems. Useful investigation of this kind of systems is typically limited by 
computational capacity. The limitations concern both system sizes and, in particular, 
time duration of interesting processes. Also, efficient implementation of ensembles of 
simulation is needed for gathering statistical validity. 

HemeLB: is intended to form part of a clinically deployed exascale virtual physiological 
human. HemeLB simulates blood flow in measured blood vessel geometries. The 
objective is to develop a clinically useful exascale tool. 

IFS: is the production weather forecasting application used at the European Centre for 
Medium Range Weather Forecasts (ECMWF). The objective is to develop more 
reliable 10-day weather forecasts that can be run in an hour or less. 

NEK5000: is an open-source code for the simulation of incompressible flow in complex 
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000. 

OpenFOAM®: is an open source application for computational fluid dynamics (CFD). 
The program is a “toolbox” which provides a selection of different solvers as well as 
routines for various kinds of analysis, pre- and post-processing. Besides general 
development of the code, within this project the focus will be on a specialized code for 
turbo machinery. The objective is to simulate a whole hydraulic machine on exascale 
architectures. 

2.1 Glossary	
  of	
  Acronyms	
  
ACML AMD Core Math Library 

AMI Arbitrary Mesh Interface 

AMR Adaptive Mesh Refinement 

CAF Coarray Fortran 

CSC CSC – IT Center for Science Ltd. 

CPU Central Processing Unit 

DLR Deutschen Zentrums für Luft- und Raumfahrt 

ECMWF European Centre for Medium-Range Weather Forecasts 

ENDA Ensemble Data Assimilation System 

EPCC Edinburgh Parallel Computing Centre 

EPS Ensemble Prediction System 

FFT Fast Fourier Transform 

GGI General Graphics Interface 

GNU GNU's Not Unix! 

GPL GNU General Public License 
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GPU Graphics Processing Unit 

INCITE Innovative and Novel Computational Impact on Theory and Experiment 

I/O Input/Output 

ITER International Thermonuclear Experimental Reactor 

JET Joint European Torus 

KTH Kungliga Tekniska Högskolan 

LB Lattice Boltzmann 

LGPL GNU Lesser General Public License 

MPI Message Passing Interface 

OpenACC Open Accelerators 

OpenMP Open Multiprocessing 

PETc Portable, Extensible Toolkit for Scientific Computation 

PGAS Partitioned Global Address Space 

PME Particle Mesh Ewald 

SIMD Single Instruction, Multiple Data 

UCL University College London 

USTUTT University of Stuttgart 
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3 ELMFIRE	
  
Elmfire is a particle-in-cell code that simulates the movement and interaction between 
extended gyrokinetic particles moving at high speed in a torus-shaped geometry on a 
three dimensional grid. The particles are held together by a strong external magnetic 
field. 

Elmfire approximates the Coulomb interaction between particles by solving a global 
electrostatic field on a grid, using the particle charges as sources. Elmfire then 
advances particles in time by free streaming along the magnetic field line and particle 
drift perpendicular to the magnetic field. Typically, time steps corresponds to 30-50ns 
of real time.  

The time step based simulation in Elmfire can be roughly divided into seven parts: 

• Perform collisions between particles close to each other 
• Using a 4th order Runge-Kutta, calculate particle movements in continuous space 

during the time step based on the electric field 
• Collect grid cell charge data from the particles for the electrostatic field. 
• Combine and split the grid charge data so each processor has a smaller part of it 
• Construct a large modified gyro kinetic Poisson equation based on the data and 

solve it in parallel 
• Calculate additional movement caused by magnetic field drift of particles based on 

the acquired electric field 
• Write diagnostics output 

Presently, the most CPU heavy part of the code is calculating particle movements, but, 
as each processor is assigned a fixed number of particles this scales linearly with the 
number of processors, and is therefore not an issue when scaling to larger systems. 
The most problematic part is the collection and distribution of grid cell charge data. In 
the current version each processor can have its assigned particles moving in any part 
of the torus, leading to all processor contributing charge data to all grid cells in the 
system. As a consequence, each processor has the full electrostatic grid data and a 
huge sparse matrix, the size of which is the number of grid cells squared, for collecting 
charge data. The matrix has been optimized by reducing the second dimension to a 
constant, which is the number of cells around a given cell to which charges due to 
gyrokinetic motion can be moved from the given cell. This reduces memory usage 
significantly but not enough for large-scale simulations. Memory consumption of 
ELMFIRE will be addressed after the domain decomposition has been fully 
implemented.  

Once the grid cell charge data has been combined and split among the processors, 
each processor can construct its own part of the Poisson equation individually. The 
Poisson equation is then solved in parallel using PETSc. The solution (the electric 
potential) is then distributed to all processors to be used in the next time step. 

Focus of the work on Elmfire is to continue on basic scalability, mostly related to 
memory usage. The version initially provided for the project does not implement any 
spatial domain decomposition that leads to massive memory usage and data 
duplication. Particles are split between processors but can, during the simulation, be 
located in any grid cell in the system, leading to massive memory requirements for 
gathering the charge data and large data transfers when combining the data. Initial 
proof-of-concept 3D domain decomposition has been already implemented with 
promising results.  

3.1 Summary	
  of	
  initial	
  roadmap	
  
Task Scheduled date Status 

3D domain decomposition  M18 Ongoing 

Load balancing M24 In planning 
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Memory usage for binary 
collisions 

M36 In planning 

Parallel file writing M36 In planning 
Table 3-1 ELMFIRE: Initial roadmap 

Implement a 3D Domain Decomposition: Implementation of a 3D electrostatic grid 
cell based domain decomposition of the code, so that each processor can only own 
particles inside its own grid cells. 

Load balancing: The 3D domain decomposition will introduce load-balancing issues 
as the particles are not evenly distributed between all grid cells in the simulation.  

Memory usage for binary collisions: Elmfire calculates collisions between randomly 
chosen particles close to each other in each time step. In order to assess how close 
particles are to each other, a separate collision grid is set up. By introducing data 
structures that avoid duplication this will be improved. 

Parallelize File Writing: The file writing, which is currently sequential, needs to be 
parallelized for Elmfire to scale to exascale sized problems. 

3.2 Achievements	
  towards	
  ongoing	
  tasks	
  in	
  initial	
  roadmap	
  
Task Achievement 

3D domain decomposition 1D decomposition into 4 domains: memory  requirements 
down by ¼. 

Table 3-2 ELMFIRE: Achievements towards ongoing tasks in initial roadmap 

3.3 Updated	
  roadmap	
  
Task Scheduled date Status 

3D domain decomposition M22 Ongoing 

Load balancing M28 In planning 

Memory usage for binary 
collisions 

M36 In planning 

Parallel file writing M36 In planning 
Table 3-3 ELMFIRE: Updated roadmap 

3.3.1 Implement	
  a	
  3D	
  Domain	
  Decomposition	
  (M22)	
  
The version originally provided for the project does not implement any spatial 
decomposition. Particles are distributed evenly among processors but the electrostatic 
grid data is duplicated in all processors. This prevents scaling to larger grids than 
approximately 120x150x8 regardless of the number of cores available. For large scale 
simulations, of e.g. JET or ITER, it would be beneficial to be able to simulate 
electrostatic grids up to 3000x4000x16 i.e. almost 1500 times larger than today. An 
estimate for an ITER simulation is that 640 000 cores would be needed for 590 billion 
particles. With the current version this would require approximately 28TB memory per 
core. 

We are in the process of implementing an electrostatic grid cell based domain 
decomposition of the code so that each processor can only own particles inside its own 
grid cells. This will restrict the grid cell data needed in each processor to its own grid 
cells and a few surrounding grid cells (in order to propagate the particles in time). It 
should also remove the need to communicate large amounts of data for the charge 
data, with the downside of having to send particle data between processors in each 
time step. This task will be completed by M22. The memory requirements are expected 
to be reduced relative to the number of domains used. The slight delay compared to 
original roadmap is currently not expected to cause any significant delays to the 
completion of other tasks. 
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3.3.2 Improve	
  Load	
  Balancing	
  (M28)	
  
In the current version, load-balancing is not a large problem but it is expected that the 
3D domain decomposition will introduce load-balancing issues as the particles are not 
evenly distributed between all grid cells in the simulation. These need to be 
investigated and addressed after the initial domain decomposition has been performed. 
One approach would be to dynamically reallocate the electrostatic grid based on the 
workload, that is, the size of the grid and the number of particles.  

3.3.3 Improve	
  Memory	
  Usage	
  for	
  Binary	
  Collisions	
  (M36)	
  
Elmfire calculates collisions between randomly chosen particles close to each other in 
each time step. In order to assess how close particles are to each other, a separate 
collision grid is set up. Currently this uses 10 times the memory it really needs. By 
introducing data structures that avoid duplication this will be improved. 

3.3.4 Parallelize	
  File	
  Writing	
  (M36)	
  
File writing in Elmfire is presently done by all processes sending data to the master 
process, which then writes the data to disk. For small simulations this is typically not an 
issue (< 5% of the each time steps goes to writing diagnostics) but it will likely block 
large scale simulations and input files for visualizations. The file writing needs to be 
parallelized for Elmfire to scale to ITER sized problems.  
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4 GROMACS	
  
GROMACS is a major open source code that performs classical molecular dynamics 
simulations based on interactions between particles moving in space, typically for 
biomolecular systems. It has been developed for over 15 years, initially with a large 
focus on the highest possible single-core performance, but over the last few years we 
have made a complete overhaul of the parallelization approach and the code currently 
exhibits some of the best relative scaling in the field. 

The main challenge for classical molecular dynamics in general - and GROMACS in 
particular - is that it relies on integration of Newton’s equations of motion, and high 
performance therefore requires very fast iterations over integration time-steps. This has 
largely driven 20 years of development in the field, and current algorithms are very 
focused on providing simple interaction forms to reduce the floating-point instruction 
bottleneck. Historically, runtime for these types of codes was completely dominated by 
the evaluation of interactions between particles. In principle, this lends itself very well to 
parallelization, but 20 years of optimization focused on algorithms to avoid floating-
point operations has resulted in complex data structures and inhomogeneity in 
interaction density over space that makes efficient parallelization challenging. In this 
regard, GROMACS is a particular challenge since the single-core performance is 
significantly higher than many other codes, and the code is therefore spending a 
relatively larger part of time on communication [14]. 

The work in GROMACS is focused on achieving significant improvements for real 
applications. Seen from the user side, there are three overall important objectives to 
advance the state-of-the-art for applications: (i) to reduce the time-step per iteration in 
order to achieve longer simulations, (ii) to be able to handle much larger application 
systems to model e.g. mesoscopic phenomena, and (iii) to improve accuracy and 
results for small application systems through massive sampling. 

All three aspects are critically important, but they require slightly different approaches. 
The wall-clock time for a single time-step iteration is already today in the range of a few 
milliseconds for some systems, and while we have strategies to improve this further we 
do not believe this is possible to push more than one order of magnitude beyond 
today’s standard. In contrast, handling much larger systems is easier (although not 
trivial) from the point of view of a parallelization algorithm, but it will involve challenges 
related to handling of data when a single master node no longer can control all input 
and output, both when starting execution and for checkpointing or output. Finally, for 
small systems, the main approach will be ensemble techniques to handle thousands of 
simulations that each will use thousands of cores. 

4.1 Summary	
  of	
  initial	
  roadmap	
  
Task Scheduled date Status 

Benchmarking new 
GROMACS releases, and 
GPU coding 

M9 Completed (v.4.5, v.4.6)  
Ongoing (development 
versions) 

Multi-grid solvers for 
efficient PME electrostatics  

M36 Ongoing 

Efficient large-scale I/O M27 Ongoing 

Task-based parallelism M36 Ongoing 

Ensemble computing & 
parallel adaptive molecular 
dynamics 

M36 Completed (initial release), 
Ongoing (development 
versions) 

Table 4-1 GROMACS: Initial roadmap 
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Benchmarking new GROMACS releases, and GPU coding: GROMACS 4.6 has 
been released, delivering higher performance and better strong scaling through 
algorithmic improvements, GPU parallelisation and SIMD kernels. 
Multi-grid solvers for efficient PME electrostatics: The implementation of the 
current standard electrostatics treatment (PME) shows the expected O(N log N) 
performance scaling with N atoms. Investigating the feasibility of implementing and 
using known O(N) algorithms is ongoing. 
Efficient large-scale I/O: I/O demands of petascale simulations, particularly with 
algorithms that scale as O(N), will require more efficient I/O techniques. These will 
come both from using I/O algorithms that do not require explicit communication stages, 
and better compression formats used before writing output.  
Task-based parallelism: Maximising usage of compute resources at exascale will 
require re-writing algorithms to express their needs and dependencies in a hardware-
agnostic way, so that scheduling of tasks can be truly flexible. The associated 
paradigm shift away from simple procedural flow of GROMACS is a major challenge. 
Ensemble computing & parallel adaptive molecular dynamics: To exploit 
parallelism at the level of multi-simulation ensemble algorithms, we are developing a 
parallel computing platform Copernicus that uses GROMACS to run massively parallel 
simulations while doing live intermediate processing to guide new runs.  

4.2 Achievements	
  towards	
  ongoing	
  tasks	
  in	
  initial	
  roadmap	
  
Task Achievement 

Benchmarking new 
GROMACS releases, and 
GPU coding 

GROMACS 4.6 released. Second generation GPU code 
used in production. 

Multi-grid solvers for 
efficient PME electrostatics  

Work in progress. 

Efficient large-scale I/O Collaboration to implement compressed I/O format 
established. 

Task-based parallelism OpenMP-based threading now used in many parts of 
GROMACS release 4.6. 

Ensemble computing & 
parallel adaptive molecular 
dynamics 

Copernicus 1.0 has been released, and used for 
production simulations.  

Table 4-2 GROMACS: Achievements towards ongoing tasks in initial roadmap 

 

4.3 Updated	
  roadmap	
  
Task Scheduled date Status 

Benchmarking new 
GROMACS releases, and 
GPU coding 

M18, M30 Ongoing 

Multi-grid solvers for 
efficient PME electrostatics  

M36 Ongoing 

Efficient large-scale I/O M36 Ongoing 

Task-based parallelism M36 Ongoing 

Ensemble computing & 
parallel adaptive molecular 
dynamics 

M36 Ongoing 

Table 4-3 GROMACS: Updated roadmap 
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4.3.1 Benchmarking	
  new	
  GROMACS	
  releases,	
  and	
  GPU	
  coding	
  (M18,	
  M30)	
  
GROMACS version 4.6, which has been developed during the first part of the project, 
has been released. It has brought some important new advances in domain 
decomposition and scaling over previous versions. We have developed a new set of 
computational kernels that have departed from the classical implementation with 
neighbour lists. These have made it much easier to parallelize (both with SIMD and 
multi-threading), which achieves a higher fraction of the hardware peak floating-point 
performance. These kernels are also being implemented on GPUs, and GROMACS 
4.6 uses heterogeneous acceleration; some kernels run on the GPU while others 
execute simultaneously on the CPU (where the domain decomposition is also done). 
Our old style computational kernels have also been upgraded with new SIMD 
implementations. It will be an important step to benchmark all these new kernels on 
different hardware, in particular large clusters with GPU co-processors (such as Cray 
XK6), and in this frame we have also implemented support for the Nvidia Kepler 
architecture, which is used in several new Cray installations. 

4.3.2 Multi-­‐grid	
  solvers	
  for	
  efficient	
  PME	
  electrostatics	
  (M36)	
  
The vast majority of biomolecular simulations rely on particle-mesh Ewald (PME) lattice 
summation to handle long-range electrostatic interactions. Since this in turn relies on 
3D FFTs, the associated all-to-all communication pattern is a major bottleneck for 
scaling. We are developing improved FFT algorithms and communication patterns, but 
to improve support for heterogeneous architectures such as CPU-GPU parallelism on 
each node, we need to develop algorithms that avoid communicating grids over all 
processors. This can currently be achieved either through multipole [11] -or multigrid-
based [12] methods, and we are currently investigating both techniques. This part is 
targeting "medium" parallelization for normal-size systems (10k-100k cores), and the 
O(N) algorithms will provide virtually perfect weak scaling, even for systems including 
long range electrostatics (currently this is only true for simple cut-off interactions). 

4.3.3 Efficient	
  large-­‐scale	
  I/O	
  (M36)	
  
With the completion of long-range electrostatics algorithms that exhibit O(N) scaling, it 
should be possible to reach multi-petascale for normal simulations of very large 
systems such as virus particles, complexes of several molecules, or material science 
studies. Typical simulations in this domain might involve a few hundred million 
particles. To support this, we need to rewrite the input/output layer of GROMACS so 
that a large set of I/O tasks participate in reading the data from files to avoid running 
out of memory on the master node, not to mention avoid global communication during 
startup. This will ideally use a minimalistic PGAS-like library that is fully portable (or 
even included in the code), so that all I/O code does not have to do explicit 
communication. We will also implement code for check-pointing and trajectory output 
that supports asynchronous output by sending the data to a subset of I/O nodes that 
then transpose the data (to be decomposed over time-frames rather than space), and 
write it to trajectories while the simulation continues. The completion of this task has 
been rescheduled from M27 to M36.  

4.3.4 Task-­‐based	
  parallelism	
  (M36)	
  
One of the most significant long-term changes will be a complete code re-write to 
support introduction of task-based parallelism to improve the efficiency inside many-
core nodes, to enable better simultaneous utilization of CPU-GPUs, and to enable 
overlap of computation and communication between nodes. The latter will be 
particularly critical to increase scaling appreciably, since we are gradually moving into 
the realm where more time is spent on communication than computation. We have 
incorporated OpenMP thread-based parallelism into many key performance 
bottlenecks in GROMACS 4.6, with pleasing results. However, a slightly higher-level 
abstraction is required to implement task-based parallelism over the whole iterated 
code. We plan to experiment implementing this with Intel's Threading Building Blocks.  
Ultimately, such approaches may allow future versions of GROMACS to execute 
kernels in a hardware-agnostic way. 
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4.3.5 Ensemble	
  computing	
  &	
  parallel	
  adaptive	
  molecular	
  dynamics	
  (M36)	
  
The true aim of most molecular dynamics simulations is to explore the statics and 
dynamics of thermal systems, which requires combining results from multiple runs into 
a single result. This provides an opportunity for parallelism – especially when combined 
with adaptive sampling methods such as Markov state modelling with parallel adaptive 
kinetic clustering, or free energy perturbation with adaptive optimizations. In order to 
fully exploit these adaptive algorithms, we have developed Copernicus, a platform that 
executes such high-level algorithms while keeping track of many thousands of 
simulations simultaneously. The parallelism is expressed by combining coarse-grained 
computable items such as simulations and output processing into a data-flow network, 
which is executed on workers that may run on a variety of computational resources, 
including multiple high-performance computing facilities simultaneously. While the 
coordination is done on Copernicus servers (see Figure 1), the workloads sent to the 
workers is matched to their capabilities, optimizing total throughput. Each worker unit 
can be a parallel GROMACS simulation using thousands of cores, and by combining 
several domains it should be possible to use millions of cores in parallel. Using 
Copernicus, we have been able to scale a protein-folding problem to 5730 cores – 
reducing time-to-solution from 30 days to 72 hours. We have currently implemented 
several adaptive sampling algorithms: Markov state modelling, adaptive free energy 
perturbation, and a string method for minimum free energy pathways in Copernicus.  
Each of these typically scales to hundreds or thousands of simulations in parallel, each 
of which itself can be parallelized to tens to hundreds of cores, making simulations with 
greater than 1M cores feasible.  

 
Figure 1 The parallelization task network used in Copernicus. 
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5 HemeLB	
  
HemeLB is a tool for fluid flows in complex sparse geometries.  Its main focus is 
simulating blood flow in parts of the cerebral arterial network. HemeLB employs an 
implementation of the lattice Boltzmann (LB) algorithm that, due to its locality, is 
intrinsically easy to parallelise. HemeLB uses MPI for communication and has been 
shown to have good scalability up to over 32k CPU cores. 

5.1 Summary	
  of	
  initial	
  roadmap	
  
Task Scheduled date Status 

Visualisation and Steering M36 Ongoing 

Pre-processing M36 Ongoing 

Introspection M36 Ongoing 
Table 5-1 HemeLB: Initial roadmap 

Visualisation and Steering: To enable in situ visualisation and steering of HemeLB at 
the exascale, using visualisation libraries from WP5 partners. 

Pre-processing: To enhance HemeLB’s domain decomposition such that it is viable at 
exascale. 

Introspection: Exascale applications will need to be able to monitor their own 
execution to be able to report and optimise their performance and the environment. 

5.2 Achievements	
  towards	
  ongoing	
  tasks	
  in	
  initial	
  roadmap	
  
Task Achievement 

V&S Collaborated with WP5 partners to define the 
visualisation needs of HemeLB. 

V&S We have enabled the coupling of HemeLB to other codes 
that supply inlet/outlet boundary conditions. 

Pre-processing Enhanced HemeLB setup tool performance by a factor of 
five with a new algorithm. 

Pre-processing Detailed measurements about the performance of the 
existing domain decomposition. 

Pre-processing Reduction of initialisation by a complete redesign of the 
communication patterns for this step. 

Pre-processing Worked with DLR to define the interface to a library 
(PPStee) that will enable the use of multiple partitioners 
without significant code changes. 

Introspection Improved performance monitoring functionality of 
HemeLB by the addition of multiple, efficient timers to the 
code. 

Table 5-2 HemeLB: Achievements towards ongoing tasks in initial roadmap 

We have made numerous small enhancements to the scaling of HemeLB. 

We have introduced unit testing to the HemeLB setup tool in order to increase 
confidence and to enable faster development of the software. 

As a co-design effort with ABO, a multi-GPU 3DQ19 Lattice Boltzmann code (written in 
CUDA) which overlaps communication with computation, achieving 180 million lattice 
point updates per second per GPU has been implemented. When a corresponding 
code was implemented with OpenACC pragmas to run on multi-GPUs, 160 million 
lattice point updates per second per GPU was achieved. 
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As a co-design effort with JYU, two tasks were performed by the JYU group. A tool to 
extract the simulation geometry from angiographic images was constructed, and an 
interface was constructed. The interface allows running HemeLB in parallel with some 
other code that has been parallelized with MPI, so that data can be continuously 
exchanged between the two codes. In fact the constructed interface is rather generic 
and facilitates parallel running of two MPI parallelized codes with only minimal changes 
in these codes. 

5.3 Updated	
  roadmap	
  
Task Scheduled date Status 

Single core performance M20 On-going 

Domain decomposition M24 On going 

Hybrid parallelism M30 In planning 

Steerable parameter 
extraction 

M30 In planning 

Visualisation M36 On going 

Introspection M36 Complete 
Table 5-3 HemeLB: Updated roadmap 

5.3.1 Single	
  core	
  performance	
  enhancement	
  (M20)	
  
Based on our benchmarking and comparison to other Lattice-Boltzmann codes, we 
believe that there is scope to increase the single-core performance of HemeLB 
significantly. This will be undertaken with a fairly conventional profile-optimize cycle. 
We will be particularly interested in exploring the effect of changing the data layout to 
improve memory behaviour. This last piece of work will be undertaken in conjunction 
with the hybridisation task below. 

5.3.2 Domain	
  decomposition	
  (M24)	
  
Based on recent measurements, we see that some processes end up with a very large 
number of neighbours (~100) compared to the average (~25). These processes cause 
a load imbalance that is the primary cause of the sub-linear scaling we see at 32k 
cores. We are working with partners in WP5 to trial the PPStee domain decomposition 
library in order to improve this. 

5.3.3 Hybrid	
  parallelism	
  (M30)	
  
Based on the report by Alan Gray (UEDIN) that was the main output of our co-design 
work [9], we will not pursue OpenACC until the software is more mature. However he 
has shown that OpenMP is much more feasible and we will work on this further. The 
effect of different memory layouts will be explored in detail here. 

5.3.4 Steerable	
  property	
  extraction	
  (M30)	
  
In HemeLB we have implemented a property extraction framework that allows the user 
to define regions of interest for output, as well as which fields to output and at what 
frequency. Currently this must be specified at simulation start. We propose to make this 
part of the code steerable at run time, in order to allow the user to quickly home in on 
interesting features that can be recorded for more detailed off-line analysis. 

5.3.5 Visualisation	
  (M36)	
  
We will continue to work with WP5 partners to explore how to couple their visualisation 
software with HemeLB. 

5.3.6 Introspection	
  (M36)	
  
We have implemented key introspection abilities ourselves which are sufficient for our 
needs. We will continue to monitor developments within this arena, but our judgment is 
that applications will need to delegate the responsibility of monitoring and acting to 
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runtime systems, since the complexity and variability of future systems will likely be too 
large for an application to find a generic solution. We have therefore paused this 
activity until suitable technology is available and there is a compelling need for it. 
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6 IFS	
  
The Integrated Forecasting System (IFS) is the production numerical weather forecast 
application at ECMWF. IFS comprises several component suites, namely, a 10 day 
deterministic forecast, a four dimension variational analysis (4D-Var), an ensemble 
prediction system (EPS) and an ensemble data assimilation system (ENDA). 

The use of ensemble methods are well matched to today’s HPC systems, as each 
ensemble application (model or data assimilation) is independent and can be sized in 
resolution and by the number of ensemble members to fill any supercomputer. 
However, these ensemble applications are only part of the IFS production suite and the 
high resolution deterministic model (referred to as ‘IFS model’ from now on) and 4D-
Var analysis applications are equally important in providing forecasts to ECMWF 
member states of up to 10 to 15 days ahead. 

For the CRESTA project it has been decided to focus on the IFS model to understand 
its present limitations and to explore approaches to get it to scale well on future 
exascale systems. 

6.1 Summary	
  of	
  initial	
  roadmap	
  
Task Scheduled date Status 

Coarray kernel M6 Completed 

IFS CY37R3 port M6 Completed 

Legendre transform 
coarray optimization 

M15 Completed 

IFS CY38R1 port M15 Cancelled 

Semi-Lagrangian coarray 
optimization 

M21 Completed 

Optimization of Fourier 
latitude load-balancing 
heuristic 

M27 Completed 

Development of a future 
solver for IFS 

M36 Ongoing 

Fourier Transform coarray 
optimization (added). 

M15 Completed 

Table 6-1 IFS: Initial roadmap 

Coarray kernel: Develop kernel to investigate overlapping computation and 
communication using Fortran 2008 coarrays in an OpenMP parallel region. 

IFS CY37R3 port: Port of IFS model (CY37R3) to HECToR and analysis of 
performance for model resolutions up to T2047. 
Legendre transform coarray optimization: Optimization to the IFS transform library 
to overlap the computation of the Legendre transforms with the associated 
communications (TRMTOL/TRLTOM). 
IFS CY38R1 port: Port IFS model (CY38R1) to HECToR. This code cycle became 
available in 2Q2012 and included support for the T3999 model resolution, Fast 
Legendre Transform (FLT) and substantially reduced memory requirements for 
computing the associated Legendre coefficients.  Two main subtasks associated with 
this task are:  

1. Run T3999 IFS model (5 km global model) 
2. Assess “Legendre transform” optimization at T3999. 
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This task was cancelled due to delays in the installation of ECMWF’s Power7 clusters 
that were needed for the initial experimentation of the T3999 model resolution at 
ECMWF. In the course of this early experience (during 4Q2012) some optimizations 
were made to substantially reduce the cost of model startup and memory use. This 
work was included in the IFS CY38R2 release that became available during 4Q2012, 
which will be packaged as the RAPS13 benchmark and ported to HECToR during 
1Q2013. 

Semi-Lagrangian coarray optimization: Developments to the IFS semi-Lagrangian 
scheme to use Fortran 2008 coarrays to improve scalability by removing the need to 
perform full halo wide communications. 
Optimization of Fourier latitude load-balancing heuristic: Optimization of the 
heuristic used to statically load-balance the distribution of variable length latitudes in 
grid-space. An optimal distribution of latitudes is required to load-balance the cost of 
performing Fourier transforms as IFS transforms data from grid to Fourier space. Work 
on this task quickly showed that the best static load-balancing heuristic at scale was to 
load-balance the latitude data and ignore the FFT computation imbalance. To achieve 
the perfect data load-balance required a rewrite of the trans library routine 
sumplatb_mod.F90 and was also simulated to beyond 1M cores (assuming 16 threads 
per task). 
Development of a future solver for IFS: Research into a new multigrid solver for 
extreme scaling of IFS and a potential replacement of the spectral method. Such a 
solver could be initially tested using a shallow water model code and not IFS. It should 
be noted that this development is not part of ECMWF's current research plans and 
should be considered more speculative. 
Fourier transform coarray optimization: Optimization to the IFS transform library to 
overlap the computation of the Fourier transforms and Fourier space calculations with 
the associated communications (TRGTOL/TRLTOG). This was omitted from the D6.1.1 
schedule. 

6.2 Achievements	
  towards	
  ongoing	
  tasks	
  in	
  initial	
  roadmap	
  
Task Achievement 

Development of a future 
solver for IFS 

Participation in UK Met Office GUNGHO! project to 
develop a new dynamical core for their Unified Model. 
ECMWF has further added two scientists in its Numerical 
Aspects section to progress this long term development. 

Table 6-2 IFS: Achievements towards ongoing tasks in initial roadmap 

6.3 Updated	
  roadmap	
  
Task Scheduled date Status 

IFS CY38R2 port M18 Ongoing 

Investigate GPGPU use in 
IFS 

M27 In planning 

Investigate graph based 
(DAG) parallelization 

M36 In planning 

Table 6-3 IFS: Updated roadmap 

6.3.1 IFS	
  CY38R2	
  port	
  (M18)	
  
Port IFS model code version CY38R2 to HECToR. This code cycle became available in 
4Q2012 and included support for the T3999 model resolution, FLT and substantially 
reduced memory requirements for computing the associated Legendre coefficients. 
This code version will be packaged as a RAPS13 benchmark and will include all the 
IFS Fortran 2008 coarray optimizations implemented in the first year of the CRESTA 
project. Two main subtasks associated with this task are:  
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1. Run T3999 IFS model (5 km global model) 
2. Assess “Legendre transform” optimization at T3999. 

6.3.2 Investigate	
  GPGPU	
  use	
  in	
  IFS	
  (M27)	
  
Some initial experience of using GPGPUs will be made as part of the TITAN INCITE 
award to the CRESTA project. Specifically we want to explore intercepting the 
DGEMMs that are called in the Legendre transform and executing them on the 
GPGPUs. Tests will be performed at the T3999 model resolution to assess the benefit 
of this approach as applied to the non-FLT and FLT approaches. As the FLT uses a 
butterfly scheme, each stage of the butterfly has a number of independent DGEMMs 
that can be run concurrently on the GPGPU with potentially greater efficiency (using 
NVIDIA’s HYPER-Q mechanism). Finally, as the DGEMMs in the Legendre transform 
involve matrix multiplication by a per spectral wave number constant matrix, it is hoped 
that such constant matrices can be located in GPGPU memory, and avoid the need to 
be loaded every time from node memory. 

6.3.3 Investigate	
  graph	
  based	
  (DAG)	
  parallelization	
  (M36)	
  
The use of graph-based parallelization in IFS will be investigated. This work will start by 
developing a kernel to simulate some of the code features of IFS, including some 
random delays to simulate load imbalance and operating system interference. A 
number of DAG approaches will then be tested and assessed for ease of use and 
performance. Given the code complexity of IFS, it is expected that the graph will be 
explicitly specified and not created by compiler pre-processing as in some (possibly all) 
DAG implementations. This work will be a co-design effort with WP3 to draw on 
existing experience of DAGs in that work package. 
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7 NEK5000	
  
Nek5000 [1] is an open-source code for the simulation of incompressible flow in 
complex geometries. The discretization is based on the spectral-element method 
(SEM) that combines the higher-order accuracy from spectral methods with the 
geometric flexibility of finite element methods. 

Nek5000 is written in mixed Fortran77/C and designed to employ fully large-scale 
parallelism. The code has a long history of HPC development.  Recently the large-
scale simulations were successful performed on the Cray XE6 system at PDC, KTH 
with 32,768 cores [2] and on the IBM BG/P Eugene with 262144 cores [3]. An overview 
of the capabilities and recent developments within the Nek5000 community is given in 
[4]. 

7.1 Summary	
  of	
  initial	
  roadmap	
  
Task Scheduled date Status 

Investigate existing code 
architecture 

M18 Completed 

Implement error estimator 
and initial refinement code 

M12 In planning 

Adaptive refinement 
development 

M18 Ongoing 

Implement load balancing 
using existing Nek5000 
tool suite 

M24 In planning 

Undertake test and 
development on large 
scale applications 

M36 In planning 

Table 7-1 Nek5000: Initial roadmap 

Investigate existing code architecture: To gain a fundamental understanding of most 
aspects of implementation of NEK5000 with special attention to the large-scale 
simulation of incompressible flow. 

Implement error estimator and initial refinement code: Adaptive mesh refinement 
(AMR) requires identification of the regions in the flow with significant error. Such error 
estimators based on the solution of the adjoint equations (dual problem) will be 
formulated and implemented into NEK5000. 
Adaptive refinement development: AMR gives possibility to increase the accuracy of 
numerical simulations with minimal computational cost. There are two ways of 
introducing AMR: adaptive p-refinement, i.e. increasing polynomial order in individual 
elements, and adaptive h-refinement, i.e. splitting the element into smaller one. We are 
focusing on implementing h-type refinement into NEK5000. 

Implement load balancing using existing Nek5000 tool suite: NEK5000 obtains full 
scaling using static load balancing based on initial element distribution. After 
introducing AMR the load balancing become an important issue, as the grid structure 
changes during the simulation. 

Undertake test and development on large scale applications: By using the 
developed software environments to conduct simulations of large-scale real-life and 
industrial application. These applications may include the simulation around a full 
airplane wing include the transition and separated region, and complex internal flows. 

7.2 Achievements	
  towards	
  ongoing	
  tasks	
  in	
  initial	
  roadmap	
  
Task Achievement 
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Investigate existing code 
architecture 

Identification of NEK5000 requirements for GPU 
acceleration and for h-type refinement.  

Adaptive refinement 
development 

Integration of NEK5000 pre-processing tools with p4est 
library completed. 

Table 7-2 Nek5000: Achievements towards ongoing tasks in initial roadmap 

Investigate existing code architecture: In cooperation with Paul Fischer (the main 
developer of NEK5000) we have investigated the code architecture and the possible 
improvements that can be developed within CRESTA. Two main directions of 
development have been chosen: porting NEK5000 to GP-GPU and introducing 
adaptive mesh refinement (AMR). For GP-GPU port the simplified version of the code 
NEKBone has been selected. On the other hand we have decided to use the p4est 
library [15] for the management of AMR tree grid. A test suite has been done as a part 
of this task. 

Adaptive refinement development: There are two ways of introducing AMR: adaptive 
p-refinement, i.e. increasing polynomial order in element, and adaptive h-refinement, 
i.e. splitting the element into smaller one. After discussion with Paul Fisher we have 
discarded p-refinement in favor of h-refinement, due to its flexibility. However, in this 
case additional software managing variable grid structure is necessary. For this we are 
going to use p4est library. Currently we have completed integration of NEK5000 pre-
processing tools with p4est library. 

7.3 Updated	
  roadmap	
  
Task Scheduled date Status 

Adaptive refinement 
development 

M18 Ongoing 

Implement error estimator 
and initial refinement code 

M24 In planning 

Implement load balancing 
using existing Nek5000 
tool suite 

M30 In planning 

Undertake test and 
development on large 
scale applications 

M36 In planning 

OpenACC acceleration of 
Nek5000 

M27 Ongoing 

Table 7-3 Nek5000: Updated roadmap 

7.3.1 Adaptive	
  refinement	
  development	
  (M18)	
  
AMR gives possibility to increase the accuracy of numerical simulations with minimal 
computational cost. There are two ways of introducing AMR: adaptive p-refinement, i.e. 
increasing polynomial order in individual elements, and adaptive h-refinement, i.e. 
splitting the element into smaller one. We are focusing on implementing h-type 
refinement into NEK5000.  

7.3.2 Implement	
  error	
  estimator	
  and	
  initial	
  refinement	
  code	
  (M24)	
  
Adaptive mesh refinement requires identification of the regions in the flow with 
significant error. Such error estimators will be formulated based on the solution of the 
adjoint equations (dual problem) that can be thought as a measure of the sensitivity of 
certain observables to the local mesh quality. We are going to create an interface 
between the error estimator and NEK5000. Due to the change in the developed AMR 
type (h- versus p-refinement) this task has been postponed. 
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7.3.3 Implement	
  load	
  balancing	
  using	
  existing	
  Nek5000	
  tool	
  suite	
  (M30)	
  
NEK5000 obtains full scaling using static load balancing based on initial element 
distribution. After introducing AMR the load balancing become an important issue, as 
the grid structure changes during the simulation. We are going to investigate and 
analyze the load balancing affected the refinement using the existing analysis tools 
developed by WP3 Task 3.3. 

7.3.4 Undertake	
  test	
  and	
  development	
  on	
  large	
  scale	
  applications	
  (M36)	
  
Using the developed software environments we are going to conduct simulations of 
large-scale real-life and industrial application. These applications may include the 
simulation around a full airplane wing include the transition and separated region, and 
complex internal flows. Such simulations are only possible with adaptive mesh 
refinement, proper boundary treatment and adapted post-processing tools, all aspects 
to be developed during CRESTA 

7.3.5 OpenACC	
  acceleration	
  of	
  Nek5000	
  (M27)	
  
The objective of the task is to enable, for the first time, the use of Nek5000 on 
massively parallel hybrid GPU/CPU system. This task will firstly show how to efficiently 
use hybrid massively parallel computing on a simplified version of Nek5000. And then it 
will outline the possible paths to speed up the full Nek5000 with GPU. In addition, this 
project will assess the effectiveness of OpenACC and compiler support for GPU 
programming with a view to future hybrid exascale simulations. 



 

© CRESTA Consortium Partners 2011  Page 21 of 26 

 

8 OpenFOAM®	
  
OpenFOAM® is an open source library for computational multiphysics and especially 
computational fluid dynamics (CFD) problems. The library is a "toolbox" which provides 
a selection of different solvers as well as routines for various kinds of analysis, pre- and 
post-processing. OpenFOAM® is licensed under the GPL. As such, different parties 
have made modifications to the code at different times and several versions are in 
common use. In this project, we consider the official release from the OpenFOAM® 
foundation (a not-for profit organization, wholly owned by OpenCFD Ltd.), and the 
release from the OpenFOAM® Extend project.  

It is hoped that any changes to the code contributed by the CRESTA project could be 
made available for inclusion in both distributions, but if there are good reasons to make 
optimizations or improvements to one particular version, we will do so. 

Since the code can be used in many different ways, it is challenging to identify ways to 
enable the application for exascale systems in general. It is likely that there are some 
problems that are much more amenable to large-scale systems, but it is not obvious a 
priori that there is much to be gained in making simulations of “simple” systems (such 
as Lid-driven Cavity	
  Flow) scale to many more processors than at present. 

It has been observed that with OpenFOAM, in many cases the bottleneck does not lie 
in the actual solution phase, but in the pre –and post-processing stages of the 
computation. It is currently being investigated how to efficiently parallelize these 
phases of the solution process in order to enable the scaling of OpenFOAM to 
exascale geometries and meshes. 

8.1 Summary	
  of	
  initial	
  roadmap	
  
Task Scheduled date Status 

Benchmarking of the latest 
version of the code 

M12 Ongoing 

Code analysis of latest 
version of code 

M12 On hold 

Performance analysis of 
kernels, libraries 

M15 Delayed 

Iterative performance 
improvement 

M24 Delayed 

Test case 01: ercoftac 
Square Cylinder with 
OpenFOAM-1.6.ext 

M10 Completed 

Test case 02: pump turbine 
power plant with 
OpenFOAM-1.6.ext 

M11 Completed 

Test case 01: ercoftac 
Square Cylinder with 
OpenFOAM-2.1 

M13 Completed 

Test case 02: pump turbine 
power plant with 
OpenFOAM-2.1 

M18 Ongoing 

Table 8-1 OpenFOAM: Initial roadmap 

Benchmarking of the latest version of the code: Detailed benchmarking of the code 
has proved considerably more difficult than what was initially assumed. Scaling results 
for a number of different test cases have been obtained, but these measurements 
relate only to the total run-time of the code. Initially, even these runs proved to be non-
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trivial, mostly for reasons related to the multiple steps involved in running a test case 
(some of which have to run in serial, and others in parallel) and also due to the fact that 
not all test cases were fully documented. Efforts to obtain more detailed profiles for the 
code have proved unsuccessful to date. Standard tools such as CrayPAT have been 
unable to cope with the highly-templated C++ codebase, often crashing during the 
code instrumentation stage. For this reason, it has not yet been possible to measure 
the performance of the code in detail. 

Code analysis of latest version of code: This task was started, but it quickly became 
evident that the code was too large and complex to understand in the available time 
without such investigations being supported and driven by results from the 
benchmarking. Since these results have not yet been obtained, it has not been 
possible to extract from the code those sections that are of interest from the point of 
view of performance and scalability to exascale problem sizes. 

Performance analysis of kernels, libraries: For the same reasons as described 
above, a detailed analysis has not been possible. This task will be readdressed once a 
better overall understanding of the performance of the code as a whole has been 
obtained. 
Iterative performance improvement: This task has also been delayed until more 
detailed performance analysis can be undertaken. 
Test case 01: (ERCOFTAC Square Cylinder with both OpenFOAM-1.6-ext and 
OpenFOAM-2.1) To check if the physics is correct and independent from the large 
number of cores used for the simulation run, we have prepared the ERCOFTAC square 
cylinder with about 15 million grid vertices. The ERCOFTAC square cylinder is a 
unique test case that is experimentally measured [7] 

Test case 02: (Pump turbine power plant with both OpenFOAM-1.6-ext and 
OpenFOAM-2.1) The pump turbine test case was prepared for the OpenFOAM-1.6-ext 
version. It has been never been released for performance tests due to OpenFOAM-1.6-
ext not being compiled on HERMIT. For future work OpenFOAM-2.1 will be used, and 
therefore the test cases are being converted to the new format to be ready for 
performance and scalability tests. 

8.2 Achievements	
  towards	
  ongoing	
  tasks	
  in	
  initial	
  roadmap	
  
Task Achievement 

Benchmarking of the latest 
version of the code 

Scaling results for a selection of cases including 
damBreakFine, damBreak3D, motorBike and 
motorBikeLarge covering the simpleFoam and interFoam 
binaries. 

Test case 01: ercoftac 
Square Cylinder with 
OpenFOAM-1.6.ext 

Adequate physical results. Important for comparison with 
OpenFOAM-2.1 in the future. 

Test case 02: pump turbine 
power plant with 
OpenFOAM-1.6.ext 

Adequate physical results. Important for comparison with 
OpenFOAM-2.1 in the future. See Timo Krappel [8] 

Test case 01: ercoftac 
Square Cylinder with 
OpenFOAM-2.1 

Adequate physical results. In agreement with 
 OpenFOAM-1.6.ext 

Table 8-2 OpenFOAM: Achievements towards ongoing tasks in initial roadmap 

To check if the physics is correct and independent from the number of cores used for 
the simulation run, we have prepared the ERCOFTAC square cylinder with about 15 
million grid vertices. The ERCOFTAC square cylinder is a unique test case that is 
experimentally measured [7] 
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The flow concerned in the first test case corresponds to turbulent flow of water around 
a square cylinder. The size of the square cylinder (H) is 0.04m and it extends along the 
width of the channel, the cross-section of which is 0.40x0.56m. The mean velocity at 
the inlet, U, is assumed to be 0.535m/s and it is taken as reference value. The 
Reynolds number, based on U and H, is 21400. The shedding frequency, f, is 
estimated experimentally to be 1.77Hz. The resulting Strouhal number (St=f H/U) is 
0.132. The flow produced in that manner is very interesting to use for a Large Eddy 
Simulation (LES), since it involves coherent shedding of vortices from the cylinder. 
Further details about the flow and this test case can be found on the ERCOFTAC web 
site (see test case 43) [7]. This is the first test case that IHS has prepared for 
performance and scalability tests of the OpenFOAM® solver, pimpleFOAM. 

pimpleFOAM stands for piso-simple-FOAM and is a combination of the piso and simple 
algorithms, which are used for the pressure-velocity coupling. Computations made by 
IHS (Timo Krappel) show that the pimple algorithm is more stable than the piso 
algorithm. 

8.3 Updated	
  roadmap	
  
Task Scheduled date Status 

Benchmarking of the latest 
version of the code 

M18 Ongoing 

Code analysis of latest 
version of code 

M21 Planned 

Performance analysis of 
kernels and libraries 

M24 Planned 

Iterative performance 
improvement 

M27 Planned 

Test case 02: pump turbine 
power plant with 
OpenFOAM-2.1 

M18 Ongoing 

Test case 01: mesh 
refinement 

M20 Ongoing 

Test case 02: mesh 
refinement 

M22 In planning 

Table 8-3 OpenFOAM: Updated roadmap 

8.3.1 Benchmarking	
  of	
  the	
  latest	
  version	
  of	
  the	
  code	
  (M18)	
  
Version 2.1.0 of OpenFOAM has been released since the CRESTA project started. 
There have been some fairly major changes to the code since version 1, including the 
incorporation of parallel mesh generation. Benchmarking and profiling of OpenFOAM 
have been undertaken on previous versions, but before we know where to concentrate 
our efforts in optimization for future systems, we need to understand the impacts of 
recent changes on the code’s performance. 

In addition to providing an update of previous results on the performance of 
OpenFOAM based on current systems and the newest version of the code, we will 
adjust parameters of our profiling runs in order to attempt to measure how the 
performance would vary as the ratios of computation, communication and memory 
access vary. In addition, we will specifically investigate the I/O performance of the code 
and seek to identify how these I/O patterns are likely to change when scaling up to 
exascale. 

8.3.2 Code	
  analysis	
  of	
  the	
  latest	
  version	
  of	
  the	
  code	
  (M21)	
  
In tandem to measuring the performance of the code, an analysis of the code’s 
structure will be undertaken in order to, for example: 



 

© CRESTA Consortium Partners 2011  Page 24 of 26 

 

(i) determine internal interfaces in the code where alternative solvers, libraries, 
etc. could be swapped in if it was determined that these could provide better 
performance; 

(ii) determine the parallelisation patterns currently used in the code and 
evaluate these with respect to exascale issues such as fault-tolerance. A 
simple example of this might be that a synchronous domain-decomposition 
might not be intolerant to a process failing, whereas a tracked task-farm 
approach might be able to recover from a process failing. (Note that this is 
example is illustrative. At present, there is no evidence that either of these 
patterns is directly relevant to OpenFOAM.) 

8.3.3 Performance	
  analysis	
  of	
  kernels,	
  libraries	
  (M24)	
  
In the course of the activities above, we will have been able to quantitatively measure 
the characteristics of the sub-problems solved by libraries and routines used for linear 
algebra and meshing. We will then engage with the developers of these libraries and 
seek comparisons with the other applications investigated in WP6 to determine 
possible optimisations. 

8.3.4 Iterative	
  performance	
  improvement	
  (M27)	
  
Concentrating on those parts of the code which have been determined to be potential 
future bottlenecks, we will use standard optimisation techniques to seek to improve the 
scaling of the code (including, for example, overlapping communication and 
computation, possibly through the use of more asynchronous communications, 
investigating the effects of compiler optimization, changing memory access patterns, 
introducing further (hybrid) levels of parallelisation). For pre –and post-processing, 
current sequential tools may have to be replaced with new parallel ones to enable 
working with exascale meshes and geometries. 

8.3.5 Test	
  case	
  02:	
  pump	
  turbine	
  power	
  plant	
  with	
  OpenFOAM-­‐2.1	
  (M18)	
  
The geometry of the test case 02 is shown below in Figure 2. 

 
Figure 2: Geometry of a Francis turbine 

The application of OpenFOAM® at the Institute of Fluid Mechanics and Hydraulic 
Machinery, University of Stuttgart, is the simulation of the flow in an entire hydraulic 
turbine using a Large Eddy Simulation (LES). This means that a great part of the 
turbulence in the flow will be resolved in the computation up to very fine turbulent 
scales. Since the Reynolds number of this flow is very high this simulation needs very 
fine computational grids, very fine time steps and long simulation times. Consequently 
a very high computational effort is required. According to a publication of Chapman [5] 
and Fröhlich [6] the number of vertices in the computational domain can be estimated 
to approximately 1000 million for all parts of a hydraulic machine. 

The test case consists of stationary and moving parts, both with a complex geometry. 
The runner rotates so we have the non-trivial case of rotor-stator interaction. 
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Furthermore, in every part of the hydraulic machine we have turbulence phenomena 
that cover the whole range and scales of turbulence. Another topic very difficult to 
resolve is the vortex rope which is produced by the runner as it rotates in the draft tube. 
The extension of the solver pimpleFOAM to dynamic mesh also exists, it is called 
pimpleDyMFOAM. This is the solver to be used in the future work in order to compute 
the whole pumpturbine. Another reason to use the pimple algorithm is that the piso 
algorithm does not give accurate results for this machine. 

A new general Grid Interface (GGI) called Arbitrary Mesh Interface (AMI) exists in 
OpenFOAM-2.1. It seems to offer a better performance than the GGI implementation of 
OpenFOAM-1.6-ext. Furthermore, the use of OpenFOAM-2.1 allows compatibility with 
other OpenFOAM® users and developers in the CRESTA framework. 

Furthermore, the standard simulation technique in OpenFOAM® for incompressible 
flows is an implicit time discretization with a SIMPLE or PISO type pressure-velocity 
coupling. These algorithms could be computationally time expensive because of the 
need to repeatedly solve global systems of linear equations in an iterative loop. The 
solution of these global linear equation systems could be a bottleneck for a LES on 
very fine grids. Performance and scale up tests will be carried out in order to identify if 
the algorithms mentioned before are able to get good results, as well as a good 
performance with OpenFOAM-2.1. If it is not the case, the algorithms will be changed 
towards an explicit formulation. A version of the Fractional Step Method would be 
proposed to solve the equations. It is well known that the Fractional Step Method 
(FSM) is used for Direct Numerical Simulation (DNS) and LES to enhance the stability 
of the solution. It is expected, that this method will reach a higher performance for very 
large computational grids. 

8.3.6 Test	
  case	
  01:	
  mesh	
  refinement	
  (M20)	
  
In OpenFOAM® uses various utilities for mesh preprocessing. For our usage scenarios, 
the utilities required are decomposePar, refineMesh and mapFields.  

The decomposePar utility is used for the domain decomposition and is coupled with the 
PT-Scotch [10] library. To our knowledge, partitioning of extremely large meshes with 
the PT-Scotch library has been performed for academic cases, our purpose is to 
investigate the usability of the library for real-world problems. Furthermore, either the 
refinement tool refineMesh, or the mapFields utility, are not parallelized. It is essential 
to perform analysis with these tools and check for possible bottlenecks. 

The mesh refinement effort enables co-design opportunities with partners in WP3, WP4 
and WP5. It will be paramount to parallelize refineMesh and mapFields tools in order to 
perform simulations at an exascale. 

8.3.7 Test	
  case	
  02:	
  mesh	
  refinement	
  (M22)	
  
The relevant test case (Testcase 02) is the Large Eddy Simulation (LES) of the flow in 
an entire hydraulic machine. A realistic simulation requires very fine computational 
grids and consequently a very high computational effort. 

The flow in a hydraulic machine is characterized by relative high Reynolds numbers 
(Highly Turbulent Flow) in test rig of about 3*106 to 5*106. We estimate that the number 
of vertices (from 750000 to a billion vertices) and the small time step size will lead to a 
requirement of approximately 80 million core hours to get a fully converged simulation. 
This would mean a usage of 60000 cores for about 60 days. 
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