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1 Executive	  Summary	  
By raising computational performance through increased parallelism, single core 
failures in modern supercomputers have become a more important and more 
expensive issue. This is due to the fact that with core count the number of overall 
components within a system rises. Thus, as the mean time between failures of every 
single component does not grow as fast as the number of components in a 
supercomputer, the overall mean time between failures of the system shrinks. 

Failure prevention is used in many parts of the machine; the standard Message 
Passing Interface (MPI) mechanism of dealing with faults is to abort the entire 
computation if any of its ranks encounters a failure. The traditional handling of these 
failures is using checkpoint/restart techniques. However, as the overhead of these 
implementations grows with core count, their application diverts to inefficiency. 

Fault tolerant parallel distributed memory models enable the code to recover from 
failures and continue execution although some parts of the system have been lost 
indefinitely. Although not yet part of the MPI standard, there is an active working group 
around Fault-Tolerant (FT) MPI. The work presented here assesses different 
developments of fault tolerant parallel execution models and shows the obstacles that 
have to be resolved in order to be applicable for user codes. 

Furthermore current trends in different distributed memory approaches are presented 
and a classification of error treatment in different system levels is given. The 
responsibilities of operating systems, communication runtime environments, 
communication libraries and application environments are specified. The presented 
work focusses on the operating systems and communication libraries with special focus 
on the applicability to the CRESTA co-design applications. 
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2 Introduction	  
2.1 Purpose	  
The future roadmap of any High Performance Computing (HPC) hardware supplier 
shows that the high amount of future computing power will only be realisable by using 
vast numbers of compute units to work in parallel. The production quality of these units, 
as well as their respective auxiliary parts, will increase as production processes 
improve. However, the number of parts in a supercomputer will rise faster than the 
Mean Time Between Failures (MTBF) of every mounted part, resulting in a decline of 
the overall MTBF of the entire machine. A study [1] of 22 systems at Los Alamos 
National Laboratory (LANL) over a time span of 9 years has shown, that the average 
MTBF of some current systems already is less than 8 hours compared to application 
run times of often days or weeks. This of course is an extreme comparison and only 
perfectly valid if the whole machine is used by one application. Nevertheless, the 
decline of MTBF will be a problem for future large scale machines. Contrary to this 
trend are the efforts by hardware, firmware and software vendors to detect and act 
upon faults as soon as they appear. This behaviour has found wide acceptance in 
various parts of the computer industry, but there has never been a widely accepted 
standard for fault-aware parallel computing. 

This document assesses the current developments in fault-tolerant (FT) distributed 
computing with respect to the CRESTA co-design vehicles and with regard to 
realisation on Exascale machines. Furthermore it contains a comparison of the 
applicability of fault-tolerant MPI and its alternative parallel programming models as 
well as implementation examples and a best practice guide for fault-tolerant parallel 
code development. 

2.2 Focus	  of	  this	  work	  and	  relation	  to	  other	  CRESTA	  deliverables	  
This report discusses strategies for masking hardware failures from the point-of-view of 
programming models as well as of operating systems. Furthermore, a special attention 
is being given to the needs of applications and applicability to real world problems, and 
hereby a quite pragmatic approach is being taken. As such, this work does not give a 
complete overview on fault tolerance in parallel computing but can be regarded as a 
guideline for users to integrate fault-tolerant features into HPC applications. 

Some themes related to fault tolerance (also studied within CRESTA) are being omitted 
and addressed elsewhere: power management is discussed in CRESTA deliverable 
(D) 2.6.3 [2]. Proactive fault tolerance will be covered in a later CRESTA D 2.5.3. Fault-
tolerant capabilities on hardware and operating system level of future operating 
systems and micro kernels are further discussed in D2.3.1 [3]. An earlier deliverable [4] 
dealt with performance faults, e.g. non-fatal faults, resulting in a deteriorating 
application runtime and in the worst case alteration of results. 

2.3 Relevance	  to	  CRESTA	  
A crucial feature of the CRESTA project is its integration of co-design. The co-design 
vehicles cover a wide range of typical HPC applications as well as prototype some of 
the obstacles one has to overcome to run on truly large scale. These features paired 
with the direct contact to the code owners and developers make them the ideal test bed 
for new parallel development. 

As with most large scale industrial and scientific codes today the majority of the co-
design applications use checkpoint to disk/restart for error handling. This has been an 
effective and easy to use tool in the past, but faces one problem today, which will 
increase on future machines. With the system size and therefore problem size growing, 
writing full checkpoints is becoming a substantial time effort for large-scale 
applications. The write and load phase of Checkpoint/Restart (C/R) is becoming too 
expensive as the scheduler slots (of typically 12 or 24 hours) are not growing with the 
gap of increasing memory volume against storage speed. Several co-design vehicles 



 

© CRESTA Consortium Partners 2014  Page 3 of 17 

 

would benefit from the proposed FT algorithms at current scale in addition to being a 
necessity for the targeted scale. 

Additionally to the conventional use of MPI in which the overall result relies on the 
existence of every single result (e.g. domain decomposition) there are quite a few 
simpler application cases. The weather community runs their simulations in ensembles. 
Various ensembles are then coupled via MPI to receive statistically averaged results. 
This usage of MPI neither requires every single ensemble to produce a result, nor to 
exit without an error. However, if one of the ensembles crashes because of numerical 
instabilities or a system fault, the entire computation stops. This again is an application 
field for software resiliency, which can be solved via FT-MPI. 

The rest of the document is organized as follows. We give an overview of approaches 
and categorisation of strategies on FT in section 3. Special attention is on the late 
developments in different distributed parallel programming concepts. Section 4 
describes the operating system specifics for FT with focus on supporting the models 
described in section 3. Section 5 describes CRESTA applications which directly benefit 
from FT and the strategy of introducing FT with minimal code change. Section 6 shows 
strategies for FT insertion and example implementations of failure recovery and failure 
handler tools and brief implementation details are given. 

2.4 Glossary	  of	  Acronyms	  
  
API 
C/R 
D 
FT 
HPC 
LANL 
MPI 
MTBF 
PE 

Application Programming Interface 
Checkpoint/Restart 
Deliverable 
Fault-Tolerant 
High-Performance Computing 
Los Alamos National Laboratory 
Message Passing Interface 
Mean Time Between Failures 
Processing Element 

PGAS Partitioned Global Address-Space 
uGNI User-Level Generic Network Interface 
ULFM User Level Failure Mitigation 
UPC Unified Parallel C 
RAID Redundant Array of Independent Disks 
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3 Fault-‐tolerant	  programming	  models	  
Different strategies for fault-tolerant, or fault-resilient, communication are currently 
pursued throughout various distributed parallel programming models. Parallel 
programming models, or Partitioned Global Address-Space (PGAS) languages, bring 
along such features as shown for Coarray Fortran in section 3.3 and recently for 
OpenSHMEM in [2]. However, the bulk of the attention and development on FT 
concepts, models and realisation is focused on MPI. Since the mid 1990’s MPI has 
been the most widely distributed state of the art distributed memory parallelisation 
technique. Through its popularity and portability there has been substantial interest in 
further developing the performance of MPI. As a matured standard it marks the 
interface of specially tuned high performance computing and viable industry 
application. 

The current MPI standard (3.0, released Sep 2012) on the topic of error handling (this 
includes any kind of error that can arise within MPI usage) says: 

 “An MPI implementation cannot or may choose not to handle some errors that occur 
during MPI calls.”  

Within the standard there are two predefined options for handling faults. The default 
error handler is MPI_ERRORS_ARE_FATAL, which tells MPI to end the entire application 
on an occurring fault with an error message. The other choice is MPI_ERRORS_RETURN, 
which gives control back to the user, though even this “does not necessarily allow the 
user to continue to use MPI after an error is detected”. Alternatively users may 
implement some error handling routines, which are then invoked by MPI without 
guaranteeing the completion of further communication. To fill this gap a universal fault-
tolerant standard for distributed computing has to be found. 

3.1 Strategies	  for	  masking	  hardware	  faults	  
There have been multiple approaches to provide a fault-tolerant message passing 
system, each of which has its own characteristics. The main development can be 
summarised into three different layers, in which each implementation acts 
complementary to or independent of the other layers depending on the respective 
author’s focus. 

The first layer consists of runtime environments, which act on faults below the MPI 
layer. These subsystems include, for example, Harness as described in [3, 4] 
implementing dynamic process management and providing a distributed setup with no 
single point of failure. Another type of subsystems are self healing networks as 
described in [4] using redundant storage of contact information the network, message 
delivery over several nodes and automatic fault recovery. These environments, 
although very powerful, are subject to individual efforts which in turn will only cover a 
restricted user base. 

The second layer consists of MPI-like implementations of fault-tolerant message 
passing giving the application programmer the possibility to act upon errors using 
specific Application Programming Interface (API) calls. Popular implementations 
include: FT-MPI [5], which introduces API-calls for failure detection, notification and 
rank recovery; LAM/MPI [6], which includes system level checkpointing and automatic 
roll back of applications; LA-MPI providing network FT through checksums and 
retransmission; MPI/FT and MPI-FT. 
 
The third layer consists of application environments on top of MPI. These include e.g. 
the most widely used Checkpoint/Restart (C/R) mechanism. Diskless checkpointing as 
in [7] eliminates the performance bottleneck of traditional checkpointing by using local 
or (nonlocal) memory to store the data emulating a Redundant Array of Independent 
Disks (RAID) and similar techniques (on memory) for additional resiliency. Application 
dependent solutions as the Algorithm Based Fault Tolerance described in [8] or 
Redundant Communication [9] are also part of this layer. Keeping in mind that 
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individual applications demand individual FT strategies, the straightforward approach is 
to implement a third layer approach for every individual code. However, these either 
need some kind of support by the first or second layer subsystem or add to the 
required compute resources. 

Within this subsystem there is only one vendor and application independent interface, 
namely MPI. Thus the natural and most promising approach is to integrate a minimal 
set of necessary features for the individual application environments into MPI. This 
approach does not substitute for powerful runtime environments or for individual 
strategies for recovery on top of MPI. It enables developers to produce independent 
solutions, which can benefit from other development. 

For wide acceptance among users, the individual requirements of every distributed 
computing use case must be covered. The CRESTA co-design code owners and their 
feedback are employed as a broad subset of the HPC user community. A survey 
among the code owners was conducted. Its conclusions reveal that the core features 
requested by developers are basically identical. The most valuable and requested tools 
are the reconstruction of data that has been lost and the re-initialisation of ranks. While 
the re-initialisation of ranks will be discussed in section Error! Reference source not 
found., the reconstruction of data is an application and underlying problem dependent 
feature. For some problems the data can be interpolated from neighbouring data in 
time or space, others have to roll back all ranks to the last checkpoint in order to 
preserve consistent data. In addition to the above, the restoration of initial number of 
ranks was repeatedly requested. This will especially be a challenge for job schedulers 
in the future, as they are requested to provide replacement hardware on very short 
notice. In the meantime it is perfectly valid to request a small number of spare ranks for 
long running large-scale ranks. The compute resources wasted by allocating unused 
ranks become negligible compared to re-running the entire job as the scale increases. 
Another feature every code requires is standardised error treatment. There has to be 
one generic standard error handler applicable to every occurring fault. This handler 
must be able to provide detailed information over the health of the application and, 
most important, identify the erroneous ranks. Every code owner has his individual 
notion of the ideal implementation for recovery. Some applications need the 
reconstruction of all ranks with the original topology others do not even need global 
knowledge of the failed ranks. Thus, an ideal implementation can only provide basic 
tools for the user to create the recovery to fit his needs. Some of the common requests 
are considered in this work, requirements from typical use cases include: 

• Acknowledge the existence and extent of an error and keep on working with the 
remaining ranks; 

• Enable the program to realise that some fault occurred in order to save the 
remaining data and finalise; 

• Restart the entire application run when the failure is recognised while also re-
running initialization; 

• Isolate the running ranks in the application from the failure and replace the 
failed ranks by backup compute units running from the beginning (including 
initialisation); 

• Minimize impact of FT on the application run time and programmability. 

For each of these feature requests, as well as for individual demands requested by 
only a subset of code owners, a solution must be provided. Thus a framework has to 
be constructed to allow the community or the individual code owners to implement 
individual solutions. For example the first use case can be solved by simply adding an 
error handler to the user code. This can be a generic handler acting as a report tool for 
failures, which can be written for multiple different applications using FT in a similar 
fashion. 

The other cases include deeper interaction with user code, i.e. having all ranks act on 
different states and invoke recovery procedures, or writing extensions to the 
applications view of the API. Frameworks situated in between the user code and MPI 
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can make use of more advanced usage of FT. The FT features can be seamlessly 
integrated into asynchronous frameworks such as [10]. If the supported framework runs 
truly asynchronously, even with asynchronous initialisation, the API can support this 
behaviour without any user code change. 

3.2 Fault-‐tolerant	  version	  of	  message-‐passing	  interface	  
The latest and most promising approach of a standard in FT-MPI is currently being 
prepared for presentation by the “User Level Failure Mitigation” (ULFM) group to the 
MPI Forum. This approach has evolved from previous attempts in close collaboration 
with the Forum. In earlier forms the absence of support for e.g. fault tolerant one sided 
communication or I/O was justification for the rejection from the standard. In this 
mature form all the obstacles have been included. 

This approach enables MPI programs to handle failures by mitigation the effects of 
broken communicators, identifying the unresponsive part of the communication 
topology and even restoring communication capabilities destroyed by failures. It 
consists of a few simple API calls which enable the programmer to create all kinds of 
requested FT features. This is in line with the rest of the MPI standard, which does not 
want to specialize on any kind of request. There are no calls in the library to solve any 
specific problem, but a variety of calls that provide a framework to create solutions to 
various specific problems. Thus the standard stays independent of vendors, application 
types or other interest groups. 

The working group around ULFM proposed the addition of a set of MPI calls, return 
codes and attributes to the standard. In the following the central additions and their 
respective properties in the FT context is outlined.  

There are three additional exceptions: MPI_ERR_PROC_FAILED_PENDING indicates an 
outstanding receive to MPI_ANY_SOURCE may be receiving from a failed rank, i.e. there 
is a failed rank within the underlying communicator. MPI_ERR_PROC_FAILED informs the 
caller that the request cannot be completed due to a failed rank. This can appear, for 
example, during an outstanding receive from a failed rank. If the user code has taken 
failure notification propagating action on the current or anther rank by marking the 
communicator as revoked, all non-local calls will return MPI_ERR_REVOKED. To identify 
a broken communicator there is the function MPI_Comm_revoke(). Calling this interface 
will notify all ranks on the communicator that this communicator is faulty and terminate 
any non-local MPI calls at all ranks. All subsequent calls to this communicator will 
return the error MPI_ERR_REVOKED. MPI_Comm_shrink() creates a new communicator 
including all surviving ranks of comm. The functionality can be described as using 
MPI_Comm_split() with all surviving ranks sing the same colour and their respective 
rank numbers as key. The function MPI_Comm_failure_ack() acknowledges errors on 
the communicator in contrast to marking the communicator faulty as in revoke. This 
includes freeing unmatched receives to MPI_ANY_SOURCE on the communicator in 
question. MPI_Comm_failure_get_acked() returns the group of locally acknowledged 
failed processes and MPI_Comm_agree() is a collective “and” operator among all 
surviving ranks of a faulty communicator. This collective as well as 
MPI_Comm_shrink() are the only functions  which will never raise MPI_ERR_REVOKED 
on a revoked communicator. 

A complete set including the non-blocking (e.g. MPI_Comm_iagree()), one sided (e.g. 
MPI_Win_revoke()) and I/O (e.g. MPI_File_revoke()) related additions and further 
information is given in [11]. 

3.3 Fault-‐tolerant	  features	  in	  Fortran	  coarrays	  
The PGAS programming model provides a global view of the memory across 
supercomputer nodes and supports a one-sided access to shared data. Examples of 
programming languages and paradigms employing the PGAS approach include the 
coarrays concept of the Fortran 2008 standard [11], the Unified Parallel C (UPC) 
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extension to the C language [12], a coarray class for the C++ language [13], and the 
Chapel [14] and X10 [15] languages. 

Of PGAS approaches, Fortran coarrays and UPC are most often used in real-world 
HPC applications (but being still a small fraction of all parallel applications), and have 
most extensive support in the programming environments of today’s HPC systems. 
Here we consider what kinds of features for more fault-tolerant programming style are 
being offered by Fortran coarrays. In general, the coarrays approach should support in 
the next Fortran standard similar fault-tolerant functionalities as the FT-MPI discussed 
earlier.  

There is a defined and straightforward mechanism of Fortran coarrays that allows for 
isolating a failed Processing Element (PE, referred to as an image).The following 
statements: change	   team, end	   team, form	   team, sync	   all, sync	   images, sync	  
memory, sync	   team, lock, unlock, event	   post, event	   wait, allocate, or 
deallocate	   are able to return a named constant stat_failed_image. This return 
value will occur if there is a failed image in the current team. . This is provided by the 
intrinsic module ISO_Fortran_env. In the case of sync	   all, sync	   images, or sync	  
team, the statement will have successfully synchronized all the images of the specified 
set that have not failed [16]. With using the team construct, for example as  

if	  (num_images(failed=.true.)	  >	  0	  )	  then	  
	  	  	  form	  team(1,	  recover)	  
	  	  	  change	  team	  (recover)	  
	  	  	  	  	  !	  Keep	  on	  working	  with	  the	  images/PEs	  still	  functioning	  
	  	  	  	  	  !	  ...	  
	  	  	  end	  team	  
end	  if	  
	  
would allow for the non-failed images to continue while the failed PEs – due to a node 
failure, for instance - are being excluded. This could be checked periodically. Having a 
benefit from this requires an algorithm that is insensitive and/or able to recover from the 
data loss of the failed image(s). 

One option for a program able to deal with node failures, again based on teams, is to 
run a fully or partially redundant calculation. The program checks whether any images 
have been failed. If there are failed images, the program checks whether its replica 
image is still active. If it is, a new team will be formed by excluding the failed image and 
including its still running replica. If also the replica has failed (or there were none in 
case of partially redundant calculation), only then the program is terminated.  

In case of a node failure, all data of an image, including its share of coarray data, will 
be lost. However, if an image is able to do a clean exit using the STOP statement prior 
to failure, the coarray data can still be retrieved from the image. The stopped images 
can be detected similarly with failed images with the stat specifier value of 
stat_stopped_image. This can enable pre-emptive measures, that is, probing for the 
health status of the platform, and in case of any suspicious signals stopping an image 
and retrieving its data before the node failure occurs. This could be applied also to a 
case when an image is behind a slow link that harms the overall performance of the 
application.	  

We note that neither the teams nor the stat_failed_image specifier values are part 
of the current Fortran 2008 standard but are a part of a Technical Specification draft 
that prepares the parallel processing enhancements for the next Fortran standard. 
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4 Operating	  system	  requirements	  
The distributed parallel programming model fault tolerant strategies described above 
will not exist in isolation, to work these will require interaction with the operating 
system. The most likely faults that will need to be tolerated at the exascale are, 
generally, hardware faults: for example compute-node failures or communication-link 
failures. Handling the fault, mitigating its effect, determining if recovery is possible, 
performing recovery and continuing execution are likely to be the responsibility of the 
application / programming model layer, rather than of the operating system. The 
application has more knowledge about the effect of each fault, and the cumulative 
effect of many faults, than the operating system and so is better placed to determine 
whether those effects can be mitigated and whether recovery is possible. However the 
operating system provides the interface between computer hardware and software 
applications and therefore must have a role in the initial detection of the fault. 

This may be seen as a departure from established methods of fault-tolerance, such as 
error-correction in ECC memory chips (which is a hardware function) or reliable-
delivery in TCP socket communications (which is a system-software function that may 
be offloaded to hardware). In these situations, sufficient information to correct the error 
is available to the hardware or system-software that is attempting to perform the task. 
For ECC memory, extra information is calculated and stored during each write 
operation and is used to detect, and correct, errors during subsequent read operations. 
For TCP communications, the data for packets to be sent kept until the sequence 
number of that packet is acknowledged by the receiver. If a gap in sequence numbers 
is detected then the sender re-sends the missing packet(s). 

However, both of these established fault-tolerance methods are developments of 
earlier approaches that required software applications to explicitly handle, mitigate and 
recover from errors. These non-fault-tolerant methods still exist and are used when 
error-correction is not a high priority. 

The current proposal for fault-tolerance being considered by the MPI Forum divides the 
problem into four areas: detection, notification, propagation and consensus. All but the 
first of these are deemed to be the responsibility of the MPI library. Detection of faults 
is too system-specific to be standardised and recovery requires application-specific 
decision logic that cannot be incorporated into a standardised communication library. 
Notification is the process by which the local MPI rank in the application is informed 
about a fault that has been detected by the system-specific fault detection mechanism. 
Propagation is the process of disseminating knowledge of a fault from the local MPI 
rank to some, or all, of the other MPI ranks that are still executing normally. Consensus 
is the process of deciding on a common value amongst many MPI ranks in a way that 
tolerates faults occurring during the decision itself. These functions within MPI, when 
combined with a suitable fault-detection mechanism that interacts with MPI, are 
sufficient for an application to construct a wide variety of recovery algorithms. 

Operating systems already detect faults. When the hardware that the operating system 
controls does not perform a function as expected, the operating system usually detects 
the abnormal behaviour and may attempt recovery (e.g. by re-trying the function) or 
may raise an error to the application that requested the function. Some types of fault 
are not currently detectable by the operating system. Some types of fault are 
theoretically detectable by the operating system but are not currently commonly 
detected. For example, a core becoming unresponsive may be silently handled by the 
scheduling algorithm in the operating system, because each core executes a scheduler 
that simply chooses one of the runnable threads available for that core, allows it to 
execute for a short amount of time, interrupts that thread and chooses another 
runnable thread for that core. There is likely to be no mechanism in the operating 
system for the cores to be monitored or tested during execution and so, whilst 
theoretically an unresponsive or stopped core could be detected, this type of fault is 
unlikely to be discovered. 
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Fault detection could be performed by dedicated hardware that monitors the health of 
particular parts of the system. Several vendors produce systems that contain this type 
of hardware. Typically they provide system administrators with a management interface 
that displays information about the current state of the system and affords some control 
independently of the computational hardware. For example, this may allow a failed 
node to be re-started remotely even if it is otherwise unresponsive. For this to be used 
for fault detection without manual intervention, an interface must be provided in the 
form of system-software or an extension to the current functionality of operating 
systems. 

It is becoming common-practice to implement software libraries, in particular MPI 
libraries, using OS-bypass techniques. Bypassing the operating system permits user 
code to control hardware directly, without any assistance from the operating system. 
This is generally done in an attempt to increase the performance of the software by 
making use of the hardware in a very specific (and restricted) manner rather than 
exploiting the full breadth of its capability. However, an unintended consequence of 
bypassing the operating system is that any fault detection it would normally provide is 
also bypassed. In this situation, the user code must assume the responsibility for fault 
detection. 

In summary, the role of operating systems in fault tolerance is primarily that of fault 
detection. Some faults are already detected by current operating systems. Extensions 
to existing operating systems could enable more types of fault to be detected. 
Bypassing the operating system to achieve performance may have a negative impact 
on fault detection and, therefore, on fault-tolerance. 
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5 Application	  case	  studies	  
Multiple small test cases have been developed to test the functionality of the ULFM 
implementation described in [11]. During the course of this work a few bugs were found 
in the implementation and, in close collaboration with the developers, valuable 
feedback was passed in both directions and lessons in FT implementation were 
learned. This section will give a short overview of the applications and FT strategies 
applied to them. The codes listed below constitute an incomplete list of feasible co-
design vehicles at the time of writing. There are further applications within CRESTA 
with potential benefit of FT whose applicability has not been tracked yet. 

5.1 Asynchronous	  Schwarz	  Methods	  
D2.5.1 [19] describes an asynchronous algorithm for sparse linear algebra which is 
robust enough to cope with slow components. The asynchronous approach is an ideal 
candidate to be expanded to include handling complete failure of components. If any 
part fails, the API implementation of FT will introduce replacement ranks for the lost 
workers which will re-initialize individually and detached and finally commence 
communication with the surviving ranks. 

At application start-up a few additional cores are started and put to sleep in 
MPI_Init(). If an active core detects a fault in the communication, the recovery 
mechanism is started. This can be initiated from within any MPI call. The recovery 
mechanism detects the erroneous ranks and replaces them with sleeping ones. Then 
the revoked communicators are rebuild and the replacement ranks exit MPI_Init() 
and run through the ordinary initialisation phase. There is no need for the replacement 
ranks to read from checkpoint files, as the information of the prior iterations is stored in 
the boundaries of its neighbours. Due to the nature of the asynchronous algorithm, the 
replacement ranks will catch up with their neighbours after a few iterations. 

 

   
Figure 1: Core failure in asyncronous mode 

   
Figure 2: Core failure in synchronous mode 

 

Figure 1 shows the working principle of asynchronous FT distributed computation. After 
a failure of processor P3, P4 will take over P3s responsibilities and start its iterations 
from the beginning. All other processes are unaffected. Figure 2 shows the 
synchronous principle including classical C/R. If P3 fails in this case all ranks rewind to 
the latest checkpoint, which is at least one iteration behind. 

As there are no global synchronization points, the expansion to FT can be applied 
without alteration of the source code. The entire FT functionality can be hidden in the 
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MPI calls. This separation of the algorithm and the FT layer is particularly useful for an 
evolving new standard which is subject to modifications. 

5.2 Pre-‐processing	  Steering	  Interface	  
Another application investigated within CRESTA is the application steering interface 
PPSTee, which dynamically distributes application load based on reported run times. 
This iterative process, which has multiple domain decomposition tools available, yields 
an optimal load distribution. The application is introduces in D5.1.3 [19]. 

For this application the simplest mode of FT can be applied – acknowledge failures, 
including actions to prevent further usage of the failed resources, and move on. In case 
of a failure the interface has to acknowledge the missing ranks, redistribute the work 
among the remaining ranks and restart the interrupted iteration. The communicator can 
be shrunken to the remaining ranks. Within PPSTee the failed rank will be assigned a 
proportional of zero, thus no domain will be assigned to it. 

This example illustrates the simplicity of including FT into this application governor. 
Generally, effort should be spend to include FT at the most abstract level possible. 

5.3 Himeno	  
Himeno [20] is not an official CRESTA application but a simplified stencil solver. It acts 
as a surrogate for NEK5000, OpenFOAM and similar numerical partial differential 
equations solvers capturing their basic functionality. The benchmark consists of a small 
code base and the source code of the C and Fortran version is available online. 
Multiple modes of FT have been tested with this application and both a C and a Fortran 
interface were used.  

Working on this minimal solver has exposed the importance of fixing the FT strategy 
prior to starting the implementation. A simple acknowledgement of a failure and shrink 
up to a full recovery of all working ranks can be implemented, however the different 
strategies do not necessarily build up on each other. Further details on including FT are 
given in the next section. 
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6 Implementing	  Fault-‐Tolerance:	  A	  brief	  How-‐to	  
We cannot assume that we will receive a report of a hardware or software fault 
affecting a distributed computation from the failing hardware or software components. 
In the case of a power outage or a network failure there may be no sign of degradation 
until the communication stops. Thus the errors in FT-MPI are reported by the ranks 
trying to communicate with the failed rank. As the scope of communication in MPI is 
defined by the respective communicator used, it is a natural choice to associate errors 
with communicators. An FT-MPI implementation based on Open MPI and associating 
errors with communicators is the User Level Failure Mitigation implementation (fault-
tolerance.org) [17]. In the context of CRESTA this Open MPI implementation has been 
adapted to support the Application Level Placement Scheduler (ALPS) and native 
User-Level Generic Network Interface (uGNI) on a Cray XE6 as well as generic 
clusters. In the following a set of exemplary use cases for this implementation and 
minimal code fragments for the realisation are given. 

6.1 Error	  handler	  
The simplest case is an application that does not rely on single ranks. In this case 
every rank can fail, as long as there is at least one rank finishing the run. This can be 
achieved by activating the error handler MPI_ERRORS_RETURN. In contrast to the current 
MPI standard the state of FT-MPI should be well defined after an error is returned. This 
however restricts the available communication after faults. To add a little flexibility, an 
undisturbed communication should be re-established after a failure occurs. 
Acknowledging an error and keeping on working with the remaining ranks can be 
implemented by writing an MPI error handler. Error handlers are opaque objects 
associated with a user defined function. As soon as MPI encounters an error on a 
communicator, the currently active error handler is invoked. A minimal example of an 
error handler for FT-MPI is the following: 

integer	  comm,	  error_code,	  rc	  
	  
while	  (MPI_ERR_PROC_FAILED.eq.error_code	  

	  	  	  	  	  &	  	  	  	  	  	  	  .or.	  MPI_ERR_COMM_REVOKE.eq.error_code)	  do	  
	  	  	  call	  MPI_Comm_failure_ack(comm,	  rc)	  
	  	  	  call	  MPI_Comm_revoke(comm,	  rc)	  
	  	  	  call	  MPI_Comm_shrink(comm,	  new_comm,	  rc)	  
	  	  	  call	  MPI_Comm_agree(new_comm,	  rc,	  error_code)	  
	  	  	  call	  MPI_Comm_free(comm,	  rc)	  
	  	  	  comm	  =	  new_comm	  
enddo	  
	  

MPI_Comm_failure_ack() allows unmatched receives from MPI_ANY_SOURCE to 
continue, MPI_Comm_revoke()	   is invoked to complete all global communications on 
the current communicator and MPI_Comm_shrink() is called to build a new 
communicator consisting of all surviving ranks in the current communicator. The check 
for MPI_ERR_PROC_FAILED and MPI_ERR_COMM_REVOKE insure there is neither a failed 
processor in the communicator nor have any of the participating ranks spotted an error. 
MPI_Comm_shrink() as well as MPI_Comm_agree() are collective calls that return a 
defined state in case of a defect communicator. Activating an error handler with this 
function on all communicators used in this application will result in uninterrupted 
communication between surviving ranks even after failures have occurred. 

6.2 Application	  Programming	  Interface	  
A convenient scheme to add functionality to MPI calls is to utilise the profiling interface. 
For every MPI_...() call there is also a PMPI_...() call, which enables a developer 
to easily implement functions extending the mode of operation of any MPI call. For 
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example the Fortran call to MPI_Init() can be overwritten by a simple reference to 
PMPI_Init(): 

subroutine	  MPI_Init(ier)	  
	   implicit	  none	  
	   include	  “mpif.h”	  
	   integer	  ier	  
	   call	  PMPI_Init(ier)	  
end	  

Any functionality can be added within the subroutine. Using this feature, a developer 
can extend the FT capabilities of his personal MPI interface by what is needed is for a 
specific application. As job scheduler configurations on current production machines 
usually do not support dynamically adding cores to a running job, a few spare cores will 
be allocated and included into the job. This is realised by extending MPI_Init(). One 
possibility is to have these spare cores enter MPI_Init() and then be send to a sleep 
state until needed. The MPI_COMM_WORLD is then also replaced in MPI_Init() by what 
the application would expect, i.e. a communicator including all ranks active in the 
application without the spare ranks in sleep state.  

Following this approach the MPI calls can be extended to include most of the fault 
mitigation and recovery actions, yielding minimal alteration in user code to make use of 
FT-MPI. For example the error handler can be set to MPI_ERRORS_RETURN and a global 
colour vector containing the state and availability of every rank can be distributed 
among the ranks with in MPI_Init(). This colour vector holds an updated list of all 
ranks indicating if the rank is alive, asleep or dead. Every MPI call in the application 
can be intercepted as shown above in order to check for, and in some cases replace, 
the communicator or add additional assertions to insure proper execution. Furthermore, 
the return value can be checked for its error code and if one of the FT error codes is 
encountered the appropriate actions are taken. These actions include: 

• The current communicator is revoked to complete all global communication; 
• The failure is acknowledged in order for receives from MPI_ANY_SOURCE to 

complete; 
• All communicators are shrunk including the actual world communicator that 

holds both active and sleeping ranks, and the communicator send to the 
application to mimic MPI_COMM_WORLD. 

• The colour vector is updated by elimination of the missing ranks and 
actualisation of the surviving ranks numbers. 

These actions will ensure the stability and integrity of the surviving part of the 
application. If the same procedure is executed in all MPI calls, there is no need for the 
application to use a global synchronisation to check for faults. The information of a fault 
is propagated by revoke and acknowledge and synchronisation of all ranks is ensured 
at the call to the global function MPI_Comm_shrink().  

Thereupon either the application can continue with a reduced number of ranks or the 
reconstruction of original number of ranks takes place. A strategy for reconstruction 
within the API calls is outlined in the following. 

• The group of active and alive ranks determines a leader for the reconstruction 
process. This can be for example a global minimum over the rank numbers. 
Determining a leader each time a fault occurs ensures that there is no single 
point of failure. 

• The leader wakes the number of sleeping ranks required for rebuilding the 
original communicator. 

• The shrunken communicators are merged with MPI_COMM_SELF from the 
woken ranks and the ranks in the resulting communicator are reordered 
according to the original communicator. 
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A basic implementation of this rebuilding mechanism can be implemented by sending 
all participating ranks back to MPI_Init() (this includes some interference in user 
code). As the sleeping ranks are waiting within MPI_Init() the surviving ranks can 
“pick them up” as they go through MPI_Init() once more. A little more sophisticated 
approaches include a separate initialisation for the replacement ranks without having 
the entire application roll back to the beginning. This can be implemented with minimal 
user code interaction if the user code does not use global communication during setup 
phase. 

6.3 Implementation	  Details	  
These guidelines are based on the current scope of the FT-MPI extensions described 
in [11]. As these extensions have not been passed by the MPI Forum at the time of 
writing, there may be a slight variation of the preliminary interface used here and the 
one being used in future MPI implementations. 

Generally a user should check for a minimal set recovery actions required for 
successful completion while omitting everything dispensable. It is also highly advisable 
to hide as much functionality as possible inside the MPI API calls or another separate 
layer. When adding FT capabilities to a framework special care has to be taken to not 
affect ease of implementation and keep the necessary overhead as low as possible. 

Making FT available for an existing MPI application can be split up into a few separate 
partly dependent fractions, which will be briefly described. These hints must be taken 
with caution and critical analysis should be the basis of adopting these 
recommendations. 

• Initialisation: During MPI_Init() the active and replacement ranks are 
separated. After that the communicator which will be known to the application 
as MPI_COMM_WORLD is constructed containing only the active ranks. The 
separation can be controlled by environment variables or command line options 
as these are passed into MPI_Init(). 

• Revoke, acknowledge and shrink: The failures are propagated to the other 
ranks in the communicator by calling MPI_Comm_revoke(); then 
MPI_Comm_failure_ack() marks all the failed processes currently known to 
the local rank. Finally MPI_Comm_failure_get_acked() returns the group of 
failed ranks. 

• Finding and translating group of failed ranks: The group of failed ranks from 
MPI_Comm_failure_get_acked() is translated to the recently revoked 
communicator. This is executed by creating a group of ranks from the revoked 
communicator and calling MPI_Group_translate_ranks() with the group of 
failed ranks, a vector containing the numbers 0 through the size of the group of 
failed ranks and the group of ranks in the revoked communicator: 
 
MPI_Group_size(failed_group,	  &failed_group_size); 
for	  (i	  =	  0;	  i	  <	  failed_group_size;	  ++i)	  

failed_group_rank[i]	  =	  i;	  
for	  (	  ;	  i	  <	  ft_comm_size;	  ++i)	  

failed_group_rank[i]	  =	  MPI_PROC_NULL;	  
MPI_Group_translate_ranks(failed_group,ft_comm_size,	  
	  	   failed_group_rank,	  revoked_group,	  revoked_group_rank);	  
 
These are all local operations, collective operations would return an error in any 
case as MPI_Comm_revoke() has been called. 

• Determining a leader: To ensure no single point of failure every rank has to be 
able to lead the recreation process. This rank is called the leader. In the 
reference implementation the leader is determined by calling MPI_Allreduce() 
to determine the global minimum of rank numbers on what the application sees 
as MPI_COMM_WORLD. This ensures that a healthy and currently active rank is 
used to introduce new ranks to the computation. 
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• Wake up sleeping rank: The leader sends the rank number it is supposed to 
replace as well as the number of replacement ranks to come to the sleeping 
rank. This enables the sleeping rank to call MPI_Intercomm_create() and 
MPI_Intercomm_merge() to join the surviving ranks in one intracommunicator 
and subsequent MPI_Comm_split() to reorder itself into the position of the 
rank it is replacing. 

• Finalization: During MPI_Finalize() a leader is once more assigned to wake 
all remaining sleeping ranks in order to exit in an orderly fashion. The leader 
sends them -1 as the rank to replace, which sends them to MPI_Finalize() as 
well. 

When adding functionality to MPI calls care has to be taken to only use the respective 
PMPI calls within the APIs – this has been omitted where not explicitly needed for 
readability within this deliverable. A typical example of overwriting an MPI API function 
in an implementation including the measures described above would for example be: 

int	  MPI_Recv(void	  *buf,	  int	  count,	  MPI_Datatype	  datatype,	  int	  source,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  int	  tag,	  MPI_Comm	  comm,	  MPI_Status	  *status)	  
{	  
	  	  int	  ierr;	  
	  
	  	  if	  (MPI_COMM_WORLD	  ==	  comm)	  {	  
	  	  	  	  ierr	  =	  PMPI_Recv(buf,count,datatype,source,tag,app_world,status);	  
	  	  }	  else	  {	  
	  	  	  	  ierr	  =	  PMPI_Recv(buf,count,datatype,source,tag,comm,status);	  
	  	  }	  
	  
	  	  if	  (MPI_ERR_IN_STATUS	  ==	  ierr)	  {	  
	  	  	  	  ierr	  =	  (*status).MPI_ERROR;	  
	  	  }	  
	  
	  	  if	  (MPI_ERR_PROC_FAILED	  ==	  ierr	  ||	  MPI_ERR_REVOKED	  ==	  ierr)	  {	  
	  	  	  	  revoke_ack_shrink(app_comm_world);	  
	  	  	  	  revoke_ack_shrink(actual_comm_world);	  
	  	  	  	  recreate_comm();	  
	  	  	  	  failure_detected	  =	  1;	  
	  	  }	  else	  if	  (MPI_SUCCESS	  !=	  ierr)	  {	  
	  	  	  	  printf("MPI_Error	  in	  recv:	  %d\n",	  ierr);	  
	  	  }	  
	  
	  	  return	  ierr;	  
}	  
	  
Although the implementation is not mature enough to be used in production, the 
lessons learned in building FT support are valuable. Owing to the wide range of 
applications and usage modes of FT, the provided interface from MPI vendors has to 
be very generic. This in turn leaves the implementer a lot of space to find the optimal 
solution for the considered application. The lessons learned generally apply to new 
developments which are written with FT support from scratch as well, although a lot of 
effort in “hiding FT from the application” can be omitted. 
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