

Copyright © CRESTA Consortium Partners 2014

D2.5.2	 –	 Fault-‐Tolerance	 and	
Operating	 Systems,	 Programming	

Models	 and	 Integration	

WP2:	 Underpinning	 and	 cross-‐cutting	
technologies	

Due date: M30

Submission date: 31/03/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization CRAY UK

Version: 1.0

Status Final

Author(s): Stephen Sachs (CRAY UK), Pekka Manninen (CRAY UK), Lorna
Smith (UEDIN), Daniel Holmes (UEDIN)

Reviewer(s) Fang Chen (DLR), Frederic Margoules (CRSA)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 29/01/2014 First version of the deliverable
Stephen Sachs (CRAY
UK), Pekka Manninen
(CRAY UK)

0.2 11/02/2014 Added section 1 and 5.1 Stephen Sachs (CRAY
UK)

0.3 17/02/2014 Added section 5.2 Stephen Sachs (CRAY
UK)

0.4 17/02/2014 Clean-up work Stephen Sachs (CRAY
UK)

0.5 27/02/2014 Added section 4 Lorna Smith (UEDIN),
Daniel Holmes (UEDIN)

0.6 28/02/2014 Added section 3.2 and 5.3, Applied
comments from proofreading

Stephen Sachs (CRAY
UK)

0.7 24/03/2014 Addressed reviewer comments, added
2.2 and section 6

Stephen Sachs (CRAY
UK) Pekka Manninen
(CRAY UK)

0.8 26/03/2014 Rearranged sections 5 and 6 Stephen Sachs (CRAY
UK), Pekka Manninen
(CRAY UK)

1.0 27/03/2014 Final version of the deliverable Stephen Sachs (CRAY
UK), Pekka Manninen
(CRAY UK)

Copyright © CRESTA Consortium Partners 2014

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	

2	 INTRODUCTION	 ...	 2	

2.1	 PURPOSE	 ..	 2	
2.2	 FOCUS	 OF	 THIS	 WORK	 AND	 RELATION	 TO	 OTHER	 CRESTA	 DELIVERABLES	 ...	 2	
2.3	 RELEVANCE	 TO	 CRESTA	 ...	 2	
2.4	 GLOSSARY	 OF	 ACRONYMS	 ..	 3	

3	 FAULT-‐TOLERANT	 PROGRAMMING	 MODELS	 ..	 4	

3.1	 STRATEGIES	 FOR	 MASKING	 HARDWARE	 FAULTS	 ...	 4	
3.2	 FAULT-‐TOLERANT	 VERSION	 OF	 MESSAGE-‐PASSING	 INTERFACE	 ..	 6	
3.3	 FAULT-‐TOLERANT	 FEATURES	 IN	 FORTRAN	 COARRAYS	 ...	 6	

4	 OPERATING	 SYSTEM	 REQUIREMENTS	 ..	 8	

5	 APPLICATION	 CASE	 STUDIES	 ..	 10	

5.1	 ASYNCHRONOUS	 SCHWARZ	 METHODS	 ...	 10	
5.2	 PRE-‐PROCESSING	 STEERING	 INTERFACE	 ..	 11	
5.3	 HIMENO	 ...	 11	

6	 IMPLEMENTING	 FAULT-‐TOLERANCE:	 A	 BRIEF	 HOW-‐TO	 ..	 12	

6.1	 ERROR	 HANDLER	 ..	 12	
6.2	 APPLICATION	 PROGRAMMING	 INTERFACE	 ...	 12	
6.3	 IMPLEMENTATION	 DETAILS	 ..	 14	

7	 REFERENCES	 ..	 16	

Index	 of	 Figures	
Figure 1: Core failure in asyncronous mode ... 10	

Figure 2: Core failure in synchronous mode ... 10	

© CRESTA Consortium Partners 2014 Page 1 of 17

1 Executive	 Summary	
By raising computational performance through increased parallelism, single core
failures in modern supercomputers have become a more important and more
expensive issue. This is due to the fact that with core count the number of overall
components within a system rises. Thus, as the mean time between failures of every
single component does not grow as fast as the number of components in a
supercomputer, the overall mean time between failures of the system shrinks.

Failure prevention is used in many parts of the machine; the standard Message
Passing Interface (MPI) mechanism of dealing with faults is to abort the entire
computation if any of its ranks encounters a failure. The traditional handling of these
failures is using checkpoint/restart techniques. However, as the overhead of these
implementations grows with core count, their application diverts to inefficiency.

Fault tolerant parallel distributed memory models enable the code to recover from
failures and continue execution although some parts of the system have been lost
indefinitely. Although not yet part of the MPI standard, there is an active working group
around Fault-Tolerant (FT) MPI. The work presented here assesses different
developments of fault tolerant parallel execution models and shows the obstacles that
have to be resolved in order to be applicable for user codes.

Furthermore current trends in different distributed memory approaches are presented
and a classification of error treatment in different system levels is given. The
responsibilities of operating systems, communication runtime environments,
communication libraries and application environments are specified. The presented
work focusses on the operating systems and communication libraries with special focus
on the applicability to the CRESTA co-design applications.

© CRESTA Consortium Partners 2014 Page 2 of 17

2 Introduction	
2.1 Purpose	
The future roadmap of any High Performance Computing (HPC) hardware supplier
shows that the high amount of future computing power will only be realisable by using
vast numbers of compute units to work in parallel. The production quality of these units,
as well as their respective auxiliary parts, will increase as production processes
improve. However, the number of parts in a supercomputer will rise faster than the
Mean Time Between Failures (MTBF) of every mounted part, resulting in a decline of
the overall MTBF of the entire machine. A study [1] of 22 systems at Los Alamos
National Laboratory (LANL) over a time span of 9 years has shown, that the average
MTBF of some current systems already is less than 8 hours compared to application
run times of often days or weeks. This of course is an extreme comparison and only
perfectly valid if the whole machine is used by one application. Nevertheless, the
decline of MTBF will be a problem for future large scale machines. Contrary to this
trend are the efforts by hardware, firmware and software vendors to detect and act
upon faults as soon as they appear. This behaviour has found wide acceptance in
various parts of the computer industry, but there has never been a widely accepted
standard for fault-aware parallel computing.

This document assesses the current developments in fault-tolerant (FT) distributed
computing with respect to the CRESTA co-design vehicles and with regard to
realisation on Exascale machines. Furthermore it contains a comparison of the
applicability of fault-tolerant MPI and its alternative parallel programming models as
well as implementation examples and a best practice guide for fault-tolerant parallel
code development.

2.2 Focus	 of	 this	 work	 and	 relation	 to	 other	 CRESTA	 deliverables	
This report discusses strategies for masking hardware failures from the point-of-view of
programming models as well as of operating systems. Furthermore, a special attention
is being given to the needs of applications and applicability to real world problems, and
hereby a quite pragmatic approach is being taken. As such, this work does not give a
complete overview on fault tolerance in parallel computing but can be regarded as a
guideline for users to integrate fault-tolerant features into HPC applications.

Some themes related to fault tolerance (also studied within CRESTA) are being omitted
and addressed elsewhere: power management is discussed in CRESTA deliverable
(D) 2.6.3 [2]. Proactive fault tolerance will be covered in a later CRESTA D 2.5.3. Fault-
tolerant capabilities on hardware and operating system level of future operating
systems and micro kernels are further discussed in D2.3.1 [3]. An earlier deliverable [4]
dealt with performance faults, e.g. non-fatal faults, resulting in a deteriorating
application runtime and in the worst case alteration of results.

2.3 Relevance	 to	 CRESTA	
A crucial feature of the CRESTA project is its integration of co-design. The co-design
vehicles cover a wide range of typical HPC applications as well as prototype some of
the obstacles one has to overcome to run on truly large scale. These features paired
with the direct contact to the code owners and developers make them the ideal test bed
for new parallel development.

As with most large scale industrial and scientific codes today the majority of the co-
design applications use checkpoint to disk/restart for error handling. This has been an
effective and easy to use tool in the past, but faces one problem today, which will
increase on future machines. With the system size and therefore problem size growing,
writing full checkpoints is becoming a substantial time effort for large-scale
applications. The write and load phase of Checkpoint/Restart (C/R) is becoming too
expensive as the scheduler slots (of typically 12 or 24 hours) are not growing with the
gap of increasing memory volume against storage speed. Several co-design vehicles

© CRESTA Consortium Partners 2014 Page 3 of 17

would benefit from the proposed FT algorithms at current scale in addition to being a
necessity for the targeted scale.

Additionally to the conventional use of MPI in which the overall result relies on the
existence of every single result (e.g. domain decomposition) there are quite a few
simpler application cases. The weather community runs their simulations in ensembles.
Various ensembles are then coupled via MPI to receive statistically averaged results.
This usage of MPI neither requires every single ensemble to produce a result, nor to
exit without an error. However, if one of the ensembles crashes because of numerical
instabilities or a system fault, the entire computation stops. This again is an application
field for software resiliency, which can be solved via FT-MPI.

The rest of the document is organized as follows. We give an overview of approaches
and categorisation of strategies on FT in section 3. Special attention is on the late
developments in different distributed parallel programming concepts. Section 4
describes the operating system specifics for FT with focus on supporting the models
described in section 3. Section 5 describes CRESTA applications which directly benefit
from FT and the strategy of introducing FT with minimal code change. Section 6 shows
strategies for FT insertion and example implementations of failure recovery and failure
handler tools and brief implementation details are given.

2.4 Glossary	 of	 Acronyms	

API
C/R
D
FT
HPC
LANL
MPI
MTBF
PE

Application Programming Interface
Checkpoint/Restart
Deliverable
Fault-Tolerant
High-Performance Computing
Los Alamos National Laboratory
Message Passing Interface
Mean Time Between Failures
Processing Element

PGAS Partitioned Global Address-Space
uGNI User-Level Generic Network Interface
ULFM User Level Failure Mitigation
UPC Unified Parallel C
RAID Redundant Array of Independent Disks

© CRESTA Consortium Partners 2014 Page 4 of 17

3 Fault-‐tolerant	 programming	 models	
Different strategies for fault-tolerant, or fault-resilient, communication are currently
pursued throughout various distributed parallel programming models. Parallel
programming models, or Partitioned Global Address-Space (PGAS) languages, bring
along such features as shown for Coarray Fortran in section 3.3 and recently for
OpenSHMEM in [2]. However, the bulk of the attention and development on FT
concepts, models and realisation is focused on MPI. Since the mid 1990’s MPI has
been the most widely distributed state of the art distributed memory parallelisation
technique. Through its popularity and portability there has been substantial interest in
further developing the performance of MPI. As a matured standard it marks the
interface of specially tuned high performance computing and viable industry
application.

The current MPI standard (3.0, released Sep 2012) on the topic of error handling (this
includes any kind of error that can arise within MPI usage) says:

 “An MPI implementation cannot or may choose not to handle some errors that occur
during MPI calls.”

Within the standard there are two predefined options for handling faults. The default
error handler is MPI_ERRORS_ARE_FATAL, which tells MPI to end the entire application
on an occurring fault with an error message. The other choice is MPI_ERRORS_RETURN,
which gives control back to the user, though even this “does not necessarily allow the
user to continue to use MPI after an error is detected”. Alternatively users may
implement some error handling routines, which are then invoked by MPI without
guaranteeing the completion of further communication. To fill this gap a universal fault-
tolerant standard for distributed computing has to be found.

3.1 Strategies	 for	 masking	 hardware	 faults	
There have been multiple approaches to provide a fault-tolerant message passing
system, each of which has its own characteristics. The main development can be
summarised into three different layers, in which each implementation acts
complementary to or independent of the other layers depending on the respective
author’s focus.

The first layer consists of runtime environments, which act on faults below the MPI
layer. These subsystems include, for example, Harness as described in [3, 4]
implementing dynamic process management and providing a distributed setup with no
single point of failure. Another type of subsystems are self healing networks as
described in [4] using redundant storage of contact information the network, message
delivery over several nodes and automatic fault recovery. These environments,
although very powerful, are subject to individual efforts which in turn will only cover a
restricted user base.

The second layer consists of MPI-like implementations of fault-tolerant message
passing giving the application programmer the possibility to act upon errors using
specific Application Programming Interface (API) calls. Popular implementations
include: FT-MPI [5], which introduces API-calls for failure detection, notification and
rank recovery; LAM/MPI [6], which includes system level checkpointing and automatic
roll back of applications; LA-MPI providing network FT through checksums and
retransmission; MPI/FT and MPI-FT.

The third layer consists of application environments on top of MPI. These include e.g.
the most widely used Checkpoint/Restart (C/R) mechanism. Diskless checkpointing as
in [7] eliminates the performance bottleneck of traditional checkpointing by using local
or (nonlocal) memory to store the data emulating a Redundant Array of Independent
Disks (RAID) and similar techniques (on memory) for additional resiliency. Application
dependent solutions as the Algorithm Based Fault Tolerance described in [8] or
Redundant Communication [9] are also part of this layer. Keeping in mind that

© CRESTA Consortium Partners 2014 Page 5 of 17

individual applications demand individual FT strategies, the straightforward approach is
to implement a third layer approach for every individual code. However, these either
need some kind of support by the first or second layer subsystem or add to the
required compute resources.

Within this subsystem there is only one vendor and application independent interface,
namely MPI. Thus the natural and most promising approach is to integrate a minimal
set of necessary features for the individual application environments into MPI. This
approach does not substitute for powerful runtime environments or for individual
strategies for recovery on top of MPI. It enables developers to produce independent
solutions, which can benefit from other development.

For wide acceptance among users, the individual requirements of every distributed
computing use case must be covered. The CRESTA co-design code owners and their
feedback are employed as a broad subset of the HPC user community. A survey
among the code owners was conducted. Its conclusions reveal that the core features
requested by developers are basically identical. The most valuable and requested tools
are the reconstruction of data that has been lost and the re-initialisation of ranks. While
the re-initialisation of ranks will be discussed in section Error! Reference source not
found., the reconstruction of data is an application and underlying problem dependent
feature. For some problems the data can be interpolated from neighbouring data in
time or space, others have to roll back all ranks to the last checkpoint in order to
preserve consistent data. In addition to the above, the restoration of initial number of
ranks was repeatedly requested. This will especially be a challenge for job schedulers
in the future, as they are requested to provide replacement hardware on very short
notice. In the meantime it is perfectly valid to request a small number of spare ranks for
long running large-scale ranks. The compute resources wasted by allocating unused
ranks become negligible compared to re-running the entire job as the scale increases.
Another feature every code requires is standardised error treatment. There has to be
one generic standard error handler applicable to every occurring fault. This handler
must be able to provide detailed information over the health of the application and,
most important, identify the erroneous ranks. Every code owner has his individual
notion of the ideal implementation for recovery. Some applications need the
reconstruction of all ranks with the original topology others do not even need global
knowledge of the failed ranks. Thus, an ideal implementation can only provide basic
tools for the user to create the recovery to fit his needs. Some of the common requests
are considered in this work, requirements from typical use cases include:

• Acknowledge the existence and extent of an error and keep on working with the
remaining ranks;

• Enable the program to realise that some fault occurred in order to save the
remaining data and finalise;

• Restart the entire application run when the failure is recognised while also re-
running initialization;

• Isolate the running ranks in the application from the failure and replace the
failed ranks by backup compute units running from the beginning (including
initialisation);

• Minimize impact of FT on the application run time and programmability.

For each of these feature requests, as well as for individual demands requested by
only a subset of code owners, a solution must be provided. Thus a framework has to
be constructed to allow the community or the individual code owners to implement
individual solutions. For example the first use case can be solved by simply adding an
error handler to the user code. This can be a generic handler acting as a report tool for
failures, which can be written for multiple different applications using FT in a similar
fashion.

The other cases include deeper interaction with user code, i.e. having all ranks act on
different states and invoke recovery procedures, or writing extensions to the
applications view of the API. Frameworks situated in between the user code and MPI

© CRESTA Consortium Partners 2014 Page 6 of 17

can make use of more advanced usage of FT. The FT features can be seamlessly
integrated into asynchronous frameworks such as [10]. If the supported framework runs
truly asynchronously, even with asynchronous initialisation, the API can support this
behaviour without any user code change.

3.2 Fault-‐tolerant	 version	 of	 message-‐passing	 interface	
The latest and most promising approach of a standard in FT-MPI is currently being
prepared for presentation by the “User Level Failure Mitigation” (ULFM) group to the
MPI Forum. This approach has evolved from previous attempts in close collaboration
with the Forum. In earlier forms the absence of support for e.g. fault tolerant one sided
communication or I/O was justification for the rejection from the standard. In this
mature form all the obstacles have been included.

This approach enables MPI programs to handle failures by mitigation the effects of
broken communicators, identifying the unresponsive part of the communication
topology and even restoring communication capabilities destroyed by failures. It
consists of a few simple API calls which enable the programmer to create all kinds of
requested FT features. This is in line with the rest of the MPI standard, which does not
want to specialize on any kind of request. There are no calls in the library to solve any
specific problem, but a variety of calls that provide a framework to create solutions to
various specific problems. Thus the standard stays independent of vendors, application
types or other interest groups.

The working group around ULFM proposed the addition of a set of MPI calls, return
codes and attributes to the standard. In the following the central additions and their
respective properties in the FT context is outlined.

There are three additional exceptions: MPI_ERR_PROC_FAILED_PENDING indicates an
outstanding receive to MPI_ANY_SOURCE may be receiving from a failed rank, i.e. there
is a failed rank within the underlying communicator. MPI_ERR_PROC_FAILED informs the
caller that the request cannot be completed due to a failed rank. This can appear, for
example, during an outstanding receive from a failed rank. If the user code has taken
failure notification propagating action on the current or anther rank by marking the
communicator as revoked, all non-local calls will return MPI_ERR_REVOKED. To identify
a broken communicator there is the function MPI_Comm_revoke(). Calling this interface
will notify all ranks on the communicator that this communicator is faulty and terminate
any non-local MPI calls at all ranks. All subsequent calls to this communicator will
return the error MPI_ERR_REVOKED. MPI_Comm_shrink() creates a new communicator
including all surviving ranks of comm. The functionality can be described as using
MPI_Comm_split() with all surviving ranks sing the same colour and their respective
rank numbers as key. The function MPI_Comm_failure_ack() acknowledges errors on
the communicator in contrast to marking the communicator faulty as in revoke. This
includes freeing unmatched receives to MPI_ANY_SOURCE on the communicator in
question. MPI_Comm_failure_get_acked() returns the group of locally acknowledged
failed processes and MPI_Comm_agree() is a collective “and” operator among all
surviving ranks of a faulty communicator. This collective as well as
MPI_Comm_shrink() are the only functions which will never raise MPI_ERR_REVOKED
on a revoked communicator.

A complete set including the non-blocking (e.g. MPI_Comm_iagree()), one sided (e.g.
MPI_Win_revoke()) and I/O (e.g. MPI_File_revoke()) related additions and further
information is given in [11].

3.3 Fault-‐tolerant	 features	 in	 Fortran	 coarrays	
The PGAS programming model provides a global view of the memory across
supercomputer nodes and supports a one-sided access to shared data. Examples of
programming languages and paradigms employing the PGAS approach include the
coarrays concept of the Fortran 2008 standard [11], the Unified Parallel C (UPC)

© CRESTA Consortium Partners 2014 Page 7 of 17

extension to the C language [12], a coarray class for the C++ language [13], and the
Chapel [14] and X10 [15] languages.

Of PGAS approaches, Fortran coarrays and UPC are most often used in real-world
HPC applications (but being still a small fraction of all parallel applications), and have
most extensive support in the programming environments of today’s HPC systems.
Here we consider what kinds of features for more fault-tolerant programming style are
being offered by Fortran coarrays. In general, the coarrays approach should support in
the next Fortran standard similar fault-tolerant functionalities as the FT-MPI discussed
earlier.

There is a defined and straightforward mechanism of Fortran coarrays that allows for
isolating a failed Processing Element (PE, referred to as an image).The following
statements: change	 team, end	 team, form	 team, sync	 all, sync	 images, sync	
memory, sync	 team, lock, unlock, event	 post, event	 wait, allocate, or
deallocate	 are able to return a named constant stat_failed_image. This return
value will occur if there is a failed image in the current team. . This is provided by the
intrinsic module ISO_Fortran_env. In the case of sync	 all, sync	 images, or sync	
team, the statement will have successfully synchronized all the images of the specified
set that have not failed [16]. With using the team construct, for example as

if	 (num_images(failed=.true.)	 >	 0)	 then	
	 	 	 form	 team(1,	 recover)	
	 	 	 change	 team	 (recover)	
	 	 	 	 	 !	 Keep	 on	 working	 with	 the	 images/PEs	 still	 functioning	
	 	 	 	 	 !	 ...	
	 	 	 end	 team	
end	 if	
	
would allow for the non-failed images to continue while the failed PEs – due to a node
failure, for instance - are being excluded. This could be checked periodically. Having a
benefit from this requires an algorithm that is insensitive and/or able to recover from the
data loss of the failed image(s).

One option for a program able to deal with node failures, again based on teams, is to
run a fully or partially redundant calculation. The program checks whether any images
have been failed. If there are failed images, the program checks whether its replica
image is still active. If it is, a new team will be formed by excluding the failed image and
including its still running replica. If also the replica has failed (or there were none in
case of partially redundant calculation), only then the program is terminated.

In case of a node failure, all data of an image, including its share of coarray data, will
be lost. However, if an image is able to do a clean exit using the STOP statement prior
to failure, the coarray data can still be retrieved from the image. The stopped images
can be detected similarly with failed images with the stat specifier value of
stat_stopped_image. This can enable pre-emptive measures, that is, probing for the
health status of the platform, and in case of any suspicious signals stopping an image
and retrieving its data before the node failure occurs. This could be applied also to a
case when an image is behind a slow link that harms the overall performance of the
application.	

We note that neither the teams nor the stat_failed_image specifier values are part
of the current Fortran 2008 standard but are a part of a Technical Specification draft
that prepares the parallel processing enhancements for the next Fortran standard.

© CRESTA Consortium Partners 2014 Page 8 of 17

4 Operating	 system	 requirements	
The distributed parallel programming model fault tolerant strategies described above
will not exist in isolation, to work these will require interaction with the operating
system. The most likely faults that will need to be tolerated at the exascale are,
generally, hardware faults: for example compute-node failures or communication-link
failures. Handling the fault, mitigating its effect, determining if recovery is possible,
performing recovery and continuing execution are likely to be the responsibility of the
application / programming model layer, rather than of the operating system. The
application has more knowledge about the effect of each fault, and the cumulative
effect of many faults, than the operating system and so is better placed to determine
whether those effects can be mitigated and whether recovery is possible. However the
operating system provides the interface between computer hardware and software
applications and therefore must have a role in the initial detection of the fault.

This may be seen as a departure from established methods of fault-tolerance, such as
error-correction in ECC memory chips (which is a hardware function) or reliable-
delivery in TCP socket communications (which is a system-software function that may
be offloaded to hardware). In these situations, sufficient information to correct the error
is available to the hardware or system-software that is attempting to perform the task.
For ECC memory, extra information is calculated and stored during each write
operation and is used to detect, and correct, errors during subsequent read operations.
For TCP communications, the data for packets to be sent kept until the sequence
number of that packet is acknowledged by the receiver. If a gap in sequence numbers
is detected then the sender re-sends the missing packet(s).

However, both of these established fault-tolerance methods are developments of
earlier approaches that required software applications to explicitly handle, mitigate and
recover from errors. These non-fault-tolerant methods still exist and are used when
error-correction is not a high priority.

The current proposal for fault-tolerance being considered by the MPI Forum divides the
problem into four areas: detection, notification, propagation and consensus. All but the
first of these are deemed to be the responsibility of the MPI library. Detection of faults
is too system-specific to be standardised and recovery requires application-specific
decision logic that cannot be incorporated into a standardised communication library.
Notification is the process by which the local MPI rank in the application is informed
about a fault that has been detected by the system-specific fault detection mechanism.
Propagation is the process of disseminating knowledge of a fault from the local MPI
rank to some, or all, of the other MPI ranks that are still executing normally. Consensus
is the process of deciding on a common value amongst many MPI ranks in a way that
tolerates faults occurring during the decision itself. These functions within MPI, when
combined with a suitable fault-detection mechanism that interacts with MPI, are
sufficient for an application to construct a wide variety of recovery algorithms.

Operating systems already detect faults. When the hardware that the operating system
controls does not perform a function as expected, the operating system usually detects
the abnormal behaviour and may attempt recovery (e.g. by re-trying the function) or
may raise an error to the application that requested the function. Some types of fault
are not currently detectable by the operating system. Some types of fault are
theoretically detectable by the operating system but are not currently commonly
detected. For example, a core becoming unresponsive may be silently handled by the
scheduling algorithm in the operating system, because each core executes a scheduler
that simply chooses one of the runnable threads available for that core, allows it to
execute for a short amount of time, interrupts that thread and chooses another
runnable thread for that core. There is likely to be no mechanism in the operating
system for the cores to be monitored or tested during execution and so, whilst
theoretically an unresponsive or stopped core could be detected, this type of fault is
unlikely to be discovered.

© CRESTA Consortium Partners 2014 Page 9 of 17

Fault detection could be performed by dedicated hardware that monitors the health of
particular parts of the system. Several vendors produce systems that contain this type
of hardware. Typically they provide system administrators with a management interface
that displays information about the current state of the system and affords some control
independently of the computational hardware. For example, this may allow a failed
node to be re-started remotely even if it is otherwise unresponsive. For this to be used
for fault detection without manual intervention, an interface must be provided in the
form of system-software or an extension to the current functionality of operating
systems.

It is becoming common-practice to implement software libraries, in particular MPI
libraries, using OS-bypass techniques. Bypassing the operating system permits user
code to control hardware directly, without any assistance from the operating system.
This is generally done in an attempt to increase the performance of the software by
making use of the hardware in a very specific (and restricted) manner rather than
exploiting the full breadth of its capability. However, an unintended consequence of
bypassing the operating system is that any fault detection it would normally provide is
also bypassed. In this situation, the user code must assume the responsibility for fault
detection.

In summary, the role of operating systems in fault tolerance is primarily that of fault
detection. Some faults are already detected by current operating systems. Extensions
to existing operating systems could enable more types of fault to be detected.
Bypassing the operating system to achieve performance may have a negative impact
on fault detection and, therefore, on fault-tolerance.

© CRESTA Consortium Partners 2014 Page 10 of 17

5 Application	 case	 studies	
Multiple small test cases have been developed to test the functionality of the ULFM
implementation described in [11]. During the course of this work a few bugs were found
in the implementation and, in close collaboration with the developers, valuable
feedback was passed in both directions and lessons in FT implementation were
learned. This section will give a short overview of the applications and FT strategies
applied to them. The codes listed below constitute an incomplete list of feasible co-
design vehicles at the time of writing. There are further applications within CRESTA
with potential benefit of FT whose applicability has not been tracked yet.

5.1 Asynchronous	 Schwarz	 Methods	
D2.5.1 [19] describes an asynchronous algorithm for sparse linear algebra which is
robust enough to cope with slow components. The asynchronous approach is an ideal
candidate to be expanded to include handling complete failure of components. If any
part fails, the API implementation of FT will introduce replacement ranks for the lost
workers which will re-initialize individually and detached and finally commence
communication with the surviving ranks.

At application start-up a few additional cores are started and put to sleep in
MPI_Init(). If an active core detects a fault in the communication, the recovery
mechanism is started. This can be initiated from within any MPI call. The recovery
mechanism detects the erroneous ranks and replaces them with sleeping ones. Then
the revoked communicators are rebuild and the replacement ranks exit MPI_Init()
and run through the ordinary initialisation phase. There is no need for the replacement
ranks to read from checkpoint files, as the information of the prior iterations is stored in
the boundaries of its neighbours. Due to the nature of the asynchronous algorithm, the
replacement ranks will catch up with their neighbours after a few iterations.

Figure 1: Core failure in asyncronous mode

Figure 2: Core failure in synchronous mode

Figure 1 shows the working principle of asynchronous FT distributed computation. After
a failure of processor P3, P4 will take over P3s responsibilities and start its iterations
from the beginning. All other processes are unaffected. Figure 2 shows the
synchronous principle including classical C/R. If P3 fails in this case all ranks rewind to
the latest checkpoint, which is at least one iteration behind.

As there are no global synchronization points, the expansion to FT can be applied
without alteration of the source code. The entire FT functionality can be hidden in the

© CRESTA Consortium Partners 2014 Page 11 of 17

MPI calls. This separation of the algorithm and the FT layer is particularly useful for an
evolving new standard which is subject to modifications.

5.2 Pre-‐processing	 Steering	 Interface	
Another application investigated within CRESTA is the application steering interface
PPSTee, which dynamically distributes application load based on reported run times.
This iterative process, which has multiple domain decomposition tools available, yields
an optimal load distribution. The application is introduces in D5.1.3 [19].

For this application the simplest mode of FT can be applied – acknowledge failures,
including actions to prevent further usage of the failed resources, and move on. In case
of a failure the interface has to acknowledge the missing ranks, redistribute the work
among the remaining ranks and restart the interrupted iteration. The communicator can
be shrunken to the remaining ranks. Within PPSTee the failed rank will be assigned a
proportional of zero, thus no domain will be assigned to it.

This example illustrates the simplicity of including FT into this application governor.
Generally, effort should be spend to include FT at the most abstract level possible.

5.3 Himeno	
Himeno [20] is not an official CRESTA application but a simplified stencil solver. It acts
as a surrogate for NEK5000, OpenFOAM and similar numerical partial differential
equations solvers capturing their basic functionality. The benchmark consists of a small
code base and the source code of the C and Fortran version is available online.
Multiple modes of FT have been tested with this application and both a C and a Fortran
interface were used.

Working on this minimal solver has exposed the importance of fixing the FT strategy
prior to starting the implementation. A simple acknowledgement of a failure and shrink
up to a full recovery of all working ranks can be implemented, however the different
strategies do not necessarily build up on each other. Further details on including FT are
given in the next section.

© CRESTA Consortium Partners 2014 Page 12 of 17

6 Implementing	 Fault-‐Tolerance:	 A	 brief	 How-‐to	
We cannot assume that we will receive a report of a hardware or software fault
affecting a distributed computation from the failing hardware or software components.
In the case of a power outage or a network failure there may be no sign of degradation
until the communication stops. Thus the errors in FT-MPI are reported by the ranks
trying to communicate with the failed rank. As the scope of communication in MPI is
defined by the respective communicator used, it is a natural choice to associate errors
with communicators. An FT-MPI implementation based on Open MPI and associating
errors with communicators is the User Level Failure Mitigation implementation (fault-
tolerance.org) [17]. In the context of CRESTA this Open MPI implementation has been
adapted to support the Application Level Placement Scheduler (ALPS) and native
User-Level Generic Network Interface (uGNI) on a Cray XE6 as well as generic
clusters. In the following a set of exemplary use cases for this implementation and
minimal code fragments for the realisation are given.

6.1 Error	 handler	
The simplest case is an application that does not rely on single ranks. In this case
every rank can fail, as long as there is at least one rank finishing the run. This can be
achieved by activating the error handler MPI_ERRORS_RETURN. In contrast to the current
MPI standard the state of FT-MPI should be well defined after an error is returned. This
however restricts the available communication after faults. To add a little flexibility, an
undisturbed communication should be re-established after a failure occurs.
Acknowledging an error and keeping on working with the remaining ranks can be
implemented by writing an MPI error handler. Error handlers are opaque objects
associated with a user defined function. As soon as MPI encounters an error on a
communicator, the currently active error handler is invoked. A minimal example of an
error handler for FT-MPI is the following:

integer	 comm,	 error_code,	 rc	
	
while	 (MPI_ERR_PROC_FAILED.eq.error_code	

	 	 	 	 	 &	 	 	 	 	 	 	 .or.	 MPI_ERR_COMM_REVOKE.eq.error_code)	 do	
	 	 	 call	 MPI_Comm_failure_ack(comm,	 rc)	
	 	 	 call	 MPI_Comm_revoke(comm,	 rc)	
	 	 	 call	 MPI_Comm_shrink(comm,	 new_comm,	 rc)	
	 	 	 call	 MPI_Comm_agree(new_comm,	 rc,	 error_code)	
	 	 	 call	 MPI_Comm_free(comm,	 rc)	
	 	 	 comm	 =	 new_comm	
enddo	
	

MPI_Comm_failure_ack() allows unmatched receives from MPI_ANY_SOURCE to
continue, MPI_Comm_revoke()	 is invoked to complete all global communications on
the current communicator and MPI_Comm_shrink() is called to build a new
communicator consisting of all surviving ranks in the current communicator. The check
for MPI_ERR_PROC_FAILED and MPI_ERR_COMM_REVOKE insure there is neither a failed
processor in the communicator nor have any of the participating ranks spotted an error.
MPI_Comm_shrink() as well as MPI_Comm_agree() are collective calls that return a
defined state in case of a defect communicator. Activating an error handler with this
function on all communicators used in this application will result in uninterrupted
communication between surviving ranks even after failures have occurred.

6.2 Application	 Programming	 Interface	
A convenient scheme to add functionality to MPI calls is to utilise the profiling interface.
For every MPI_...() call there is also a PMPI_...() call, which enables a developer
to easily implement functions extending the mode of operation of any MPI call. For

© CRESTA Consortium Partners 2014 Page 13 of 17

example the Fortran call to MPI_Init() can be overwritten by a simple reference to
PMPI_Init():

subroutine	 MPI_Init(ier)	
	 implicit	 none	
	 include	 “mpif.h”	
	 integer	 ier	
	 call	 PMPI_Init(ier)	
end	

Any functionality can be added within the subroutine. Using this feature, a developer
can extend the FT capabilities of his personal MPI interface by what is needed is for a
specific application. As job scheduler configurations on current production machines
usually do not support dynamically adding cores to a running job, a few spare cores will
be allocated and included into the job. This is realised by extending MPI_Init(). One
possibility is to have these spare cores enter MPI_Init() and then be send to a sleep
state until needed. The MPI_COMM_WORLD is then also replaced in MPI_Init() by what
the application would expect, i.e. a communicator including all ranks active in the
application without the spare ranks in sleep state.

Following this approach the MPI calls can be extended to include most of the fault
mitigation and recovery actions, yielding minimal alteration in user code to make use of
FT-MPI. For example the error handler can be set to MPI_ERRORS_RETURN and a global
colour vector containing the state and availability of every rank can be distributed
among the ranks with in MPI_Init(). This colour vector holds an updated list of all
ranks indicating if the rank is alive, asleep or dead. Every MPI call in the application
can be intercepted as shown above in order to check for, and in some cases replace,
the communicator or add additional assertions to insure proper execution. Furthermore,
the return value can be checked for its error code and if one of the FT error codes is
encountered the appropriate actions are taken. These actions include:

• The current communicator is revoked to complete all global communication;
• The failure is acknowledged in order for receives from MPI_ANY_SOURCE to

complete;
• All communicators are shrunk including the actual world communicator that

holds both active and sleeping ranks, and the communicator send to the
application to mimic MPI_COMM_WORLD.

• The colour vector is updated by elimination of the missing ranks and
actualisation of the surviving ranks numbers.

These actions will ensure the stability and integrity of the surviving part of the
application. If the same procedure is executed in all MPI calls, there is no need for the
application to use a global synchronisation to check for faults. The information of a fault
is propagated by revoke and acknowledge and synchronisation of all ranks is ensured
at the call to the global function MPI_Comm_shrink().

Thereupon either the application can continue with a reduced number of ranks or the
reconstruction of original number of ranks takes place. A strategy for reconstruction
within the API calls is outlined in the following.

• The group of active and alive ranks determines a leader for the reconstruction
process. This can be for example a global minimum over the rank numbers.
Determining a leader each time a fault occurs ensures that there is no single
point of failure.

• The leader wakes the number of sleeping ranks required for rebuilding the
original communicator.

• The shrunken communicators are merged with MPI_COMM_SELF from the
woken ranks and the ranks in the resulting communicator are reordered
according to the original communicator.

© CRESTA Consortium Partners 2014 Page 14 of 17

A basic implementation of this rebuilding mechanism can be implemented by sending
all participating ranks back to MPI_Init() (this includes some interference in user
code). As the sleeping ranks are waiting within MPI_Init() the surviving ranks can
“pick them up” as they go through MPI_Init() once more. A little more sophisticated
approaches include a separate initialisation for the replacement ranks without having
the entire application roll back to the beginning. This can be implemented with minimal
user code interaction if the user code does not use global communication during setup
phase.

6.3 Implementation	 Details	
These guidelines are based on the current scope of the FT-MPI extensions described
in [11]. As these extensions have not been passed by the MPI Forum at the time of
writing, there may be a slight variation of the preliminary interface used here and the
one being used in future MPI implementations.

Generally a user should check for a minimal set recovery actions required for
successful completion while omitting everything dispensable. It is also highly advisable
to hide as much functionality as possible inside the MPI API calls or another separate
layer. When adding FT capabilities to a framework special care has to be taken to not
affect ease of implementation and keep the necessary overhead as low as possible.

Making FT available for an existing MPI application can be split up into a few separate
partly dependent fractions, which will be briefly described. These hints must be taken
with caution and critical analysis should be the basis of adopting these
recommendations.

• Initialisation: During MPI_Init() the active and replacement ranks are
separated. After that the communicator which will be known to the application
as MPI_COMM_WORLD is constructed containing only the active ranks. The
separation can be controlled by environment variables or command line options
as these are passed into MPI_Init().

• Revoke, acknowledge and shrink: The failures are propagated to the other
ranks in the communicator by calling MPI_Comm_revoke(); then
MPI_Comm_failure_ack() marks all the failed processes currently known to
the local rank. Finally MPI_Comm_failure_get_acked() returns the group of
failed ranks.

• Finding and translating group of failed ranks: The group of failed ranks from
MPI_Comm_failure_get_acked() is translated to the recently revoked
communicator. This is executed by creating a group of ranks from the revoked
communicator and calling MPI_Group_translate_ranks() with the group of
failed ranks, a vector containing the numbers 0 through the size of the group of
failed ranks and the group of ranks in the revoked communicator:

MPI_Group_size(failed_group,	 &failed_group_size);
for	 (i	 =	 0;	 i	 <	 failed_group_size;	 ++i)	

failed_group_rank[i]	 =	 i;	
for	 (;	 i	 <	 ft_comm_size;	 ++i)	

failed_group_rank[i]	 =	 MPI_PROC_NULL;	
MPI_Group_translate_ranks(failed_group,ft_comm_size,	
	 	 failed_group_rank,	 revoked_group,	 revoked_group_rank);	

These are all local operations, collective operations would return an error in any
case as MPI_Comm_revoke() has been called.

• Determining a leader: To ensure no single point of failure every rank has to be
able to lead the recreation process. This rank is called the leader. In the
reference implementation the leader is determined by calling MPI_Allreduce()
to determine the global minimum of rank numbers on what the application sees
as MPI_COMM_WORLD. This ensures that a healthy and currently active rank is
used to introduce new ranks to the computation.

© CRESTA Consortium Partners 2014 Page 15 of 17

• Wake up sleeping rank: The leader sends the rank number it is supposed to
replace as well as the number of replacement ranks to come to the sleeping
rank. This enables the sleeping rank to call MPI_Intercomm_create() and
MPI_Intercomm_merge() to join the surviving ranks in one intracommunicator
and subsequent MPI_Comm_split() to reorder itself into the position of the
rank it is replacing.

• Finalization: During MPI_Finalize() a leader is once more assigned to wake
all remaining sleeping ranks in order to exit in an orderly fashion. The leader
sends them -1 as the rank to replace, which sends them to MPI_Finalize() as
well.

When adding functionality to MPI calls care has to be taken to only use the respective
PMPI calls within the APIs – this has been omitted where not explicitly needed for
readability within this deliverable. A typical example of overwriting an MPI API function
in an implementation including the measures described above would for example be:

int	 MPI_Recv(void	 *buf,	 int	 count,	 MPI_Datatype	 datatype,	 int	 source,	
	 	 	 	 	 	 	 	 	 	 	 	 	 int	 tag,	 MPI_Comm	 comm,	 MPI_Status	 *status)	
{	
	 	 int	 ierr;	
	
	 	 if	 (MPI_COMM_WORLD	 ==	 comm)	 {	
	 	 	 	 ierr	 =	 PMPI_Recv(buf,count,datatype,source,tag,app_world,status);	
	 	 }	 else	 {	
	 	 	 	 ierr	 =	 PMPI_Recv(buf,count,datatype,source,tag,comm,status);	
	 	 }	
	
	 	 if	 (MPI_ERR_IN_STATUS	 ==	 ierr)	 {	
	 	 	 	 ierr	 =	 (*status).MPI_ERROR;	
	 	 }	
	
	 	 if	 (MPI_ERR_PROC_FAILED	 ==	 ierr	 ||	 MPI_ERR_REVOKED	 ==	 ierr)	 {	
	 	 	 	 revoke_ack_shrink(app_comm_world);	
	 	 	 	 revoke_ack_shrink(actual_comm_world);	
	 	 	 	 recreate_comm();	
	 	 	 	 failure_detected	 =	 1;	
	 	 }	 else	 if	 (MPI_SUCCESS	 !=	 ierr)	 {	
	 	 	 	 printf("MPI_Error	 in	 recv:	 %d\n",	 ierr);	
	 	 }	
	
	 	 return	 ierr;	
}	
	
Although the implementation is not mature enough to be used in production, the
lessons learned in building FT support are valuable. Owing to the wide range of
applications and usage modes of FT, the provided interface from MPI vendors has to
be very generic. This in turn leaves the implementer a lot of space to find the optimal
solution for the considered application. The lessons learned generally apply to new
developments which are written with FT support from scratch as well, although a lot of
effort in “hiding FT from the application” can be omitted.

© CRESTA Consortium Partners 2014 Page 16 of 17

7 References	
	

[1] B. Schroeder and G. A. Gibson, "A large scale study of failures in high-
performance-computing systems," in International Symposium on Dependable
Systems and Networks , 2006.

[2] A. Hart, M. Weiland, D. Khabi and J. Doleschal, "D2.6.3 - Power measurement
across algorithms," 2014.

[3] D. Holmes, "D2.3.1 - Operating systems at the extreme scale," 2013.

[4] M. Bull and J. Nowell, "D2.5.1 - Fault agnostic and asynchronous algorithms at
exascale," 2013.

[5] S. Poole, P. Shamis, A. Welch, S. Pophale, M. G. Venkata, O. Hernandez, G.
Koenig, T. Curtis and C.-H. Hsu, "OpenSHMEM Extensions and a Vision for its
Future Direction," in OpenSHMEM , 2014.

[6] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-Grbovic and
J. J. Dongarra, "Process Fault-Tolerance: Semantics, Design and Applications for
High Performance Computing," International Journal for High Performance
Applications and Supercomputing, 2004.

[7] M. e. a. Beck, "HARNESS: A next generation distributed virtual machine," Future
Generation Computer Systems, vol. 15, no. 5, pp. 571-582, 1999.

[8] T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic and J. Dongarra, "Self-
healing network for scalable fault-tolerant runtime environments," Future
Generation Computer Systems, vol. 26, pp. 479-485, 2009.

[9] S. Sriram, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargroveand and
E. Roman, "The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing," in LACSI, Santa Fe, NM, 2003.

[10] J. S. Plank, K. Li and M. A. Puening, "Diskless checkpointing," Journal IEEE
Transactions on Parallel and Distribted Systems, vol. 9, no. 10, pp. 972-986, 1998.

[11] P. Du, A. Bouteiller, G. Bosilca, T. Herault and J. Dongarra, "Algorithm-based fault
tolerance for dense matrix factorizations," in 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, 2012.

[12] N. Ali, S. Krishnamoorthy, N. Govind and B. Palmer, "A Redundant
Communication Approach to Scalable Fault Tolerance in PGAS Programming
Models," in 19th International Euromicro Conference on Parallel, Distributed and
Network-Based Processing, 2011.

[13] F. Magoulès, "Asynchronous Optimized Schwarz Methods," in Computational
Methods for Engineering Science, 2012, pp. 425-443.

[14] U. L. F. M. Group. [Online]. Available: http://fault-tolerance.org/ulfm/ulfm-
specification/.

[15] Fortran Standard: ISO/IEC 1539-1:2010, 2010.

[16] UPC Language Specifications, v.1.2, LBNL-59208, 2005.

[17] T. Johnson, "Coarray C++," in 7th International Conference on PGAS
Programming Models, 2013.

[18] B. L. Chamberlain, D. Callahan and H. P. Zima, "Parallel Programmability and the
Chapel Language," International Journal of High Performance Computing

© CRESTA Consortium Partners 2014 Page 17 of 17

Applications, vol. 21, pp. 291-312, 2007.

[19] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu and D. Grove, "X10 Language
Specification Version 2.2," 2012.

[20] J. Reid, "Additional coarray features in Fortran," in 7th International Conference on
PGAS Programming Models, 2013.

[21] W. Bland, A. Bouteiller, T. Herault, G. Bosilca and J. Dongarra, "Post-failure
recovery of MPI communication capability: Design and rationale," International
Journal of High Performance Computing Applications, vol. 27, pp. 244-254, 2013.

[22] G. Matura, "D5.1.3 - Pre-processing: first prototype tools for exascale mesh
partitioning and mesh analysis," 2013.

[23] R. Himeno, "Himeno Benchmark," RIKEN, [Online]. Available:
http://accc.riken.jp/2444.htm. [Accessed 2014].

[24] B. L. Chamberlain, D. Callahan and H. Zima, "Parallel Programmability and the
Chapel Language," International Journal of High Performance Computing
Applications, vol. 21, pp. 291-312, 2007.

