
 

© CRESTA Consortium   Page 1 of 26 

  

D2.5.3	  –	  Proactive	  Fault	  Tolerance	  

WP2:	  Underpinning	  and	  Cross-‐Cutting	  
Technologies	  

Due date: PM 39 

Submission date: 31/12/2014 

Project start date: 01/10/2011 

Project duration: 39 months 

Deliverable lead 
organisation KTH 

Version: 1.0 

Status Final 

Author(s): Gilbert Netzer (KTH), Luis Cebamanos (UEDIN), 
Stefano Markidis (KTH) 

Reviewer(s) Jens Doleschal (TUD), David Lecomber (ASC) 

 

Dissemination level 

<PU/PP/RE/CO> PU 

	  

 	  

Project Acronym CRESTA 

Project Title Collaborative Research Into Exascale Systemware, Tools and 
Applications 

Project Number 287703 

Instrument Collaborative project 

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation 



 

© CRESTA Consortium   Page 2 of 26 

  

Version	  History	  
Version Date Comments, Changes, Status Authors, contributors, 

reviewers 

0.1 25/06/2014 TOC of the deliverable KTH 

0.2 10/08/2014 Added a literature study and 
incomplete reference list 

KTH 

0.3 01/12/2014 Version for internal review KTH, UEDIN 

0.4 10/12/2014 Incorporated feedback from review KTH 

1.0 15/12/2014 Final fixes UEDIN 



 

© CRESTA Consortium   Page 3 of 26 

  

Table	  of	  Contents	  
1	   INTRODUCTION	  .............................................................................................................................	  6	  
2	   BACKGROUND	  ...............................................................................................................................	  7	  

2.1	   EXASCALE	  SYSTEM	  ARCHITECTURE	  .........................................................................................................	  7	  
2.2	   EXASCALE	  OPERATING	  SYSTEMS	  ............................................................................................................	  8	  
2.3	   VIRTUALISATION	  AT	  EXASCALE	  ...............................................................................................................	  8	  

3	   FAULT	  TOLERANCE	  STRATEGIES	  ...................................................................................................	  10	  
3.1	   CHECKPOINT-‐RESTART	  FAULT	  TOLERANCE	  .............................................................................................	  11	  
3.2	   MIGRATION	  FOR	  PROACTIVE	  FAULT	  TOLERANCE	  .....................................................................................	  11	  

4	   PROCESS	  MIGRATION	  FOR	  HETEROGENEOUS	  SYSTEMS	  ...............................................................	  12	  
4.1	   SYSTEM	  CALL	  FORWARDING	  AND	  APPLICATION	  PROCESS	  MIGRATION	  .........................................................	  12	  
4.2	   HARDWARE	  SET-‐UP	  FOR	  SYSTEM	  CALL	  FORWARDING	  DEMONSTRATION	  ......................................................	  13	  
4.3	   SYSTEM	  CALL	  FORWARDING	  DEMONSTRATION	  ON	  DSP	  HARDWARE	  ..........................................................	  14	  

5	   VIRTUALISATION-‐BASED	  FAULT	  TOLERANCE	  ON	  HPC	  SYSTEMS	  ....................................................	  15	  
5.1	   TEST	  ENVIRONMENT	  ..........................................................................................................................	  15	  
5.2	   VIRTUALISATION	  OVERHEADS	  .............................................................................................................	  16	  
5.3	   LIVE	  AND	  OFFLINE	  MIGRATION	  ...........................................................................................................	  18	  
5.4	   PRO-‐ACTIVE	  MIGRATION	  ...................................................................................................................	  21	  
5.5	   LIMITATIONS	  OF	  THE	  APPROACH	  ..........................................................................................................	  21	  

6	   DISCUSSION	  AND	  CONCLUSIONS	  ..................................................................................................	  22	  
6.1	   IMPACT	  ON	  CRESTA	  APPLICATIONS	  .....................................................................................................	  22	  
6.2	   IMPACT	  ON	  CRESTA	  SOFTWARE-‐STACK	  ................................................................................................	  22	  
6.3	   IMPACT	  ON	  HARDWARE	  .....................................................................................................................	  22	  

REFERENCES	  .......................................................................................................................................	  24	  
GLOSSARY	  OF	  ACRONYMS	  ..................................................................................................................	  26	  

	  

 	  



 

© CRESTA Consortium   Page 4 of 26 

  

Index	  of	  Figures	  
 

Figure 1 - Overarching abstract machine model from [3]. .............................................. 7	  
Figure 2 - Overview of system call forwarding and process migration mechanism. ..... 12	  
Figure 3 - Functional block diagram of the Texas Instruments 66AK2H14 SoC [30]. .. 13	  
Figure 4 - Detailed setup of the system call forwarding demonstration. ....................... 14	  
Figure 5 - System Components .................................................................................... 15	  
Figure 6 - Diagram of KVM layers ................................................................................ 16	  
Figure 7 - Nek5000 performance on 4 cores ................................................................ 17	  
Figure 8 - Nek5000 performance on 12 cores .............................................................. 17	  
Figure 9 – Relative performance of running Nek5000 in virtual machines ................... 18	  
Figure 10 - Live migration duration ............................................................................... 19	  
Figure 11 - Offline migration duration ........................................................................... 19	  
Figure 12 - Application execution time with one live migration. .................................... 20	  
Figure 13 - Application execution time with one offline migration. ................................ 20	  
Figure 14 - Speedup of total execution time of live migration over offline migration. ... 20	  
Figure 15 - Latency between virtual machines and physical inter-host latency. ........... 21	  

	  

 	  



 

© CRESTA Consortium   Page 5 of 26 

  

	  Executive	  Summary	  
Due to the massive scale of envisioned exascale computing systems, hardware and 
software faults are expected to be the rule rather than the exception, making it 
necessary to improve the resiliency of exascale applications. However, current 
approaches to tolerate faults in HPC applications are limited to transparent hardware 
mechanisms that exhibit low overheads such as ECC protection of memories or 
network links, or global checkpoint/restart mechanisms to deal with errors at the 
application level. Due to the limited I/O bandwidth of exascale systems, the latter 
mechanism is expected to be unusable without significant improvements in scalability. 

Proactive approaches to fault tolerance are based on predicting future failures and 
taking preventive action to avoid the impact of these failures onto running applications. 
These methods offer the possibility to reduce apparent fault rates seen by the 
application and thus lower the cost of reactive approaches such as checkpoint/restart 
mechanisms. 

Large-scale parallel applications are almost universally composed of many 
independent processes executing on a distributed-memory machine. This allows all 
application processes to be evacuated from a node using process migration schemes 
to prevent the failure of the node from affecting the application. We investigated two 
different approaches to accomplishing this migration: Migrating bare-metal application 
processes in a heterogeneous system, and using industry standard virtualisation 
techniques to migrate complete virtual machines. 

Proposed exascale system architectures use heterogeneous mixes of processing 
elements such as general-purpose CPU cores and GPGPU style accelerator cores to 
improve performance and energy efficiency, a trend already manifested in today’s high-
end HPC systems. Since GPGPU and other thin cores are likely to lack features 
needed for efficient execution of OS services, programs on such cores generally 
delegate the task to general-purpose CPU or fat cores. By extending this mechanism it 
is possible to decouple application processes from the underlying OS kernel and apply 
different resiliency strategies to both parts, which is the inspiration to the first approach 
we examined. 

Virtualisation techniques are on the other hand at the core of the emerging cloud 
computing infrastructures that already today deploy data-centres with 100,000 servers, 
which is in the range of the expected node count for exascale systems. General-
purpose CPU vendors have therefore included effective hardware support for 
virtualisation into their processor designs, which may be exploitable by HPC systems 
using the same hardware. 

Our experiments indicate that both approaches are feasible and can be carried out 
without modification to the application code, which protects investments into application 
software. This flexibility comes at the price of some performance loss, which can be 
minimised by improvement of the underlying hardware and software. Further 
performance improvements could be possible by minor modifications to the application 
code to take problem-specific knowledge into account when migrating application 
processes. On the other hand, our findings indicate that unrelated application 
mechanisms, such as load-balancing or check-pointing, could also be exploited to 
implement process migration. 

 



 

© CRESTA Consortium   Page 6 of 26 

  

1 Introduction	  
For more than a decade, growth in computing capacity of HPC systems has primarily 
been accomplished by a matching increase in the number of concurrently executed 
operations, as opposed to an increase in throughput of a single functional unit due to 
higher clock speeds. For instance, the number one system on the Top500 list from 
November 2014, the Chinese Tinahe-2 computer, consists of 16,000 nodes containing 
in total more than 3.2 million independent cores [1]. This trend is expected to continue, 
leading to exascale computers consisting of about 100,000 individual nodes and 
causing renewed concerns regarding the reliability of such massive systems [2]. 

While hardware already makes extensive use of error correction technology to tolerate 
faults in both data transmission networks and data storage, in both on- and off-chip 
memory and in persistent secondary storage, HPC software is lagging behind. Many 
programs still silently ignore the issue, or employ a global strategy, most often 
checkpoint-restart, to deal with any errors. Both approaches are predicted to be 
prohibitively expensive at exascale. 

In contrast to reactive fault tolerance, which attempts to repair the damage caused by 
failing components, the proactive approach to fault tolerance attempts to avoid damage 
altogether by taking advance action. At software level the most common approach is to 
abandon the component that is predicted to fail to allow it to be repaired or replaced 
without interrupting the on-going computation. This strategy requires the ability to 
rearrange the computation and also relocate any data, which can be accomplished by 
migrating some of the processes of a distributed application to unaffected, possibly 
spare, parts of the system. This process migration strategy is the focus of the 
presented investigation. 

Proactive fault tolerance alone may not be sufficient to provide the required resiliency 
for exascale application; it can, however, be used to reduce the rate of application-
visible errors which need to be handled by a reactive strategy. This may allow more 
resource-hungry fault handling strategies to be useable at larger scale, possibly 
allowing existing applications to be used reliably at exascale. 

Forward-error-correction, which can be considered as a proactive fault tolerance 
schema, is already widely used in data communication networks to prevent costly, both 
in time and energy, retransmissions of corrupted messages or packets. The resulting 
increase in reliability allows for instance to reduce transmitter output power, allowing a 
reduction in the average energy per bit for the used communication channel. Since 
power and hence energy efficiency is considered another major challenge at exascale, 
improved fault tolerance may also be necessary to reach the exascale power limit of 20 
MW. 

Section 2 gives some background on relevant exascale hardware architecture trends, 
operating system characteristics and virtualisation techniques for HPC. Section 3 
contains background on the approaches to fault tolerance relevant for the experiments. 
Section 4 presents the findings for bare-metal process migration on future thin cores. 
Section 5 shows the results for using virtualisation to realise process migration. Section 
6 closes with our overall conclusions. 



 

© CRESTA Consortium   Page 7 of 26 

  

2 Background	  
2.1 Exascale	  System	  Architecture	  
Projections of the hardware and system architecture features of future exascale 
computing systems were presented in the DARPA Exascale Study [2], which resulted 
in the presentation of an abstract architecture in a US Department of Energy report [3]. 
As illustrated in Figure 1, future exascale systems are envisioned to be highly 
heterogeneous with specialised processing elements that provide most of the 
computational capacity and a highly complex memory hierarchy incorporating non-
volatile storage. Furthermore, cache-coherency even at a chip level is suggested to be 
too expensive at exascale. A survey of future directions from the project’s perspective 
given in [4] and [5] indicates similar trends. 

 

 
Figure 1 - Overarching abstract machine model from [3]. 

Increase in clock-frequency has significantly slowed down since 2004, and in the case 
of accelerators has even reversed. As a consequence, exascale systems are projected 
to concurrently execute several hundred millions to billions of operations. The amount 
of data processed in SIMD fashion is expected to increase with a Japanese system 
proposing a data width of 1024 to keep the number of execution threads at 
manageable levels [6]. At the same time advances in semiconductor technology will 
allow greater integration, which will in turn allow significantly more cores to be packed 
on a single chip, as illustrated by a recent research proposal of Nvidia to integrate 
256+8 cores on a single chip manufactured in 7nm technology [7]. Despite this 
increase in per-chip computational power, the number of nodes in an exascale system 
is projected to be about 100,000. In contrast to computational power, memory capacity 
and bandwidth are not likely to increase proportionally, as already reflected in current 
trends. 

The increase in system complexity, caused by the sheer number of components in an 
exascale system, is expected to severely decrease system reliability with extreme 
projections pointing at failures occurring roughly twice per hour [2]. While these 
expectations should be moderated by the fact that similar predictions for Petascale 
systems far exceeded actual error rates, it is likely that future systems will have to be 
more tolerant towards failures during operation. Stringent restrictions on total system 
power are also likely to reduce design margin and hence impact overall system 
reliability, for instance by heavily relying on error correction to allow reduction of link 
transmit power or supply voltages. 

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6



 

© CRESTA Consortium   Page 8 of 26 

  

The relatively limited amount of global I/O bandwidth of likely exascale systems will 
require a more limited response towards single failures, with today’s common global 
checkpoint-restart strategies becoming unfeasible. 

2.2 Exascale	  Operating	  Systems	  
Following the hardware trend towards commodity products, operating systems used for 
HPC systems have shifted from closed-source products developed in-house (e.g. Cray 
UNICOS) towards open-source commodity server operating systems. This is illustrated 
by the dominance of UNIX-like Linux operating system among the current systems on 
the Top500 list (485 out of 500 systems, representing over 98% of the aggregated 
performance) [8]. 

Almost 4 decades ago, the design of the UNIX operating system was based around the 
concept of many users sharing access to a single computer that is equipped with a 
single CPU [9]. Modern UNIX-like Operating Systems such as FreeBSD [10] and Linux 
[11] have extended the model to include symmetric and non-uniform memory access 
multiprocessor machines, and make special provisions to handle multi-core and hyper-
thread extensions in current hardware. Yet, the fundamental design to time-share the 
CPUs to handle kernel services remained fixed, and so did the definition of the kernel 
interface in the form of C-callable wrapper functions, syscalls, that enter the kernel via 
special hardware traps. 

Unfortunately, the rich services offered by server-optimised operating systems require 
significant resources, both computationally and memory-wise, that can cause 
performance degradation when used at scale for HPC applications due to interference 
with the user-level application, an effect summarily called operating system noise [12]. 
Measures to reduce this interference for large-scale HPC machines can be classified 
according to the base operating system used to derive the scalable counterpart. In the 
full-weight kernel (FWK) approach, unnecessary services and system activities are as 
far as possible removed from an existing standard operating system. In contrast the 
light-weight kernel (LWK) approach aims at building a minimal operating system from 
scratch providing only necessary, but limited, functionality. A third option is to use co-
operating FWK and LWK instances to provide richer functionality by delegating 
complex operations from the light-weight OS running on the application nodes to the 
full-weight OS running on specialised system nodes via system-call forwarding. 

Separating the application from the full-weight OS has the additional benefit of 
providing rich services on architecturally-limited cores, for instance accelerator or 
power-optimised cores, as demonstrated by the FusedOS project [13]. A similar 
approach to off-load I/O operations was implemented on the BlueGene/P computer 
system [14]. The idea to intercept system calls to implement a distributed UNIX system 
was already implemented in 1987 [15]. 

In terms of reliability the heterogeneous approach allows to consolidate complex FWK-
based OS images and provide a different fault tolerance strategy, perhaps also at a 
hardware level, from that used for the bulk application cores. 

2.3 Virtualisation	  at	  Exascale	  
Virtualisation has successfully been used to isolate details of the hardware 
implementation from the user applications. For instance the now almost ubiquitous 
virtual memory allows the operating system to present a contiguous flat address space 
to the application while distributing the backing storage amongst available physical 
memory, greatly simplifying application programs. At the operating system level, the 
Hypervisor concept [16] allows whole operating system images to coexist on a single 
large computer as well as providing the basis for transparent management of these 
instances, as exploited by recent warehouse-scale Cloud infrastructure deployments. 

Unfortunately for HPC, the associated overhead of virtualisation has caused scalability 
problems, as perhaps best exhibited by the TLB miss penalties triggered by large 
working set size applications [17]. OS level virtualisation has also been largely ignored 



 

© CRESTA Consortium   Page 9 of 26 

  

due to the perceived overhead of virtualizing network I/O in current x86 hardware. 
However it has been shown that using optimised OS bypass techniques allowed to 
reduce the overhead for HPC benchmarks to around 3% [18]. 

Another interesting example is the Kitten lightweight operating system developed by 
Sandia National Laboratories which uses the Palacios virtual machine monitor jointly 
developed by Northwestern University and the University of New Mexico specifically for 
use in large-scale HPC [19]. Initial results indicate an overhead of less than 5% caused 
by the virtual machine layer, which suggests that otherwise observed overheads are 
due to software design issues rather than the virtualisation itself. 

Datacenters for large-scale Cloud infrastructures, like those operated by Google, 
Facebook or Amazon, house up to 100 000 servers and use virtualisation techniques 
for ease-of-management. This indicates the possibility to successfully deploy 
virtualised HPC infrastructures of similar scale, which would translate to exascale 
machines. One interesting feature of virtualisation is the ability to migrate a virtual 
machine from one host to another host without the co-operation of the guest operating 
system. This capability could be used for providing fault tolerance. 

Virtualisation can also increase node reliability by better isolating the different 
application domains from each other, thus potentially reducing the impact of software 
faults especially at operating system level. 



 

© CRESTA Consortium   Page 10 of 26 

 

3 Fault	  Tolerance	  Strategies	  
Fault tolerance is the ability of a system to continue to function correctly despite the 
presence of some malfunctioning or faulted parts of it. This feature is generally 
accomplished by exploiting redundant resources, which can either be extra 
computations, memory or time [20]. The level of tolerance is often specified in terms of 
the number of independent faults that can occur without impacting correct operation. 
Faults can be classified according to the behaviour into benign, or fail-stop, where a 
module stops producing output, and malicious, or byzantine, where a unit can produce 
arbitrary, but possibly reasonable, output. This later type of fault behaviour is much 
harder to detect and correct. Faults can exist both in hard- and software, with the latter 
often referred to as bugs. 

A classic strategy to tolerate single faults is to carry out the computation at least three 
times on independent hardware and possibly also software, and use a majority vote to 
determine if the results were error-free, and further to select the correct result in the 
presence of a single fault. In this scheme, which is generally regarded as too expensive 
for HPC applications, detection of an error (a fault that is observable) is implicitly 
included; other schemes use separate error detection logic. Another popular technique 
is the use of extra storage to detect and correct single-bit errors using ECC codes. 
Since the overhead for these codes is much smaller, about one extra bit per byte, they 
are commonly used in HPC systems to protect system memory. 

Reactive schemes attempt to detect and correct a fault after it has caused an error, 
while proactive schemes try to anticipate a likely future fault and take action while the 
system is still healthy. Therefore proactive schemas need to have a separate health 
checking system that can detect deteriorating system components before they cause 
errors. Often this is accomplished by monitoring the frequency of correctable errors 
(e.g. single-bit memory errors) [21]. Node failures can also be anticipated in a large 
number of situations [22], [23]. 

Algorithmic approaches to fault-tolerance can generally be classified as reactive. They 
differ from other techniques in the fact that they are self-healing and do not require 
separate detection: For instance a fault during the iterative approximation of a solution 
may be self-correcting and only result in extra iterations. Algorithms of this kind are for 
example studied in [24] and [25]. 

Fault tolerance implementations can also be classified according to the level of 
application visibility or involvement. Here transparent implementations, either system- 
or hardware-based, are completely invisible to the application. Common ECC memory 
protection schemes can be categorised as such, automatically correcting single-bit 
errors. User level implementations expose the errors towards the application but rely 
on lower-level software, for instance a library, to attempt correction. Many 
communication libraries use this approach. Finally application-level approaches expose 
the faults to the application software. This is often used by simpler operating system 
and library interfaces which for instance return an error condition in case an operation 
could not be performed. Unfortunately, applications are notoriously bad at handling 
errors and often completely ignore such conditions. The process migration approach 
that we focused on in this report can be implemented without changes to the 
application code but can be improved by incorporating application-specific knowledge. 

Fault-tolerant implementations at any level require some basic guarantees from any 
underlying hardware or software. Most of the MPI library implementations that are a 
vital underpinning for many HPC applications make no guarantees whatsoever in the 
presence of any faults, effectively preventing any repair of the running application. 
Several efforts were made to remedy the situation in the past which would allow higher-
level software to continue past a fault impacting the MPI layer and possibly even 
consider full-scale repair, for instance by incorporating new spare ranks to replace 
faulted ones [26]. So far these mechanisms have not been incorporated into the MPI 
standard. 



 

© CRESTA Consortium   Page 11 of 26 

 

3.1 Checkpoint-‐Restart	  Fault	  Tolerance	  
We want to single out checkpoint-restart approaches since those are popular in HPC. 
Here redundant storage is used to save the state of a long-running computational task 
at certain points in time, typically periodic. In case an error is detected, the last known 
good checkpoint is used to roll back the computation to an error-free state from where 
it is continued. 

While this strategy can be simple to implement and can require relatively little in the 
way of extra resources, or in some cases none at all, it suffers from a major drawback: 
if the time to write a checkpoint plus the time to restart the computation approaches the 
mean time to fault, little or no progress is made. For exascale systems, this is the 
currently-predicted scenario when using global checkpoint-restart and efforts are 
undertaken to reduce the resources, both time and storage, needed to create and store 
checkpoint data to address the issue [27]. 

The node-level checkpoint-restart software developed by Berkeley Laboratories 
(BLCR) and popular in HPC applications is based on a cross-cutting architecture: a 
kernel module inside the Linux kernel is used to aid a user-level library to perform both 
checkpoint creation and application restarts. Since this combination can only handle a 
very limited set of services offered by the Linux kernel and user-level libraries, an 
interface is provided to allow extensions to be added to the mechanism that for 
instance can handle TCP connections [28]. OpenMPI up to version 1.6 uses the 
interface to support checkpoint-restart [29]. 

3.2 Migration	  for	  Proactive	  Fault	  Tolerance	  
In this work we consider migration to implement proactive fault tolerance for HPC 
applications. The principle of operation is that a node health checker indicates a likely 
future fault. Based on this indication the node is evacuated by a migration mechanism 
so that the computation can continue without interruption. It is possible to realise the 
migration using mechanisms already present in the application for other purposes. 

If a checkpoint-restart mechanism is present, this can be used to create a checkpoint of 
the application state. The application can then be restarted on a new set of nodes thus 
avoiding the failing node. Two important optimisations are possible: First, since the 
node is still in working condition, checkpoint creation can be delayed for a short while 
to reduce complexity or checkpoint size. Second, only a partial checkpoint is needed 
since most of the nodes can simply pause computation during the migration operation. 

In case a load-balancing mechanism exists, it can simply be used to assign all the work 
of the failing node to other nodes. Here the requirement is that the load-balancing 
implementation also moves the application state along with the work to fully evacuate 
the node. Furthermore some support from the communications subsystem may be 
necessary to exclude the node from message passing to prevent possible deadlock. 

The third approach, which is also used by the experiments, is to pre-empt the 
computation to create a stable snapshot of the node’s state and then replicate the state 
to a spare node. After this operation the computation can be resumed on the new 
nodes and terminated on the evacuated node. The main challenge of this approach 
consists in the generation of a consistent snapshot of the node’s state. Simply halting 
the computation may cause in-transit messages to be lost and these messages need to 
be captured and replayed for correct operation. Furthermore it is desirable to halt only 
the local computation and for as short a period as possible. 

 



 

© CRESTA Consortium   Page 12 of 26 

 

4 Process	  Migration	  for	  Heterogeneous	  Systems	  
This approach takes advantage of the fact that future exascale nodes will likely 
incorporate a large number of thin cores or accelerators that delegate OS service 
requests to accompanying fat or general-purpose cores better suited for the task. The 
necessary infrastructure can be used to further separate the application from the OS 
kernel allowing different resiliency strategies to be used to protect the application and 
OS portions. 

4.1 System	  Call	  Forwarding	  and	  Application	  Process	  Migration	  
The principal components used to forward system calls are shown in Figure 2. The 
application is distributed on several application nodes or cores that may use a different 
hardware architecture than the system nodes that execute the full weight kernel. On 
the application nodes, application processes are in full control of the complete node 
without interference from a kernel. 

To access system services the application calls the runtime library included in the 
same process context. The runtime library then forwards the request to the system 
node responsible for servicing this application process via a user-level based 
bidirectional communications channel and waits for the corresponding response. This 
emulates the synchronous behaviour of UNIX system calls, however the runtime could 
also allow asynchronous calls by returning to the application without waiting for a 
response. 

On the system node a proxy process waits for requests from the connected application 
process. This process provides the necessary context for the OS kernel to allow correct 
execution of the system calls. The user-mode runtime system executing on the system 
node receives the request and services it by extracting the parameters and executing 
the actual system call that transfers control to the kernel, which services the call. 

To migrate the application process to a spare node, the process is first notified to block 
its execution. After that, the process image is copied to the new location and the 
communications channel is re-routed. Since the application process does not contain 
any in-kernel state, it can be migrated independent from the OS kernel. 

Since application processes are expected to directly communicate with each other via 
a fast scalable interconnect, it is necessary to inform the other application nodes of the 
new location. These requests are expected to be handled by the MPI library layer. 

 
Figure 2 - Overview of system call forwarding and process migration mechanism. 

 

Application Node

App. Process

Runtime
Library

Application

ret=write();

System Node

OS Kernel

In-Kernel State

Proxy Process

Runtime

svc write()
{

ret=write();

}

sys write()

Spare Node

Process Migration



 

© CRESTA Consortium   Page 13 of 26 

 

4.2 Hardware	  Set-‐up	  for	  System	  Call	  Forwarding	  Demonstration	  
We use the Texas Instruments 66AK2H14 SoC for our system call forwarding 
demonstrations. The chip, as shown in Figure 3, integrates four ARM Cortex-A15 
cores, eight Texas Instruments C66x cores, 6 MB of on-chip shared memory and a 
large number of peripheral devices. External DDR3 memory can be attached via two 
independent single-channel memory controllers. Multiple SoCs can be connected via 
the two point-to-point HyperLink interfaces that permit access to the memory spaces of 
the link partner. 

In our setup we use Revision 3.0 Advantech EVMK2H evaluation modules to support 
the SoC. The modules also house a 2 GB DDR3 SO-DIMM that is used as main 
system memory. 

The SoC boots a modified Linux 3.17.0-rc3 mainline kernel obtained from the 
kernel.org Git repository (git.kernel.org). The modifications consist of the device driver 
kernel module developed in-house. The user-space file system is held in the initramfs 
and based on the minimal console image created by the Arago project and supplied via 
the Texas Instruments MCSDK version 3.00.03.15. 

 

 
Figure 3 - Functional block diagram of the Texas Instruments 66AK2H14 SoC [30]. 

 

4 66AK2H14/12/06 Features and Description Copyright 2013 Texas Instruments Incorporated 

SPRS866E—November 2013
Multicore DSP+ARM KeyStone II System-on-Chip (SoC)
66AK2H14/12/06

Submit Documentation Feedback 

1.6 Functional Block Diagram
The following figures show the functional block diagrams of the devices.

Figure 1-1 Functional Block Diagram for 66AK2H14

MSMC

6MB
MSM

SRAM

72-Bit
DDR3 EMIF

Memory Subsystem

Packet
DMA

Multicore Navigator

Queue
Manager

S
R

IO
4

!

3
!

S
P

I

2
!

U
A

R
T

P
C

Ie
2

!

U
S

B
 3

.0

5!

Debug & Trace

PLL

5!

Semaphore

2! HyperLink TeraNet

8 C66x DSP Cores @ up to 1.2 GHz
4 ARM Cores @ up to 1.4 GHz

72-Bit
DDR3 EMIF

EDMA

8!

E
M

IF
1

6

Boot ROM

Power
Management

ARM
A15

4MB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

32KB L1
P-Cache

32KB L1
D-Cache

ARM
A15

32KB L1
P-Cache

32KB L1
D-Cache

ARM
A15

32KB L1
P-Cache

32KB L1
D-Cache

ARM
A15

G
P

IO
3
2

!

66AK2H14

Network
Coprocessor

5-Port
Ethernet
Switch

Packet
Accelerator

Security
Accelerator

1
G

B
E

1
G

B
E

1
G

B
E

1
G

B
E3

!
I
C

2

1
0
G

B
E

1
0
G

B
E

1
0
G

B
E

3-Port
Ethernet
Switch

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache

C66x™
CorePac

1024KB L2 Cache

32KB L1
P-Cache

32KB L1
D-Cache



 

© CRESTA Consortium   Page 14 of 26 

 

4.3 System	  Call	  Forwarding	  Demonstration	  on	  DSP	  Hardware	  
The detailed setup of the experiment to demonstrate the system call forwarding is 
shown in Figure 4. In this experiment the application process executes on a DSP core 
while the proxy process is running on an ARM core on top of the Linux kernel. Both 
processes execute on the same SoC and hence share the common system memory. 

A custom developed device driver module (/dev/coproc) is loaded into the Linux kernel 
to allow management of the DSP cores using inter-processor interrupts. The module 
also allows allocation of system memory that can be shared between a Linux process 
and a DSP core using the mmap() system call. 

To start a new process on the DSP core, the proxy process is started via standard 
UNIX methods (fork() via shell). This process starts executing ARM code (ARM-only 
.text in the figure), which opens the device file (/dev/coproc) to establish the DSP 
processor context. It then examines the DSP executable to be loaded and establishes 
the necessary memory segments shared with the DSP (DSP .text, .data, .stack). Since 
these are also mapped into the proxy process address space, they can be populated 
with program code and static data read from the DSP executable from the Linux 
managed file system. The proxy process also sets up a shared-memory queue pair to 
provide the communications channel for system call forwarding. Finally it starts the 
DSP process using an I/O control, ioctl(), call (start) to the device driver module that in 
turn takes the DSP core out of reset and directs code execution to the program entry 
point in the DSP .text section. 

During normal operation the proxy process sleeps, waiting for requests from the DSP 
process via the wait ioctl(). The DSP initiates a system call by placing the necessary 
header and parameters onto the shared memory queue and signals the ARM core by 
raising an inter-processor-interrupt (IPI). This interrupt is handled by the coproc device 
driver in the Linux kernel that wakes up any processes sleeping in the wait ioctl(). Once 
the processes are woken up, they check if the IPI they were waiting for was raised and, 
if so, return to user mode signalling the new condition. The user-mode ARM code 
examines the shared memory queue and executes the requested system call (write() in 
the demonstration). After completion it writes the return value and eventual data onto 
the outgoing queue and uses the raise ioctl() to signal completion to the waiting DSP 
core again using IPIs. 

 
Figure 4 - Detailed setup of the system call forwarding demonstration. 

 

System Memory — Managed by Linux

Proxy Process — ARM

ARM-only .text

Linux Kernel — ARM

/dev/coproc
IPIs

Main Process — DSP

DSP-ARM shared memory channel

DSP .text, .data, .stack ret = write(2, ‘‘Hello‘‘, 5)

start wait raise



 

© CRESTA Consortium   Page 15 of 26 

 

5 Virtualisation-‐based	  Fault	  Tolerance	  on	  HPC	  Systems	  
Modern virtualisation environments often provide the ability to transparently migrate 
virtual machines between hosts, either off-line by pausing the VM or even “live” with 
just a minimal pause. 

Here, we investigate the advantages of and capacity for using migration techniques in 
a virtualised HPC environment as a fault tolerance mechanism. In this investigation we 
have used Nek5000, a highly scalable HPC application. Nek5000 is an open-source 
computational fluid dynamics solver that employs MPI as the method to exploit 
parallelism [31]. Furthermore, Nek5000 is one of the CRESTA co-design applications 
with strong scientific need for exascale performance. 

5.1 Test	  environment	  
An overview of the system elements employed to create a virtualised environment can 
be seen in Figure 5. We have used a front-end system that serves the shared file 
system (NFS in this case) across all nodes and virtual machines hosted on computing 
nodes. The virtualised system is equipped with two different compute nodes, a 24 core 
Intel Xeon X5650 at 2.67GHz and 48GB of memory and a 48 core AMD Opteron 6168 
at 1.9GHz and 64GB of memory. Both nodes run Scientific Linux 6.5 and are 
interconnected by 10-gigabit Ethernet. 

 

Figure 5 - System Components 
The virtualised environment has been created through KVM version 0.12.1.2, kernel 
2.6.32-431.29.2 which has been installed on both compute nodes. KVM is a full 
virtualisation solution for Linux on x86 hardware containing virtualisation extensions 
(Intel VT or AMD-V) [32]. It consists of a loadable kernel and processor module that 
provides the core virtualisation infrastructure. Through KVM, each virtual machine has 
its own private virtualised hardware. The diagram of layers in a regular KVM installation 
can be seen in Figure 6.  

 



 

© CRESTA Consortium   Page 16 of 26 

 

 

Figure 6 - Diagram of KVM layers 
KVM was selected among other virtualisation solutions because it is capable of 
performing off-line and “live” virtual machine migrations. Furthermore, KVM is part of 
Linux and uses the regular Linux scheduler and memory management whereas other 
solutions are external hypervisors [32]. 

The virtual machines created are also configured to run the same version of Linux, 
Scientific Linux 6.5, and contain 512 MB of main memory. Compute nodes and virtual 
machines run MPICH 3.1 as main MPI package. 

5.2 Virtualisation	  Overheads	  
While our main aim is to test the performance of Nek5000 in a pro-active fault tolerance 
virtualised environment, we first conducted a study comparing the performance of 
Nek5000 on a pure virtual environment and directly onto the physical platforms that 
virtualise the system. This will help us to understand how much our chosen application 
is influenced by running on a virtualised environment compared to a regular physical 
environment. 

Therefore, we carried out a number of different tests executing the Nek5000 application 
on our virtualised environment and directly on one of the physical machines. We have 
also varied the number of MPI tasks per virtual machine (VM) to be able to understand 
how the number of MPI tasks per VM influences the performance of Nek5000. 

In our first experiment, we run Nek5000 using 4 MPI tasks. Those MPI tasks have been 
launched on a) 4 VMs of 1 core each and b) 4 physical cores of the host machine, in 
this case on the AMD node. To assess the performance of our systems, we obtained 
the average time/timestep that Nek5000 provides when the simulation has finished. 

In Figure 7 it is possible to see how the time/timestep varies depending on the system 
environment chosen. The bar on the left represents the performance result of running 
on 4 different VMs of 1 core each whereas the graph on the right shows the 
performance on the physical host employing 4 MPI tasks (one per core). The average 
time/timestep of running Nek5000 on this virtualised environment is around 0.59 
seconds with a 3.84% of relative standard deviation (RSD) against 0.36 seconds and 
0.89% RSD when running directly on the physical platform. 



 

© CRESTA Consortium   Page 17 of 26 

 

 
Figure 7 - Nek5000 performance on 4 cores 

 Although the performance of the application is reduced by almost 40% when running 
on a virtualised environment, it is perhaps the higher variability shown in the RSD that 
is more surprising. 

In our second test, we have repeated the previous experiment increasing the number 
of MPI tasks to 12. The graph in Figure 8 illustrates the time/timestep of running 
Nek5000 on a VM composed of 12 cores and directly to the physical platform 
employing 12 MPI tasks, one per core. In this case the relative standard deviation is 
down to 0.12% on the virtualised environment and 0.67% on the physical machine. 

 
Figure 8 - Nek5000 performance on 12 cores 

Figure 9 displays the relative performance of running Nek5000 inside a virtual machine 
versus the performance of running directly on the underlying hardware. The 
performance of running 4 MPI tasks inside of 4 single core VMs on the same node is 
about 39% lower than running the same tasks directly on the physical machine. This 
large overhead is most likely caused by the virtualisation of the MPI interconnect which 
prevents the use of shared memory. When instead running 12 MPI tasks in a 12-core 
virtual machine the overhead drops to about 20% compared to running directly on the 
physical hardware. 

0.5899	  

0.3571	  

0.0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

4	  MPI	  tasks	  

Ti
m
e/
Em

es
te
p	  

4xVM	  (1	  core)	  

AMD	  (4	  cores)	  

0.1528	  

0.1217	  

0.00	  

0.02	  

0.04	  

0.06	  

0.08	  

0.10	  

0.12	  

0.14	  

0.16	  

0.18	  

12	  MPI	  tasks	  

Ti
m
e/
Em

es
te
p	  

1xVM	  (12	  cores)	  

AMD	  (12	  core)	  



 

© CRESTA Consortium   Page 18 of 26 

 

 
Figure 9 – Relative performance of running Nek5000 in virtual machines 

5.3 Live	  and	  Offline	  Migration	  
One of the main features of virtualisation is that virtual machines can be moved or 
migrated from one physical host to another. KVM supports two varieties of migrations –
live and offline. Offline migration moves a virtual machine from one host to another by 
pausing it, transferring its memory, and then resuming it on the destination host. Live 
migration does a similar operation, however the transfer process occurs without 
pausing the virtual machine. When performing a live migration, the applications running 
on the virtual machine continue with their execution. 

The next set of experiments aims to obtain and estimate the overhead induced due to 
the migration (live and offline) of virtual machines. This would be the equivalent of 
having one imminent node failure. Using the Nek5000 application, we have forced the 
migration of one of the virtual machines from the Intel to the AMD computing node. 
Migrations were initiated after 100 timesteps for a simulation of 1000 timesteps. We 
used three different virtual machine configurations each with a total of 24 usable cores: 
one machine with 24 cores, two machines with 12 cores and four machines with six 
cores. For each of these configurations, a single virtual machine was migrated, thus for 
the latter two configurations inter-host traffic was directed over the Ethernet network. 
For each of the configurations we run Nek5000 using 4, 8 and 16 MPI tasks, leaving at 
least two cores on each virtual machine free for OS use. 

We first consider the actual time it takes to perform the migration. During this time we 
would expect some impact on the performance of the application executing in the guest 
VMs. Furthermore this is the minimum advance warning time necessary to successfully 
evacuate a node before a failure. The time was measured as the wall-clock execution 
time of the virtual machine management command, virsh in our case, performing the 
migration. Figure 10 shows the time needed to perform the live migration. In this case, 
using a single large VM leads to a significant increase in migration duration. In fact, the 
time for migrating the 16 MPI task experiment was longer than the total simulation time. 
In contrast, Figure 11 shows the time used to perform an offline migration. Here 
execution time stays below 8.5 seconds. For the two smaller VMs, the offline migration 
is only slightly faster than the live migration. The difference in behaviour may be 
attributable to the fact that the large VM configuration did not have to use any inter-VM 
messaging and instead relied on shared memory to implement the MPI communication. 
Another interesting trend is that the migration time for the two larger VMs decreased as 
the number of MPI tasks increased, in contrast to the smallest VM configuration. 
Further experiments would be needed to explain this. 

61%	  

80%	  

0%	  
10%	  
20%	  
30%	  
40%	  
50%	  
60%	  
70%	  
80%	  
90%	  

4	   12	  

Re
la
Ev

e	  
Pe

rf
or
m
an

ce
	  

Number	  of	  MPI	  tasks	  



 

© CRESTA Consortium   Page 19 of 26 

 

 
Figure 10 - Live migration duration 

 
Figure 11 - Offline migration duration 

The migrations also affect the overall wall-clock execution time of the application. We 
display this as the average wall-clock execution time normalised to a single timestep of 
the simulation. As mentioned all experiments ran for 1000 timesteps. Here we first 
must mention that the two nodes have different hardware with different performance 
characteristics affecting overall execution speed. Since only one VM is moved, we 
would expect this effect to be most pronounced for the single VM case, whereas the 
other two cases will show less effect due to the synchronizing nature of the messages 
exchanged between the MPI tasks on the different VMs. Since all migrations were 
triggered after 100 timesteps, the performance effects of the difference in node 
hardware should be roughly equal when comparing the live and offline cases, with the 
exception that live migrations for large VMs take significantly longer. Thus for instance 
the performance for the 16 MPI tasks shown in Figure 12 is not affected by the 
performance on the destination node since migration only completed after the 
simulation ended. In contrast to Figure 12, which shows the situation when performing 
live migration, Figure 13 shows the impact of the offline migration onto the application 
execution.  

Figure 14, where we show the total speedup of performing offline migrations over live 
migrations, compares the two previous situations. Although there are no significant 
differences in the total performance of the application, it seems that live migrations are 
more beneficial in cases where more than one virtual machine has been employed. 
Also, the number of MPI tasks plays an important role in the total performance where 
live migration runs obtain higher speedups. 

 

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

4	   8	   16	  

Ti
m
e	  
(s
)	  

Total	  MPI	  tasks	  

1xVM(24CPU)	  

2xVM(12CPU)	  

4xVM(6CPU)	  

4.0	  
4.5	  
5.0	  
5.5	  
6.0	  
6.5	  
7.0	  
7.5	  
8.0	  
8.5	  

4	   8	   16	  

Ti
m
e	  
(s
)	  

Total	  MPI	  tasks	  

1xVM(24CPU)	  

2xVM(12CPU)	  

4xVM(6CPU)	  



 

© CRESTA Consortium   Page 20 of 26 

 

 
Figure 12 - Application execution time with one live migration. 

 
Figure 13 - Application execution time with one offline migration. 

 

 
Figure 14 - Speedup of total execution time of live migration over offline migration. 

0.0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

4	   8	   16	  

Av
er
ag
e	  
ex
ec
uE

on
	  E
m
e/
Em

es
te
p	  
(s
)	  

Total	  MPI	  tasks	  

1xVM(24CPU)	  

2xVM(12CPU)	  

4xVM(6CPU)	  

0.0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

4	   8	   16	  

Av
er
ag
e	  
ex
ec
uE

on
	  E
m
e/
Em

es
te
p	  
(s
)	  

Total	  MPI	  tasks	  

1xVM(24CPU)	  

2xVM(12CPU)	  

4xVM(6CPU)	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

1.1	  

1.2	  

4	   8	   16	  

Sp
ee
dd

up
	  

Total	  number	  MPI	  processes	  

1xVM(24CPU)	  

2xVM(12CPU)	  

4xVM(6CPU)	  



 

© CRESTA Consortium   Page 21 of 26 

 

5.4 Pro-‐active	  Migration	  
Monitoring health and detecting degrading status can often anticipate node failures on 
new hardware. These techniques, in addition to live and offline migrations would help 
to exploit a pro-active mechanism for fault tolerance. Instead of reactive schemes 
where applications are stopped and continued after an occurred failure, here we 
propose a system which would detect nodes’ health and would migrate from 
deteriorating nodes to healthy ones before the failure has already occurred. 

5.5 Limitations	  of	  the	  Approach	  
One of the main obstacles we faced during the execution of all test experiments was 
that root access was required in a number of situations. For instance, migrations and 
virtual machine configurations required becoming root. Only system administrators are 
granted those privileges on production HPC systems, and thus testing the approach on 
large-scale systems becomes a difficult task. 

Although KVM allows migrations from an AMD host to an Intel host and back, we 
experienced a number of problems performing live migrations from an AMD host to an 
Intel host. Virtual machines often hung and a reboot was required after attempting live 
migration. The KVM error seemed to be related to a synchronisation error between 
hosts, however clocks were properly synchronised. Since these problems have not 
been the case when migrating from an Intel host to an AMD host, we continued testing 
only this direction. 

In addition to the actual migration overhead, the total time involved in the application 
execution largely depends on the application itself and the network latency. Although 
Nek5000 is a highly-scaling application it is unlikely it scales well in a virtualised 
environment and latency is one of the main problems. As depicted in Figure 15 latency 
has played an important role in our experiments and that is suspected to be the main 
reason for the increased total execution time on Nek5000 as we increased the number 
of MPI tasks involved in the simulation. 

 

Figure 15 - Latency between virtual machines and physical inter-host latency. 

Using the Ohio State University micro-benchmark [33] we have measured the latency 
in three different scenarios: Between virtual machines hosted in different nodes (inter-
node), between two virtual machines on the same node (intra-node) and between two 
cores within the same virtual machine (intra-VM) as shown in Figure 15. For 
comparison the latency between the non-virtualised hosts is also included (inter-host). 
We observe about 100 microseconds of increase in the latency time between intra-VM 
and intra-node. That large increase of latency time is probably responsible for the lack 
of scalability of Nek5000 in this virtualised environment. 

0	  
20	  
40	  
60	  
80	  

100	  
120	  
140	  
160	  
180	  
200	  

0	   1	   2	   4	   8	   16
	  

32
	  

64
	  

12
8	  

25
6	  

51
2	  

10
24
	  

La
te
nc
y	  
(u
s)
	  

Message	  Size	  (Bytes)	  

intra-‐node	  

inter-‐node	  

intra-‐VM	  

inter-‐host	  



 

© CRESTA Consortium   Page 22 of 26 

 

6 Discussion	  and	  Conclusions	  
Current projections for exascale systems indicate that faults are likely to happen even 
during the execution of a single application job, and that current global fault tolerance 
approaches require too much extra time and I/O resource to scale to expected levels of 
concurrency. Proactive approaches to fault tolerance can reduce the rate of errors 
seen by the application and therefore reduce the cost of existing reactive schemes. 
This could extend the scalability and lifetime of already implemented fault tolerance 
measures as well as providing a richer design space for novel solutions. 

6.1 Impact	  on	  CRESTA	  Applications	  
Literature and our experiments indicate that process migration can be carried out 
without application involvement, which allows the implementation of a migration-based 
scheme without changes to the application. However, our virtualisation experiments 
show that application performance is sensitive to the details of the VM setup and it may 
thus be necessary to tune application and virtualisation layer together to achieve 
optimal performance. 

Application-specific knowledge can generally be used to reduce the overhead of fault 
tolerance techniques, for instance by reducing the amount of state to save. For process 
migration, already-existing application features, such as load-balancing or check-
pointing, could be used to improve efficiency, which may require changes to the 
application code. For advanced applications that adapt to the topology of the 
underlying network hardware, more extensive two-way interactions between the 
migration engine and the application may be needed for instance to migrate even 
unaffected processes to maintain nearest neighbour relationships. These interactions 
could also be integrated into suitable application frameworks or libraries. 

The GROMACS, HemeLB and OpenFOAM applications already support checkpoint-
restart allowing periodic creation of checkpoints. They could take advantage of 
information from a health-checking system to tailor checkpoint frequency, or the 
implementations could be used to write a checkpoint to implement process migration. 

6.2 Impact	  on	  CRESTA	  Software-‐stack	  
While it may be possible to completely implement process migration in user-space, it is 
likely and indeed indicated by our experiments that some assistance from the OS or 
hypervisor layer is required for high-performance implementations. Furthermore user-
space libraries may be needed to adopt to new conditions and possibly to prepare the 
system before migration. This is especially likely in the case of direct user-level access 
to hardware such as network interfaces or accelerators. 

Comparison with the Kitten lightweight OS suggests that optimisation of system 
software and device drivers to increase performance should be feasible. 

The absence of even the most basic guarantees in the presence of faults in many 
popular MPI implementations may at least be partially responsible for the popularity of 
global checkpoint-restart approaches. The lack of defined behaviour forces applications 
to treat any fault as catastrophic and abort the whole computation as soon as possible 
and restart from a last known good state. Proactive approaches are compatible with 
this type of implementation since they react while the library and application are still in 
a working state, but more subtle reactive approaches need more clearly-defined 
behaviour. Several efforts have been undertaken in the context of the MPI libraries, but 
standardisation and implementation seem to be stalled at the moment.  

6.3 Impact	  on	  Hardware	  
Current x86 processor implementations, both from AMD and Intel, have hardware 
support for virtualisation; for general device hardware, such as network interfaces and 
accelerators, more support may be necessary to improve performance. This could 
however also be a software or device driver issue. 



 

© CRESTA Consortium   Page 23 of 26 

 

Hardware support for remote memory access could be used to implement zero-copy 
techniques for transmitting bulk data from the application to the system nodes. This 
could significantly lower the overhead of data-intensive (I/O) system calls. Similar 
network techniques could also be used to increase the performance of state-replication 
between the system nodes if desired. Furthermore the system node in particular could 
benefit from a highly scalable system to deliver events to the waiting proxy processes. 



 

© CRESTA Consortium   Page 24 of 26 

 

References	  
[1] Jack Dongarra, "Visit to the National University of Defense Technology Changsha, 

China," Oak Ridge National Laboratory, June 3, 2013. 

[2] Peter Kogge et al., "ExaScale Computing Study: Technology Challenges in 
Achieving Exascale Systems," DARPA Information Processing Techniques Office 
and Air Force Research Laboratory, September 28, 2008. 

[3] J.A. Ang et al., "Abstract Machine Models and Proxy Architectures for Exascale 
Computing Rev. 1.1," Sandia National Laboratories and Lawrence Berkeley 
National Laboratory, May 16, 2014. 

[4] Stephen Booth, "D2.1.1 – Architectural Developments Towards Exascale," 
CRESTA, 2012. 

[5] Jeremy Nowell et al., "D2.1.2 – Architectural Developments Towards Exascale," 
CRESTA, 2013. 

[6] Mitsuhisa Sato. (2014, April) A report on Feasibility Study on Future HPC 
Infrastructure. [Online]. http://www.ccs.tsukuba.ac.jp/eng/wordpress/wp-content/ 
uploads/2014/04/CCS-MitsuhisaSato.pdf 

[7] Oreste Villa et al., "Scaling the Power Wall: A Path to Exascale," in SC14: 
International Conference for High Performance Computing, Networking, Storage 
and Analysis, New Orleans, LA, 2014, pp. 830-841. 

[8] (2014, November) Top500. [Online]. http://www.top500.org/lists/2014/11/ 

[9] Maurice J. Bach, The Design of the UNIX Operating System. Upper Saddle River, 
NJ, USA: Prentice Hall, 1986. 

[10] Marshall Kirk McKusick and George V. Neville-Neil, The Design and 
Implementation of the FreeBSD Operating System. Reading, MA, USA: Addison-
Wesley, 2005. 

[11] Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel. Sebastopol, 
CA, USA: O'Reilly Media, Inc., 2006. 

[12] Dan Holmes, "D2.3.1 – Operating systems at the extreme scale," CRESTA, 2013. 

[13] Yoonho et al. Park, "FusedOS: Fusing LWK Performance with FWK Functionality 
in a Heterogeneous Environment," in 2012 IEEE 24th International Symposium on 
Computer Architecture and High Performance Computing (SBAC-PAD), New York, 
NY, 24-26 October 2012, pp. 211-218. 

[14] Venekatram Vishwanath et al., "Accelerating I/O Forwarding in IBM BlueGene/P 
Systems," in Proceedings of the 2010 ACM/IEEE Conference for High Performace 
Computing, Networking, Storage and Analysis SC'10, Washington, DC, 2010, pp. 
1-10. 

[15] J.P. Black, L.F. Marchall, and B.Randell, "The Architecture of UNIX United," 
Proceedings of the IEEE, vol. 75, no. 5, pp. 709-718, May 1987. 

[16] Robert P. Goldberg, "Survey of virtual machine research," Computer, vol. 7, no. 6, 
pp. 34-45, June 1974. 

[17] Alessandro Morari et al., "Evaluating the Impact of TLB Misses on Future HPC 
Systems," in 2012 IEEE 26th International Parallel & Distributed Processing 
Symposium (IPDPS), Shanghai, 21-25 May 2012, pp. 1010-1021. 

[18] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L Scott, 



 

© CRESTA Consortium   Page 25 of 26 

 

"Proactive Fault Tolerance for HPC with Xen Virtualisation," in Proceedings of the 
21st Annual International Conference on Supercomputing (ICS'07), Seattle, WA, 
18-20 June 2007, pp. 23-32. 

[19] John Lange et al., "Palacios and Kitten: New High Performance Operating 
Systems For Scalable Virtualized and Native Supercomputing," in 2010 IEEE 
International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, 
GA, 19-23 April 2010, pp. 1-12. 

[20] Israel Koren and C. Mani Krishna, Fault-Tolerant Systems.: Morgan Kaufmann, 
2010. 

[21] Carlos H. A. Costa, Yoonho Park, Bryan S. Rosenburg, Chen-Yong Cher, and 
Kyung Dong Ryu, "A System Software Approach to Proactive Memory-Error 
Avoidance," in SC14: International Conference for High Performance Computing, 
Networking, Storage and Analysis, New Orleans, LA, 2014, pp. 707-718. 

[22] H. Song, C.B. Leangsuksun, R. Nassar, N.R. Gottumukkala, and S. Scott, 
"Availability modeling and analysis on high performance cluster computing 
systems," in The First International Conference on Availability, Reliability and 
Security (ARES), 20-22 April 2006, p. 8. 

[23] C. Leangsuksun, A. Tikotekar, V. Rampure, S. Scott S. Rani, "Toward efficient 
failure detection and recovery in HPC," in High Availability and Performance 
Computing Workshop, 2006. 

[24] Mark Bull and Jeremy Nowell, "D2.5.1 –Fault Agnostic and Asynchronous 
Algorithms at Exascale," CRESTA, 2013. 

[25] Piyush Sao and Richard Vuduc, "Self-stabilizing Iterative Solvers," in ScalA '13 
Proceedings of the Workshop on Latest Advances in Scalable Algorithms for 
Large-Scale Systems, Denver, CO, pp. 4:1-4:8. 

[26] Wesley Bland et. al, "An evaluation of User-Level Failure Mitigation support in 
MPI," Computing, vol. 95, pp. 1171-1184, 2013. 

[27] Sheng Di, M.S. Bouguerra, L. Bautista-Gomez, and F. Cappello, "Optimisation of 
Multi-level Checkpoint Model for Large Scale HPC Applications," in 2014 IEEE 
28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, 
19-23 May 2014, pp. 1181-1190. 

[28] Jason Duell, "The Design and Implementation of Berkeley Lab’s Linux 
Checkpoint/Restart," Lawrence Berkeley National Laboratory, LBNL-54941, 
December 2002. 

[29] OpenMPI. [Online]. https://www.open-mpi.org/faq/?category=ft 

[30] Texas Instruments, "66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-
on-Chip (SoC)," Texas Instruments, SPRS866E, November 2013. 

[31] James W. Lottes and Stefan G. Kerkemeier Paul F. Fischer. (2008) nek5000 Web 
page. [Online]. http://nek5000.mcs.anl.gov 

[32] KVM - Kernel Based Virtual Machine. [Online]. http://www.linux-
kvm.org/page/Main_Page 

[33] MVAPITCH Benchmarks. [Online]. http://mvapich.cse.ohio-state.edu/benchmarks/ 

 

 

 



 

© CRESTA Consortium   Page 26 of 26 

 

Glossary	  of	  Acronyms	  
cronym Definition 
AMD Advanced Micro Devices Incorporated 
ARM ARM Holdings 
BLCR Berkeley Laboratories Checkpoint-Restart 
CPU Central Processing Unit 
D Deliverable 
DARPA Defense Advanced Research Projects Agency 
DDR3 Double Data Rate 3 (memory technology) 
DSP Digital Signal Processor 
EC European Commission 
ECC Error Correction Code 
FWK Full Weight Kernel 
GPGPU General Purpose Graphics Processing Unit 
HPC High Performance Computing 
IPI Inter Processor Interrupt 
I/O Input/Output 
KVM Kernel Virtual Machine 
LWK Light Weight Kernel 
MCDSK MultiCore Software Development Kit 
MPI Message Passing Interface 
NFS Network File System 
OpenMPI Open Message Passing Interface (MPI) 
OS Operating System 
PM  Project Manager 
RSD Relative Standard Deviation 
SIMD Single Instruction Multiple Data 
SoC System-on-Chip 
SO-DIMM Small Outline Dual Inline Memory Module 
TCP Transmission Control Protocol 
TLB Translation Look-aside Buffer 
VM Virtual Machine 
WP Work Package 
  

	  


