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1 Executive	  Summary	  
This deliverable reports on the experiences gained with applying the methods and tools 
developed in WP3 to benchmarks and co-design CRESTA applications developed in 
WP6. We describe the experience with benchmarks and application for each WP3 task 
(“Programming models”, “Compilation and runtime environments”. “Performance 
analysis tools”,”Debuggers”). For each framework developed in WP3, a critical review 
of outstanding issues is performed and future research directions are outlined. 

We describe first the experiences gained with the PGAS programming model by 
developing a Coarray Fortran benchmark suite, using the Coarray Fortran in the IFS 
application to calculate Legendre Transforms and implementing Fast Fourier 
Transforms in UPC. In addition, we report the first results using the targetDP 
programming framework in Ludwig, a lattice Boltzmann application. 

We investigate the use of compiler support for GPU programming by porting the 
NekBone, a skeleton version of Nek5000 code, to multi-GPU systems and present the 
performance results. We describe the co-design work with OpenACC in GROMACS. 
We use a first implementation of an auto-tuning system for OpenACC code to tune the 
OpenACC version of the Nek5000 code. The co-design work, involving the 
development of the adaptive runtime system and Nek5000, is described, and the use of 
different components of the runtime systems in benchmarks is presented. 

The new features of Score-P and Vampir (support for new programming systems and 
new hardware counters, selective monitoring and enhanced scalability) are used in 
CRESTA applications: Nek5000, OpenFOAM, IFS, HemeLB, Gromacs. 

The Allinea DDT and MAP tools and MUST correctness checker are used in HemeLB 
CRESTA application to detect and analyze software errors and correctness on large- 
scale HemeLB simulations. 
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2 Introduction	  
This deliverable describes on the experiences gained with applying the methods and 
tools developed in WP3 to benchmarks and co-design CRESTA applications. We 
describe the experience with benchmarks and application for each WP3 task:  

• Programming models.  
• Compilation and runtime environments. 
• Performance analysis tools. 
• Debuggers. 

The design of the different frameworks for exascale applications has been guided by 
the software co-design process within the CRESTA project. Figure 1 presents an 
example of the co-design activity aimed at the design of some of the WP3 frameworks.  

 

 
Figure 1: Example of co-design in the CRESTA development environment 

 

Within the CRESTA project, two applications, IFS (from CRESTA WP6) and the 
computation of Fast Fourier Transform (from CRESTA WP4), use Partitioned Global 
Address Space (PGAS) languages Cray Co Array Fortran (CAF) and Unified Parallel C 
(UPC) in selected regions of the codes. Cray CAF and UPC are based on the DMAPP 
API. The performance monitoring and analysis of the PGAS code in IFS and in the FFT 
require support for Cray CAF and UPC languages in Score-P and Vampir. In particular, 
it is important to understand when and how the remote memory access occurs in the 
applications to optimize the code. For this reason, a support for Vampir and Score-P for 
PGAS languages has been designed and implemented in prototype version. Both 
application and Vampir and Score-P developers worked together giving reciprocal 
feedback during the development of the tools and application. In addition, the 
development of debuggers and of the run-time systems also benefited from the support 
for PGAS in Vampir and Score-P. Since the performance monitoring tools and 
debuggers are based on similar technologies, the experience gained with Vampir and 
Score-P can be be used in developing debugger support for Cray PGAS languages. 
Because the CRESTA runtime system has a performance-monitoring component, it 
benefited from improvement of Score-P and Vampir. 

The goal of this deliverable is to present experiences gained with applying the methods 
and tools developed in WP3 [1] to benchmarks and co-design CRESTA applications. 
The deliverable is organized as follows. The third section presents the experience 
gained with PGAS programming model in benchmarks and IFS application. The fourth 
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section reports the use of OpenACC in the Nek5000 application, the use of the auto-
tuner for OpenACC in the Nek5000 application, and the co-design work with Nek5000 
to develop the CRESTA adaptive runtime system. The fourth section describes the use 
of Vampir and Score-P new features in Nek5000, HemeLB, OpenFOAM, IFS, Gromacs 
applications. The fifth section presents the use of Allinea DDT and MAP tools and 
MUST correctness checker in HemeLB. Finally the sixth section concludes the 
deliverable summarizing the results. 

2.1 Purpose	  
The goals of this deliverable are: 

• To present experiences with different benchmarks and applications with the 
PGAS programming model.  

• To present the use of the targetDP framework in the Ludwig application. 
• To present use of compiler support for GPU programming with OpenACC in 

Nek5000 code. 
• To present the use of CRESTA auto-tuner for OpenACC codes in Nek5000 
• To present the co-design work involving the development of the CRESTA 

adaptive runtime system and Nek5000 and the experiences with different 
component of the runtime system in benchmarks. 

• To present the experiences with Score-P and Vampir with different CRESTA 
applications. 

• To present the use of Allinea MAP and MUST in the HemeLB CRESTA 
application. 
 

2.2 Glossary	  of	  Acronyms	  
AVX Advanced Vector eXtension 
CAF Coarray Fortran 
D Deliverable 
DSL Domain Specific Language 
CUDA Compute Unified Device Architecture 
GPU Graphics Processing Units 
IFS Integrated Forecast System 
ILP Instruction Level Parallelism 
IOSL I/O Forwarding Scalability Layer 
IPM Integrated Performance Monitoring 
MPI Message Passing Interface 
NUMA Non Uniform Memory Access 
OTF2 Open Trace Format 2 
PGAS Partitioned Global Address Space 
PIA Performance Introspection API 
RMA Remote Memory Access 
SIMD Single Instruction Multiple Data 
TBON Tree-Based Overlay Network 
TLP Thread Level Parallelism 
UPC Unified Parallel C 
VVL Virtual Vector Length 
WP Work Package 
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3 Programming	  Models	  
In CRESTA WP3, we focused on investigating the use of the Partitioned Global 
Address Space (PGAS) programming model in benchmarks and applications. PGAS 
languages such as Unified Parallel C [2] have been the subject of much attention in 
recent years, in particular due to the exascale challenge. There is a widespread belief 
that existing message-passing approaches such as MPI will not scale to this level due 
to issues such as memory consumption and synchronization overheads. PGAS 
approaches offer a potential solution as they provide direct access to remote memory. 
This reduces the need for temporary memory buffers, and may allow for reduced 
synchronization and hence improved message latencies. Some modern distributed 
memory architectures allow for remote memory access directly over the interconnect, 
meaning the PGAS model maps directly onto the underlying hardware. PGAS features 
have been introduced into the Fortran 2008 standard with coarrays [3]. Programming 
using coarrays has many potential advantages compared to MPI. Amongst these are 
simplicity, compiler checking and scope for automatic optimization of communications 
by the compiler. Coarrays can also be introduced incrementally to existing MPI codes 
to improve performance-critical kernels. 

3.1 Coarray	  Fortran	  Benchmark	  Suite	  
Since Fortran coarrays are in their relative infancy, and full compiler support has only 
recently emerged, it is important to understand the performance characteristics of 
parallel operations. Benchmark results are important as they guide both the 
applications programmer and the compiler or library developer. Applications 
programmers can make informed decisions about the most appropriate parallel 
features to use, and estimate performance in advance. Compiler and library developers 
can easily measure the performance characteristics of their implementation, and target 
areas of weakness. Although these developers will have their own internal performance 
tests, user-driven benchmark suites are very important as they can highlight those 
features of most interest to applications programmers. 

An initial prototype Fortran coarray benchmark suite had been produced by EPCC [4], 
and this was further developed, distributed and evaluated under CRESTA. The 
benchmark measures: 

1. single contiguous point-to-point read and write; 
2. multiple contiguous point-to-point read and write; 
3. strided point-to-point read and write; 
4. all basic synchronization operations; 
5. halo-swapping in a multi-dimensional regular domain decomposition; 
6. reference results from MPI for selected key operations. 

The benchmark is available on the WEB [5] and initial performance results on the Cray 
XE6 were reported at the 2012 Cray User Group [6]. The benchmark made it clear 
when the compiler was able to pattern-match the communications calls and optimize 
them using techniques such as vectorization. It also uncovered a performance bug 
which was reported to Cray and fixed for later compiler releases. 

When the new Cray XC30 was released, the benchmark was used to compare the 
performance of its new ARIES network with the GEMINI network of the previous XE6 
system. These results were presented at EASC2014 [7], showing significant 
improvements in bandwidth and latency. For example, in Figure 2 and Figure 3 we 
show the time taken for remote writes of small amounts of data with Fortran coarrays 
on these two platforms, using three different kinds of synchronization: global (sync all), 
point-to-point (sync images) and no synchronization. The equivalent MPI results are 
also measured. These results show that although the latency of the network has not 
changed significantly, coarray performance on the XC30 is improved due to better 
synchronisation times. This conclusion was confirmed by direct measurements of these 
overheads taken in the synchronization section of the benchmark suite. It is also 
interesting to note the MPI performance is extremely good: the MPI standard has been 
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in existence for two decades and library implementers are very good at optimizing its 
performance, especially for small message sizes. 

 
Figure 2: Point-to-point performance of remote writes on Cray XE6 

 

 
Figure 3: Point-to-point performance of remote writes on Cray XC30 

 

The benchmark is still under development. For example, we plan to include a new 
synchronization mechanism (event post and event wait) recently introduced into the 
Fortran standard. 

3.2 Coarray	  Fortran	  in	  IFS	  
IFS is a numerical weather prediction application within the CRESTA project. This is a 
production code used to provide medium-range weather forecast products up to 10 to 
15 days ahead. 
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For IFS the focus of developments in CRESTA was primarily to use Fortran2008 
coarrays within OpenMP parallel regions to overlap computation with communication 
and thereby improve performance and scalability. The importance of this research is 
such that if these developments are successful then the IFS model may continue to 
use the spectral method to 2030 and beyond on an exascale sized system. This 
research is further significant as the techniques used should be applicable to other 
hybrid MPI/OpenMP codes with the potential to overlap computation and 
communication. 

Within the CRESTA project we used Fortran2008 coarrays to overlap these 
communications with the computations in the Legendre and Fourier transforms. For the 
Legendre transforms this is being done per wave number within an OpenMP parallel 
region. In the original approach the computation and communication are done 
sequentially, with no overlap. In the new scheme (using coarrays) each thread is 
computing and then communicating its computed data to the respective tasks of its 
‘communicator’ group. While Fortran2008 has no coarray groups/teams construct it is 
nevertheless trivial to compute a mapping to a set of image numbers. Experience has 
shown that the Cray DMAPP library is not thread safe with the CCE compiler version 
8.0.6 and earlier releases and a workaround has been used to locate coarray transfers 
in OMP CRITICAL SECTIONs with a small performance penalty for doing so today. 
The coarray puts are expected to be non-blocking, and only waited on for completion 
on a subsequent SYNC IMAGES statement. For the direct Legendre transforms a 
similar approach is used, the original approach and new coarray approach. Here the 
coarray gets in each thread are clearly blocking until data arrives and then progress 
onto computation. We we have focused on the Legendre transform and the PGAS 
approach to overlap computation with communication, by performing these in a single 
OpenMP parallel region which operates over spectral wave numbers. A similar scheme 
is employed for calculating the Fourier transforms in IFS. Instead of spectral wave 
numbers, the Fourier transforms operate over latitudes, where tasks in Fourier space 
have a subset of latitudes and a subset of atmospheric levels. In Figure 4, from Ref. 
[9], the performance improvement from the coarray optimizations (LCOARRAYS=T 
means all the optimizations are on), which peak at 21% at around 40K cores then dip 
about 5% after this. 

 
Figure 4: Scalability of different versions of the IFS code 

 

Figure 12. Original semi-Lagrangian transport, showing a 
wind plot, and greater number of red grid points upwind of 
MPI task 11. 

 
 

B. PGAS semi-Lagrangian scheme 
 

Only the halo grid points (marked red) that are used are 
communicated by Fortran2008 coarray transfers. No MPI 
communication is done at all here. Also no max wind blue 
halo is needed with this approach, with a big saving on the 
volume of data communicated. The icing on the cake is that all 
the coarray transfers are done in the same OpenMP parallel 
region as the computation of the trajectory and subsequent 
interpolations. A true win-win situation. 
 
Figure 13. New PGAS (Fortran2008 coarray) semi-Lagrangian 
transport.  

 
 
 

IV. IFS PERFORMANCE MEASUREMENTS 
 

For an IFS model execution it is crucial that an operational 10 
day forecast is completed in under one hour wall time, which is 
equivalent to 240 forecast days per day (FD/D). Figure 14 
shows the performance achieved in April 2012 after just 5-6 
months into the CRESTA project. The latest benchmark release 
of IFS called RAPS12 (corresponding to an ECMWF internal 

source cycle 37R3) was chosen for runs on HECToR, a Cray 
XE6, having the Gemini interconnect and Interlagos AMD 
cores (32 per node). The Cray compiler environment (CCE) 
version was 7.4.4 at the time.  

A. T2047L137 Hydrostatic model 
The performance was first measured without any source 
modifications on up to 64K cores and reached asymptotic 
performance of 280 FD/D at around 30K cores. With the 
CRESTA optimizations performance was significantly 
improved with asymptotic performance of 350 FD/D at around 
50K cores. These optimizations included both MPI 
optimizations (labeled LCOARRAYS=F) mainly to the wave 
model and the Legendre transform coarray optimizations 
(labeled LCOARRAYS=T) described in section II which also 
included the MPI optimizations. In figure 15 we show the 
performance gain from using all the coarray optimizations 
enabled at run time by namelist setting LCOARRAYS=true. 
The coarray optimizations are those described earlier in 
sections II and III in the 3 functional areas, namely, Legendre 
transforms, Fourier transforms and semi-Lagrangian. The runs 
in figure 15 were also performed using an updated CCE=8.0.6 
release which was both more performant and reliable, now 
achieving over 500 FD/D on about 50K cores. It should be 
noted that this level of performance is in excess of 2 times the 
requirement for a T2047L137 operational forecast of 240 FD/D 
which is clearly encouraging. 
 
Figure 14. T2047L137 RAPS12 IFS (CY37R3) forecast model 
performance on HECToR (Cray XE6), CCE=7.4.4, April 2012. 
 

 
 
In figure 16 we show the performance improvement from the 
coarray optimizations, which peak at 21% at around 40K cores 
then dip about 5% after this. An analysis of the detailed gstats 
timers in IFS suggest that rather than the coarray optimization 
degrading after 40K cores, the MPI code improved relative to 
the coarray code. It will be interesting to see how the coarray 
optimizations perform when we run a larger T3999 case 
(1Q2013/RAPS13/38R2) where there will be greater 
opportunity for overlap between computation and 
communication at that resolution as shown in figure 3. In 

657



 

© CRESTA Consortium   Page 7 of 57 

  

3.3 FFT	  in	  UPC	  
Within CRESTA, we examined two fundamentally different approaches to performing 
the transpose operation of a 3D-FFT [10] in UPC. Since the advent of Cray Baker 
systems, Cray delivers a network system with support for remote memory access, 
meaning that data located on remote processes can be accessed without involvement 
of the remote processor. This feature is available to end-users on Cray machines 
through the Distributed Memory Application (DMAPP) API, which supports compiler-
based or library based one-sided communication. The model captures the idea of 
having several processes running the same code in its own address space, but also 
having access to remote memory segments of other processes through PUT/GET 
semantics. DMAPP provides a layer for interfacing with the remote memory access 
capacity of the hardware, and the functions provided by DMAPP can be roughly divided 
into three different variants: 

• blocking functions: A process may resume execution after a call to a blocking 
function, only after the results of this operation is globally visible to the entire 
system. 

• Non-blocking explicit: The explicit non-blocking function returns a 
synchronization identifier, which may be used to determine when the effects of 
the operation are globally visible. 

• Non-blocking implicit: For an implicit non-blocking function, the results are 
only guaranteed to be globally visible after a synchronization call by the initiator 
of the function. 

We examined the traditional approach to transposing the data, by using a regular 
blocking transpose operation at the end of computation, and we compare this with a 
non-blocking transpose operation, where we send data to the other processes as soon 
as it is available. These two versions use the blocking functions of DMAPP, and the 
non-blocking implicit functions, respectively. 

One may calculate the 3-D Fourier transform of a matrix A of dimension n_x X n_y X 
n_z by a series of 1-D Fourier transforms, one in each direction, x, y, z. To parallelize 
the FFT algorithm, the data in the matrix A is distributed over the processes, such that 
each process has a set of x-y planes of A in local memory. This means that we may 
perform a number of 2-D Fourier transforms of all the planes local to each process, 
without any form of communication. However we need to transpose the matrix A in 
order to perform the final and last step, the one-dimensional FFT in the Z-direction. 
After the transpose operation, this final 1-D FFT operation may be performed without 
any communication. Figure 5 outlines the basic, major steps of the 3D-FFT algorithm. 

 
Figure 5: First Algorithm to calculate the FFT with UPC 

cessed without involvement of the remote processor [4, ?].
This feature is available to end-users on Cray machines through
the Distributed Memory Application (DMAPP) API, which
supports compiler-based or library based one-sided commu-
nication.

The model captures the idea of having several processes
running the same code in its own address space, but also
having access to remote memory segments of other processes
through PUT/GET semantics.

DMAPP provides a layer for interfacing with the remote
memory access capacity of the hardware, and the functions
provided by DMAPP can be roughly divided into three dif-
ferent variants:

1. blocking functions

A process may resume execution after a call to a block-
ing function, only after the results of this operation is
globally visible to the entire system.

2. non-blocking explicit

The explicit non-blocking function returns a synchro-
nization identifier, which may be used to determine
when the e↵ects of the operation are globally visible.

3. non-blocking implicit

For an implicit non-blocking function, the results are
only guaranteed to be globally visible after a synchro-
nization call by the initiator of the function.

In this paper we examine two fundamentally di↵erent ap-
proaches to performing the transpose operation of a 3D-
FFT. This entails an all-to-all communications pattern. We
examine the traditional approach to transposing the data,
by using a regular blocking transpose operation at the end
of computation, and we compare this with a non-blocking
transpose operation, where we send data to the other pro-
cesses as soon as it is available. These two versions use the
blocking functions of DMAPP, and the non-blocking implicit
functions, respectively.

3. BLOCKING PARALLEL FAST FOURIER
TRANSFORM

One may calculate the 3-D Fourier transform of an array
A of dimension n

x

⇥n

y

⇥n

z

by a series of 1-D Fourier trans-
forms, one in each direction, x, y, z. To parallelize the FFT
algorithm, the data in the array A is distributed over the
processes, such that each process has a set of x�y planes of
A in local memory. This means that we may perform a num-
ber of 2-D Fourier transforms of all the planes local to each
process, without any form of communication. However we
need to transpose the array A in order to perform the final
and last step, the one-dimensional FFT in the Z-direction.
After the transpose operation, this final 1-D FFT operation
may be performed without any communication.

The following outlines the basic, major steps of the 3D-
FFT algorithm as implemented by the GWUHigh-Performance
Computing Laboratory [3].

1. A 2D-FFT is computed of size n

x

⇥n

y

, for each of the
n

z

/P planes local to each process

2. A global transpose operation is performed to transform
the local part of array A (stored in each process) of

dimension n

x

⇥ n

y

⇥ nz
P

into a new local array C with
dimensions n

z

⇥ n

z

⇥ ny

P

3. The final 1D-FFT is calculated for the remaining Z-
direction (now in each process’s local memory).

We first calculate the FFT of all planes local to each pro-
cess, and then in a separate step perform the global trans-
pose.

Algorithm 1 Transpose operation UPC

//upc forall
for i = 1 : n

z

do

for j = 1 : n
y

do

↵t(A⇤,j,i)
end for

for j = 1 : n
x

do

↵t(A
j,⇤,i)

end for

s n

y

/P

M

for k = 0 : P
M

� 1 do

upc memput(A⇤,k·s:(k+1)·s�1,i, Ci,⇤,k·s:(k+1)·s�1)
end for

end for

C  local transpose(C)

3.1 Non-blocking Fast Fourier Transform Al-
gorithm

We have implemented a modified version of the NAS FT
Benchmark which overlaps communication and computa-
tion, following the example in Ref. [2]. The essential dif-
ference is that, as soon as we’ve calculated the FFT of a
2D-plane in a process, we instantly proceed with PUT ing
the results into the remote memory segment of the process
that will need this plane for the final Z-direction FFT. This
means that the actual transpose takes place at the same
time as the computation. This may be contrasted with the
original NAS FT version, where we first calculate the FFT
of all planes local to each process, and then in a separate
step perform the global transpose. Here we instead employ

Algorithm 2 Transpose operation UPC

//upc forall
for i = 1 : n

z

do

for j = 1 : n
y

do

↵t(A⇤,j,i)
end for

for j = 1 : n
x

do

↵t(A
j,⇤,i)

end for

s n

y

/P

M

for k = 0 : P
M

� 1 do

upc memput(A⇤,k·s:(k+1)·s�1,i, Ci,⇤,k·s:(k+1)·s�1)
end for

end for

C  local transpose(C)

the PUT semantics, so that each process, as soon as it has
finished calculating a plane, puts the result in the memory
area of the right processes.
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We have implemented a modified version of the NAS FT benchmark which overlaps 
communication and computation. The essential difference is that, as soon as we have 
calculated the FFT of a 2D-plane in a process, we instantly proceed with PUTing the 
results into the remote memory segment of the process that will need this plane for the 
final Z-direction FFT. This means that the actual transpose takes place at the same 
time as the computation. This may be contrasted with the original NAS FT version, 
where we first calculate the FFT of all planes local to each process, and then in a 
separate step perform the global transpose as in the Figure 6.  

 
Figure 6: Second algorithm to calculate the FFT with UPC 

Here we instead employ the PUT semantics, so that each process, as soon as it has 
finished calculating a plane, puts the result in the memory area of the right processes. 

The computational tests have been carried out on KTH Cray XE6 supercomputer 
"Lindgren". Each node consists of two AMD Opteron 12-core Magny-Cours (2.1 GHz) 
processors and 32GB DDR3 memory that is shared between the two processors. The 
nodes themselves are connected via a Cray Gemini network. We used the Cray 
compiler for the UPC version of our program, again with the flags -O3, -h vector 3 and 
–h restrict=a (assume no aliasing). The Class D problem of NAS benchmark has been 
chosen to test the FFT UPC implementation. This test consists of solving FFT on 2048 
x 1024 x 1024 grid points 25 times. We carried out scaling test up to 1028 cores, 
comparing two FFT implementations: one version uses a blocking algorithm and a 
blocking remote memory access (UPC blocking), while the other one uses an algorithm 
that allows overlap of communication and computation and implicit non-blocking 
remote memory access. Figure 7 shows the parallel speed-up for the two UPC 
implementations. 
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supports compiler-based or library based one-sided commu-
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through PUT/GET semantics.

DMAPP provides a layer for interfacing with the remote
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when the e↵ects of the operation are globally visible.

3. non-blocking implicit

For an implicit non-blocking function, the results are
only guaranteed to be globally visible after a synchro-
nization call by the initiator of the function.

In this paper we examine two fundamentally di↵erent ap-
proaches to performing the transpose operation of a 3D-
FFT. This entails an all-to-all communications pattern. We
examine the traditional approach to transposing the data,
by using a regular blocking transpose operation at the end
of computation, and we compare this with a non-blocking
transpose operation, where we send data to the other pro-
cesses as soon as it is available. These two versions use the
blocking functions of DMAPP, and the non-blocking implicit
functions, respectively.
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by a series of 1-D Fourier trans-
forms, one in each direction, x, y, z. To parallelize the FFT
algorithm, the data in the array A is distributed over the
processes, such that each process has a set of x�y planes of
A in local memory. This means that we may perform a num-
ber of 2-D Fourier transforms of all the planes local to each
process, without any form of communication. However we
need to transpose the array A in order to perform the final
and last step, the one-dimensional FFT in the Z-direction.
After the transpose operation, this final 1-D FFT operation
may be performed without any communication.

The following outlines the basic, major steps of the 3D-
FFT algorithm as implemented by the GWUHigh-Performance
Computing Laboratory [3].

1. A 2D-FFT is computed of size n

x

⇥n

y

, for each of the
n

z

/P planes local to each process
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3. The final 1D-FFT is calculated for the remaining Z-
direction (now in each process’s local memory).

We first calculate the FFT of all planes local to each pro-
cess, and then in a separate step perform the global trans-
pose.

Algorithm 1 Transpose operation UPC

//upc forall
for i = 1 : n
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do
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end for
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3.1 Non-blocking Fast Fourier Transform Al-
gorithm

We have implemented a modified version of the NAS FT
Benchmark which overlaps communication and computa-
tion, following the example in Ref. [2]. The essential dif-
ference is that, as soon as we’ve calculated the FFT of a
2D-plane in a process, we instantly proceed with PUT ing
the results into the remote memory segment of the process
that will need this plane for the final Z-direction FFT. This
means that the actual transpose takes place at the same
time as the computation. This may be contrasted with the
original NAS FT version, where we first calculate the FFT
of all planes local to each process, and then in a separate
step perform the global transpose. Here we instead employ

Algorithm 2 Transpose operation UPC

//upc forall
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the PUT semantics, so that each process, as soon as it has
finished calculating a plane, puts the result in the memory
area of the right processes.
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Figure 7: Relative parallel speed-up of the different UPC FFT implementations. 

Finally, we have compared the performance of our FFT with FFT implemented in MPI 
and OpenMP on 128 Cores. Our UPC FFT implementation using overlapping 
communication and computation proves faster than the MPI and OpenMP version. The 
execution time for the UPC version is 209 seconds while the version with MPI OpenMP 
in Fortran takes 236 seconds. 

 

3.4 TargetDP	  in	  the	  Ludwig	  code	  
The work on the development of “targetDP” (presented in CRESTA D3.7) was 
motivated by development of the Ludwig complex fluid simulation package at EPCC at 
University of Edinburgh. This versatile software is able to simulate a variety of soft 
matter substances such as mixtures, particle suspensions and liquid crystals, with 
relevance to many large industrial concerns such as foodstuffs, paints and coatings, 
and oil recovery.  The basis is hydrodynamics using the lattice Boltzmann (LB) 
technique, coupled with a free energy based approach for various order parameters, 
the dynamics of which are solved via standard finite-difference techniques. We have 
recently developed Ludwig so that it can use many GPUs in parallel as well as 
traditional CPU based supercomputers. The difficulty in maintaining duplicate source 
code for the two architectures is a key motivation for the work described here. 
Furthermore, the existing version relies on the compiler to find ILP and map to SIMD 
instructions, but the extents of innermost loops in the code are dictated by the model 
and typically do not map perfectly onto the vector hardware.  The lattice-based 
operations in real applications such as Ludwig are typically much more complex than 
the example given above, but the same methodology can be applied. To demonstrate 
effectiveness and evaluate performance, we have implemented targetDP within a real 
computational kernel extracted from Ludwig. This ``binary collision'' code performs an 
LB collision operation on a mixture of two fluids.   
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Figure 8: Performance of TargetDP 

In Figure 8 we show the effect on performance, for this benchmark, of our targetDP 
framework for both CPU (2.7 GHz, 12-core E5-2697 Intel Ivy Bridge) and GPU (NVIDIA 
K40) architectures, noting that the same source code is used for the targetDP results 
on both. It can clearly be seen that the use of targetDP not only offers performance 
portability, but it also significantly increases performance in each case; this is due to 
the intelligent exposure of ILP. Within the original CPU code, each innermost most loop 
is over the discrete lattice momenta (here of extent 19) or over spatial dimensions (i.e. 
of extent 3), neither of which map perfectly onto the AVX vector length of 4. The 
compiler is not able to generate optimal AVX instructions, thus leaving the vector units 
under-utilised. With our targetDP implementation, we instead expose the lattice-based 
parallelism to the compiler as ILP. We tune the VVL, with 8 being the optimal value (i.e. 
the compiler generates 2 AVX instructions for each innermost loop). This tailored ILP 
optimisation gives almost a 1.5X performance improvement the original code (which 
has been augmented with OpenMP for a fair comparison). Similarly, for the reasons 
described above, exposing ILP within each kernel offers performance benefit on the 
GPU. In this case we tune VVL to be 2, and we see a performance boost of 1.4X. 
Incidentally, the GPU targetDP benchmark implementation outperforms the CPU by 
4.5X. 

We have successfully secured funding from the UK ARCHER eCSE programme to 
build on this work by fully implementing targetDP within Ludwig, such that the code will 
be performance portable across the range of leading-edge HPC architectures. The 
concepts and technology of targetDP are also applicable to other applications and 
areas, and we will strive to facilitate uptake. 

 

3.5 Outstanding	  Issues	  and	  Future	  Work	  
During the CRESTA project period, WP3 focused on investigating the use of PGAS 
CAF and UPC in benchmarks and applications. This approach resulted in visible 
improvements of scalability as in the case of the IFS code, showing that PGAS can 
effectively be used in applications to achieve higher scalability. The main challenge in 
using PGAS approaches in a real-world application, such as IFS, was to ensure 
interoperability between different programming systems (MPI, OpenMP and CAF) that 
use common resources. Often the use of this approach resulted in runtime errors due 
in some cases to compiler bugs. Future work will focus on studying the interoperability 
of different programming approaches. 
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4 Compilation	  and	  Runtime	  Environments	  
Heterogeneous HPC architectures are becoming increasingly prevalent in the Top500 
list with CPU-based nodes being enhanced by accelerators or coprocessors optimized 
for floating-point calculations. This trend is likely to increase as we move towards 
exascale capable systems and it is vital that the relevant HPC applications are able to 
exploit this heterogeneity. 

Whilst accelerators offer a large boost in peak system speed, it is difficult to translate 
this into sustained applications performance. For GPU accelerators, applications are 
typically rewritten in a low-level language such as CUDA or OpenCL. This is a 
productivity drawback, with developers having to maintain multiple versions of their 
code without any guarantee of portability. In addition, the HPC community is nervous 
about investing substantial software development effort in converting applications to 
use a programming language that is not portable between different architectures. On 
the other hand, OpenACC, a collection of compiler directives specified by the 
programmer to identify areas that should be accelerated, enable existing HPC 
applications to run on accelerators with minimal source code changes. 

4.1 Accelerating	  Nek5000	  with	  OpenACC	  
Within CRESTA, we have used NekBone, a skeleton application of Nek5000. Nek5000 
was chosen as one of the CESTA co-design applications under investigation. It is an 
open-source code used for the simulation of incompressible fluid flow and it is 
employed in a broad range of domains, including the study of thermal hydraulics in 
nuclear reactor cores, the modeling of ocean currents and the simulation of combustion 
in mechanical engines. 

NekBone has been configured to capture the basic structure and user interface of the 
extensive Nek5000 software and exposes its main computational kernel to reveal the 
essential elements of the algorithm-architectural coupling that is relevant to Nek5000. 

NekBone has been successfully ported to multi-GPU systems using OpenACC 
compiler directives. The focus of this work was on porting the most time-consuming 
routines of the NekBone to GPU system: the ax3D and gs_op subroutines. To port 
NekBone to GPU systems required little effort and a small number of additional lines of 
code. In fact, after the porting, the total number of lines of NekBone was 41,953 
including 45 OpenACC directives. Approximately, one OpenACC directive was used 
per 1,000 lines of code. 

The naive implementation using OpenACC led to little performance improvement: from 
16 Gflops obtained on the CPU, we reached 20 Gflops with the naive OpenACC 
implementation. The optimization of matrix-matrix multiplication required evaluating the 
computational cost of loop-nesting to assist the developer in guiding the OpenACC 
loop scheduling. By simply instructing the compiler to collapse four nested loops in the 
matrix-matrix multiplication, we reached approximately 43 Gflops, doubling the 
performance of the naive OpenACC implementation. In addition we ported and 
optimized NekBone on a multi-GPU system by working on the gs_op subroutine. The 
optimized version for Multi-GPU system gave a parallel efficiency of 79.9  % on 1024 
GPUs of the Titan supercomputer as visible in the Figure 9. 
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Figure 8: Scaling of the Nekbone application on Titan supercomputer. 

4.1.1 Outstanding	  Issues	  and	  Future	  Work	  
We used OpenACC compiler support to port the NekBone mini-application, that is 
skeleton version of Nek5000, to multi-GPU systems. The next step in this work is to 
use OpenACC in the full Nek5000 application. For doing this, we need to use 
OpenACC in the Nek5000 pre-conditioners and in the Multi-grid linear solver. In 
addition, the possibility of directly transfer data from a GPU memory to another GPU 
memory in the Nek5000 gather-scatter operator will be investigated. 

4.2 OpenACC	  co-‐design	  with	  GROMACS	  
The porting of Nek5000 to exploit the GPUs on ORNL's Cray XK7 Titan system 
demonstrated how the OpenACC programming model exploits system software 
(compilers and runtime libraries) to accelerate HPC applications in a productive and 
portable manner. This also demonstrated a degree of co-design, as the Nek5000 
developers within CRESTA filed a number of functionality and performance bugs that 
were found in the Cray Compilation Environment (CCE). These bugs were then fixed 
by the Cray Programming Environment (PE) compiler development team, and the 
improved product is now available for all Cray customers. 

This is, however, only responsive and co-design in the broadest sense. With the 
GROMACS code, CRESTA sought to complete the co-design loop in a more proactive 
manner. The GROMACS code has been ported to run on one or more Nvidia GPUs 
using CUDA. As with most of the performance-intensive parts of the GROMACS code, 
considerable effort has been spent to hand-optimise these CUDA kernels to obtain high 
levels of performance using detailed knowledge of the underlying hardware. 

The OpenACC programming model aims to provide a high-level alternative for 
programming GPUs. It is likely that this will entail a performance sacrifice compared to 
the more low-level CUDA. This has been measured for many codes and is typically 
around 10%, which is an acceptable cost for many developers when compared with 
productivity and maintainability advantages of using OpenACC. To measure this 
margin requires access to codes that have both OpenACC and CUDA versions, and 
the CUDA in these codes is typically quite generic and has not had a great deal of 
tuning. 

GROMACS' hand-tuned CUDA provided the Cray compiler engineers with a much 
tougher challenge that could be used to improve the CCE OpenACC performance. A 
detailed report of this work is provided in Annex A. The work focused on the "nxnbn" 
kernel that dominates the runtime when simulating non-bonded systems. Based on the 
CUDA, an equivalent C routine was written, and accelerated to run on a GPU using 
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OpenACC directives. This OpenACC nxnbn kernel could then be swapped into the 
code using the CUDA interoperability in the OpenACC standard. 

The performance of the two versions was then compared using a representative non-
bonded problem. Initial results were as expected, with the OpenACC version only 
giving around half of the performance of the optimised CUDA. Considerable effort then 
went into understanding the reasons behind this reduced performance. 

Three main causes were identified. Firstly, the OpenACC kernel used a lot more 
registers than the CUDA version. This led to "register spilling", where data is placed 
into slower shared memory instead of machine registers, which impacts performance. 
In response to this, a CCE compiler flag was added that allows users to limit the 
maximum number of registers that are used in an OpenACC kernel. The second issue 
was that the original kernel made calls to CUDA intrinsic functions that increased 
performance. Work was then done in the CCE optimizer (OPT) and code generation 
(CG) phases to make use of these same intrinsic function sets (without user 
intervention). Finally, the CUDA driver code optimised the shared memory/cache 
configuration, based on whether shared memory was used in the kernels. This was not 
originally done in CCE, but functionality was added to the OPT and CG phases to 
detect this automatically as well. 

With these three modifications, the OpenACC performance was now within 10-15% of 
the hand-tuned CUDA. This was viewed as a good achievement by the GROMACS 
developers. The end result was not a full OpenACC port of GROMACS; only one of 24 
CUDA kernels was studied. All 24 would need to be ported to move entirely to 
OpenACC. In addition, with an existing CUDA code that is faster, there was little 
appetite from the developers to move to OpenACC at the current time.  

The main result was, instead, the improvements in the compiler (from CCE version 8.3 
onwards). None of the modifications are specific to GROMACS and can therefore 
benefit a wide range of OpenACC codes. They also require little or no user intervention 
(one compiler flag in one of the three cases), so the benefits are largely transparent to 
the user. 

Overall, these successes demonstrate the advantages of co-design in both directions, 
with the applications leading to improved systemware, and this improved systemware 
then giving improved application performance, both for the original co-design 
application but also for a wider class of codes 

	  
4.3 Autotuning	  of	  an	  OpenACC	  version	  of	  Nek5000	  
In CRESTA we have developed an autotuning technology that can address the 
inherent complexity of programming the latest and future computer architectures. The 
autotuner provides a framework in which an application developer can try out various 
optimization strategies in an automated fashion to maximize their application 
performance. This autotuner explores a tuning parameter space by repeatedly building 
and running the application. From these the best run is chosen using a metric obtained 
from the program execution that currently is done by exhaustive search. To accomplish 
a tuning run, the source is appropriately preprocessed and compiled and an 
optimization process is organized. 

We have carried out an extensive autotuning study on NekBone since it is understood 
that any improvement achieved on the computational structure of NekBone could also 
be applied to Nek5000. 

4.3.1 Implementation	  
NekBone is configured to very closely resemble the basic structure of Nek5000. In 
NekBone a matrix is initialized and then a linear system is solved twice for every 
computational cycle using a Conjugate Gradient (CG) solver. A large number of small 
rectangular matrix multiplications take place at each solver iteration. Previous work in 
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CRESTA has demonstrated that the computation of those matrix multiplications 
dominates the execution time of NekBone. Therefore we focused on an OpenACC 
implementation of a large number of different algorithms used to calculate the matrix-
matrix multiplications.  

The main subroutines to optimize implement independent matrix-matrix multiplication 
kernels and there are three difference cases that could be considered for a given 
number of elements, N, depending on the sizes of the matrices involved in the 
multiplication. Those three cases of C = A* B are: 

• Case 1: A [N2xN] x B [NxN] = C [N2xN] 
• Case 2: A [NxN] x B [NxN]  = C [NxN] 
• Case 3: A [NxN] x B [NxN2] = C [NxN2] 

 

 

An example of those kernels can be seen in the code shown below: 
 

do j = 1, n3 

      do i = 1, n1 

            c( i, j ) = 0.0 

            do k = 1, n2 

                  c ( i, j ) = c ( i, j ) + a ( i, k ) * b ( k, j ) 

            end do 

      end do 

end do 

 

To execute this kernel on a GPU using OpenACC we included additional compiler 
directives assuming that the data had already been copied to the GPU, for instance: 
!$ACC PARALLEL LOOP PRESENT(a,b,c) PRIVATE(i,j,k) 

do j = 1, n3 

      do i = 1, n1 

      c( i, j ) = 0.0 

            do k = 1, n2 

                  c ( i, j ) = c ( i, j ) + a ( i, k ) * b ( k, j ) 

            end do 

      end do 

end do 

!$END PARALLEL LOOP 

Although this should be enough to get part of the code running on a GPU further 
investigation is required for an optimum performance. In order to find the suitable 
kernel we created a number of different implementations of the above kernel using 
different parameters and OpenACC optimizations. These implementations were then 
enumerated so that the CRESTA autotuner could identify and compare them. 

Over ten different implementations of each matrix-matrix multiplication kernel were 
included in the autotuning benchmark providing many different computation paths for 
the NekBone kernel and exploring the following types of optimizations: 

 

• specific hard-coded versions for different values of n1, n2 and n3 so that these 
would be constant at compile time; 

• different loop orderings; 
• loop unrolling; 
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• hand tiling the matrices into blocks for better cache reuse; 
• calls to DGEMM BLAS routines; 
• matrix values stored explicitly in temporary scalars; 
• loop collapsing. 

Among the most important OpenACC parameters that were used to optimize the 
kernels were VECTOR_LENGTH, GANG, WORKER or COLLAPSE. An example of 
autotuning kernel can be seen below: 

 
!$ACC PARALLEL PRESENT(a,b,c) PRIVATE(i,j,k) VECTOR_LENGTH(VLENGTH) 

!$ACC LOOP GANG WORKER VECTOR COLLAPSE(2) 

do j = 1, n3 

      do i = 1, n1 

#ifdef SCALAR 

            tmp = 0.0 

#else 

            c(i, j) = 0.0 

#endif 

            do k = 1, n2 

#ifdef SCALAR 

                  tmp = tmp + a(i,k) * b(k, j) 

#else 

                  c ( i, j ) = c ( i, j ) + a ( i, k ) * b ( k, j ) 

#endif 

            end do 

#ifdef SCALAR 

            c(i,j) = tmp 

#endif 

      end do 

end do 

!$END PARALLEL LOOP 

 

The autotuning session of the CRESTA autotuning framework can be controlled by a 
domain-specific language, DSL, either from a global configuration file or embedded in 
the application source. The DSL component helps the autotuning framework to 
optimize an application over a set of tuning parameters. One of the most useful 
characteristics of this autotuning framework is what has been termed scenario 
characterization parameters where for each scenario we aim to pick the best values for 
a set of tuning parameters. The tuning parameters will relate to build and runtime 
optimization choices which we can choose to give, for instance, the best runtime. 

 

After a large number of tuning sessions the autotuner demonstrated that there was a 
particular routine faster than all the others for a given a set of parameters. This routine 
has the particularity of using COLLAPSE(4) as part of the OpenACC optimization. 
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!$ACC PARALLEL PRESENT(a,b,c) PRIVATE(i,j,k) VECTOR_LENGTH(VLENGTH) 

!$ACC LOOP GANG WORKER VECTOR COLLAPSE(4) 

do imat = 1, lelt 

!dir$ nonblocking 

do j = 1, n3 

        do i = 1, n1 

    tmp = 0.0 

    do k = 1, n2 

tmp = tmp + a(i,k,imat) * b(k, j) 

    end do 

    c(i,j,imat) = tmp 

        end do 

end do 

end do 

!$END PARALLEL LOOP 

Therefore the chosen routine was introduce in NekBone and compared to a previous 
OpenACC hand-tuned implementation carried out on the CRESTA project. The latter 
performance results can be seen on Figure (left). Figure Figure 9 represents global 
performance of our optimized NekBone application depending on the number of 
elements, nel, used in the simulation and the size of the matrix, N. As the size of the 
matrix is increased NekBone used more memory to run the application, which is the 
reason why the application runs into memory limits on the GPU at large value of N. 

 
Figure 9: Performance of a hand-tuned (left) by Markidis et al. and autotuned (right) OpenACC 

NekBone 

To illustrate the effect of parameter tuning, Figure 9 (right) shows the performance 
results of the autotuned version of NekBone that demonstrates the performance 
improvement over the hand-tuned version. In Figure 10 we have represented the ratio 
between our autotuned performance results over the hand-tuned performance results 
achieved by Markidis et al. and when using default OpenACC settings. 
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Figure 10: Performance ratio of auto-tuned, hand-tuned and default OpenACC settings 

4.3.2 Outstanding	  Issues	  and	  Future	  Work	  
Thanks to the new NekBone structure developed for this purpose and the exhaustive 
exploration of different parameter values carried out by the autotuner we have 
accomplished a simpler, better structured and faster implementation of NekBone. 
Furthermore, the exploration of different OpenACC optimization algorithms has 
revealed that loop collapsing techniques have given the best performance 
improvements among all the other optimization techniques previously mentioned. 
Scalar reduction showed little performance improvement, however the vector length 
seemed to influence the performance with its optimum value for 128 and 256. 

Although the autotuner pointed to different kernel settings during the tuning session, we 
were able to identify cases where kernels performed very differently when run in 
isolation compared to being run in the main NekBone code. After further investigation it 
was discovered that when run in isolation the Cray compiler was able to non-block 
some sections of the kernel code whereas it was not when run in the main NekBone. 
The addition of additional directive !dir$ nonblocking solved the problem 
outperforming the best hand-tuning efforts. 

Across a wide range of representative cases, the autotuning increased the 
performance of NekBone by nearly 200% compared to the default OpenACC settings. 
Furthermore, we also compared to an OpenACC hand-tuned version of NekBone and 
for representative problem sizes, the autotuned version always performed within a few 
percent of the hand-tuned version and outperformed it by over 15% for the largest 
systems. 

 

4.4 Hybrid	  and	  Adaptive	  Runtime	  System	  With	  Nek5000	  
In this section, we report on the co-design approach used in the development of the 
adaptive runtime system. 

4.4.1 Fast	  collective	  MPI	  communication	  
The efficiency of the runtime system [16] depends also on the availability of fast 
collective MPI communication operations for the exchange of the software and 
hardware model data, performance measurements as well as control information in 
order to execute the decisions of the system. These data must be distributed with low 
latency despite the fact that the data is often short and collective MPI operations have 

 0

 5

 10

 15

 20

32 128 512 2048 8192

R
at

io

nel

Auto-tuned/Default

 0

 0.5

 1

 1.5

 2

32 128 512 2048 8192
R

at
io

nel

Auto-tuned/Hand-tuned 

N =   8
N = 10
N = 12
N = 14
N = 16
N = 18
N = 20



 

© CRESTA Consortium   Page 18 of 57 

 

a comparatively high latency for them. Furthermore, the re-mapping of computational 
tasks makes it necessary to move all user data that define the status of computational 
tasks between different nodes. Conceptually, this can be done with collective 
communication operations like MPI_Alltoallv too. But, it is necessary to provide 
separate send and receive buffers to them in order to achieve high performance. 
Widely used implementations of MPI_Alltoallv are very slow when they are used with 
the option MPI_IN_PLACE. 

The CRESTA application NEK5000 [17] is a PDE solver with a long development 
history and contains a communication module that has been optimized for its typical 
short, latency-bound messages. This communication module can use the regular 
collective MPI communications as well as own implementations of them. One of these 
implementations is based on the crystal_router algorithm.[18] This algorithm allows 
sending messages of arbitrary length between arbitrary nodes in a hypercube network. 
It is advantageous especially in irregular applications where the exact nature of the 
communication is not known before it occurs or where the message emergence 
changes dynamically. 

4.4.1.1 Implementation	  of	  Fast	  Collective	  Communication	  Operations	  
Communication operations in hypercube networks are often implemented by routing 
algorithms that iterate over the dimensions of the cube and execute in each step one 
point-to-point communication operation with the partner node at the other end of the 
respective edge. The result of the binary xor function with the processor numbers of 
sender and receiver node as arguments provides a routing path that can be used to 
transport the message. Therefore, messages can be delivered in algorithms following 
this pattern from each node to each other node in at most d communication steps 
where d is the dimensionality of the hypercube network. Such a choice of paths 
provides load balancing in the communication of several typical applications as well as 
it is optimal if all processors are used in a load balanced way. 

Algorithm 1 explains how the transport of messages between arbitrary processes 
works. First, all messages are stored in a buffer for outgoing messages of the sender 
process (msg_out). During the iteration over the different channels (i.e. the bits of rank 
numbers), some messages will be transmitted in each iteration step according to their 
routing path. For that, those messages that must be transferred through a certain 
channel will be copied from msg_out to a common transfer buffer (msg_next). The 
buffer msg_next of each process will be exchanged through the active channel of the 
current iteration step with the respective buffer of a partner process. Thereafter, all 
messages that had to be routed from this partner over this channel can be found in 
msg_next. They will be inspected there. Messages that are addressed to the receiving 
process will be copied into the buffer for incoming messages (msg_in) from where 
they can be accessed by the application code later. Messages that have to be 
forwarded further in one of the following iteration steps will be kept and put into 
msg_out. 

 
 
 
 
 
 
 
 
 
 



 

© CRESTA Consortium   Page 19 of 57 

 

Algorithm 1: Pseudocode of the crystal router algorithm, adapted from [18]. 
begin crystal_router 
  declare buffer msg_out;  /* buffer for messages to send    */ 
  declare buffer msg_in;   /* buffer for received messages   */  
  declare buffer msg_next; /* buffer for messages to send    */ 
                           /* in the next communication step */ 
  for each msg in msg_out do 
    if dest_rank(msg) == myrank then 
      copy msg into msg_in; 
  end for 
  for each dimension of the hypercube i = 0,...,d-1 do 
    for each message msg in msg_out do 
      if (dest_rank(msg)&myrank) ^ 2i) then 
        copy  msg into msg_next; 
    end for 
    exchange buffer msg_next with process(myrank ^ 2i)); 
    for each message msg in msg_next do 
      if dest_rank(msg) == myrank then 
        copy msg into msg_in; 
      if msg needs to be routed further then 
        copy msg into msg_out; 
    end for 
  end for 
end crystal_router 

We developed a synthetic benchmark for the analysis of the original crystal router 
algorithm. Its design has been based on the communication pattern in NEK5000.[19] 

The measurements have been done on KTH's system Lindgren described previously in 
Section 3.3. 

 
Figure 11: Benchmark of personalized all-to-all communication implemented with the 
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using 
MPI_IN_PLACE. Each process sends and receives data from 26 neighboring processes. 
The measurements have been executed with 4096 respectively 8192 processes. 

Figure 12 shows a comparison of the function MPI_Alltoallv as it is provided on the 
system with the crystal_router based implementation Cr_Alltoallv using the option 
MPI_IN_PLACE on 4096 and 8192 cores.  

The function Cr_Alltoall is faster for all message lengths, however, the speed is much 
higher especially for short messages. There are achieved until 2.5 orders of magnitude 
of the runtime. Also on 1024 and 2048 cores are faster speeds up to two orders of 
magnitude reached as shown in Figure 13.  
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Figure 12: Benchmark of personalized all-to-all communication implemented with the 
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using 
MPI_IN_PLACE. Each process sends and receives data from 26 neighboring processes. 
The measurements have been executed with 1024 respectively 2048 processes. 

The comparison with runs using separate send and receive buffers in Figure 14 
demonstrates that this way to use MPI_Alltoallv is much more efficient, while there is 
no large difference of the runtimes for Cr_Alltoallv. The speed difference between 
MPI_Alltoallv and Cr_Alltoallv is about one order of magnitude for short messages. 

 
Figure 13: Benchmark of personalized all-to-all communication implemented with the 
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using 
separate send and receive buffers. Each process sends and receives data from 26 
neighboring processes. The measurements have been executed with 1024 respectively 
2048 processes. 

The crystal_router has been chosen as a central algorithm for the development of a 
communication module inside the adaptive runtime system because it shows a superior 
exchange performance especially for short messages up to 4 kilobyte and large-scale 
parallel runs on recent computer systems. It showed a uniform scaling over the whole 
range of job sizes. This is possible because it bundles short messages into larger 
packages that will be transferred at once. The influence of latency is reduced in that 
way, and MPI library optimizations with respect to the bandwidth of larger message 
lengths become useable for shorter messages too. The crystal_router is sensitive 
slightly to the distance of the communicating processes and to a larger extend to the 
number of communication partners per process, i.e. the degree of sparsity in the 
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communication pattern. These comparatively small variations and the high overall 
efficiency that is achieved at the same time are an effect of the algorithm's properties. 
The message bundling and the algorithm design guarantee the message delivery 
within a fixed number of communication steps. Finally, the hypercube algorithm 
involves all nodes equally into the transport of messages during each communication 
step. 

4.4.2 Performance	  Monitoring	  of	  MPI	  Applications	  Using	  Event	  Flow	  Graphs	  
In addition to developing a monitoring component with online introspection capabilities, 
WP3 has also been exploring innovative methods for exascale performance monitoring 
of MPI applications. More specifically, WP3 has investigated methods for efficient 
performance data storage. Typical performance analysis tools either collect lossless 
traces with time-stamped events ordered in time, or generate profile reports with 
aggregated statistics. Profiling methods are very scalable, however, they do not keep 
the temporary nature of the data. In addition, they can miss microscopic performance 
problems due to the summarization process. In contrast, tracing methods give the 
whole picture of what happened with the application but they are infeasible at an 
exascale level due to the amount of data generated. Thus, WP3 has been exploring a 
new approach for application characterization using event flow graphs [11], [12] which 
balances the low overhead of profiling methods with the lossless properties of tracing.  

Event Flow Graphs are directed weighted graphs in where nodes represent the MPI 
calls performed by the process, and edges the transitions between those calls. In other 
words, the edges model the computation phases between two MPI calls. Thus, event 
flow graphs can keep the temporary nature of the events without storing any explicit 
temporal information such as timestamps. As these graphs keep the temporal order of 
events, they can serve as a compressed representation of event traces. We can 
reconstruct the ordered full sequence of MPI calls performed by the application by just 
traversing the graph from its initial to its final node.   

We implemented this approach within the monitoring component of the runtime system, 
and tested it with several mini-applications of the NERSC-8/Trinity Benchmark suite 
[13]: AMG, an algebraic multigrid solver for linear systems on unstructured grids; GTC, 
a 3D Particle-in-cell code (PIC) with a non-spectral Poisson solver used for gyrokinetic 
particle simulation of turbulent transport in burning plasma; MILC, a code for simulating 
four dimensional SU(3) lattice gauge theory to study quantum chromodynamics (QCD); 
SNAP, a proxy application that models the performance of a modern discrete ordinates 
neutral particle transport application, PARTISN [14]; MiniDFT, a plane-wave DFT mini-
kernel that computes self-consistent solutions for the Kohn-Sham equations; MiniFE, a 
mini-application that implements different kernels representative of implicit finite-
element applications; MiniGhost, a mini-application that implements a difference stencil 
across a homogenous three dimensional domain. 

The experiments were performed on a Cray XE6 with 2 twelve-core AMD MagnyCours 
at 2.1 GHz per node. The nodes are interconnected through a Cray Gemini Network, 
each of them having a total of 32 GB DDR3 memory. The benchmarks were compiled 
with Intel 12.1.5 and run using the small test case that is provided for each one of 
them. 

The first experiment performed measured the overhead introduced into the 
benchmarks by the monitoring component when collecting performance information, 
generating the graphs, and writing those graphs to disk. The experiments were run 
using strong scaling for all the benchmarks except for SNAP, MILC and GTC. Figure 
15 shows the percentage of overhead introduced over the total running time. As it can 
be seen in the figure, the overhead introduced to generate the event flow graphs is 
almost negligible, being always below 2%. 
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Figure 14: Percentage of overhead over total running time introduced in the NERSC-8/Trinity 

benchmarks when generating their event flow graphs. 

 

The second experiment measured the achieved compression ratio for each benchmark 
in terms of file size between our event flow graphs and a trace generated by the 
monitoring component. In other words, how many times smaller are our event flow 
graph files compared to trace files. It is important to remark that both graphs and traces 
contained exactly the same amount of information for each MPI call: call name, bytes 
sent or received, communication partner rank and callsite. Furthermore, each one of 
the event flow graphs can generate exactly the same traces as the ones collected for 
the comparison. The following table contains the average compression ratio for each 
one of the benchmarks: 

Table 1: Average compression ration with different benchmarks 

Benchmark Ranks 
Average 

compression 
ratio 

AMG 96 1.76 

GTC 64 46.60 

MILC 96 39.03 

SNAP 96 119.23 

MiniDFT 40 4.33 

MiniFE 144 19.93 

MiniGhost 96 4.85 

 

The results in the table demonstrate that event flow graphs are good representations of 
compressed traces, showing compression ratios ranging from around 2% up to 119%. 
In terms of file size, the amount of disk space required to store the traces for a run with 
96 cores of SNAP is 1.1GB whereas the space required for the event flow graphs is 
only 10 MB. 

Finally, we performed another set of experiments to measure the increase ratio in file 
size of graphs and traces as we increase the number of simulation time steps, since 
one of the main aspects affecting the amount of data generated when monitoring 
applications is their running time. Figure 16 shows that traces increase linearly with the 
number of simulation steps whereas event flow graphs do not. For most of the 
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benchmarks the small increment in the graph file size is caused by the addition of new 
edges to the graphs due to the execution of different call paths as the number of 
simulation steps increases. However, applications that execute the same loop over 
time such as the 5-stencil code [15] have constant event flow graph size irrespective of 
the number of simulation steps. For applications like that, the only difference between 
graphs from runs with different simulation times is their node cardinality. 

 
Figure 15: Increase in file size when increasing simulation steps. 

In summary, event flow graphs combine the low overhead of profiling methods with the 
lossless information capabilities of tracing, thereby, being a good compressed 
representation of event traces. We evaluated this new approach with several mini-
applications from the NERSC-8/Trinity Benchmark suite, achieving promising results of 
file compression ratios up to 119x with overheads below 2%. Moreover, the use of 
applications with longer running times would allow even better compression ratios 
because the same paths in the application are executed more times. Although this 
work is in an early stage, we believe it has strong potential to be a way towards 
developing performance analysis tools effective at an exascale level. 

4.4.2.1 Monitoring	  Component	  (Mon-‐C)	  -‐	  Outstanding	  Issues	  and	  Future	  Work	  
At the moment, the data accessible online via the Performance Introspection API is 
fixed and only provides accumulated statistics along time. In the future, we plan to 
extend the functionality of the monitoring component by first, allowing the runtime to 
configure online the data collected as it is being generated, and second, providing 
incremental data, that is, profile history or incremental profile snapshots. Thereby, 
removing the burden from the runtime to manage the incremental data collected since 
the last time it was accessed. For instance, the total time of a function per call, or 
certain loop metric per each loop iteration.  

We also want to implement a global performance view for the whole application. In 
other words, the mechanisms to allow one process access directly the performance 
state of other processes.  

The Performance Introspection API needs to be extended as well to query performance 
information per thread about OpenMP regions as the application runs. Moreover, the 
monitoring component should be extended to capture performance data from other 
programming models different than MPI such as PGAS languages or OpenMP Task 
extensions.  

Finally, another aspect that requires an extended effort due to its complexity is the re-
use of historical collected data to help the runtime in its decision making progress, as 
well as the automatic analysis of this data to detect performance bottlenecks. We want 
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to keep exploring efficient methods for storing and obtaining knowledge from historical 
data with performance analysis purposes. First, we are going to extend the 
Performance Introspection API with metrics computed from previous runs. For 
instance, allowing the runtime to access runs the average time for a certain function in 
previous runs of an application. Second, built on top of the current experiences gained 
from the CRESTA project regarding task scheduling, we are going to explore what 
useful knowledge and performance trends can be extracted from historical 
performance data to help the runtime in its decision making progress for task 
scheduling.  

4.4.2.2 Event	  Flow	  Graphs	  for	  MPI	  Monitoring	  -‐	  Outstanding	  Issues	  and	  Future	  Work	  
We will continue the study of event flow graphs in the monitoring and analysis of MPI 
parallel applications as it opens up many possibilities, from developing new tools based 
in the graph approach to the use of graphs for automatic performance analysis. First, 
we will explore the utilization of different algorithms for automatic graph analysis, for 
instance, detecting loops in the graphs and relating them to the application. Second, 
our current implementation of event flow graphs does not allow the reconstruction of 
traces with continuous data such as timestamps. Thus, we have started to explore 
statistical methods for reconstruction of sequences of continuous data, for example, 
hardware counters or timestamps. Finally, we also want to investigate inter-node trace 
compression across ranks. Our current version always generates one graph per 
process. However, it is usual in parallel applications that a set of processes has similar 
or identical behaviour. In such cases, the graphs generated by those processes will be 
similar as well, and thus, they can be compressed into a single graph that could be 
used to describe that whole set of processes with similar execution. 

4.4.3 Outstanding	  Issues	  and	  Future	  Work	  
The implementation of an adaptive runtime system in CRESTA clearly confirms the 
expected benefits from such software for parallel applications. Methods for 
performance improvements can be generalized and implemented separately from 
concrete applications. Given the availability of an API allowing a non-intrusive 
introduction of the runtime system in parallel codes, performance improvements can be 
achieved with moderate effort and without the need of extended program refactoring. 
On the other hand, larger refactoring cannot be avoided in order to achieve a good 
match between the computer architecture and the software design. The runtime system 
cannot completely encapsulate and hide aspects of the computer architecture from the 
application. However, future work on the CRESTA runtime system can contribute to the 
development of efficient approaches for large-scale applications. 

The current implementation focuses on MPI support. The use of other parallelization 
technologies in hybrid simulation codes is left to the application developer for the time 
being. Hybrid parallelization is, however, seen as a promising method for recent and 
upcoming parallel computer systems. The next step for the runtime system is therefore 
its extension in order to support MPI in combination with OpenMP, multi-threaded 
processes and OpenSHMEM with runtime services for dynamic load-balancing. 

At first, the mapping calculation has been implemented as global optimization with a 
central master process. This implementation will last only for a limited time and needs 
to be complemented by a component based on distributed parallel algorithms in order 
to compensate the increasing complexity of the graph operations for mapping and 
scheduling for larger systems. 

The current support for MPI will also be extended. The existing implementation uses a 
one-to-one relation between computational tasks and ranks within a certain load-
balancing context. Future work will provide an efficient solution that can place an 
arbitrary number of computational tasks from one load-balancing context into one MPI 
process. One approach could be the use of MPI endpoints as they are discussed in the 
MPI forum. 
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5 Performance	  Analysis	  Tools	  
The optimization process for parallel applications usually consists of five steps. The 
first step is debugging and correctness checking to ensure a correct program. The 
second step is to get a coarse view on the application behavior and find program 
phases that contain potential bottlenecks with profiling and automatic trace analysis. 
These program phases can then be reviewed in detail with a visual performance 
analysis. The gained information can then be used to optimize and rerun the 
application. 

 
Figure 16: Performance optimization and analysis workflow. 

 

5.1 Tracing	  New	  Paradigms	  and	  Energy	  
This section covers approaches to monitor and analyze new parallel paradigms and 
system metrics such as energy and network information.  

5.1.1 Tracing	  CoArray	  Fortran	  within	  the	  IFS	  Kernel	  
Partitioned Global Address Space (PGAS) models are available as library-based 
paradigms, e.g., Global Address Space Programming Interface (GASPI), SHMEM, as 
language extensions, e.g., UPC, Coarray Fortran (CAF).  

To exchange data between the different memory locations PGAS languages use RMA 
(Remote Memory Access) operations as their underlying communication substrates. 
Therefore, we investigated one-sided communication models and developed a generic 
event model to record RMA operations in the OTF2 trace format for range of one-sided 
APIs and libraries. Within CRESTA the Coarray Fortran co-design team was 
established to investigate the possibilities and potentials of this PGAS language to 
overlap communication and computation within a world leading production application 
like ECMWF’s Integrated Forecasting system (IFS). It turns out that the monitoring of 
Cray’s Coarray Fortran fine granular operations will be only possible by using a source-
to-source instrumentor or by indirect monitoring of the underlying communication 
library, i.e., monitoring of the Cray DMAPP library, due to the fact that the language 
constructs are processed in the compiler runtime. The same holds for the Cray UPC 
implementation.  
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AutomaPc	  
Trace	  

Analysis	  

Visual	  Trace	  
Analysis	  

OpPmizaPon	  ExecuPon	  

Debugging	  &	  
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On Cray systems Coarray Fortran and UPC routines make use of the libpgas library, 
which uses the DMAPP library as underlying communication library. The calls to this 
library can be intercepted with a library wrapping approach and one-sided 
communication operations can be recorded with the generic one-sided RMA event 
model (see Figure 17). Initialization and finalization with hierarchical unification can be 
done using MPI as underlying communication layer. Figure 18 shows the visualization 
of a short Coarray Fortran example with Vampir. It can be observed that there are tiny 
functions, which are called very frequently like for example dmapp_c_pset_test. For 
tiny functions, which are called very frequently, it is advisable to disable the detailed 
monitoring and to enable only profiling to prevent the monitoring system to be 
swamped by these functions or in worst case if the overhead is too high to disable the 
monitoring of this class of functions. 

 

 
Figure 17: Cray DMAPP software layers: interception of calls from the libpgas library to the DMAPP 

library by the library wrapping approach. 

 

The library wrapper for the DMAPP library can be created using vtlibwrappgen: 

vtlibwrapgen	  -‐f	  dmapp_filter.txt	  –l	  \	  
	  	  	  	  /opt/cray/dmapp/3.2.1-‐1.0400.3965.10.12.gem/lib64/libdmapp.so	  \	  
	  	  	  	  -‐g	  DMAPP	  -‐o	  dmappwrap.c	  \	  
	  	  	  	  /opt/cray/dmapp/3.2.1-‐1.0400.3965.10.12.gem/include/dmapp.h	  
	  
vtlibwrapgen	  -‐v	  -‐-‐build	  -‐o	  libvt_dmapp	  dmappwrap.c 

 

To use the generated library wrapper it must by linked dynamically like this: 

FC=	  vtf90	  
CC=	  vtcc	  	  
LIBS=	  -‐dynamic	  -‐lpgas-‐dmapp	  -‐lvt_dmapp	  \	  
	  	  	  	  -‐L/opt/cray/cce/8.0.4/CC/x86-‐64/lib/x86-‐64	  

CAF/UPC 

libpgas 

Library wrapping 

DMAPP 

Generic Hardware Abstraction Layer 
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Figure 18: Performance visualization of the Cray DMAPP communication library with Vampir. It is 

important to see that dmapp_c_pset_test is called very often and therefore should not be recorded 
in detail to reduce the overhead of the monitoring. 
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5.1.2 Tracing	  OpenACC	  Usage	  within	  the	  Nekbone	  Kernel	  
In the last years CUDA/OpenACC capable devices became more and more popular in 
the High Performance Computing area since they are promising more floating point 
operations per seconds than a typical CPU will ever provide in a user application. 

Host-side activities of OpenACC capable devices can be either monitored by 
instrumenting the library (if source code is available) or by using a shared library 
wrapper approach that uses the LD_PRELOAD mechanism.  

Besides the host-based recording, some activities of the kernel can be monitored 
directly. For example, kernel execution and data transfers. 

Monitoring of CUDA applications can be done either via the CUDA Profiling Tools 
Interface (CUPTI) or by the previously-mentioned library wrapping approach. CUPTI 
provides different APIs that can be used to get insight into the CPU and GPU behavior 
of CUDA applications. The benefits of CUPTI in comparison to the library wrapping 
approach are the reduced perturbation of the kernel execution and precise event 
(kernel) time information. This topic is also covered in more detail in [20]. 

Since version 1.3 Score-P is able to monitor CUDA activities via CUPTI and OpenACC 
activities via a shared library wrapping approach. The use of the new developed 
generic one-sided RMA event model allows us to monitor memory transfers between 
host and graphic card as one-sided communication. To enable the monitoring of these 
events the application has to be linked against the monitoring library and the following 
runtime environment variables must be set: 

SCOREP_CUDA_ENABLE=kernel,memcpy,driver,concurrent	  
SCOREP_CUDA_BUFFER=3M	  

 

5.1.3 Tracing	  Energy	  Consumption	  
Energy and power consumption are increasingly important topics in High Performance 
Computing. Wholesale electricity prices have recently risen sharply in many regions of 
the world, including in the European states, prompting an interest in lowering energy 
consumption of HPC systems. Environmental (and political) concerns also motivate 
HPC data centers to reduce their “carbon footprints”. This has driven an interest in 
energy-efficient supercomputing, as shown by the rise in popularity of the “Green 500” 
list of the most efficient HPC systems since its introduction in 2007. 

However, energy efficiency goes beyond hardware design. Delivering sustained but 
energy-efficient performance of real-world applications will require software 
engineering decisions, both at the system-ware level but also in the applications 
themselves. Such application decisions might be made when the software is designed 
or at runtime via an auto-tuning framework. 

For these to be possible, fine-grained instrumentation is needed to measure energy 
and power usage not just of overall HPC systems but also of individual components 
within the architecture. This information also needs to be accessible not just to 
privileged system administrators but also to individual users of the system, and in a 
way that is easily correlated with the execution of their applications. 

We describe ways that users can monitor the energy and power consumption of their 
applications when running on the Cray XC supercomputer range. We exploit some of 
the new power measurement and control features that were introduced in the Cray 
Cascade-class architectures. This topic is also covered in more detail in [21]. 

Score-P has been able to record external generic and user-defined hierarchical 
performance counters since version 1.2. This is done with a flexible “metric plugins” 
interface to address the complexity of machine architectures both today and in the 
future. The metric plugin interface provides an easy way to extend the core functionality 
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of Score-P to record additional counters, which can be defined in external libraries and 
loaded at application runtime by the measurement system. We built a Score-P metric 
plugin to monitor the application external energy and power information on Cray 
platforms during the application measurement to run asynchronously per node. 

To use the power monitoring plugin it must be build on the target system and the 
application must be instrumented at the desired level of detail. Setting the according 
environment variables activates this power monitoring plugin: 

export	  SCOREP_METRIC_PLUGINS=pm_plugin	  
export	  SCOREP_METRIC_PM_PLUGIN=”all” 

 

Figure 19 to Figure 21 show different visualizations of applications and benchmarks 
using the energy and power monitoring with Vampir. 

 
Figure 19: Load-idle benchmark with color-coded visualization of the load-idle regions (topmost 
timeline, load-idle regions are colored in green respectively in brown) and corresponding energy 
(second timeline), average power derived from energy (third timeline), and instantaneous power 

information (lowest timeline) with Vampir. 
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Figure 20: Color-coded visualization of HPL CUDA with Vampir. The topmost timeline shows the 

behavior of the processes, threads, and CUDA streams over time for an interval of 2s. The second 
timeline displays the instantaneous node power over time. The third timeline displays the 

instantaneous graphic card power and the lowest timeline displays the board exclusive power 
without the graphic card derived from the energy. 

 

 
Figure 21: Color-coded visualization of 4000 iterations of a hybrid version of Gromacs running on 

four nodes (with each node hosting one MPI process with six CPU threads and two GPU CUDA 
streams running on the accelerator) for an interval of 49.393s with according timelines for the 

events on all four nodes (topmost) and corresponding energy (second timeline), instantaneous 
power (third timeline), average board power derived from energy (fourth timeline), instantaneous 

accelerator power (fifth timeline), average accelerator power derived from accelerator power 
(lowest timeline) for the four nodes, and according statistics for the exclusive time on the right part 

of the figure. 

 

5.1.4 Tracing	  of	  Network	  Counters	  
With systems getting larger and more complex, networks within HPC systems are 
getting more and more complex as well. Since network problems or high network load 
can tremendously affect the behavior of parallel applications it is important to enable an 
analysis of the correlations between network and application behavior. 
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Similar to external energy counters, network statistics and counters can be monitored 
and integrated in an application trace with the Score-P metric plugin interface by using 
an according plugin that calls PAPI interface asynchronously per node. In addition, the 
according environment variables must be set. However, the available counters may 
vary on each platform: 

export	  SCOREP_METRIC_PLUGINS=APAPI	  
export	  \	  
	  	  	  	  SCOREP_METRIC_APAPI="AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_STALLED,\	  	  
	  	  	  	  AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_STALLED,\	  	  
	  	  	  	  AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_PKTS,\	  	  
	  	  	  	  AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_PKTS,\	  	  
	  	  	  	  AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_FLITS,\	  	  
	  	  	  	  AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_FLITS"	  

 

Figure 22 shows the correlation of application behavior and network information with 
Vampir. 

 
Figure 22: Vampir screenshot showing the correlated network activity. 

 

5.2 Selective	  Monitoring	  
Event tracing tools record each event of a parallel application in detail. Thus, it allows 
capturing the dynamic interaction between thousands of concurrent processing 
elements and enables the identification of outliers from the regular behavior. While 
single events are rather small, event-based tracing frequently results in huge data 
volumes. We developed and evaluated three approaches to address the large amount 
of collected data, in particular, for massively parallel or long running applications. First, 
using different levels of detail by enabling or disabling certain parallel paradigms or 
prevent the instrumentation of functions that are usually inlined by the compiler. 
Second, applying a rewind within the record event stream to subsequently remove 
iterations that are not of interest and only keep those that represent deviating behavior. 
Third, remove highly frequent short-running functions calls that can overwhelm any 
recording memory buffer while in the same time contribute very less to the analysis and 
understanding of the overall application behavior (see [22]). 
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5.2.1 Monitoring	  of	  Different	  Levels	  of	  Details	  For	  Each	  Process	  
To compare different levels of details it is possible to build different instrumented 
versions of an application. For a multi-paradigm application like Gromacs this could be: 

• Compiler instrumentation + MPI + OpenMP + CUDA, 
• Compiler instrumentation with filters + MPI – OpenMP + CUDA, 
• MPI + OpenMP + CUDA, or 
• MPI + CUDA. 

This can be achieved by setting the according instrumentation options in Score-P: 

scorep	  -‐-‐mpp=mpi	  -‐-‐thread=omp:pomp_tpd	  
scorep	  -‐-‐mpp=mpi	  -‐-‐thread=omp:pomp_tpd	  -‐-‐filter=<file>	  
scorep	  -‐-‐mpp=mpi	  -‐-‐thread=omp:pomp_tpd	  -‐-‐nocompiler	  
scorep	  -‐-‐mpp=mpi	  -‐-‐thread=none	  -‐-‐nocompiler	  

 

Currently the minimal instrumentation must contain MPI to get an entry point with 
MPI_Init and MPI_Finalize. In the future a wrapper that intercepts only MPI_Init and 
MPI_Finalize would reduce the minimal instrumentation further. 

You can use aprun to launch the differently instrumented application in MPMD mode. 
Shell scripts can be used to set different environment for each version: 

aprun	  -‐n	  pes	  [aprun_options]	  executable1	  [args_	  executable1]	  :	  \	  
	  	  	  	  	  	  -‐n	  pes	  [aprun_options]	  executable2	  [args_	  executable2]	  :	  \	  
	  	  	  	  	  	  -‐n	  pes	  [aprun_options]	  executable3	  [args_	  executable3]	  
	  
aprun	  -‐n	  12	  ./app1	  :	  -‐n	  8	  ./app2	  :	  -‐n	  32	  ./app3	  

 

Figure 23 shows the visualization of classical monitoring. In comparison, Figure 24 
shows the same application with different levels of detail for each node. 

 
Figure 23: Gromacs with four nodes each fully instrumented . 
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Figure 24: Gromacs with different levels of detail for each node. Reduction is relative to the 

according node in Figure 23. 

 

5.2.2 Selective	  Monitoring	  of	  Iterations	  
Selective monitoring is one approach to decrease the number of collected events. 
There are two main methods to select the recorded events: static and dynamic 
selection. For example, in iterative applications it is reasonable to avoid storing every 
single iteration, because most of them show more or less the same behavior. 
Therefore, the first method is to statically define which iteration is recorded and stored, 
e.g., every 10th or 100th iteration. With this it is still possible to analyze the behavior 
over time but the amount of recorded data is reduced to ten or one percent, 
respectively. However, iterations with either interesting behavior or a performance 
problem might be lost. The second method is to record every iteration and dynamically 
decide whether it is stored or discarded by evaluating its behavior, e.g., only store an 
iteration when its runtime varies from the average runtime by a defined offset. To 
realize such a subsequent removal of iterations we developed and applied a rewind 
method to rewind the recorded event stream to any pre-defined point (e.g. the 
beginning of the current iteration), which eliminates everything record after that point. 

Unfortunately, there are some analyses that will completely fail when even a single 
specific event is missing. One is the analysis of the communication behavior; especially 
for the Message Passing Interface (MPI). Whenever multiple MPI messages have the 
same communicator and message tag the associated events can only be matched by 
their order of occurrence, e.g., first send event with first receive event and so on. 
Consequently, if one send or receive event is missing, the correct matching of send 
and receive events and, therefore, the post-mortem communication analysis fails. 

Thus, we developed a way to circumvent those restrictions: An approach to make each 
MPI event distinguishable from others with the same communicator and message tag 
by introducing an unique sequential message identifier. With this approach it is 
possible to clearly identify, which MPI events are missing and, thus, it is possible to 
correctly match MPI send and receive calls even with missing MPI events. With this, it 
will become feasible to apply selective monitoring techniques without sacrificing a 
detailed communication analysis. 

To demonstrate the correct communication analysis, Figure 25 shows a screenshot of 
the visual analysis with Vampir. The fully monitored measurement can be seen on the 
upper half (white background); the measurement with selective monitoring on the lower 
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half (blue background). The timeline view with the events over time on the horizontal 
axis and the processes on vertical axis is shown on the left side. Both views are 
zoomed to the size of approx. six iteration blocks, so the difference between both 
measurements can easily be seen. On the right side is a visualization of the average 
message data rate in a communication matrix. From the communication matrix it can 
be seen that the communication analysis was done correctly even with missing MPI 
events. This topic is also covered in more in detail in [23]. 
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Figure 25: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom) 
event trace visualized with Vampir zoomed in to about 6 iteration blocks. 
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5.2.3 Selective	  Monitoring	  of	  Function	  Calls	  
Applying the same detail for each and every recorded event is prone to fail, especially, 
when tiny and often-used functions are monitored, e.g., inline functions and 
getter/setter class methods. Such highly frequent function calls can overwhelm any 
recording memory buffer while in the same time contribute very less to the analysis and 
understanding of the overall application behavior. We addressed the impact of high-
frequency function calls and developed a method to minimize the amount of stored 
high-frequency functions while still keeping outliers that have an impact on the 
application behavior. We developed and applied a hierarchical memory buffer that is 
capable to discard recorded function calls when their duration is smaller than a pre-
defined lower bound. 

We used a minimum duration of one microsecond, i.e., all function calls shorter than 
one microsecond are filtered. This way, all short-running functions are eliminated while 
all important routines including all communication routines remain in the trace. For all 
applications that heavily use short-running functions the trace sizes can be remarkably 
reduced down to 0.1% of the original trace size. For Gromacs, this approach reduced 
the trace size to about 1.7% while still keeping the coarse program behavior. Figure 26 
and Figure 27 show the resulting event trace visualized with Vampir. The fully 
monitored measurement can be seen on the upper half of each Figure (white 
background); the measurement with duration filtering on the lower half (blue 
background). The timeline view with the events over time on the horizontal axis and the 
processes on vertical axis is shown on the left side. On the right side is a function 
summary showing the number of function invocations. 

Both figures demonstrate that the filtering of short-running functions does not alter the 
general application behavior; except for the missing short-running functions. The 
function summary in Figure 5 shows that the total number of function calls is reduced 
from about 4 billion to 68 million. Figure 6 additionally shows the process timeline of 
process zero in detail; with the calling depth on the vertical axis. The process timeline 
demonstrates that the highly frequent function calls on calling depth 10 and 11 are 
effectively eliminated while the outliers that run longer are still contained in the trace. 
This topic is also covered in more detail in [22]. 

 

 
Figure 26: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom) 

event trace visualized with Vampir. 
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Figure 27: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom) 

event trace visualized with Vampir zoomed to an application phase of about 3.8ms. 

 

5.3 Scalability	  
Event tracing delivers most detailed information allowing a profound post-mortem 
analysis of the parallel behavior. But, this comes with the cost of very large data 
volumes. Handling such a tremendous amount of data has always been a challenge in 
event tracing and is getting even more demanding with the rapid increase of 
processing elements. Since, the collected data is traditionally stored in one file per 
processing element, in particular, the rising number of resulting event trace files is one 
of the most urgent challenges. The limits of current parallel file systems allow handling 
only about ten or twenty thousand of parallel processes without any special treatment. 

5.3.1 Using	  External	  Libraries	  
Writing one file per processing elements (e.g. check points or result files) does not 
scale to large systems since the sheer number of files overcharges the capabilities of 
today’s file system meta-data servers. Two approaches that are dealing with the file 
system limitations and are applied to event tracing are SIONlib [25] and the I/O 
Forwarding Scalability Layer (IOFSL) [26]. Both approaches try to merge many logical 
files into a single or a few physical files. While SIONlib relies on the file system’s 
capability to handle large sparse files to pre-allocate segments for the logical file 
handles within a single file, the I/O Forwarding and Scalability layer, as the name 
suggests, provides an I/O forwarding layer to offload I/O requests to dedicated I/O 
servers that can aggregate and merge requests before passing them to the actual file 
system. 

Both approaches have proved to support monitoring at high scales. VampirTrace 
successfully recorded a full system run on the Jaguar system with 200.000 processes 
and Scalasca used SIONlib to record a full system run on the Jugeen system with 
almost 300.000 processes. 

Since version 1.0 Score-P supports the usage of SIONlib but was restricted to pure 
MPI applications. With the upcoming release, Score-P 1.4 will support hybrid programs, 
as well. 

5.4 Experiences	  with	  Target	  Applications	  
In general, we recommend starting to monitor the different applications with a coarse-
grained approach, e.g., profiling or monitoring only the communication behavior. These 
approaches can be used to find program phases that contain potential bottlenecks or 
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interesting behavior. These program phases can then be reviewed in detail with a 
complete analysis approach. 

5.4.1 Nek5000	  
We monitored a MPI parallel version of Nek5000 with a jet data input set. The 
performance visualization with Vampir can be seen in Figure 28. 

 
Figure 28: Performance visualization of Nek5000 parallelized with MPI. 

5.4.2 HemeLB	  
We monitored a MPI parallel version of HemeLB. The performance visualization with 
Vampir can be seen in Figure 29. 

  
Figure 29: Performance visualization with Vampir of HemeLB parallelized with MPI. 
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5.4.3 OpenFoam	  
We monitored an MPI parallel version of OpenFoam including the I/O interactions. The 
performance visualization with Vampir can be seen in Figure 30. 

 
Figure 30: Performance visualization with Vampir of OpenFoam parallelized with MPI. 

5.4.4 IFS	  
We monitored a hybrid version of IFS parallelized with MPI and OpenMP running with 
dataset T1023. The performance visualization of the application behavior with Vampir 
can be seen in Figure 31. Figure 32 shows the analysis of an un-optimized 
communication pattern where all processes wait on rank zero (see also [24]). 

 
Figure 31: Performance visualization with Vampir of a hybrid IFS T1023 run. 
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Figure 32: Performance visualization with Vampir of IFS parallelized with MPI. The communication 
analysis uncovers an un-optimized communication pattern where all processes wait for rank zero. 

5.4.5 Gromacs	  
Within the coarse-grained analysis of Gromacs we detected that Gromacs uses a lot of 
tiny short-running functions such as getter/setter class methods and helper functions. 
While these tiny functions are usually automatically inlined by the compiler, the 
automatic instrumation for tracing prevents the inlining. By itself, this provides event 
tracing tools the opportunity to record an application’s behavior very detailed. However, 
if these functions are heavily used they might overwhelm the capacity of the recording 
memory buffers. While the recording of high-frequency functions enables a complete 
analysis, usually, they contribute very little to the analysis and understanding of the 
overall application behavior. 
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Next to the tremendous amount of tracing data that is generated by these tiny function 
calls, the overhead of monitoring these functions introduces even more bias. Within a 
monitoring overhead study for Gromacs, using MPI parallelization with 144 processes, 
built-in fftw, 10000 iterations, running on a Cray XC30, and monitored with Score-P 
1.3b, we instrument Gromacs in three different ways and executed these versions to 
investigate the impact of instrumentation on runtime overhead. The first version (a) of 
Gromacs uses the native and common compiler function instrumentation, i.e., each 
function will be instrumented and function inlining is prevented. For a second version 
(b) of Gromacs, we intend to prevent instrumentation of all inline functions. Therefore, 
we compare the set of symbols of the original application (A) with the set of symbols of 
the fully instrumented application without any symbols from the monitoring system (B). 
The set of originally inlined functions (I) is the difference of set A from B. For Gromacs 
the size of I is 1781. A third version (c) of Gromacs uses selective compiler 
instrumentation with an extension of filter (b) by the fifteen most frequently called 
functions. 

The runtime and overhead results of these three different instrumented versions of 
Gromacs are presented in Table 2. As reference for this study we used the original and 
unmodified version of Gromacs. To approximate the overhead for entering and leaving 
of each instrumented function for the fully instrumented version we used a runtime filter 
that excludes all functions from recording. For this scenario we only reached 26.9 % of 
the original performance, i.e., even with our dynamic duration filtering technique on a 
fully compiler-instrumented application like Gromacs the achieved performance has 
only little significance for a later performance analysis. Recording all events either by a 
profiling or tracing approach for this fully instrumented application without any runtime 
filtering makes the situation even worse. In this case we only reach 1% of the original 
performance, the approximate size of the out coming trace file would be 18 T Byte, and 
we need at least a monitoring buffer of about 180GByte for each process to avoid any 
disturbing I/O operations. With these reference values we can conclude that the 
common-used default function-compiler instrumentation is the basic cause for a 
decreased performance and absolutely inappropriate for a detailed performance 
analysis. For the second version, the selective compiler instrumentation that prevents 
instrumentation of inline functions, we reach a performance of 92.9% by using a 
runtime filtering of each function (overhead for entering and leaving the instrumented 
functions), and respectively 67.8% of the original performance for the recording of all 
instrumented functions. With the last version, which uses the extended instrumentation 
filtering specification, we were able to increase the performance to 79% of the original 
performance while recording the instrumented functions in detail. The resulting size of 
the complete trace is still 37GByte with a total of 1,412,518,862 events. This topic is 
also covered in more detail in [22]. 

Gromacs instrumentation version Walltime Gromacs' internal 
performance metric 

Rel. 
performance 

Original unmodified version 14.98s 57.683ns/day 100.0% 

Fully-compiler-instrumented (a) 
with runtime filtering 55.64s 15.531ns/day 26.9% 

Fully-compiler instrumented (a) 
with profiling 1483.1s 0.583ns/day 1.0% 

Selective-compiler instrumentation (b) 
with runtime filtering 16.12s 53.610ns/day 92.9% 

Selective-compiler instrumentation (b) 
with tracing 22.11s 39.094ns/day 67.8% 

Extended selective-compiler 
instrumentation (c) with tracing 18.95s 45.598ns/day 79.0% 

Table 2: Monitoring overhead study for different instrumented versions of Gromacs. 
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This study led to the selective monitoring approaches demonstrated in Section 5.2. In 
addition, Gromacs was recorded with multiple paradigms such as MPI, OpenMP, 
CUDA, and energy counters simultaneously to capture the complete application 
behavior (See Section 5.2.1).  

  

5.5 Outstanding	  Issues	  and	  Future	  Work	  
This section lists current restrictions and outstanding features that will be covered in 
future releases: 

The approach to wrap the DMAPP library to capture UPC behavior via the libpgas 
library (see Section 5.1.1) is realized as a prototype within VampirTrace. This feature is 
scheduled for a Score-P version greater than 1.4. 

The approach to capture the OpenACC usage within an application is currently realized 
with an LD_PRELOAD mechanism and the CUPTI interface since the OpenACC tool 
interface is not standardized yet. The PGI compiler from version 14.9 provides a 
preliminary interface. Its usage is currently implemented in a branch version of Score-P 
and scheduled for a Score-P release version greater than 1.4. 

For the monitoring of energy and power consumption (see Section 5.1.3) an additional 
thread is forked to run on the CPU set of process zero. Thus, the sampling frequency 
of the energy and power sources is important. However, these sources usually have a 
refresh rate of 10Hz or lower. Thus, the sampling frequency of these sources can be 
kept low as well. 

The monitoring of different levels of detail for different processes (see Section 5.2.1) 
currently requires a lot of manual work. The future idea is to build and run the different 
versions automatically and use a profiling run to determine optimal instrumentation. 
This feature is not scheduled for Score-P so far. 

While the rewind feature for a selective monitoring of iterations (see Section 5.2.2) is 
implemented in Score-P the dynamic runtime criteria are not implemented yet. This 
feature is not scheduled for Score-P so far. 

The selective monitoring of function calls (see Section 5.2.3) relies on the prototype 
implementation of the OTFX tracing library. A release version of OTFX and an 
according integration into Score-P is not scheduled so far.  
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6 Debuggers	  
During the CRESTA project, each of the applications was invited to submit their 
impressions of the needs of debugging, for current usage and for their future usage – 
including which platforms and programming models would be of evolving interest. The 
results of this were summarized in Year 1 deliverables. 

During Year 2 and Year 3, more active co-design activities were pursued with ECMWF 
and UCL.    

In particular, the IFS experimentation with Coarray Fortran was assisted by debugging 
of Cray CAF by Allinea tools. Feedback on scalability, usability and integration with the 
bespoke user workflow at ECWMF was received and helped to direct modifications and 
new workflow oriented tool perspectives. 

The second major focus, UCL HemeLB ultimately provided a significant opportunity for 
the tools to prove their value as the HemeLB hit an unexpected roadblock which was 
resolved by tools.   

6.1 Allinea	  Tools	  
Allinea Software develops software tools HPC developers – including Allinea DDT, the 
parallel debugger, and Allinea MAP, the parallel profiler.  

Both tools use a scalable tree for command of tool daemons – this has been used for 
debugging 700,000 core jobs, and frequently sees use at over 100,000 cores.  

Within HPC software, progress can stumble due to two unpredictable interruptions: 
defects and performance. Both are beyond ordinary comprehension at scale. How can 
a bug be fixed if that bug only arises at (say) 100,000 cores? How can the performance 
of an application be understood when the behaviour at 100 cores is no indicator of the 
behaviour at 100,000?  Old tricks such as print statement debugging, or timer-printing 
profiling, do not help. 

The challenges to solve these problems are (1) to provide low overhead tools – 
enabling an application to run within typical resources at the typical problem size; and 
(2) to convey the problem that the application has, even at extreme scale. For 
debugging, how can the differences (needles in haystacks) be identified; for profiling, 
how can typical issues such as poor balance, or bad I/O be best shown? 

6.1.1 Allinea	  DDT	  
Allinea DDT is the scalable parallel debugger used by 70% of the top HPC centers – 
and present on the larger systems within the CRESTA project. The tool was made 
available to CRESTA participants for the duration of the project at maximum scale. 

It uses its scalable control tree to handle the largest applications, stepping, or setting 
breakpoints in fractions of a second even on the largest machines. One major 
innovation in the tool is that it presents data to the user that helps to highlight the 
differences.  

6.1.2 Allinea	  MAP	  	  
Complementing Allinea DDT,is the Allinea MAP tool – which we also chose to apply to 
co-design codes. 

Allinea MAP is a sampling based profiler – and thus tackles performance in a different 
manner to tracing oriented profiling as seen with Vampir. Both approaches provide 
valuable insight.  

The profiler is able to execute applications without requiring instrumentation or 
recompilation. It aims to present information that can help with the majority of 
performance problems.  

Allinea MAP is an adaptive sampling profiler, adapting the frequency of samples over 
time, which keeps perturbation to a minimum. Sampling records the process stack, 
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counters of communication, time, memory usage, I/O and the CPU instruction types. 
This enables source line correlation of information such as the achieved level of 
vectorization within a code. Codes typically experience considerably lower than 5% 
performance impact.  The key to scalability is to realize that a profiler does not need to 
save everything - only what is necessary to understand the problem. Samples from 
each process are merged through the tree at the end of the job, retaining stacks, and 
min-max, standard deviation and mean of MPI, I/O and CPU metrics. Our contribution 
is in scalable visualization techniques – for example, a timeline in Allinea MAP shows 
the min, max, and mean – with the shading of the metric line indicating the standard 
deviation – enabling balance across processes to be understood. 

6.2 HemeLB	  with	  Allinea	  Tools	  
Over 100 of the systems in the Top 500 list in November 2013 had greater than 30,000 
cores – and hence codes that wish to be “scalable” must scale to multiple thousands – 
or multiple tens of thousands of cores. 

The reality of many large systems is that very few applications strive to achieve this 
scalability. HemeLB was an exception: the goal of reaching scale has a direct impact 
on the simulation that can be undertaken.  In order to simulate a most significant area 
of the brain, the Circle of Willis, 50,000 cores and higher were highly desirable. 

We will focus on one case during this quest for scalability – and a significant outcome. 

6.2.1 Initial	  Performance	  Profiling	  with	  Allinea	  MAP	  
When we first deployed the application, Allinea MAP detected low percentages of 
vectorization – visible immediately on our timeline. Our user error is common with 
codes shared across the community - it is important to have quick methods to identify 
simple mistakes. After resolving this through reconfiguration, a second pattern was 
identified. 

 
Figure 33: The increased flat-lining/troughs in the CPU floating point between 256 and 512 process 

cases 

In Figure 34, note the lower green timelines – representing amount of CPU floating 
point over time (with min,max and mean across all processes) - the runs at 256 
processes and 512 processes are superimposed vertically. The pattern of interest is 
the “troughs” of CPU floating point operations (the zero-height points on the green line) 
– which have increased in significance at 512 processes, and represent greater share 
of time. The two glitches in MPI for each case (blue sawtooth edges) – are also being 
investigated. 



 

© CRESTA Consortium   Page 45 of 57 

 

 
Figure 34: Zooming into the source code in a trough 

The inline source code and the parallel stack display revealed the issue to be I/O. 
Reducing the frequency of periodic stores restored performance and enhanced 
scalability. This is leading the team at UCL to have a better understanding of the 
impact of I/O on the code on larger systems. 

In this case, fixes were obvious and did not require deeper insight, but in other cases 
this will help to detect where problems lie and enable the use of targeted insight tools 
within the CRESTA framework such as TU Dresden’s Vampir to explore specific MPI 
usage patterns within a smaller more tractable part of the application. 

6.2.2 Solving	  a	  50,000	  Cores	  Crash	  
After having made performance improvements, the developers then attempted to take 
HemeLB through to high-scale – running at 3k, 6k, 12k, 24k cores successfully.  The 
next attempt, to run the application 49,152 cores crashed repeatedly – and the 
application was unable to progress the science as a result.  

At this point, Allinea and UCL explored the issue together. It required access to 
debugging that could handle this scale – Allinea DDT was installed and ready to use on 
the system.  

We were subsequently able to reproduce the issue on a 24,576 core run which we use 
here for illustration of the method, only.  

Initially it was not clear how far through the application the crash was, but it was 
believed to be an error within the 3rd party ParMETIS partitioner. We ran the application 
through with DDT once, to confirm this scenario, and then recompiled this core library 
to enable debug information to be provided by the compiler. 
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Figure 35: Allinea DDT window showing 80% pf processes crashing at the same ParMETIS line 

This initial view identified almost 80% of the processes as crashing at the same 
identical line of ParMETIS (illustrated above with the single blue line through the source 
code).  In Figure 36, 17,223 processes have crashed at xyzpart.c line 556. This should 
be a “well proven” line of code in this well used library.  

This particular line of code suggested only a few potential options – invalid arrays, 
invalid array access, or general data corruption as a side effect of earlier errors. 

Examining the array indexing into allpicks on the right hand side of the expression. We 
could see that the data was sensible and consistent (given by the straight horizontal 
line graph of ntsamples and npes): 

  

 
Figure 36: Allinea DDT window showing that  the data was sensible and consistent 
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We then examined the expression used in the indexing and evaluated this within the 
debugger: 

 
Figure 37: Allinea DDT Window showing that indexing is overflowing 

As could be clearly seen: the indexing was overflowing. 

We were able to identify that indexes were by default 32-bit – which (given 15 bits are 
used by the processor count alone) is not sufficient for such common indexing / 
sampling multiplications in Petascale applications. 

Having exactly identified the cause, the application was recompiled to use 64 bit 
indexing (a difficult to find configuration option to ParMETIS) – and then successfully 
completed the largest simulation ever achieved. 

This problem was solved extremely quickly – and contrasts with what was expected to 
be a near impossible task. Interactive, debugging was as effective and fast as 
debugging only a handful of processes. 

The bug and fix have been fed back to the ParMETIS team. 

A case study on this result has been published on the CRESTA website, and widely 
coverage by the industry press. 

6.3 MPI	  Correctness	  Check	  of	  HemeLB	  With	  MUST	  
Discussions with the developers of the CRESTA co-design applications highlighted 
HemeLB as an interesting and challenging test case for MUST. The application makes 
heavy use of MPI derived datatypes. This includes a continuous creation and 
destruction of datatypes at runtime, whereas most applications create their datatypes 
once in an initialization function. This behavior distinguishes HemeLB from existing test 
cases for MUST. Particularly, the use of the struct datatype that HemeLB is employing 
is known to decrease type matching performance in MUST, and the continuous 
creation of datatypes stresses a component of MUST that received no scalability 
services yet. As a result, our experiments serve to: 

• Check whether MUST’s checks operate correctly, 
• Check whether the adaptive communication in HemeLB exhibits no hidden MPI 

usage errors, and 
• Analyze scalability of MUST. 

Initial runs with MUST yielded two deviations from expected behavior: First, the 
correctness logs of MUST could become lengthy. Second, MUST reported suspicious 
type matching errors or deadlocks. An investigation of the log file revealed a defect in 
the filtering and aggregation rules that condense correctness reports of multiple 
processes. We applied a correction to MUST to remove this defect. Afterwards, we 
could trace the suspicious correctness errors to a second defect in MUST’s datatype 
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handling. This defect resulted from an incorrect handling of reused identifiers. A second 
correction then provided correct behavior in MUST. 

The remaining items in MUST’s correctness log highlight the use of MPI_Waitall 
directives with a count value of 0. This is correct application behavior, but suspicious, 
which motivates us to highlight it as a warning with MUST. Additionally, we observe a 
missing MPI_Type_free directive for a datatype created with 
MPI_Type_create_resized. We still investigate the source of this report and whether it 
highlights a small improvement option for HemeLB’s cleanup, or whether is a spurious 
message. 

Figure 38: Runtime with MUST divided by runtime of a reference run as “Slowdown” highlights the 
impact of the fan-in. 

Figure 39: Increasing event rates (from maximum number of analyses on a MUST tool process) 
highlight the cause for increasing slowdowns.  
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Figure 40: Time (in seconds) per event analysis highlights no scalability problems.  

To investigate the overhead of MUST for this challenging application, we use a simple 
bifurcation dataset that is known to scale well to 768 MPI processes. We run our tests 
on the Sierra Cluster at the Lawrence Livermore National Laboratory. With a reduced 
feature set of MUST that focuses on point-to-point analysis and its associated type 
matching checks we run experiments at increased scales. This feature set serves the 
primary operation type in HemeLB well. Figure 41 presents MUST overheads for 
increasing scale for this test case. We use different fan-ins for the MUST configuration 
to control how many tool processes of MUST serve one application process. The lower 
the fan-in, the lower the tool overhead (at the expense of extra compute resources). 
The measurements highlight that even with the increased datatype matching costs for 
the complex derived datatypes we can handle HemeLB at increased scale. Note that 
the experiment setup is a strong scaling test, i.e., the rate at which MPI processes of 
HemeLB issue MPI operations increases with scale (Figure 40). Thus, MUST overhead 
increases with scale, since tool processes handle increasing loads. The slowdown for 
768 and 1024 processes already highlights that the slowdown becomes about constant 
when the application reaches its saturation point, i.e., when it cannot increase its MPI 
operation rate anymore. Figure 41 highlights this notion by computing the runtime that 
MUST consumes per event analysis. This value is about constant across scale and 
highlights no linear increase that would denote a scalability problem (at lower scale it is 
higher due to idle times on the tool processes). 

6.4 Outstanding	  Issues	  and	  Future	  Work	  
Development of Allinea tools continues as commercially supported products – and the 
roadmap has taken on board feedback from experience within CRESTA. The R&D 
team continues to work on next generation architectures and programming models. 
Opportunities for R&D that were not ready to be addressed during CRESTA such as 
fault-tolerant tools and checkpoint ready tools, or domain specific language support are 
still in early days, which support our decision to not include these at the time, but may 
see new R&D projects in the near future. 

With the test cases of MUST, its benchmark experiments, and our co-design 
experience, we see good scalability for MUST. We detail benchmark experience in 
D3.7 “Frameworks for Exascale Applications” separately. The behavior of HemeLB to 
continuously create derived MPI datatypes highlights one option for improvement in 
MUST. To better support this scenario MUST could provide scalability services for its 
management of user defined MPI resources (communicators, process groups, 
requests, windows, datatypes). Another notion is that MUST can exhibit noticeable 
slowdowns even with low fan-ins, e.g., about 8 for the experiments with HemeLB and a 
fan-in of 2. Depending on the application use case, especially for long running 
applications, this can decrease the applicability of MUST. Performance improvements 
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for the event handling and processing in MUST and GTI could further decrease 
slowdowns. 
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7 Conclusions	  
In this deliverable, we described the experiences gained with applying the methods and 
tools developed in WP3 to benchmarks and co-design CRESTA applications. We 
presented the experience with benchmarks and application for each WP3 task. For 
each framework developed in WP3, a critical review of outstanding issues was 
performed and future research directions were outlined. 

We presented first the experiences gained with the PGAS programming model by 
developing a Coarray Fortran benchmark suite, using the Coarray Fortran in the IFS 
application to calculate Legendre Transforms and implementing Fast Fourier 
Transforms in UPC. We reported the first results using the targetDP programming 
framework in Ludwig, a lattice Boltzmann application. 

We investigated the use of compiler support for GPU programming by porting the 
Nek5000 code to multi-GPU systems and present the performance results. We 
described the use of OpenACC in the GROMACS application. We used the first 
implementation of an auto-tuning system for OpenACC codes to tune the OpenACC 
version of the Nek5000 code. The co-design work, involving the development of the 
adaptive runtime system and Nek5000, was described, and the use of different 
components of the runtime systems in benchmarks was presented. 

The new features of Score-P and Vampir (support for new programming systems and 
new hardware counters, selective monitoring and enhanced scalability) have been 
used in CRESTA applications: Nek5000, OpenFOAM, IFS, HemeLB, Gromacs. 

The Allinea DDT and MAP tools and MUST correctness checker have been used in 
HemeLB CRESTA application to detect and analyze software errors and correctness 
on large scale HemeLB simulations. 
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Annex	  A. GROMACS/OpenACC	  Porting	  
This Annex contains a report on the GROMACS/OpenACC porting work prepared by 
the Cray Programming Environment compiler development team. 

A.1 Summary	  of	  Cray	  GROMACS	  OpenACC	  Work	  
During the summer of 2013, Cray, Inc. employed a summer intern to attempt a port of 
GROMACS 4.6.2-dev to use OpenACC in place of CUDA.  This effort continued 
intermittently into the early part of 2014. 

Our intern worked the problem from two angles.  He attempted to write OpenACC from 
scratch starting with the CPU version while at the same time taking the low-level CUDA 
version and replacing specific CUDA functions with equivalent OpenACC.  Instead of 
compiling the function with the Nvidia nvcc CUDA compiler, it was compiled with the 
Cray compiler (CCE).  We had a "working" version of the latter method first and 
dropped the rewrite idea. Replacing specific CUDA with OpenACC had the advantage 
of reusing the CUDA optimizations.  

We got the OpenACC version to the point where performance was within 10-15% of 
the CUDA version but the more we worked on it, the more we considered it a prototype 
rather than implementation.  The CUDA version through macros and C++ methods, 
has 24 versions of the compute intensive kernel called "nbnxn".  At runtime, depending 
on the input data file, various versions of the kernel are called, some of which short-
circuit large amounts of work. Our OpenACC kernel was only one of the 24-kernels in 
the CUDA version, therefore not close to an actual working version of Gromacs.  In 
addition, it was difficult to verify if accuracy of outputs were sufficient and some were 
clearly wrong.  For debugging, we used only one input file: rf.tpr. 

The prototype can be used as an example of how to replace CUDA code with 
OpenACC code, but replacing the entire CUDA version will require significant rewrite.  
An OpenACC version has the advantage of being more independent of specific GPU 
architectures, requiring less maintenance than the current low-level CUDA version.  
CCE did add significant capability specifically for Gromacs in 8.3 such as: 

• compile-time setting of max regs 
• access to CUDA functions 
• access to fast, low precision rsqrt instructions 
• access to atomics 
• kernel launch taking into account use or non-use of shared-memory setting 

optimal  cache-configuration.   

The best performing versions of CUDA and OpenACC made use of OpenMP threading 
in the CPU portion of the Gromacs. 

A.2 Details	  
The compute intensive part of GROMACS kernel nbnxn contains 24 CUDA versions, 
and one is chosen at runtime by this call: 
nb_kernel	  =	  select_nbnxn_kernel(cu_nb-‐>kernel_ver,	  nbp-‐>eeltype,	  bCalcEner,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   plist-‐>bDoPrune	  ||	  always_prune);	  
 

which choses the specific kernel from a 6x2x2 dimensioned decision table.  The first 
dimension has 6 entries (0=k_nbnxn_cutoff, 1=k_nbnxn_rf, 2=k_nbnxn_ewald_tab, 
3=k_nbnxn_ewald_tab_twin, 4=k_nbnxn_ewald, 5=k_nbnxn_ewald_tab_twin).  The 
second dimension indicates whether energy is computed (0=energy not computed, 
1=energy computed), and the third dimension indicates whether pruning is used (0=no 
pruning, 1=pruning). 
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The actual CUDA kernels executed at runtime are driven by the input data set.  The 
energy version of each kernel appears to be invoked every 100-iterations (beginning 
with 1). 

The kernel decision table is below: 
nb_default_kfunc_ptr[eelCuNR][nEnergyKernelTypes][nPruneKernelTypes]	  =	  
{	  
	  	  	  	  {	  {	  k_nbnxn_cutoff,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_cutoff_prune	  },	  
	  	  	  	  	  	  {	  k_nbnxn_cutoff_ener,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_cutoff_ener_prune	  }	  },	  
	  	  	  	  {	  {	  k_nbnxn_rf,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_rf_prune	  },	  
	  	  	  	  	  	  {	  k_nbnxn_rf_ener,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_rf_ener_prune	  }	  },	  
	  	  	  	  {	  {	  k_nbnxn_ewald_tab,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_tab_prune	  },	  
	  	  	  	  	  	  {	  k_nbnxn_ewald_tab_ener,	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_tab_ener_prune	  }	  },	  
	  	  	  	  {	  {	  k_nbnxn_ewald_tab_twin,	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_tab_twin_prune	  },	  
	  	  	  	  	  	  {	  k_nbnxn_ewald_tab_twin_ener,	  	  	  	  	  	  	  	  k_nbnxn_ewald_twin_ener_prune	  }	  
},	  
	  	  	  	  {	  {	  k_nbnxn_ewald,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_prune	  },	  
	  	  	  	  	  	  {	  k_nbnxn_ewald_ener,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_ener_prune	  }	  },	  
	  	  	  	  {	  {	  k_nbnxn_ewald_twin,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_twin_prune	  },	  
	  	  	  	  	  	  {	  k_nbnxn_ewald_twin_ener,	  	  	  	  	  	  	  	  	  	  	  	  k_nbnxn_ewald_twin_ener_prune	  }	  
},	  
};	  
 

The actual call to the CUDA kernel is: 
nb_kernel<<<dim_grid,	   dim_block,	   shmem,	   stream>>>(*adat,	   *nbp,	   *plist,	  
bCalcFshift);	  
 

where "nb_kernel" is dynamically set to one of the 24 actual CUDA kernels. 

The OpenACC version call is: 
acc_test(aatomdata,anbparam,aplist,acc_bcalcfshift,nblock,CL_SIZE*CL_SIZE,shm
em,plist-‐>bDoPrune||always_prune,bCalcEner,d_tmp,bcalc,tshift);	  
 
where "acc_test" is static.  All data movement in the OpenACC version is still done with 
CUDA though this could easily be converted to use OpenACC. 

For input data file rf.tpr, 2000-iterations of "rf" are called with the energy version called 
every 100 trips (beginning with 1). 

The developed OpenACC kernel used the CUDA kernel "rf" as a model because input 
data file rf.tpr was used.  However, the "energy" version of "rf" was not implemented, 
and therefore "energy" results are not complete.  

It was felt much optimization work had already been done so there was advantage to 
reusing this optimization work.  The alternative would have been to begin with the CPU 
version and add OpenACC directives. 

Because there is only one of 24 CUDA kernels developed using OpenACC, the Cray 
effort is not a complete solution, but could be used as a model going forward.  Source 
changes would be required to mimic the CUDA kernel selection that chooses the 
specific kernel.  Alternatively, the kernel checks could be done at runtime though with 
probably performance cost.  Because CUDA is low level, maintenance costs may be 
cheaper transitioning between GPU generations with OpenACC compared to CUDA.  
Other functions currently done in CUDA, such as explicit data movement between CPU 
and GPU, could be transitioned to OpenACC. 

A.3 Modified	  Files	  
The following files were modified for this OpenACC experiment (all relative to the base 
directory): 
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• OpenACC call to synchronize CUDA and OpenACC streams.  Note this file has 
file extension of "cu" and therefore is processed by nvcc, not a C compiler such 
as craycc (part of CCE).  Because of this, the usual OpenACC interface file 
(openacc.h), could not be referenced but instead a direct file path to openacc.h 
was used as a workaround: 
src/mdlib/nbnxn_cuda/nbnxn_cuda_data_mgmt.cu	  

• Device is initialized with OpenACC: 
src/kernel/mdrun.c	  

• Invokes the OpenACC kernel multiple times: 
src/mdlib/nbnxn_cuda/nbnxn_cuda.cu	  

• The actual OpenACC kernel code: 
src/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.c 

• OpenACC types added: 
src/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.h	  

A.4 OpenACC	  Performance	  Issues	  
When functional, performance was poor relative to CUDA.  Analysis showed 
performance suffered relative to the CUDA version for the following reasons: 

• shared memory was not used to contain arrays defined and referenced by 
different threads within a block, causing long latency global memory references 

• poor occupancy caused by more than 128-registers per thread 
• register spilling for same reason 
• use of double precision reciprocal sqrt functions along with casts between 

single and double. 
• poor occupancy caused by amount of shared-memory usage (after eventual 

usage of shared-memory) 
• The CUDA version uses a block of 8x8x1 whereas OpenACC has no official 

way to indicate block geometry.  The OpenACC code converts a 64x1x1 block 
shape to 8x8x1 through extra code. 

A.5 Optimizations	  
The following optimizations were made: 

• To get similar arithmetic performance as the nvcc option "-use_fast_math", 
CCE compiler option -hfp4 is used allowing rsqrt instruction instead of the much 
slower discrete sqrt and divide operations.  Option -hfp4 also allows for general 
use of rounded versions of arithmetic instructions equivalent to nvcc options:  

-‐ftz=true	  -‐prec-‐div=false	  -‐prec-‐sqrt=false	  	  
• Use of the fast, low precision rsqrt instruction requires defensive coding style to 

handle denormals explained in: https://developer.nvidia.com/content/cuda-pro-
tip-flush-denormals-confidence 

• CCE compiler option -‐Wx,"-‐-‐maxrregcount=64" (new with CCE 8.3) should 
be used to set GPU kernel max registers to 64 which increases occupancy to 
0.5 (up from 0.25) with CCE default 128 max registers.  This new 8.3 CCE 
capability allows options to be passed to ptxas from the CCE invocation. 

• Similar to the CUDA version, shared memory is used to contain arrays defined 
and referenced by different threads within a block. 

• The CUDA version uses a block of 8x8x1 whereas OpenACC has no official 
way to indicate block geometry.  The OpenACC code converts a 64x1x1 block 
shape to 8x8x1 through extra code. 
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• At kernel launch, the OpenACC runtime uses amount of kernel shared-memory 
to choose the optimal L1/shared-memory ratio configuration among: 
1. 16KB L1 and 48KB shared-memory 
2. 48KB L1 and 16KB shared-memory 
3. 32KB L1 and 32KB shared-memory 

• The single large CUDA kernel was split into 3 OpenACC kernels lessening the 
max register count for the remaining dominate kernel. 

• Use of OpenMP threading in addition to GPU threading improved performance.  
Wall-clock speedup was approximately 2x when using 8 OpenMP threads as 
measured on both Cray XK7 and Cray XC30 systems.  

A.6 Next	  Steps	  
The routine containing the OpenACC kernel "acc_test" in file:  

src/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.c	  

requires integration into the Gromacs framework.   

Further OpenACC work is required to cover the 24 possible CUDA kernels including 
the 6 eeltype's, with and without and pruning. 

 

 

	  


