

Copyright © CRESTA Consortium Partners 2014

D3.11	
 –	
 Experiences	
 With	

Benchmarks	
 and	
 Co-­‐design	

Applications	

WP3:	
 Development	
 Environment	

Due date: M38

Submission date: 30/11/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization KTH

Version: 1.0

Status Final

Author(s):

Xavier Aguilar, Jing Gong, Stefano Markidis, Michael
Schliephake (KTH), Alan Luis Cebamanos, Alan Gray, David
Henty (EPCC), Alistair Hart, Harvey Richardson (Cray UK) Jens
Doleschal, Tobias Hilbrich, Michael Wagner (TUD), George
Mozdzynski (ECWMF), David Lecomber (Allinea)

Reviewer(s) Jan Westerholm (ABO), Achim Basermann (DLR)

Dissemination level

PU PU

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 05/08/2014 First skeleton version of the deliverable Stefano Markidis (KTH)

0.2 15/08/2014 Added Alan’s Contribution Stefano Markidis (KTH)

0.3 17/09/2014 Added Luis’ Contribution Stefano Markidis (KTH)

0.4 19/09/2014 Added Michael and Xavier Contribution Stefano Markidis (KTH)

0.5 26/09/2014 Added Tobias’ contribution Stefano Markidis (KTH)

0.6 30/09/2014 Added Jens and Michael Contribution Stefano Markidis (KTH)

0.7 03/10/2014 Combining all contributions Stefano Markidis (KTH)

0.8 4/11/2014 Changing Performance Monitoring
part, added Allinea Contribution

Stefano Markidis (KTH)

0.9 25/11/2014 Response to internal reviewers Stefano Markids (KTH)

1.0 27/11/2014 Final version for submission Lorna Smith (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 PURPOSE	
 ..	
 3	

2.2	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 3	

3	
 PROGRAMMING	
 MODELS	
 ..	
 4	

3.1	
 COARRAY	
 FORTRAN	
 BENCHMARK	
 SUITE	
 ..	
 4	

3.2	
 COARRAY	
 FORTRAN	
 IN	
 IFS	
 ...	
 5	

3.3	
 FFT	
 IN	
 UPC	
 ..	
 7	

3.4	
 TARGETDP	
 IN	
 THE	
 LUDWIG	
 CODE	
 ..	
 9	

3.5	
 OUTSTANDING	
 ISSUES	
 AND	
 FUTURE	
 WORK	
 ..	
 10	

4	
 COMPILATION	
 AND	
 RUNTIME	
 ENVIRONMENTS	
 ...	
 11	

4.1	
 ACCELERATING	
 NEK5000	
 WITH	
 OPENACC	
 ...	
 11	

4.1.1	
 Outstanding	
 Issues	
 and	
 Future	
 Work	
 ...	
 12	

4.2	
 OPENACC	
 CO-­‐DESIGN	
 WITH	
 GROMACS	
 ...	
 12	

4.3	
 AUTOTUNING	
 OF	
 AN	
 OPENACC	
 VERSION	
 OF	
 NEK5000	
 ...	
 13	

4.3.1	
 Implementation	
 ..	
 13	

4.3.2	
 Outstanding	
 Issues	
 and	
 Future	
 Work	
 ...	
 17	

4.4	
 HYBRID	
 AND	
 ADAPTIVE	
 RUNTIME	
 SYSTEM	
 WITH	
 NEK5000	
 ..	
 17	

4.4.1	
 Fast	
 collective	
 MPI	
 communication	
 ..	
 17	

4.4.2	
 Performance	
 monitoring	
 of	
 MPI	
 applications	
 using	
 event	
 flow	
 graphs	
 	
 21	

4.4.3	
 Outstanding	
 issues	
 and	
 future	
 work	
 ..	
 24	

5	
 PERFORMANCE	
 ANALYSIS	
 TOOLS	
 ...	
 25	

5.1	
 TRACING	
 NEW	
 PARADIGMS	
 AND	
 ENERGY	
 ..	
 25	

5.1.1	
 Tracing	
 CoArray	
 Fortran	
 within	
 the	
 IFS	
 Kernel	
 ...	
 25	

5.1.2	
 Tracing	
 OpenACC	
 Usage	
 within	
 the	
 Nekbone	
 Kernel	
 ...	
 28	

5.1.3	
 Tracing	
 Energy	
 Consumption	
 ...	
 28	

5.1.4	
 Tracing	
 of	
 Network	
 Counters	
 ...	
 30	

5.2	
 SELECTIVE	
 MONITORING	
 ..	
 31	

5.2.1	
 Monitoring	
 of	
 different	
 levels	
 of	
 details	
 for	
 each	
 process	
 ..	
 32	

5.2.2	
 Selective	
 Monitoring	
 of	
 Iterations	
 ..	
 33	

5.2.3	
 Selective	
 Monitoring	
 of	
 Function	
 Calls	
 ...	
 36	

5.3	
 SCALABILITY	
 ..	
 37	

5.3.1	
 Using	
 External	
 Libraries	
 ..	
 37	

5.4	
 EXPERIENCES	
 WITH	
 TARGET	
 APPLICATIONS	
 ..	
 37	

5.4.1	
 Nek5000	
 ...	
 38	

5.4.2	
 HemeLB	
 ..	
 38	

5.4.3	
 OpenFoam	
 ..	
 39	

5.4.4	
 IFS	
 ...	
 39	

5.4.5	
 Gromacs	
 ...	
 40	

5.5	
 OUTSTANDING	
 ISSUES	
 AND	
 FUTURE	
 WORK	
 ..	
 42	

6	
 DEBUGGERS	
 ...	
 43	

6.1	
 ALLINEA	
 TOOLS	
 ..	
 43	

6.1.1	
 Allinea	
 DDT	
 ...	
 43	

6.1.2	
 Allinea	
 MAP	
 ..	
 43	

6.2	
 HEMELB	
 WITH	
 ALLINEA	
 TOOLS	
 ..	
 44	

6.2.1	
 Initial	
 Performance	
 Profiling	
 with	
 Allinea	
 MAP	
 ..	
 44	

6.2.2	
 Solving	
 a	
 50,000	
 cores	
 crash	
 ..	
 45	

6.3	
 MPI	
 CORRECTNESS	
 CHECK	
 OF	
 HEMELB	
 WITH	
 MUST	
 ..	
 47	

6.4	
 OUTSTANDING	
 ISSUES	
 AND	
 FUTURE	
 WORK	
 ..	
 49	

7	
 CONCLUSIONS	
 ...	
 51	

Copyright © CRESTA Consortium Partners 2014

8	
 REFERENCES	
 ...	
 52	

ANNEX	
 A.	
 GROMACS/OPENACC	
 PORTING	
 ..	
 54	

Index	
 of	
 Figures	

Figure 1: Example of co-design in the CRESTA development environment 2	

Figure 2: Point-to-point performance of remote writes on Cray XE6 5	

Figure 3: Point-to-point performance of remote writes on Cray XC30 5	

Figure 4: Scalability of different versions of the IFS code .. 6	

Figure 5: First Algorithm to calculate the FFT with UPC .. 7	

Figure 6: Second algorithm to calculate the FFT with UPC .. 8	

Figure 7: Relative parallel speed-up of the different UPC FFT implementations. 9	

Figure 9: Scaling of the Nekbone application on Titan supercomputer. 12	

Figure 10: Performance of a hand-tuned (left) by Markidis et al. and autotuned (right)
OpenACC NekBone ... 16	

Figure 11: Performance ratio of auto-tuned, hand-tuned and default OpenACC settings
 .. 17	

Figure 12: Benchmark of personalized all-to-all communication implemented with the
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using
MPI_IN_PLACE. Each process sends and receives data from 26 neighboring
processes. The measurements have been executed with 4096 respectively 8192
processes. .. 19	

Figure 13: Benchmark of personalized all-to-all communication implemented with the
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using
MPI_IN_PLACE. Each process sends and receives data from 26 neighboring
processes. The measurements have been executed with 1024 respectively 2048
processes. .. 20	

Figure 14: Benchmark of personalized all-to-all communication implemented with the
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using
separate send and receive buffers. Each process sends and receives data from 26
neighboring processes. The measurements have been executed with 1024 respectively
2048 processes. ... 20	

Figure 15: Percentage of overhead over total running time introduced in the NERSC-
8/Trinity benchmarks when generating their event flow graphs. 22	

Figure 16: Increase in file size when increasing simulation steps. 23	

Figure 17: Performance optimization and analysis workflow. 25	

Figure 18: Cray DMAPP software layers: interception of calls from the libpgas library to
the DMAPP library by the library wrapping approach. .. 26	

Figure 19: Performance visualization of the Cray DMAPP communication library with
Vampir. It is important to see that dmapp_c_pset_test is called very often and therefore
should not be recorded in detail to reduce the overhead of the monitoring. 27	

Figure 20: Load-idle benchmark with color-coded visualization of the load-idle regions
(topmost timeline, load-idle regions are colored in green respectively in brown) and
corresponding energy (second timeline), average power derived from energy (third
timeline), and instantaneous power information (lowest timeline) with Vampir. 29	

Figure 21: Color-coded visualization of HPL CUDA with Vampir. The topmost timeline
shows the behavior of the processes, threads, and CUDA streams over time for an
interval of 2s. The second timeline displays the instantaneous node power over time.

Copyright © CRESTA Consortium Partners 2014

The third timeline displays the instantaneous graphic card power and the lowest
timeline displays the board exclusive power without the graphic card derived from the
energy. .. 30	

Figure 22: Color-coded visualization of 4000 iterations of a hybrid version of Gromacs
running on four nodes (with each node hosting one MPI process with six CPU threads
and two GPU CUDA streams running on the accelerator) for an interval of 49.393s with
according timelines for the events on all four nodes (topmost) and corresponding
energy (second timeline), instantaneous power (third timeline), average board power
derived from energy (fourth timeline), instantaneous accelerator power (fifth timeline),
average accelerator power derived from accelerator power (lowest timeline) for the four
nodes, and according statistics for the exclusive time on the right part of the figure. .. 30	

Figure 23: Vampir screenshot showing the correlated network activity. 31	

Figure 24: Gromacs with four nodes each fully instrumented 32	

Figure 25: Gromacs with different levels of detail for each node. Reduction is relative to
the according node in Figure 24. .. 33	

Figure 26: Gromacs on 144 processes fully monitored (top) and selectively monitored
(bottom) event trace visualized with Vampir zoomed in to about 6 iteration blocks. 35	

Figure 27: Gromacs on 144 processes fully monitored (top) and selectively monitored
(bottom) event trace visualized with Vampir. .. 36	

Figure 28: Gromacs on 144 processes fully monitored (top) and selectively monitored
(bottom) event trace visualized with Vampir zoomed to an application phase of about
3.8ms. ... 37	

Figure 29: Performance visualization of Nek5000 parallelized with MPI. 38	

Figure 30: Performance visualization with Vampir of HemeLB parallelized with MPI. . 38	

Figure 31: Performance visualization with Vampir of OpenFoam parallelized with MPI.
 .. 39	

Figure 32: Performance visualization with Vampir of a hybrid IFS T1023 run. 39	

Figure 33: Performance visualization with Vampir of IFS parallelized with MPI. The
communication analysis uncovers an un-optimized communication pattern where all
processes wait for rank zero. .. 40	

Figure 34: The increased flat-lining/troughs in the CPU floating point between 256 and
512 process cases .. 44	

Figure 35: Zooming into the source code in a trough ... 45	

Figure 36: Allinea DDT window showing 80% pf processes crashing at the same
ParMETIS line .. 46	

Figure 37: Allinea DDT window showing that the data was sensible and consistent .. 46	

Figure 38: Allinea DDT Window showing that indexing is overflowing 47	

Figure 39: Runtime with MUST divided by runtime of a reference run as “Slowdown”
highlights the impact of the fan-in. .. 48	

Figure 40: Increasing event rates (from maximum number of analyses on a MUST tool
process) highlight the cause for increasing slowdowns. ... 48	

Figure 41: Time (in seconds) per event analysis highlights no scalability problems. ... 49	

Copyright © CRESTA Consortium Partners 2014

	

Index	
 of	
 Tables	

Table 1: Average compression ration with different benchmarks 22	

Table 2: Monitoring overhead study for different instrumented versions of Gromacs. . 41	

© CRESTA Consortium Page 1 of 57

1 Executive	
 Summary	

This deliverable reports on the experiences gained with applying the methods and tools
developed in WP3 to benchmarks and co-design CRESTA applications developed in
WP6. We describe the experience with benchmarks and application for each WP3 task
(“Programming models”, “Compilation and runtime environments”. “Performance
analysis tools”,”Debuggers”). For each framework developed in WP3, a critical review
of outstanding issues is performed and future research directions are outlined.

We describe first the experiences gained with the PGAS programming model by
developing a Coarray Fortran benchmark suite, using the Coarray Fortran in the IFS
application to calculate Legendre Transforms and implementing Fast Fourier
Transforms in UPC. In addition, we report the first results using the targetDP
programming framework in Ludwig, a lattice Boltzmann application.

We investigate the use of compiler support for GPU programming by porting the
NekBone, a skeleton version of Nek5000 code, to multi-GPU systems and present the
performance results. We describe the co-design work with OpenACC in GROMACS.
We use a first implementation of an auto-tuning system for OpenACC code to tune the
OpenACC version of the Nek5000 code. The co-design work, involving the
development of the adaptive runtime system and Nek5000, is described, and the use of
different components of the runtime systems in benchmarks is presented.

The new features of Score-P and Vampir (support for new programming systems and
new hardware counters, selective monitoring and enhanced scalability) are used in
CRESTA applications: Nek5000, OpenFOAM, IFS, HemeLB, Gromacs.

The Allinea DDT and MAP tools and MUST correctness checker are used in HemeLB
CRESTA application to detect and analyze software errors and correctness on large-
scale HemeLB simulations.

© CRESTA Consortium Page 2 of 57

2 Introduction	

This deliverable describes on the experiences gained with applying the methods and
tools developed in WP3 to benchmarks and co-design CRESTA applications. We
describe the experience with benchmarks and application for each WP3 task:

• Programming models.
• Compilation and runtime environments.
• Performance analysis tools.
• Debuggers.

The design of the different frameworks for exascale applications has been guided by
the software co-design process within the CRESTA project. Figure 1 presents an
example of the co-design activity aimed at the design of some of the WP3 frameworks.

Figure 1: Example of co-design in the CRESTA development environment

Within the CRESTA project, two applications, IFS (from CRESTA WP6) and the
computation of Fast Fourier Transform (from CRESTA WP4), use Partitioned Global
Address Space (PGAS) languages Cray Co Array Fortran (CAF) and Unified Parallel C
(UPC) in selected regions of the codes. Cray CAF and UPC are based on the DMAPP
API. The performance monitoring and analysis of the PGAS code in IFS and in the FFT
require support for Cray CAF and UPC languages in Score-P and Vampir. In particular,
it is important to understand when and how the remote memory access occurs in the
applications to optimize the code. For this reason, a support for Vampir and Score-P for
PGAS languages has been designed and implemented in prototype version. Both
application and Vampir and Score-P developers worked together giving reciprocal
feedback during the development of the tools and application. In addition, the
development of debuggers and of the run-time systems also benefited from the support
for PGAS in Vampir and Score-P. Since the performance monitoring tools and
debuggers are based on similar technologies, the experience gained with Vampir and
Score-P can be be used in developing debugger support for Cray PGAS languages.
Because the CRESTA runtime system has a performance-monitoring component, it
benefited from improvement of Score-P and Vampir.

The goal of this deliverable is to present experiences gained with applying the methods
and tools developed in WP3 [1] to benchmarks and co-design CRESTA applications.
The deliverable is organized as follows. The third section presents the experience
gained with PGAS programming model in benchmarks and IFS application. The fourth

© CRESTA Consortium Page 3 of 57

section reports the use of OpenACC in the Nek5000 application, the use of the auto-
tuner for OpenACC in the Nek5000 application, and the co-design work with Nek5000
to develop the CRESTA adaptive runtime system. The fourth section describes the use
of Vampir and Score-P new features in Nek5000, HemeLB, OpenFOAM, IFS, Gromacs
applications. The fifth section presents the use of Allinea DDT and MAP tools and
MUST correctness checker in HemeLB. Finally the sixth section concludes the
deliverable summarizing the results.

2.1 Purpose	

The goals of this deliverable are:

• To present experiences with different benchmarks and applications with the
PGAS programming model.

• To present the use of the targetDP framework in the Ludwig application.
• To present use of compiler support for GPU programming with OpenACC in

Nek5000 code.
• To present the use of CRESTA auto-tuner for OpenACC codes in Nek5000
• To present the co-design work involving the development of the CRESTA

adaptive runtime system and Nek5000 and the experiences with different
component of the runtime system in benchmarks.

• To present the experiences with Score-P and Vampir with different CRESTA
applications.

• To present the use of Allinea MAP and MUST in the HemeLB CRESTA
application.

2.2 Glossary	
 of	
 Acronyms	

AVX Advanced Vector eXtension
CAF Coarray Fortran
D Deliverable
DSL Domain Specific Language
CUDA Compute Unified Device Architecture
GPU Graphics Processing Units
IFS Integrated Forecast System
ILP Instruction Level Parallelism
IOSL I/O Forwarding Scalability Layer
IPM Integrated Performance Monitoring
MPI Message Passing Interface
NUMA Non Uniform Memory Access
OTF2 Open Trace Format 2
PGAS Partitioned Global Address Space
PIA Performance Introspection API
RMA Remote Memory Access
SIMD Single Instruction Multiple Data
TBON Tree-Based Overlay Network
TLP Thread Level Parallelism
UPC Unified Parallel C
VVL Virtual Vector Length
WP Work Package

© CRESTA Consortium Page 4 of 57

3 Programming	
 Models	

In CRESTA WP3, we focused on investigating the use of the Partitioned Global
Address Space (PGAS) programming model in benchmarks and applications. PGAS
languages such as Unified Parallel C [2] have been the subject of much attention in
recent years, in particular due to the exascale challenge. There is a widespread belief
that existing message-passing approaches such as MPI will not scale to this level due
to issues such as memory consumption and synchronization overheads. PGAS
approaches offer a potential solution as they provide direct access to remote memory.
This reduces the need for temporary memory buffers, and may allow for reduced
synchronization and hence improved message latencies. Some modern distributed
memory architectures allow for remote memory access directly over the interconnect,
meaning the PGAS model maps directly onto the underlying hardware. PGAS features
have been introduced into the Fortran 2008 standard with coarrays [3]. Programming
using coarrays has many potential advantages compared to MPI. Amongst these are
simplicity, compiler checking and scope for automatic optimization of communications
by the compiler. Coarrays can also be introduced incrementally to existing MPI codes
to improve performance-critical kernels.

3.1 Coarray	
 Fortran	
 Benchmark	
 Suite	

Since Fortran coarrays are in their relative infancy, and full compiler support has only
recently emerged, it is important to understand the performance characteristics of
parallel operations. Benchmark results are important as they guide both the
applications programmer and the compiler or library developer. Applications
programmers can make informed decisions about the most appropriate parallel
features to use, and estimate performance in advance. Compiler and library developers
can easily measure the performance characteristics of their implementation, and target
areas of weakness. Although these developers will have their own internal performance
tests, user-driven benchmark suites are very important as they can highlight those
features of most interest to applications programmers.

An initial prototype Fortran coarray benchmark suite had been produced by EPCC [4],
and this was further developed, distributed and evaluated under CRESTA. The
benchmark measures:

1. single contiguous point-to-point read and write;
2. multiple contiguous point-to-point read and write;
3. strided point-to-point read and write;
4. all basic synchronization operations;
5. halo-swapping in a multi-dimensional regular domain decomposition;
6. reference results from MPI for selected key operations.

The benchmark is available on the WEB [5] and initial performance results on the Cray
XE6 were reported at the 2012 Cray User Group [6]. The benchmark made it clear
when the compiler was able to pattern-match the communications calls and optimize
them using techniques such as vectorization. It also uncovered a performance bug
which was reported to Cray and fixed for later compiler releases.

When the new Cray XC30 was released, the benchmark was used to compare the
performance of its new ARIES network with the GEMINI network of the previous XE6
system. These results were presented at EASC2014 [7], showing significant
improvements in bandwidth and latency. For example, in Figure 2 and Figure 3 we
show the time taken for remote writes of small amounts of data with Fortran coarrays
on these two platforms, using three different kinds of synchronization: global (sync all),
point-to-point (sync images) and no synchronization. The equivalent MPI results are
also measured. These results show that although the latency of the network has not
changed significantly, coarray performance on the XC30 is improved due to better
synchronisation times. This conclusion was confirmed by direct measurements of these
overheads taken in the synchronization section of the benchmark suite. It is also
interesting to note the MPI performance is extremely good: the MPI standard has been

© CRESTA Consortium Page 5 of 57

in existence for two decades and library implementers are very good at optimizing its
performance, especially for small message sizes.

Figure 2: Point-to-point performance of remote writes on Cray XE6

Figure 3: Point-to-point performance of remote writes on Cray XC30

The benchmark is still under development. For example, we plan to include a new
synchronization mechanism (event post and event wait) recently introduced into the
Fortran standard.

3.2 Coarray	
 Fortran	
 in	
 IFS	

IFS is a numerical weather prediction application within the CRESTA project. This is a
production code used to provide medium-range weather forecast products up to 10 to
15 days ahead.

© CRESTA Consortium Page 6 of 57

For IFS the focus of developments in CRESTA was primarily to use Fortran2008
coarrays within OpenMP parallel regions to overlap computation with communication
and thereby improve performance and scalability. The importance of this research is
such that if these developments are successful then the IFS model may continue to
use the spectral method to 2030 and beyond on an exascale sized system. This
research is further significant as the techniques used should be applicable to other
hybrid MPI/OpenMP codes with the potential to overlap computation and
communication.

Within the CRESTA project we used Fortran2008 coarrays to overlap these
communications with the computations in the Legendre and Fourier transforms. For the
Legendre transforms this is being done per wave number within an OpenMP parallel
region. In the original approach the computation and communication are done
sequentially, with no overlap. In the new scheme (using coarrays) each thread is
computing and then communicating its computed data to the respective tasks of its
‘communicator’ group. While Fortran2008 has no coarray groups/teams construct it is
nevertheless trivial to compute a mapping to a set of image numbers. Experience has
shown that the Cray DMAPP library is not thread safe with the CCE compiler version
8.0.6 and earlier releases and a workaround has been used to locate coarray transfers
in OMP CRITICAL SECTIONs with a small performance penalty for doing so today.
The coarray puts are expected to be non-blocking, and only waited on for completion
on a subsequent SYNC IMAGES statement. For the direct Legendre transforms a
similar approach is used, the original approach and new coarray approach. Here the
coarray gets in each thread are clearly blocking until data arrives and then progress
onto computation. We we have focused on the Legendre transform and the PGAS
approach to overlap computation with communication, by performing these in a single
OpenMP parallel region which operates over spectral wave numbers. A similar scheme
is employed for calculating the Fourier transforms in IFS. Instead of spectral wave
numbers, the Fourier transforms operate over latitudes, where tasks in Fourier space
have a subset of latitudes and a subset of atmospheric levels. In Figure 4, from Ref.
[9], the performance improvement from the coarray optimizations (LCOARRAYS=T
means all the optimizations are on), which peak at 21% at around 40K cores then dip
about 5% after this.

Figure 4: Scalability of different versions of the IFS code

Figure 12. Original semi-Lagrangian transport, showing a
wind plot, and greater number of red grid points upwind of
MPI task 11.

B. PGAS semi-Lagrangian scheme

Only the halo grid points (marked red) that are used are
communicated by Fortran2008 coarray transfers. No MPI
communication is done at all here. Also no max wind blue
halo is needed with this approach, with a big saving on the
volume of data communicated. The icing on the cake is that all
the coarray transfers are done in the same OpenMP parallel
region as the computation of the trajectory and subsequent
interpolations. A true win-win situation.

Figure 13. New PGAS (Fortran2008 coarray) semi-Lagrangian
transport.

IV. IFS PERFORMANCE MEASUREMENTS

For an IFS model execution it is crucial that an operational 10
day forecast is completed in under one hour wall time, which is
equivalent to 240 forecast days per day (FD/D). Figure 14
shows the performance achieved in April 2012 after just 5-6
months into the CRESTA project. The latest benchmark release
of IFS called RAPS12 (corresponding to an ECMWF internal

source cycle 37R3) was chosen for runs on HECToR, a Cray
XE6, having the Gemini interconnect and Interlagos AMD
cores (32 per node). The Cray compiler environment (CCE)
version was 7.4.4 at the time.

A. T2047L137 Hydrostatic model
The performance was first measured without any source
modifications on up to 64K cores and reached asymptotic
performance of 280 FD/D at around 30K cores. With the
CRESTA optimizations performance was significantly
improved with asymptotic performance of 350 FD/D at around
50K cores. These optimizations included both MPI
optimizations (labeled LCOARRAYS=F) mainly to the wave
model and the Legendre transform coarray optimizations
(labeled LCOARRAYS=T) described in section II which also
included the MPI optimizations. In figure 15 we show the
performance gain from using all the coarray optimizations
enabled at run time by namelist setting LCOARRAYS=true.
The coarray optimizations are those described earlier in
sections II and III in the 3 functional areas, namely, Legendre
transforms, Fourier transforms and semi-Lagrangian. The runs
in figure 15 were also performed using an updated CCE=8.0.6
release which was both more performant and reliable, now
achieving over 500 FD/D on about 50K cores. It should be
noted that this level of performance is in excess of 2 times the
requirement for a T2047L137 operational forecast of 240 FD/D
which is clearly encouraging.

Figure 14. T2047L137 RAPS12 IFS (CY37R3) forecast model
performance on HECToR (Cray XE6), CCE=7.4.4, April 2012.

In figure 16 we show the performance improvement from the
coarray optimizations, which peak at 21% at around 40K cores
then dip about 5% after this. An analysis of the detailed gstats
timers in IFS suggest that rather than the coarray optimization
degrading after 40K cores, the MPI code improved relative to
the coarray code. It will be interesting to see how the coarray
optimizations perform when we run a larger T3999 case
(1Q2013/RAPS13/38R2) where there will be greater
opportunity for overlap between computation and
communication at that resolution as shown in figure 3. In

657

© CRESTA Consortium Page 7 of 57

3.3 FFT	
 in	
 UPC	

Within CRESTA, we examined two fundamentally different approaches to performing
the transpose operation of a 3D-FFT [10] in UPC. Since the advent of Cray Baker
systems, Cray delivers a network system with support for remote memory access,
meaning that data located on remote processes can be accessed without involvement
of the remote processor. This feature is available to end-users on Cray machines
through the Distributed Memory Application (DMAPP) API, which supports compiler-
based or library based one-sided communication. The model captures the idea of
having several processes running the same code in its own address space, but also
having access to remote memory segments of other processes through PUT/GET
semantics. DMAPP provides a layer for interfacing with the remote memory access
capacity of the hardware, and the functions provided by DMAPP can be roughly divided
into three different variants:

• blocking functions: A process may resume execution after a call to a blocking
function, only after the results of this operation is globally visible to the entire
system.

• Non-blocking explicit: The explicit non-blocking function returns a
synchronization identifier, which may be used to determine when the effects of
the operation are globally visible.

• Non-blocking implicit: For an implicit non-blocking function, the results are
only guaranteed to be globally visible after a synchronization call by the initiator
of the function.

We examined the traditional approach to transposing the data, by using a regular
blocking transpose operation at the end of computation, and we compare this with a
non-blocking transpose operation, where we send data to the other processes as soon
as it is available. These two versions use the blocking functions of DMAPP, and the
non-blocking implicit functions, respectively.

One may calculate the 3-D Fourier transform of a matrix A of dimension n_x X n_y X
n_z by a series of 1-D Fourier transforms, one in each direction, x, y, z. To parallelize
the FFT algorithm, the data in the matrix A is distributed over the processes, such that
each process has a set of x-y planes of A in local memory. This means that we may
perform a number of 2-D Fourier transforms of all the planes local to each process,
without any form of communication. However we need to transpose the matrix A in
order to perform the final and last step, the one-dimensional FFT in the Z-direction.
After the transpose operation, this final 1-D FFT operation may be performed without
any communication. Figure 5 outlines the basic, major steps of the 3D-FFT algorithm.

Figure 5: First Algorithm to calculate the FFT with UPC

cessed without involvement of the remote processor [4, ?].
This feature is available to end-users on Cray machines through
the Distributed Memory Application (DMAPP) API, which
supports compiler-based or library based one-sided commu-
nication.

The model captures the idea of having several processes
running the same code in its own address space, but also
having access to remote memory segments of other processes
through PUT/GET semantics.

DMAPP provides a layer for interfacing with the remote
memory access capacity of the hardware, and the functions
provided by DMAPP can be roughly divided into three dif-
ferent variants:

1. blocking functions

A process may resume execution after a call to a block-
ing function, only after the results of this operation is
globally visible to the entire system.

2. non-blocking explicit

The explicit non-blocking function returns a synchro-
nization identifier, which may be used to determine
when the e↵ects of the operation are globally visible.

3. non-blocking implicit

For an implicit non-blocking function, the results are
only guaranteed to be globally visible after a synchro-
nization call by the initiator of the function.

In this paper we examine two fundamentally di↵erent ap-
proaches to performing the transpose operation of a 3D-
FFT. This entails an all-to-all communications pattern. We
examine the traditional approach to transposing the data,
by using a regular blocking transpose operation at the end
of computation, and we compare this with a non-blocking
transpose operation, where we send data to the other pro-
cesses as soon as it is available. These two versions use the
blocking functions of DMAPP, and the non-blocking implicit
functions, respectively.

3. BLOCKING PARALLEL FAST FOURIER
TRANSFORM

One may calculate the 3-D Fourier transform of an array
A of dimension n

x

⇥n

y

⇥n

z

by a series of 1-D Fourier trans-
forms, one in each direction, x, y, z. To parallelize the FFT
algorithm, the data in the array A is distributed over the
processes, such that each process has a set of x�y planes of
A in local memory. This means that we may perform a num-
ber of 2-D Fourier transforms of all the planes local to each
process, without any form of communication. However we
need to transpose the array A in order to perform the final
and last step, the one-dimensional FFT in the Z-direction.
After the transpose operation, this final 1-D FFT operation
may be performed without any communication.

The following outlines the basic, major steps of the 3D-
FFT algorithm as implemented by the GWUHigh-Performance
Computing Laboratory [3].

1. A 2D-FFT is computed of size n

x

⇥n

y

, for each of the
n

z

/P planes local to each process

2. A global transpose operation is performed to transform
the local part of array A (stored in each process) of

dimension n

x

⇥ n

y

⇥ nz
P

into a new local array C with
dimensions n

z

⇥ n

z

⇥ ny

P

3. The final 1D-FFT is calculated for the remaining Z-
direction (now in each process’s local memory).

We first calculate the FFT of all planes local to each pro-
cess, and then in a separate step perform the global trans-
pose.

Algorithm 1 Transpose operation UPC

//upc forall
for i = 1 : n

z

do

for j = 1 : n
y

do

↵t(A⇤,j,i)
end for

for j = 1 : n
x

do

↵t(A
j,⇤,i)

end for

s n

y

/P

M

for k = 0 : P
M

� 1 do

upc memput(A⇤,k·s:(k+1)·s�1,i, Ci,⇤,k·s:(k+1)·s�1)
end for

end for

C local transpose(C)

3.1 Non-blocking Fast Fourier Transform Al-
gorithm

We have implemented a modified version of the NAS FT
Benchmark which overlaps communication and computa-
tion, following the example in Ref. [2]. The essential dif-
ference is that, as soon as we’ve calculated the FFT of a
2D-plane in a process, we instantly proceed with PUT ing
the results into the remote memory segment of the process
that will need this plane for the final Z-direction FFT. This
means that the actual transpose takes place at the same
time as the computation. This may be contrasted with the
original NAS FT version, where we first calculate the FFT
of all planes local to each process, and then in a separate
step perform the global transpose. Here we instead employ

Algorithm 2 Transpose operation UPC

//upc forall
for i = 1 : n

z

do

for j = 1 : n
y

do

↵t(A⇤,j,i)
end for

for j = 1 : n
x

do

↵t(A
j,⇤,i)

end for

s n

y

/P

M

for k = 0 : P
M

� 1 do

upc memput(A⇤,k·s:(k+1)·s�1,i, Ci,⇤,k·s:(k+1)·s�1)
end for

end for

C local transpose(C)

the PUT semantics, so that each process, as soon as it has
finished calculating a plane, puts the result in the memory
area of the right processes.

© CRESTA Consortium Page 8 of 57

We have implemented a modified version of the NAS FT benchmark which overlaps
communication and computation. The essential difference is that, as soon as we have
calculated the FFT of a 2D-plane in a process, we instantly proceed with PUTing the
results into the remote memory segment of the process that will need this plane for the
final Z-direction FFT. This means that the actual transpose takes place at the same
time as the computation. This may be contrasted with the original NAS FT version,
where we first calculate the FFT of all planes local to each process, and then in a
separate step perform the global transpose as in the Figure 6.

Figure 6: Second algorithm to calculate the FFT with UPC

Here we instead employ the PUT semantics, so that each process, as soon as it has
finished calculating a plane, puts the result in the memory area of the right processes.

The computational tests have been carried out on KTH Cray XE6 supercomputer
"Lindgren". Each node consists of two AMD Opteron 12-core Magny-Cours (2.1 GHz)
processors and 32GB DDR3 memory that is shared between the two processors. The
nodes themselves are connected via a Cray Gemini network. We used the Cray
compiler for the UPC version of our program, again with the flags -O3, -h vector 3 and
–h restrict=a (assume no aliasing). The Class D problem of NAS benchmark has been
chosen to test the FFT UPC implementation. This test consists of solving FFT on 2048
x 1024 x 1024 grid points 25 times. We carried out scaling test up to 1028 cores,
comparing two FFT implementations: one version uses a blocking algorithm and a
blocking remote memory access (UPC blocking), while the other one uses an algorithm
that allows overlap of communication and computation and implicit non-blocking
remote memory access. Figure 7 shows the parallel speed-up for the two UPC
implementations.

cessed without involvement of the remote processor [4, ?].
This feature is available to end-users on Cray machines through
the Distributed Memory Application (DMAPP) API, which
supports compiler-based or library based one-sided commu-
nication.

The model captures the idea of having several processes
running the same code in its own address space, but also
having access to remote memory segments of other processes
through PUT/GET semantics.

DMAPP provides a layer for interfacing with the remote
memory access capacity of the hardware, and the functions
provided by DMAPP can be roughly divided into three dif-
ferent variants:

1. blocking functions

A process may resume execution after a call to a block-
ing function, only after the results of this operation is
globally visible to the entire system.

2. non-blocking explicit

The explicit non-blocking function returns a synchro-
nization identifier, which may be used to determine
when the e↵ects of the operation are globally visible.

3. non-blocking implicit

For an implicit non-blocking function, the results are
only guaranteed to be globally visible after a synchro-
nization call by the initiator of the function.

In this paper we examine two fundamentally di↵erent ap-
proaches to performing the transpose operation of a 3D-
FFT. This entails an all-to-all communications pattern. We
examine the traditional approach to transposing the data,
by using a regular blocking transpose operation at the end
of computation, and we compare this with a non-blocking
transpose operation, where we send data to the other pro-
cesses as soon as it is available. These two versions use the
blocking functions of DMAPP, and the non-blocking implicit
functions, respectively.

3. BLOCKING PARALLEL FAST FOURIER
TRANSFORM

One may calculate the 3-D Fourier transform of an array
A of dimension n

x

⇥n

y

⇥n

z

by a series of 1-D Fourier trans-
forms, one in each direction, x, y, z. To parallelize the FFT
algorithm, the data in the array A is distributed over the
processes, such that each process has a set of x�y planes of
A in local memory. This means that we may perform a num-
ber of 2-D Fourier transforms of all the planes local to each
process, without any form of communication. However we
need to transpose the array A in order to perform the final
and last step, the one-dimensional FFT in the Z-direction.
After the transpose operation, this final 1-D FFT operation
may be performed without any communication.

The following outlines the basic, major steps of the 3D-
FFT algorithm as implemented by the GWUHigh-Performance
Computing Laboratory [3].

1. A 2D-FFT is computed of size n

x

⇥n

y

, for each of the
n

z

/P planes local to each process

2. A global transpose operation is performed to transform
the local part of array A (stored in each process) of

dimension n

x

⇥ n

y

⇥ nz
P

into a new local array C with
dimensions n

z

⇥ n

z

⇥ ny

P

3. The final 1D-FFT is calculated for the remaining Z-
direction (now in each process’s local memory).

We first calculate the FFT of all planes local to each pro-
cess, and then in a separate step perform the global trans-
pose.

Algorithm 1 Transpose operation UPC

//upc forall
for i = 1 : n

z

do

for j = 1 : n
y

do

↵t(A⇤,j,i)
end for

for j = 1 : n
x

do

↵t(A
j,⇤,i)

end for

s n

y

/P

M

for k = 0 : P
M

� 1 do

upc memput(A⇤,k·s:(k+1)·s�1,i, Ci,⇤,k·s:(k+1)·s�1)
end for

end for

C local transpose(C)

3.1 Non-blocking Fast Fourier Transform Al-
gorithm

We have implemented a modified version of the NAS FT
Benchmark which overlaps communication and computa-
tion, following the example in Ref. [2]. The essential dif-
ference is that, as soon as we’ve calculated the FFT of a
2D-plane in a process, we instantly proceed with PUT ing
the results into the remote memory segment of the process
that will need this plane for the final Z-direction FFT. This
means that the actual transpose takes place at the same
time as the computation. This may be contrasted with the
original NAS FT version, where we first calculate the FFT
of all planes local to each process, and then in a separate
step perform the global transpose. Here we instead employ

Algorithm 2 Transpose operation UPC

//upc forall
for i = 1 : n

z

do

for j = 1 : n
y

do

↵t(A⇤,j,i)
end for

for j = 1 : n
x

do

↵t(A
j,⇤,i)

end for

s n

y

/P

M

for k = 0 : P
M

� 1 do

upc memput(A⇤,k·s:(k+1)·s�1,i, Ci,⇤,k·s:(k+1)·s�1)
end for

end for

C local transpose(C)

the PUT semantics, so that each process, as soon as it has
finished calculating a plane, puts the result in the memory
area of the right processes.

© CRESTA Consortium Page 9 of 57

Figure 7: Relative parallel speed-up of the different UPC FFT implementations.

Finally, we have compared the performance of our FFT with FFT implemented in MPI
and OpenMP on 128 Cores. Our UPC FFT implementation using overlapping
communication and computation proves faster than the MPI and OpenMP version. The
execution time for the UPC version is 209 seconds while the version with MPI OpenMP
in Fortran takes 236 seconds.

3.4 TargetDP	
 in	
 the	
 Ludwig	
 code	

The work on the development of “targetDP” (presented in CRESTA D3.7) was
motivated by development of the Ludwig complex fluid simulation package at EPCC at
University of Edinburgh. This versatile software is able to simulate a variety of soft
matter substances such as mixtures, particle suspensions and liquid crystals, with
relevance to many large industrial concerns such as foodstuffs, paints and coatings,
and oil recovery. The basis is hydrodynamics using the lattice Boltzmann (LB)
technique, coupled with a free energy based approach for various order parameters,
the dynamics of which are solved via standard finite-difference techniques. We have
recently developed Ludwig so that it can use many GPUs in parallel as well as
traditional CPU based supercomputers. The difficulty in maintaining duplicate source
code for the two architectures is a key motivation for the work described here.
Furthermore, the existing version relies on the compiler to find ILP and map to SIMD
instructions, but the extents of innermost loops in the code are dictated by the model
and typically do not map perfectly onto the vector hardware. The lattice-based
operations in real applications such as Ludwig are typically much more complex than
the example given above, but the same methodology can be applied. To demonstrate
effectiveness and evaluate performance, we have implemented targetDP within a real
computational kernel extracted from Ludwig. This ``binary collision'' code performs an
LB collision operation on a mixture of two fluids.

© CRESTA Consortium Page 10 of 57

Figure 8: Performance of TargetDP

In Figure 8 we show the effect on performance, for this benchmark, of our targetDP
framework for both CPU (2.7 GHz, 12-core E5-2697 Intel Ivy Bridge) and GPU (NVIDIA
K40) architectures, noting that the same source code is used for the targetDP results
on both. It can clearly be seen that the use of targetDP not only offers performance
portability, but it also significantly increases performance in each case; this is due to
the intelligent exposure of ILP. Within the original CPU code, each innermost most loop
is over the discrete lattice momenta (here of extent 19) or over spatial dimensions (i.e.
of extent 3), neither of which map perfectly onto the AVX vector length of 4. The
compiler is not able to generate optimal AVX instructions, thus leaving the vector units
under-utilised. With our targetDP implementation, we instead expose the lattice-based
parallelism to the compiler as ILP. We tune the VVL, with 8 being the optimal value (i.e.
the compiler generates 2 AVX instructions for each innermost loop). This tailored ILP
optimisation gives almost a 1.5X performance improvement the original code (which
has been augmented with OpenMP for a fair comparison). Similarly, for the reasons
described above, exposing ILP within each kernel offers performance benefit on the
GPU. In this case we tune VVL to be 2, and we see a performance boost of 1.4X.
Incidentally, the GPU targetDP benchmark implementation outperforms the CPU by
4.5X.

We have successfully secured funding from the UK ARCHER eCSE programme to
build on this work by fully implementing targetDP within Ludwig, such that the code will
be performance portable across the range of leading-edge HPC architectures. The
concepts and technology of targetDP are also applicable to other applications and
areas, and we will strive to facilitate uptake.

3.5 Outstanding	
 Issues	
 and	
 Future	
 Work	

During the CRESTA project period, WP3 focused on investigating the use of PGAS
CAF and UPC in benchmarks and applications. This approach resulted in visible
improvements of scalability as in the case of the IFS code, showing that PGAS can
effectively be used in applications to achieve higher scalability. The main challenge in
using PGAS approaches in a real-world application, such as IFS, was to ensure
interoperability between different programming systems (MPI, OpenMP and CAF) that
use common resources. Often the use of this approach resulted in runtime errors due
in some cases to compiler bugs. Future work will focus on studying the interoperability
of different programming approaches.

0"

0.05"

0.1"

0.15"

0.2"

0.25"

without"
targetDP"

with"targetDP" without"
targetDP"

with"targetDP"

!m
e$
(s
)$

IntelIvyBridgeCPU NVIDIA$K40$GPU$

© CRESTA Consortium Page 11 of 57

4 Compilation	
 and	
 Runtime	
 Environments	

Heterogeneous HPC architectures are becoming increasingly prevalent in the Top500
list with CPU-based nodes being enhanced by accelerators or coprocessors optimized
for floating-point calculations. This trend is likely to increase as we move towards
exascale capable systems and it is vital that the relevant HPC applications are able to
exploit this heterogeneity.

Whilst accelerators offer a large boost in peak system speed, it is difficult to translate
this into sustained applications performance. For GPU accelerators, applications are
typically rewritten in a low-level language such as CUDA or OpenCL. This is a
productivity drawback, with developers having to maintain multiple versions of their
code without any guarantee of portability. In addition, the HPC community is nervous
about investing substantial software development effort in converting applications to
use a programming language that is not portable between different architectures. On
the other hand, OpenACC, a collection of compiler directives specified by the
programmer to identify areas that should be accelerated, enable existing HPC
applications to run on accelerators with minimal source code changes.

4.1 Accelerating	
 Nek5000	
 with	
 OpenACC	

Within CRESTA, we have used NekBone, a skeleton application of Nek5000. Nek5000
was chosen as one of the CESTA co-design applications under investigation. It is an
open-source code used for the simulation of incompressible fluid flow and it is
employed in a broad range of domains, including the study of thermal hydraulics in
nuclear reactor cores, the modeling of ocean currents and the simulation of combustion
in mechanical engines.

NekBone has been configured to capture the basic structure and user interface of the
extensive Nek5000 software and exposes its main computational kernel to reveal the
essential elements of the algorithm-architectural coupling that is relevant to Nek5000.

NekBone has been successfully ported to multi-GPU systems using OpenACC
compiler directives. The focus of this work was on porting the most time-consuming
routines of the NekBone to GPU system: the ax3D and gs_op subroutines. To port
NekBone to GPU systems required little effort and a small number of additional lines of
code. In fact, after the porting, the total number of lines of NekBone was 41,953
including 45 OpenACC directives. Approximately, one OpenACC directive was used
per 1,000 lines of code.

The naive implementation using OpenACC led to little performance improvement: from
16 Gflops obtained on the CPU, we reached 20 Gflops with the naive OpenACC
implementation. The optimization of matrix-matrix multiplication required evaluating the
computational cost of loop-nesting to assist the developer in guiding the OpenACC
loop scheduling. By simply instructing the compiler to collapse four nested loops in the
matrix-matrix multiplication, we reached approximately 43 Gflops, doubling the
performance of the naive OpenACC implementation. In addition we ported and
optimized NekBone on a multi-GPU system by working on the gs_op subroutine. The
optimized version for Multi-GPU system gave a parallel efficiency of 79.9 % on 1024
GPUs of the Titan supercomputer as visible in the Figure 9.

© CRESTA Consortium Page 12 of 57

Figure 8: Scaling of the Nekbone application on Titan supercomputer.

4.1.1 Outstanding	
 Issues	
 and	
 Future	
 Work	

We used OpenACC compiler support to port the NekBone mini-application, that is
skeleton version of Nek5000, to multi-GPU systems. The next step in this work is to
use OpenACC in the full Nek5000 application. For doing this, we need to use
OpenACC in the Nek5000 pre-conditioners and in the Multi-grid linear solver. In
addition, the possibility of directly transfer data from a GPU memory to another GPU
memory in the Nek5000 gather-scatter operator will be investigated.

4.2 OpenACC	
 co-­‐design	
 with	
 GROMACS	

The porting of Nek5000 to exploit the GPUs on ORNL's Cray XK7 Titan system
demonstrated how the OpenACC programming model exploits system software
(compilers and runtime libraries) to accelerate HPC applications in a productive and
portable manner. This also demonstrated a degree of co-design, as the Nek5000
developers within CRESTA filed a number of functionality and performance bugs that
were found in the Cray Compilation Environment (CCE). These bugs were then fixed
by the Cray Programming Environment (PE) compiler development team, and the
improved product is now available for all Cray customers.

This is, however, only responsive and co-design in the broadest sense. With the
GROMACS code, CRESTA sought to complete the co-design loop in a more proactive
manner. The GROMACS code has been ported to run on one or more Nvidia GPUs
using CUDA. As with most of the performance-intensive parts of the GROMACS code,
considerable effort has been spent to hand-optimise these CUDA kernels to obtain high
levels of performance using detailed knowledge of the underlying hardware.

The OpenACC programming model aims to provide a high-level alternative for
programming GPUs. It is likely that this will entail a performance sacrifice compared to
the more low-level CUDA. This has been measured for many codes and is typically
around 10%, which is an acceptable cost for many developers when compared with
productivity and maintainability advantages of using OpenACC. To measure this
margin requires access to codes that have both OpenACC and CUDA versions, and
the CUDA in these codes is typically quite generic and has not had a great deal of
tuning.

GROMACS' hand-tuned CUDA provided the Cray compiler engineers with a much
tougher challenge that could be used to improve the CCE OpenACC performance. A
detailed report of this work is provided in Annex A. The work focused on the "nxnbn"
kernel that dominates the runtime when simulating non-bonded systems. Based on the
CUDA, an equivalent C routine was written, and accelerated to run on a GPU using

© CRESTA Consortium Page 13 of 57

OpenACC directives. This OpenACC nxnbn kernel could then be swapped into the
code using the CUDA interoperability in the OpenACC standard.

The performance of the two versions was then compared using a representative non-
bonded problem. Initial results were as expected, with the OpenACC version only
giving around half of the performance of the optimised CUDA. Considerable effort then
went into understanding the reasons behind this reduced performance.

Three main causes were identified. Firstly, the OpenACC kernel used a lot more
registers than the CUDA version. This led to "register spilling", where data is placed
into slower shared memory instead of machine registers, which impacts performance.
In response to this, a CCE compiler flag was added that allows users to limit the
maximum number of registers that are used in an OpenACC kernel. The second issue
was that the original kernel made calls to CUDA intrinsic functions that increased
performance. Work was then done in the CCE optimizer (OPT) and code generation
(CG) phases to make use of these same intrinsic function sets (without user
intervention). Finally, the CUDA driver code optimised the shared memory/cache
configuration, based on whether shared memory was used in the kernels. This was not
originally done in CCE, but functionality was added to the OPT and CG phases to
detect this automatically as well.

With these three modifications, the OpenACC performance was now within 10-15% of
the hand-tuned CUDA. This was viewed as a good achievement by the GROMACS
developers. The end result was not a full OpenACC port of GROMACS; only one of 24
CUDA kernels was studied. All 24 would need to be ported to move entirely to
OpenACC. In addition, with an existing CUDA code that is faster, there was little
appetite from the developers to move to OpenACC at the current time.

The main result was, instead, the improvements in the compiler (from CCE version 8.3
onwards). None of the modifications are specific to GROMACS and can therefore
benefit a wide range of OpenACC codes. They also require little or no user intervention
(one compiler flag in one of the three cases), so the benefits are largely transparent to
the user.

Overall, these successes demonstrate the advantages of co-design in both directions,
with the applications leading to improved systemware, and this improved systemware
then giving improved application performance, both for the original co-design
application but also for a wider class of codes

	

4.3 Autotuning	
 of	
 an	
 OpenACC	
 version	
 of	
 Nek5000	

In CRESTA we have developed an autotuning technology that can address the
inherent complexity of programming the latest and future computer architectures. The
autotuner provides a framework in which an application developer can try out various
optimization strategies in an automated fashion to maximize their application
performance. This autotuner explores a tuning parameter space by repeatedly building
and running the application. From these the best run is chosen using a metric obtained
from the program execution that currently is done by exhaustive search. To accomplish
a tuning run, the source is appropriately preprocessed and compiled and an
optimization process is organized.

We have carried out an extensive autotuning study on NekBone since it is understood
that any improvement achieved on the computational structure of NekBone could also
be applied to Nek5000.

4.3.1 Implementation	

NekBone is configured to very closely resemble the basic structure of Nek5000. In
NekBone a matrix is initialized and then a linear system is solved twice for every
computational cycle using a Conjugate Gradient (CG) solver. A large number of small
rectangular matrix multiplications take place at each solver iteration. Previous work in

© CRESTA Consortium Page 14 of 57

CRESTA has demonstrated that the computation of those matrix multiplications
dominates the execution time of NekBone. Therefore we focused on an OpenACC
implementation of a large number of different algorithms used to calculate the matrix-
matrix multiplications.

The main subroutines to optimize implement independent matrix-matrix multiplication
kernels and there are three difference cases that could be considered for a given
number of elements, N, depending on the sizes of the matrices involved in the
multiplication. Those three cases of C = A* B are:

• Case 1: A [N2xN] x B [NxN] = C [N2xN]
• Case 2: A [NxN] x B [NxN] = C [NxN]
• Case 3: A [NxN] x B [NxN2] = C [NxN2]

An example of those kernels can be seen in the code shown below:

do j = 1, n3

 do i = 1, n1

 c(i, j) = 0.0

 do k = 1, n2

 c (i, j) = c (i, j) + a (i, k) * b (k, j)

 end do

 end do

end do

To execute this kernel on a GPU using OpenACC we included additional compiler
directives assuming that the data had already been copied to the GPU, for instance:
!$ACC PARALLEL LOOP PRESENT(a,b,c) PRIVATE(i,j,k)

do j = 1, n3

 do i = 1, n1

 c(i, j) = 0.0

 do k = 1, n2

 c (i, j) = c (i, j) + a (i, k) * b (k, j)

 end do

 end do

end do

!$END PARALLEL LOOP

Although this should be enough to get part of the code running on a GPU further
investigation is required for an optimum performance. In order to find the suitable
kernel we created a number of different implementations of the above kernel using
different parameters and OpenACC optimizations. These implementations were then
enumerated so that the CRESTA autotuner could identify and compare them.

Over ten different implementations of each matrix-matrix multiplication kernel were
included in the autotuning benchmark providing many different computation paths for
the NekBone kernel and exploring the following types of optimizations:

• specific hard-coded versions for different values of n1, n2 and n3 so that these
would be constant at compile time;

• different loop orderings;
• loop unrolling;

© CRESTA Consortium Page 15 of 57

• hand tiling the matrices into blocks for better cache reuse;
• calls to DGEMM BLAS routines;
• matrix values stored explicitly in temporary scalars;
• loop collapsing.

Among the most important OpenACC parameters that were used to optimize the
kernels were VECTOR_LENGTH, GANG, WORKER or COLLAPSE. An example of
autotuning kernel can be seen below:

!$ACC PARALLEL PRESENT(a,b,c) PRIVATE(i,j,k) VECTOR_LENGTH(VLENGTH)

!$ACC LOOP GANG WORKER VECTOR COLLAPSE(2)

do j = 1, n3

 do i = 1, n1

#ifdef SCALAR

 tmp = 0.0

#else

 c(i, j) = 0.0

#endif

 do k = 1, n2

#ifdef SCALAR

 tmp = tmp + a(i,k) * b(k, j)

#else

 c (i, j) = c (i, j) + a (i, k) * b (k, j)

#endif

 end do

#ifdef SCALAR

 c(i,j) = tmp

#endif

 end do

end do

!$END PARALLEL LOOP

The autotuning session of the CRESTA autotuning framework can be controlled by a
domain-specific language, DSL, either from a global configuration file or embedded in
the application source. The DSL component helps the autotuning framework to
optimize an application over a set of tuning parameters. One of the most useful
characteristics of this autotuning framework is what has been termed scenario
characterization parameters where for each scenario we aim to pick the best values for
a set of tuning parameters. The tuning parameters will relate to build and runtime
optimization choices which we can choose to give, for instance, the best runtime.

After a large number of tuning sessions the autotuner demonstrated that there was a
particular routine faster than all the others for a given a set of parameters. This routine
has the particularity of using COLLAPSE(4) as part of the OpenACC optimization.

© CRESTA Consortium Page 16 of 57

!$ACC PARALLEL PRESENT(a,b,c) PRIVATE(i,j,k) VECTOR_LENGTH(VLENGTH)

!$ACC LOOP GANG WORKER VECTOR COLLAPSE(4)

do imat = 1, lelt

!dir$ nonblocking

do j = 1, n3

 do i = 1, n1

 tmp = 0.0

 do k = 1, n2

tmp = tmp + a(i,k,imat) * b(k, j)

 end do

 c(i,j,imat) = tmp

 end do

end do

end do

!$END PARALLEL LOOP

Therefore the chosen routine was introduce in NekBone and compared to a previous
OpenACC hand-tuned implementation carried out on the CRESTA project. The latter
performance results can be seen on Figure (left). Figure Figure 9 represents global
performance of our optimized NekBone application depending on the number of
elements, nel, used in the simulation and the size of the matrix, N. As the size of the
matrix is increased NekBone used more memory to run the application, which is the
reason why the application runs into memory limits on the GPU at large value of N.

Figure 9: Performance of a hand-tuned (left) by Markidis et al. and autotuned (right) OpenACC

NekBone

To illustrate the effect of parameter tuning, Figure 9 (right) shows the performance
results of the autotuned version of NekBone that demonstrates the performance
improvement over the hand-tuned version. In Figure 10 we have represented the ratio
between our autotuned performance results over the hand-tuned performance results
achieved by Markidis et al. and when using default OpenACC settings.

 0

 10

 20

 30

 40

 50

 60

32 128 512 2048 8192

Pe
rfo

rm
an

ce
 (G

flo
ps

)

nel

Hand-tuned version

 0

 10

 20

 30

 40

 50

 60

32 128 512 2048 8192

Pe
rfo

rm
an

ce
 (G

flo
ps

)

nel

Auto-tuned version

N = 8
N = 10
N = 12
N = 14
N = 16
N = 18
N = 20

© CRESTA Consortium Page 17 of 57

Figure 10: Performance ratio of auto-tuned, hand-tuned and default OpenACC settings

4.3.2 Outstanding	
 Issues	
 and	
 Future	
 Work	

Thanks to the new NekBone structure developed for this purpose and the exhaustive
exploration of different parameter values carried out by the autotuner we have
accomplished a simpler, better structured and faster implementation of NekBone.
Furthermore, the exploration of different OpenACC optimization algorithms has
revealed that loop collapsing techniques have given the best performance
improvements among all the other optimization techniques previously mentioned.
Scalar reduction showed little performance improvement, however the vector length
seemed to influence the performance with its optimum value for 128 and 256.

Although the autotuner pointed to different kernel settings during the tuning session, we
were able to identify cases where kernels performed very differently when run in
isolation compared to being run in the main NekBone code. After further investigation it
was discovered that when run in isolation the Cray compiler was able to non-block
some sections of the kernel code whereas it was not when run in the main NekBone.
The addition of additional directive !dir$ nonblocking solved the problem
outperforming the best hand-tuning efforts.

Across a wide range of representative cases, the autotuning increased the
performance of NekBone by nearly 200% compared to the default OpenACC settings.
Furthermore, we also compared to an OpenACC hand-tuned version of NekBone and
for representative problem sizes, the autotuned version always performed within a few
percent of the hand-tuned version and outperformed it by over 15% for the largest
systems.

4.4 Hybrid	
 and	
 Adaptive	
 Runtime	
 System	
 With	
 Nek5000	

In this section, we report on the co-design approach used in the development of the
adaptive runtime system.

4.4.1 Fast	
 collective	
 MPI	
 communication	

The efficiency of the runtime system [16] depends also on the availability of fast
collective MPI communication operations for the exchange of the software and
hardware model data, performance measurements as well as control information in
order to execute the decisions of the system. These data must be distributed with low
latency despite the fact that the data is often short and collective MPI operations have

 0

 5

 10

 15

 20

32 128 512 2048 8192

R
at

io

nel

Auto-tuned/Default

 0

 0.5

 1

 1.5

 2

32 128 512 2048 8192
R

at
io

nel

Auto-tuned/Hand-tuned

N = 8
N = 10
N = 12
N = 14
N = 16
N = 18
N = 20

© CRESTA Consortium Page 18 of 57

a comparatively high latency for them. Furthermore, the re-mapping of computational
tasks makes it necessary to move all user data that define the status of computational
tasks between different nodes. Conceptually, this can be done with collective
communication operations like MPI_Alltoallv too. But, it is necessary to provide
separate send and receive buffers to them in order to achieve high performance.
Widely used implementations of MPI_Alltoallv are very slow when they are used with
the option MPI_IN_PLACE.

The CRESTA application NEK5000 [17] is a PDE solver with a long development
history and contains a communication module that has been optimized for its typical
short, latency-bound messages. This communication module can use the regular
collective MPI communications as well as own implementations of them. One of these
implementations is based on the crystal_router algorithm.[18] This algorithm allows
sending messages of arbitrary length between arbitrary nodes in a hypercube network.
It is advantageous especially in irregular applications where the exact nature of the
communication is not known before it occurs or where the message emergence
changes dynamically.

4.4.1.1 Implementation	
 of	
 Fast	
 Collective	
 Communication	
 Operations	

Communication operations in hypercube networks are often implemented by routing
algorithms that iterate over the dimensions of the cube and execute in each step one
point-to-point communication operation with the partner node at the other end of the
respective edge. The result of the binary xor function with the processor numbers of
sender and receiver node as arguments provides a routing path that can be used to
transport the message. Therefore, messages can be delivered in algorithms following
this pattern from each node to each other node in at most d communication steps
where d is the dimensionality of the hypercube network. Such a choice of paths
provides load balancing in the communication of several typical applications as well as
it is optimal if all processors are used in a load balanced way.

Algorithm 1 explains how the transport of messages between arbitrary processes
works. First, all messages are stored in a buffer for outgoing messages of the sender
process (msg_out). During the iteration over the different channels (i.e. the bits of rank
numbers), some messages will be transmitted in each iteration step according to their
routing path. For that, those messages that must be transferred through a certain
channel will be copied from msg_out to a common transfer buffer (msg_next). The
buffer msg_next of each process will be exchanged through the active channel of the
current iteration step with the respective buffer of a partner process. Thereafter, all
messages that had to be routed from this partner over this channel can be found in
msg_next. They will be inspected there. Messages that are addressed to the receiving
process will be copied into the buffer for incoming messages (msg_in) from where
they can be accessed by the application code later. Messages that have to be
forwarded further in one of the following iteration steps will be kept and put into
msg_out.

© CRESTA Consortium Page 19 of 57

Algorithm 1: Pseudocode of the crystal router algorithm, adapted from [18].
begin crystal_router
 declare buffer msg_out; /* buffer for messages to send */
 declare buffer msg_in; /* buffer for received messages */
 declare buffer msg_next; /* buffer for messages to send */
 /* in the next communication step */
 for each msg in msg_out do
 if dest_rank(msg) == myrank then
 copy msg into msg_in;
 end for
 for each dimension of the hypercube i = 0,...,d-1 do
 for each message msg in msg_out do
 if (dest_rank(msg)&myrank) ^ 2i) then
 copy msg into msg_next;
 end for
 exchange buffer msg_next with process(myrank ^ 2i));
 for each message msg in msg_next do
 if dest_rank(msg) == myrank then
 copy msg into msg_in;
 if msg needs to be routed further then
 copy msg into msg_out;
 end for
 end for
end crystal_router

We developed a synthetic benchmark for the analysis of the original crystal router
algorithm. Its design has been based on the communication pattern in NEK5000.[19]

The measurements have been done on KTH's system Lindgren described previously in
Section 3.3.

Figure 11: Benchmark of personalized all-to-all communication implemented with the
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using
MPI_IN_PLACE. Each process sends and receives data from 26 neighboring processes.
The measurements have been executed with 4096 respectively 8192 processes.

Figure 12 shows a comparison of the function MPI_Alltoallv as it is provided on the
system with the crystal_router based implementation Cr_Alltoallv using the option
MPI_IN_PLACE on 4096 and 8192 cores.

The function Cr_Alltoall is faster for all message lengths, however, the speed is much
higher especially for short messages. There are achieved until 2.5 orders of magnitude
of the runtime. Also on 1024 and 2048 cores are faster speeds up to two orders of
magnitude reached as shown in Figure 13.

1E+02

1E+03

1E+04

1E+05

1E+06

2 4 6 8 10 12 14 16 18

Ti
m

e
[u

s]

Message length [lb(length)] B

CrAlltoallv p=4096
MPIAlltoallv p=4096
CrAlltoallv p=8192

MPIAlltoallv p=8192

© CRESTA Consortium Page 20 of 57

Figure 12: Benchmark of personalized all-to-all communication implemented with the
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using
MPI_IN_PLACE. Each process sends and receives data from 26 neighboring processes.
The measurements have been executed with 1024 respectively 2048 processes.

The comparison with runs using separate send and receive buffers in Figure 14
demonstrates that this way to use MPI_Alltoallv is much more efficient, while there is
no large difference of the runtimes for Cr_Alltoallv. The speed difference between
MPI_Alltoallv and Cr_Alltoallv is about one order of magnitude for short messages.

Figure 13: Benchmark of personalized all-to-all communication implemented with the
crystal router based function Cr_Alltoallv and the MPI function MPI_Alltoallv using
separate send and receive buffers. Each process sends and receives data from 26
neighboring processes. The measurements have been executed with 1024 respectively
2048 processes.

The crystal_router has been chosen as a central algorithm for the development of a
communication module inside the adaptive runtime system because it shows a superior
exchange performance especially for short messages up to 4 kilobyte and large-scale
parallel runs on recent computer systems. It showed a uniform scaling over the whole
range of job sizes. This is possible because it bundles short messages into larger
packages that will be transferred at once. The influence of latency is reduced in that
way, and MPI library optimizations with respect to the bandwidth of larger message
lengths become useable for shorter messages too. The crystal_router is sensitive
slightly to the distance of the communicating processes and to a larger extend to the
number of communication partners per process, i.e. the degree of sparsity in the

1E+02

1E+03

1E+04

1E+05

1E+06

2 4 6 8 10 12 14 16 18

Ti
m

e
[u

s]

Message length [lb(length)] B

CrAlltoallv p=1024MPIAlltoallv p=1024CrAlltoallv p=2048MPIAlltoallv p=2048

1E+02

1E+03

1E+04

1E+05

1E+06

2 4 6 8 10 12 14 16 18

Ti
m

e
[u

s]

Message length [lb(length)] B

CrAlltoallv p=1024MPIAlltoallv p=1024CrAlltoallv p=2048MPIAlltoallv p=2048

© CRESTA Consortium Page 21 of 57

communication pattern. These comparatively small variations and the high overall
efficiency that is achieved at the same time are an effect of the algorithm's properties.
The message bundling and the algorithm design guarantee the message delivery
within a fixed number of communication steps. Finally, the hypercube algorithm
involves all nodes equally into the transport of messages during each communication
step.

4.4.2 Performance	
 Monitoring	
 of	
 MPI	
 Applications	
 Using	
 Event	
 Flow	
 Graphs	

In addition to developing a monitoring component with online introspection capabilities,
WP3 has also been exploring innovative methods for exascale performance monitoring
of MPI applications. More specifically, WP3 has investigated methods for efficient
performance data storage. Typical performance analysis tools either collect lossless
traces with time-stamped events ordered in time, or generate profile reports with
aggregated statistics. Profiling methods are very scalable, however, they do not keep
the temporary nature of the data. In addition, they can miss microscopic performance
problems due to the summarization process. In contrast, tracing methods give the
whole picture of what happened with the application but they are infeasible at an
exascale level due to the amount of data generated. Thus, WP3 has been exploring a
new approach for application characterization using event flow graphs [11], [12] which
balances the low overhead of profiling methods with the lossless properties of tracing.

Event Flow Graphs are directed weighted graphs in where nodes represent the MPI
calls performed by the process, and edges the transitions between those calls. In other
words, the edges model the computation phases between two MPI calls. Thus, event
flow graphs can keep the temporary nature of the events without storing any explicit
temporal information such as timestamps. As these graphs keep the temporal order of
events, they can serve as a compressed representation of event traces. We can
reconstruct the ordered full sequence of MPI calls performed by the application by just
traversing the graph from its initial to its final node.

We implemented this approach within the monitoring component of the runtime system,
and tested it with several mini-applications of the NERSC-8/Trinity Benchmark suite
[13]: AMG, an algebraic multigrid solver for linear systems on unstructured grids; GTC,
a 3D Particle-in-cell code (PIC) with a non-spectral Poisson solver used for gyrokinetic
particle simulation of turbulent transport in burning plasma; MILC, a code for simulating
four dimensional SU(3) lattice gauge theory to study quantum chromodynamics (QCD);
SNAP, a proxy application that models the performance of a modern discrete ordinates
neutral particle transport application, PARTISN [14]; MiniDFT, a plane-wave DFT mini-
kernel that computes self-consistent solutions for the Kohn-Sham equations; MiniFE, a
mini-application that implements different kernels representative of implicit finite-
element applications; MiniGhost, a mini-application that implements a difference stencil
across a homogenous three dimensional domain.

The experiments were performed on a Cray XE6 with 2 twelve-core AMD MagnyCours
at 2.1 GHz per node. The nodes are interconnected through a Cray Gemini Network,
each of them having a total of 32 GB DDR3 memory. The benchmarks were compiled
with Intel 12.1.5 and run using the small test case that is provided for each one of
them.

The first experiment performed measured the overhead introduced into the
benchmarks by the monitoring component when collecting performance information,
generating the graphs, and writing those graphs to disk. The experiments were run
using strong scaling for all the benchmarks except for SNAP, MILC and GTC. Figure
15 shows the percentage of overhead introduced over the total running time. As it can
be seen in the figure, the overhead introduced to generate the event flow graphs is
almost negligible, being always below 2%.

© CRESTA Consortium Page 22 of 57

Figure 14: Percentage of overhead over total running time introduced in the NERSC-8/Trinity

benchmarks when generating their event flow graphs.

The second experiment measured the achieved compression ratio for each benchmark
in terms of file size between our event flow graphs and a trace generated by the
monitoring component. In other words, how many times smaller are our event flow
graph files compared to trace files. It is important to remark that both graphs and traces
contained exactly the same amount of information for each MPI call: call name, bytes
sent or received, communication partner rank and callsite. Furthermore, each one of
the event flow graphs can generate exactly the same traces as the ones collected for
the comparison. The following table contains the average compression ratio for each
one of the benchmarks:

Table 1: Average compression ration with different benchmarks

Benchmark Ranks
Average

compression
ratio

AMG 96 1.76

GTC 64 46.60

MILC 96 39.03

SNAP 96 119.23

MiniDFT 40 4.33

MiniFE 144 19.93

MiniGhost 96 4.85

The results in the table demonstrate that event flow graphs are good representations of
compressed traces, showing compression ratios ranging from around 2% up to 119%.
In terms of file size, the amount of disk space required to store the traces for a run with
96 cores of SNAP is 1.1GB whereas the space required for the event flow graphs is
only 10 MB.

Finally, we performed another set of experiments to measure the increase ratio in file
size of graphs and traces as we increase the number of simulation time steps, since
one of the main aspects affecting the amount of data generated when monitoring
applications is their running time. Figure 16 shows that traces increase linearly with the
number of simulation steps whereas event flow graphs do not. For most of the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800

O
v

er
h

ea
d

 %

MPI Processes

Minighost
MiniFE

MiniDFT
AMG
SNAP
MILC
GTC

© CRESTA Consortium Page 23 of 57

benchmarks the small increment in the graph file size is caused by the addition of new
edges to the graphs due to the execution of different call paths as the number of
simulation steps increases. However, applications that execute the same loop over
time such as the 5-stencil code [15] have constant event flow graph size irrespective of
the number of simulation steps. For applications like that, the only difference between
graphs from runs with different simulation times is their node cardinality.

Figure 15: Increase in file size when increasing simulation steps.

In summary, event flow graphs combine the low overhead of profiling methods with the
lossless information capabilities of tracing, thereby, being a good compressed
representation of event traces. We evaluated this new approach with several mini-
applications from the NERSC-8/Trinity Benchmark suite, achieving promising results of
file compression ratios up to 119x with overheads below 2%. Moreover, the use of
applications with longer running times would allow even better compression ratios
because the same paths in the application are executed more times. Although this
work is in an early stage, we believe it has strong potential to be a way towards
developing performance analysis tools effective at an exascale level.

4.4.2.1 Monitoring	
 Component	
 (Mon-­‐C)	
 -­‐	
 Outstanding	
 Issues	
 and	
 Future	
 Work	

At the moment, the data accessible online via the Performance Introspection API is
fixed and only provides accumulated statistics along time. In the future, we plan to
extend the functionality of the monitoring component by first, allowing the runtime to
configure online the data collected as it is being generated, and second, providing
incremental data, that is, profile history or incremental profile snapshots. Thereby,
removing the burden from the runtime to manage the incremental data collected since
the last time it was accessed. For instance, the total time of a function per call, or
certain loop metric per each loop iteration.

We also want to implement a global performance view for the whole application. In
other words, the mechanisms to allow one process access directly the performance
state of other processes.

The Performance Introspection API needs to be extended as well to query performance
information per thread about OpenMP regions as the application runs. Moreover, the
monitoring component should be extended to capture performance data from other
programming models different than MPI such as PGAS languages or OpenMP Task
extensions.

Finally, another aspect that requires an extended effort due to its complexity is the re-
use of historical collected data to help the runtime in its decision making progress, as
well as the automatic analysis of this data to detect performance bottlenecks. We want

 1

 1.5

 2

 2.5

 3

 3.5

 4

x1 x2 x3 x4

S
iz

e
ra

ti
o

Increase ratio in Simulation Steps

MiniGhost EFGs
MiniGhost Trace Files

5D-Stencil EFGs
5D-Stencil Trace Files

SNAP EFGs
SNAP Trace Files

GTC EFGs
GTC Trace Files

© CRESTA Consortium Page 24 of 57

to keep exploring efficient methods for storing and obtaining knowledge from historical
data with performance analysis purposes. First, we are going to extend the
Performance Introspection API with metrics computed from previous runs. For
instance, allowing the runtime to access runs the average time for a certain function in
previous runs of an application. Second, built on top of the current experiences gained
from the CRESTA project regarding task scheduling, we are going to explore what
useful knowledge and performance trends can be extracted from historical
performance data to help the runtime in its decision making progress for task
scheduling.

4.4.2.2 Event	
 Flow	
 Graphs	
 for	
 MPI	
 Monitoring	
 -­‐	
 Outstanding	
 Issues	
 and	
 Future	
 Work	

We will continue the study of event flow graphs in the monitoring and analysis of MPI
parallel applications as it opens up many possibilities, from developing new tools based
in the graph approach to the use of graphs for automatic performance analysis. First,
we will explore the utilization of different algorithms for automatic graph analysis, for
instance, detecting loops in the graphs and relating them to the application. Second,
our current implementation of event flow graphs does not allow the reconstruction of
traces with continuous data such as timestamps. Thus, we have started to explore
statistical methods for reconstruction of sequences of continuous data, for example,
hardware counters or timestamps. Finally, we also want to investigate inter-node trace
compression across ranks. Our current version always generates one graph per
process. However, it is usual in parallel applications that a set of processes has similar
or identical behaviour. In such cases, the graphs generated by those processes will be
similar as well, and thus, they can be compressed into a single graph that could be
used to describe that whole set of processes with similar execution.

4.4.3 Outstanding	
 Issues	
 and	
 Future	
 Work	

The implementation of an adaptive runtime system in CRESTA clearly confirms the
expected benefits from such software for parallel applications. Methods for
performance improvements can be generalized and implemented separately from
concrete applications. Given the availability of an API allowing a non-intrusive
introduction of the runtime system in parallel codes, performance improvements can be
achieved with moderate effort and without the need of extended program refactoring.
On the other hand, larger refactoring cannot be avoided in order to achieve a good
match between the computer architecture and the software design. The runtime system
cannot completely encapsulate and hide aspects of the computer architecture from the
application. However, future work on the CRESTA runtime system can contribute to the
development of efficient approaches for large-scale applications.

The current implementation focuses on MPI support. The use of other parallelization
technologies in hybrid simulation codes is left to the application developer for the time
being. Hybrid parallelization is, however, seen as a promising method for recent and
upcoming parallel computer systems. The next step for the runtime system is therefore
its extension in order to support MPI in combination with OpenMP, multi-threaded
processes and OpenSHMEM with runtime services for dynamic load-balancing.

At first, the mapping calculation has been implemented as global optimization with a
central master process. This implementation will last only for a limited time and needs
to be complemented by a component based on distributed parallel algorithms in order
to compensate the increasing complexity of the graph operations for mapping and
scheduling for larger systems.

The current support for MPI will also be extended. The existing implementation uses a
one-to-one relation between computational tasks and ranks within a certain load-
balancing context. Future work will provide an efficient solution that can place an
arbitrary number of computational tasks from one load-balancing context into one MPI
process. One approach could be the use of MPI endpoints as they are discussed in the
MPI forum.

© CRESTA Consortium Page 25 of 57

5 Performance	
 Analysis	
 Tools	

The optimization process for parallel applications usually consists of five steps. The
first step is debugging and correctness checking to ensure a correct program. The
second step is to get a coarse view on the application behavior and find program
phases that contain potential bottlenecks with profiling and automatic trace analysis.
These program phases can then be reviewed in detail with a visual performance
analysis. The gained information can then be used to optimize and rerun the
application.

Figure 16: Performance optimization and analysis workflow.

5.1 Tracing	
 New	
 Paradigms	
 and	
 Energy	

This section covers approaches to monitor and analyze new parallel paradigms and
system metrics such as energy and network information.

5.1.1 Tracing	
 CoArray	
 Fortran	
 within	
 the	
 IFS	
 Kernel	

Partitioned Global Address Space (PGAS) models are available as library-based
paradigms, e.g., Global Address Space Programming Interface (GASPI), SHMEM, as
language extensions, e.g., UPC, Coarray Fortran (CAF).

To exchange data between the different memory locations PGAS languages use RMA
(Remote Memory Access) operations as their underlying communication substrates.
Therefore, we investigated one-sided communication models and developed a generic
event model to record RMA operations in the OTF2 trace format for range of one-sided
APIs and libraries. Within CRESTA the Coarray Fortran co-design team was
established to investigate the possibilities and potentials of this PGAS language to
overlap communication and computation within a world leading production application
like ECMWF’s Integrated Forecasting system (IFS). It turns out that the monitoring of
Cray’s Coarray Fortran fine granular operations will be only possible by using a source-
to-source instrumentor or by indirect monitoring of the underlying communication
library, i.e., monitoring of the Cray DMAPP library, due to the fact that the language
constructs are processed in the compiler runtime. The same holds for the Cray UPC
implementation.

Profiling	
 &	

AutomaPc	

Trace	

Analysis	

Visual	
 Trace	

Analysis	

OpPmizaPon	
 ExecuPon	

Debugging	
 &	

Correctness	

Checking	

© CRESTA Consortium Page 26 of 57

On Cray systems Coarray Fortran and UPC routines make use of the libpgas library,
which uses the DMAPP library as underlying communication library. The calls to this
library can be intercepted with a library wrapping approach and one-sided
communication operations can be recorded with the generic one-sided RMA event
model (see Figure 17). Initialization and finalization with hierarchical unification can be
done using MPI as underlying communication layer. Figure 18 shows the visualization
of a short Coarray Fortran example with Vampir. It can be observed that there are tiny
functions, which are called very frequently like for example dmapp_c_pset_test. For
tiny functions, which are called very frequently, it is advisable to disable the detailed
monitoring and to enable only profiling to prevent the monitoring system to be
swamped by these functions or in worst case if the overhead is too high to disable the
monitoring of this class of functions.

Figure 17: Cray DMAPP software layers: interception of calls from the libpgas library to the DMAPP

library by the library wrapping approach.

The library wrapper for the DMAPP library can be created using vtlibwrappgen:

vtlibwrapgen	
 -­‐f	
 dmapp_filter.txt	
 –l	
 \	

	
 	
 	
 	
 /opt/cray/dmapp/3.2.1-­‐1.0400.3965.10.12.gem/lib64/libdmapp.so	
 \	

	
 	
 	
 	
 -­‐g	
 DMAPP	
 -­‐o	
 dmappwrap.c	
 \	

	
 	
 	
 	
 /opt/cray/dmapp/3.2.1-­‐1.0400.3965.10.12.gem/include/dmapp.h	

	

vtlibwrapgen	
 -­‐v	
 -­‐-­‐build	
 -­‐o	
 libvt_dmapp	
 dmappwrap.c

To use the generated library wrapper it must by linked dynamically like this:

FC=	
 vtf90	

CC=	
 vtcc	
 	

LIBS=	
 -­‐dynamic	
 -­‐lpgas-­‐dmapp	
 -­‐lvt_dmapp	
 \	

	
 	
 	
 	
 -­‐L/opt/cray/cce/8.0.4/CC/x86-­‐64/lib/x86-­‐64	

CAF/UPC

libpgas

Library wrapping

DMAPP

Generic Hardware Abstraction Layer

© CRESTA Consortium Page 27 of 57

Figure 18: Performance visualization of the Cray DMAPP communication library with Vampir. It is

important to see that dmapp_c_pset_test is called very often and therefore should not be recorded
in detail to reduce the overhead of the monitoring.

© CRESTA Consortium Page 28 of 57

5.1.2 Tracing	
 OpenACC	
 Usage	
 within	
 the	
 Nekbone	
 Kernel	

In the last years CUDA/OpenACC capable devices became more and more popular in
the High Performance Computing area since they are promising more floating point
operations per seconds than a typical CPU will ever provide in a user application.

Host-side activities of OpenACC capable devices can be either monitored by
instrumenting the library (if source code is available) or by using a shared library
wrapper approach that uses the LD_PRELOAD mechanism.

Besides the host-based recording, some activities of the kernel can be monitored
directly. For example, kernel execution and data transfers.

Monitoring of CUDA applications can be done either via the CUDA Profiling Tools
Interface (CUPTI) or by the previously-mentioned library wrapping approach. CUPTI
provides different APIs that can be used to get insight into the CPU and GPU behavior
of CUDA applications. The benefits of CUPTI in comparison to the library wrapping
approach are the reduced perturbation of the kernel execution and precise event
(kernel) time information. This topic is also covered in more detail in [20].

Since version 1.3 Score-P is able to monitor CUDA activities via CUPTI and OpenACC
activities via a shared library wrapping approach. The use of the new developed
generic one-sided RMA event model allows us to monitor memory transfers between
host and graphic card as one-sided communication. To enable the monitoring of these
events the application has to be linked against the monitoring library and the following
runtime environment variables must be set:

SCOREP_CUDA_ENABLE=kernel,memcpy,driver,concurrent	

SCOREP_CUDA_BUFFER=3M	

5.1.3 Tracing	
 Energy	
 Consumption	

Energy and power consumption are increasingly important topics in High Performance
Computing. Wholesale electricity prices have recently risen sharply in many regions of
the world, including in the European states, prompting an interest in lowering energy
consumption of HPC systems. Environmental (and political) concerns also motivate
HPC data centers to reduce their “carbon footprints”. This has driven an interest in
energy-efficient supercomputing, as shown by the rise in popularity of the “Green 500”
list of the most efficient HPC systems since its introduction in 2007.

However, energy efficiency goes beyond hardware design. Delivering sustained but
energy-efficient performance of real-world applications will require software
engineering decisions, both at the system-ware level but also in the applications
themselves. Such application decisions might be made when the software is designed
or at runtime via an auto-tuning framework.

For these to be possible, fine-grained instrumentation is needed to measure energy
and power usage not just of overall HPC systems but also of individual components
within the architecture. This information also needs to be accessible not just to
privileged system administrators but also to individual users of the system, and in a
way that is easily correlated with the execution of their applications.

We describe ways that users can monitor the energy and power consumption of their
applications when running on the Cray XC supercomputer range. We exploit some of
the new power measurement and control features that were introduced in the Cray
Cascade-class architectures. This topic is also covered in more detail in [21].

Score-P has been able to record external generic and user-defined hierarchical
performance counters since version 1.2. This is done with a flexible “metric plugins”
interface to address the complexity of machine architectures both today and in the
future. The metric plugin interface provides an easy way to extend the core functionality

© CRESTA Consortium Page 29 of 57

of Score-P to record additional counters, which can be defined in external libraries and
loaded at application runtime by the measurement system. We built a Score-P metric
plugin to monitor the application external energy and power information on Cray
platforms during the application measurement to run asynchronously per node.

To use the power monitoring plugin it must be build on the target system and the
application must be instrumented at the desired level of detail. Setting the according
environment variables activates this power monitoring plugin:

export	
 SCOREP_METRIC_PLUGINS=pm_plugin	

export	
 SCOREP_METRIC_PM_PLUGIN=”all”

Figure 19 to Figure 21 show different visualizations of applications and benchmarks
using the energy and power monitoring with Vampir.

Figure 19: Load-idle benchmark with color-coded visualization of the load-idle regions (topmost
timeline, load-idle regions are colored in green respectively in brown) and corresponding energy
(second timeline), average power derived from energy (third timeline), and instantaneous power

information (lowest timeline) with Vampir.

© CRESTA Consortium Page 30 of 57

Figure 20: Color-coded visualization of HPL CUDA with Vampir. The topmost timeline shows the

behavior of the processes, threads, and CUDA streams over time for an interval of 2s. The second
timeline displays the instantaneous node power over time. The third timeline displays the

instantaneous graphic card power and the lowest timeline displays the board exclusive power
without the graphic card derived from the energy.

Figure 21: Color-coded visualization of 4000 iterations of a hybrid version of Gromacs running on

four nodes (with each node hosting one MPI process with six CPU threads and two GPU CUDA
streams running on the accelerator) for an interval of 49.393s with according timelines for the

events on all four nodes (topmost) and corresponding energy (second timeline), instantaneous
power (third timeline), average board power derived from energy (fourth timeline), instantaneous

accelerator power (fifth timeline), average accelerator power derived from accelerator power
(lowest timeline) for the four nodes, and according statistics for the exclusive time on the right part

of the figure.

5.1.4 Tracing	
 of	
 Network	
 Counters	

With systems getting larger and more complex, networks within HPC systems are
getting more and more complex as well. Since network problems or high network load
can tremendously affect the behavior of parallel applications it is important to enable an
analysis of the correlations between network and application behavior.

© CRESTA Consortium Page 31 of 57

Similar to external energy counters, network statistics and counters can be monitored
and integrated in an application trace with the Score-P metric plugin interface by using
an according plugin that calls PAPI interface asynchronously per node. In addition, the
according environment variables must be set. However, the available counters may
vary on each platform:

export	
 SCOREP_METRIC_PLUGINS=APAPI	

export	
 \	

	
 	
 	
 	
 SCOREP_METRIC_APAPI="AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_STALLED,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_STALLED,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_PKTS,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_PKTS,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_FLITS,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_FLITS"	

Figure 22 shows the correlation of application behavior and network information with
Vampir.

Figure 22: Vampir screenshot showing the correlated network activity.

5.2 Selective	
 Monitoring	

Event tracing tools record each event of a parallel application in detail. Thus, it allows
capturing the dynamic interaction between thousands of concurrent processing
elements and enables the identification of outliers from the regular behavior. While
single events are rather small, event-based tracing frequently results in huge data
volumes. We developed and evaluated three approaches to address the large amount
of collected data, in particular, for massively parallel or long running applications. First,
using different levels of detail by enabling or disabling certain parallel paradigms or
prevent the instrumentation of functions that are usually inlined by the compiler.
Second, applying a rewind within the record event stream to subsequently remove
iterations that are not of interest and only keep those that represent deviating behavior.
Third, remove highly frequent short-running functions calls that can overwhelm any
recording memory buffer while in the same time contribute very less to the analysis and
understanding of the overall application behavior (see [22]).

© CRESTA Consortium Page 32 of 57

5.2.1 Monitoring	
 of	
 Different	
 Levels	
 of	
 Details	
 For	
 Each	
 Process	

To compare different levels of details it is possible to build different instrumented
versions of an application. For a multi-paradigm application like Gromacs this could be:

• Compiler instrumentation + MPI + OpenMP + CUDA,
• Compiler instrumentation with filters + MPI – OpenMP + CUDA,
• MPI + OpenMP + CUDA, or
• MPI + CUDA.

This can be achieved by setting the according instrumentation options in Score-P:

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=omp:pomp_tpd	

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=omp:pomp_tpd	
 -­‐-­‐filter=<file>	

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=omp:pomp_tpd	
 -­‐-­‐nocompiler	

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=none	
 -­‐-­‐nocompiler	

Currently the minimal instrumentation must contain MPI to get an entry point with
MPI_Init and MPI_Finalize. In the future a wrapper that intercepts only MPI_Init and
MPI_Finalize would reduce the minimal instrumentation further.

You can use aprun to launch the differently instrumented application in MPMD mode.
Shell scripts can be used to set different environment for each version:

aprun	
 -­‐n	
 pes	
 [aprun_options]	
 executable1	
 [args_	
 executable1]	
 :	
 \	

	
 	
 	
 	
 	
 	
 -­‐n	
 pes	
 [aprun_options]	
 executable2	
 [args_	
 executable2]	
 :	
 \	

	
 	
 	
 	
 	
 	
 -­‐n	
 pes	
 [aprun_options]	
 executable3	
 [args_	
 executable3]	

	

aprun	
 -­‐n	
 12	
 ./app1	
 :	
 -­‐n	
 8	
 ./app2	
 :	
 -­‐n	
 32	
 ./app3	

Figure 23 shows the visualization of classical monitoring. In comparison, Figure 24
shows the same application with different levels of detail for each node.

Figure 23: Gromacs with four nodes each fully instrumented .

© CRESTA Consortium Page 33 of 57

Figure 24: Gromacs with different levels of detail for each node. Reduction is relative to the

according node in Figure 23.

5.2.2 Selective	
 Monitoring	
 of	
 Iterations	

Selective monitoring is one approach to decrease the number of collected events.
There are two main methods to select the recorded events: static and dynamic
selection. For example, in iterative applications it is reasonable to avoid storing every
single iteration, because most of them show more or less the same behavior.
Therefore, the first method is to statically define which iteration is recorded and stored,
e.g., every 10th or 100th iteration. With this it is still possible to analyze the behavior
over time but the amount of recorded data is reduced to ten or one percent,
respectively. However, iterations with either interesting behavior or a performance
problem might be lost. The second method is to record every iteration and dynamically
decide whether it is stored or discarded by evaluating its behavior, e.g., only store an
iteration when its runtime varies from the average runtime by a defined offset. To
realize such a subsequent removal of iterations we developed and applied a rewind
method to rewind the recorded event stream to any pre-defined point (e.g. the
beginning of the current iteration), which eliminates everything record after that point.

Unfortunately, there are some analyses that will completely fail when even a single
specific event is missing. One is the analysis of the communication behavior; especially
for the Message Passing Interface (MPI). Whenever multiple MPI messages have the
same communicator and message tag the associated events can only be matched by
their order of occurrence, e.g., first send event with first receive event and so on.
Consequently, if one send or receive event is missing, the correct matching of send
and receive events and, therefore, the post-mortem communication analysis fails.

Thus, we developed a way to circumvent those restrictions: An approach to make each
MPI event distinguishable from others with the same communicator and message tag
by introducing an unique sequential message identifier. With this approach it is
possible to clearly identify, which MPI events are missing and, thus, it is possible to
correctly match MPI send and receive calls even with missing MPI events. With this, it
will become feasible to apply selective monitoring techniques without sacrificing a
detailed communication analysis.

To demonstrate the correct communication analysis, Figure 25 shows a screenshot of
the visual analysis with Vampir. The fully monitored measurement can be seen on the
upper half (white background); the measurement with selective monitoring on the lower

© CRESTA Consortium Page 34 of 57

half (blue background). The timeline view with the events over time on the horizontal
axis and the processes on vertical axis is shown on the left side. Both views are
zoomed to the size of approx. six iteration blocks, so the difference between both
measurements can easily be seen. On the right side is a visualization of the average
message data rate in a communication matrix. From the communication matrix it can
be seen that the communication analysis was done correctly even with missing MPI
events. This topic is also covered in more in detail in [23].

© CRESTA Consortium Page 35 of 57

Figure 25: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom)
event trace visualized with Vampir zoomed in to about 6 iteration blocks.

© CRESTA Consortium Page 36 of 57

5.2.3 Selective	
 Monitoring	
 of	
 Function	
 Calls	

Applying the same detail for each and every recorded event is prone to fail, especially,
when tiny and often-used functions are monitored, e.g., inline functions and
getter/setter class methods. Such highly frequent function calls can overwhelm any
recording memory buffer while in the same time contribute very less to the analysis and
understanding of the overall application behavior. We addressed the impact of high-
frequency function calls and developed a method to minimize the amount of stored
high-frequency functions while still keeping outliers that have an impact on the
application behavior. We developed and applied a hierarchical memory buffer that is
capable to discard recorded function calls when their duration is smaller than a pre-
defined lower bound.

We used a minimum duration of one microsecond, i.e., all function calls shorter than
one microsecond are filtered. This way, all short-running functions are eliminated while
all important routines including all communication routines remain in the trace. For all
applications that heavily use short-running functions the trace sizes can be remarkably
reduced down to 0.1% of the original trace size. For Gromacs, this approach reduced
the trace size to about 1.7% while still keeping the coarse program behavior. Figure 26
and Figure 27 show the resulting event trace visualized with Vampir. The fully
monitored measurement can be seen on the upper half of each Figure (white
background); the measurement with duration filtering on the lower half (blue
background). The timeline view with the events over time on the horizontal axis and the
processes on vertical axis is shown on the left side. On the right side is a function
summary showing the number of function invocations.

Both figures demonstrate that the filtering of short-running functions does not alter the
general application behavior; except for the missing short-running functions. The
function summary in Figure 5 shows that the total number of function calls is reduced
from about 4 billion to 68 million. Figure 6 additionally shows the process timeline of
process zero in detail; with the calling depth on the vertical axis. The process timeline
demonstrates that the highly frequent function calls on calling depth 10 and 11 are
effectively eliminated while the outliers that run longer are still contained in the trace.
This topic is also covered in more detail in [22].

Figure 26: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom)

event trace visualized with Vampir.

© CRESTA Consortium Page 37 of 57

Figure 27: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom)

event trace visualized with Vampir zoomed to an application phase of about 3.8ms.

5.3 Scalability	

Event tracing delivers most detailed information allowing a profound post-mortem
analysis of the parallel behavior. But, this comes with the cost of very large data
volumes. Handling such a tremendous amount of data has always been a challenge in
event tracing and is getting even more demanding with the rapid increase of
processing elements. Since, the collected data is traditionally stored in one file per
processing element, in particular, the rising number of resulting event trace files is one
of the most urgent challenges. The limits of current parallel file systems allow handling
only about ten or twenty thousand of parallel processes without any special treatment.

5.3.1 Using	
 External	
 Libraries	

Writing one file per processing elements (e.g. check points or result files) does not
scale to large systems since the sheer number of files overcharges the capabilities of
today’s file system meta-data servers. Two approaches that are dealing with the file
system limitations and are applied to event tracing are SIONlib [25] and the I/O
Forwarding Scalability Layer (IOFSL) [26]. Both approaches try to merge many logical
files into a single or a few physical files. While SIONlib relies on the file system’s
capability to handle large sparse files to pre-allocate segments for the logical file
handles within a single file, the I/O Forwarding and Scalability layer, as the name
suggests, provides an I/O forwarding layer to offload I/O requests to dedicated I/O
servers that can aggregate and merge requests before passing them to the actual file
system.

Both approaches have proved to support monitoring at high scales. VampirTrace
successfully recorded a full system run on the Jaguar system with 200.000 processes
and Scalasca used SIONlib to record a full system run on the Jugeen system with
almost 300.000 processes.

Since version 1.0 Score-P supports the usage of SIONlib but was restricted to pure
MPI applications. With the upcoming release, Score-P 1.4 will support hybrid programs,
as well.

5.4 Experiences	
 with	
 Target	
 Applications	

In general, we recommend starting to monitor the different applications with a coarse-
grained approach, e.g., profiling or monitoring only the communication behavior. These
approaches can be used to find program phases that contain potential bottlenecks or

© CRESTA Consortium Page 38 of 57

interesting behavior. These program phases can then be reviewed in detail with a
complete analysis approach.

5.4.1 Nek5000	

We monitored a MPI parallel version of Nek5000 with a jet data input set. The
performance visualization with Vampir can be seen in Figure 28.

Figure 28: Performance visualization of Nek5000 parallelized with MPI.

5.4.2 HemeLB	

We monitored a MPI parallel version of HemeLB. The performance visualization with
Vampir can be seen in Figure 29.

Figure 29: Performance visualization with Vampir of HemeLB parallelized with MPI.

© CRESTA Consortium Page 39 of 57

5.4.3 OpenFoam	

We monitored an MPI parallel version of OpenFoam including the I/O interactions. The
performance visualization with Vampir can be seen in Figure 30.

Figure 30: Performance visualization with Vampir of OpenFoam parallelized with MPI.

5.4.4 IFS	

We monitored a hybrid version of IFS parallelized with MPI and OpenMP running with
dataset T1023. The performance visualization of the application behavior with Vampir
can be seen in Figure 31. Figure 32 shows the analysis of an un-optimized
communication pattern where all processes wait on rank zero (see also [24]).

Figure 31: Performance visualization with Vampir of a hybrid IFS T1023 run.

© CRESTA Consortium Page 40 of 57

Figure 32: Performance visualization with Vampir of IFS parallelized with MPI. The communication
analysis uncovers an un-optimized communication pattern where all processes wait for rank zero.

5.4.5 Gromacs	

Within the coarse-grained analysis of Gromacs we detected that Gromacs uses a lot of
tiny short-running functions such as getter/setter class methods and helper functions.
While these tiny functions are usually automatically inlined by the compiler, the
automatic instrumation for tracing prevents the inlining. By itself, this provides event
tracing tools the opportunity to record an application’s behavior very detailed. However,
if these functions are heavily used they might overwhelm the capacity of the recording
memory buffers. While the recording of high-frequency functions enables a complete
analysis, usually, they contribute very little to the analysis and understanding of the
overall application behavior.

© CRESTA Consortium Page 41 of 57

Next to the tremendous amount of tracing data that is generated by these tiny function
calls, the overhead of monitoring these functions introduces even more bias. Within a
monitoring overhead study for Gromacs, using MPI parallelization with 144 processes,
built-in fftw, 10000 iterations, running on a Cray XC30, and monitored with Score-P
1.3b, we instrument Gromacs in three different ways and executed these versions to
investigate the impact of instrumentation on runtime overhead. The first version (a) of
Gromacs uses the native and common compiler function instrumentation, i.e., each
function will be instrumented and function inlining is prevented. For a second version
(b) of Gromacs, we intend to prevent instrumentation of all inline functions. Therefore,
we compare the set of symbols of the original application (A) with the set of symbols of
the fully instrumented application without any symbols from the monitoring system (B).
The set of originally inlined functions (I) is the difference of set A from B. For Gromacs
the size of I is 1781. A third version (c) of Gromacs uses selective compiler
instrumentation with an extension of filter (b) by the fifteen most frequently called
functions.

The runtime and overhead results of these three different instrumented versions of
Gromacs are presented in Table 2. As reference for this study we used the original and
unmodified version of Gromacs. To approximate the overhead for entering and leaving
of each instrumented function for the fully instrumented version we used a runtime filter
that excludes all functions from recording. For this scenario we only reached 26.9 % of
the original performance, i.e., even with our dynamic duration filtering technique on a
fully compiler-instrumented application like Gromacs the achieved performance has
only little significance for a later performance analysis. Recording all events either by a
profiling or tracing approach for this fully instrumented application without any runtime
filtering makes the situation even worse. In this case we only reach 1% of the original
performance, the approximate size of the out coming trace file would be 18 T Byte, and
we need at least a monitoring buffer of about 180GByte for each process to avoid any
disturbing I/O operations. With these reference values we can conclude that the
common-used default function-compiler instrumentation is the basic cause for a
decreased performance and absolutely inappropriate for a detailed performance
analysis. For the second version, the selective compiler instrumentation that prevents
instrumentation of inline functions, we reach a performance of 92.9% by using a
runtime filtering of each function (overhead for entering and leaving the instrumented
functions), and respectively 67.8% of the original performance for the recording of all
instrumented functions. With the last version, which uses the extended instrumentation
filtering specification, we were able to increase the performance to 79% of the original
performance while recording the instrumented functions in detail. The resulting size of
the complete trace is still 37GByte with a total of 1,412,518,862 events. This topic is
also covered in more detail in [22].

Gromacs instrumentation version Walltime Gromacs' internal
performance metric

Rel.
performance

Original unmodified version 14.98s 57.683ns/day 100.0%

Fully-compiler-instrumented (a)
with runtime filtering 55.64s 15.531ns/day 26.9%

Fully-compiler instrumented (a)
with profiling 1483.1s 0.583ns/day 1.0%

Selective-compiler instrumentation (b)
with runtime filtering 16.12s 53.610ns/day 92.9%

Selective-compiler instrumentation (b)
with tracing 22.11s 39.094ns/day 67.8%

Extended selective-compiler
instrumentation (c) with tracing 18.95s 45.598ns/day 79.0%

Table 2: Monitoring overhead study for different instrumented versions of Gromacs.

© CRESTA Consortium Page 42 of 57

This study led to the selective monitoring approaches demonstrated in Section 5.2. In
addition, Gromacs was recorded with multiple paradigms such as MPI, OpenMP,
CUDA, and energy counters simultaneously to capture the complete application
behavior (See Section 5.2.1).

5.5 Outstanding	
 Issues	
 and	
 Future	
 Work	

This section lists current restrictions and outstanding features that will be covered in
future releases:

The approach to wrap the DMAPP library to capture UPC behavior via the libpgas
library (see Section 5.1.1) is realized as a prototype within VampirTrace. This feature is
scheduled for a Score-P version greater than 1.4.

The approach to capture the OpenACC usage within an application is currently realized
with an LD_PRELOAD mechanism and the CUPTI interface since the OpenACC tool
interface is not standardized yet. The PGI compiler from version 14.9 provides a
preliminary interface. Its usage is currently implemented in a branch version of Score-P
and scheduled for a Score-P release version greater than 1.4.

For the monitoring of energy and power consumption (see Section 5.1.3) an additional
thread is forked to run on the CPU set of process zero. Thus, the sampling frequency
of the energy and power sources is important. However, these sources usually have a
refresh rate of 10Hz or lower. Thus, the sampling frequency of these sources can be
kept low as well.

The monitoring of different levels of detail for different processes (see Section 5.2.1)
currently requires a lot of manual work. The future idea is to build and run the different
versions automatically and use a profiling run to determine optimal instrumentation.
This feature is not scheduled for Score-P so far.

While the rewind feature for a selective monitoring of iterations (see Section 5.2.2) is
implemented in Score-P the dynamic runtime criteria are not implemented yet. This
feature is not scheduled for Score-P so far.

The selective monitoring of function calls (see Section 5.2.3) relies on the prototype
implementation of the OTFX tracing library. A release version of OTFX and an
according integration into Score-P is not scheduled so far.

© CRESTA Consortium Page 43 of 57

6 Debuggers	

During the CRESTA project, each of the applications was invited to submit their
impressions of the needs of debugging, for current usage and for their future usage –
including which platforms and programming models would be of evolving interest. The
results of this were summarized in Year 1 deliverables.

During Year 2 and Year 3, more active co-design activities were pursued with ECMWF
and UCL.

In particular, the IFS experimentation with Coarray Fortran was assisted by debugging
of Cray CAF by Allinea tools. Feedback on scalability, usability and integration with the
bespoke user workflow at ECWMF was received and helped to direct modifications and
new workflow oriented tool perspectives.

The second major focus, UCL HemeLB ultimately provided a significant opportunity for
the tools to prove their value as the HemeLB hit an unexpected roadblock which was
resolved by tools.

6.1 Allinea	
 Tools	

Allinea Software develops software tools HPC developers – including Allinea DDT, the
parallel debugger, and Allinea MAP, the parallel profiler.

Both tools use a scalable tree for command of tool daemons – this has been used for
debugging 700,000 core jobs, and frequently sees use at over 100,000 cores.

Within HPC software, progress can stumble due to two unpredictable interruptions:
defects and performance. Both are beyond ordinary comprehension at scale. How can
a bug be fixed if that bug only arises at (say) 100,000 cores? How can the performance
of an application be understood when the behaviour at 100 cores is no indicator of the
behaviour at 100,000? Old tricks such as print statement debugging, or timer-printing
profiling, do not help.

The challenges to solve these problems are (1) to provide low overhead tools –
enabling an application to run within typical resources at the typical problem size; and
(2) to convey the problem that the application has, even at extreme scale. For
debugging, how can the differences (needles in haystacks) be identified; for profiling,
how can typical issues such as poor balance, or bad I/O be best shown?

6.1.1 Allinea	
 DDT	

Allinea DDT is the scalable parallel debugger used by 70% of the top HPC centers –
and present on the larger systems within the CRESTA project. The tool was made
available to CRESTA participants for the duration of the project at maximum scale.

It uses its scalable control tree to handle the largest applications, stepping, or setting
breakpoints in fractions of a second even on the largest machines. One major
innovation in the tool is that it presents data to the user that helps to highlight the
differences.

6.1.2 Allinea	
 MAP	
 	

Complementing Allinea DDT,is the Allinea MAP tool – which we also chose to apply to
co-design codes.

Allinea MAP is a sampling based profiler – and thus tackles performance in a different
manner to tracing oriented profiling as seen with Vampir. Both approaches provide
valuable insight.

The profiler is able to execute applications without requiring instrumentation or
recompilation. It aims to present information that can help with the majority of
performance problems.

Allinea MAP is an adaptive sampling profiler, adapting the frequency of samples over
time, which keeps perturbation to a minimum. Sampling records the process stack,

© CRESTA Consortium Page 44 of 57

counters of communication, time, memory usage, I/O and the CPU instruction types.
This enables source line correlation of information such as the achieved level of
vectorization within a code. Codes typically experience considerably lower than 5%
performance impact. The key to scalability is to realize that a profiler does not need to
save everything - only what is necessary to understand the problem. Samples from
each process are merged through the tree at the end of the job, retaining stacks, and
min-max, standard deviation and mean of MPI, I/O and CPU metrics. Our contribution
is in scalable visualization techniques – for example, a timeline in Allinea MAP shows
the min, max, and mean – with the shading of the metric line indicating the standard
deviation – enabling balance across processes to be understood.

6.2 HemeLB	
 with	
 Allinea	
 Tools	

Over 100 of the systems in the Top 500 list in November 2013 had greater than 30,000
cores – and hence codes that wish to be “scalable” must scale to multiple thousands –
or multiple tens of thousands of cores.

The reality of many large systems is that very few applications strive to achieve this
scalability. HemeLB was an exception: the goal of reaching scale has a direct impact
on the simulation that can be undertaken. In order to simulate a most significant area
of the brain, the Circle of Willis, 50,000 cores and higher were highly desirable.

We will focus on one case during this quest for scalability – and a significant outcome.

6.2.1 Initial	
 Performance	
 Profiling	
 with	
 Allinea	
 MAP	

When we first deployed the application, Allinea MAP detected low percentages of
vectorization – visible immediately on our timeline. Our user error is common with
codes shared across the community - it is important to have quick methods to identify
simple mistakes. After resolving this through reconfiguration, a second pattern was
identified.

Figure 33: The increased flat-lining/troughs in the CPU floating point between 256 and 512 process

cases

In Figure 34, note the lower green timelines – representing amount of CPU floating
point over time (with min,max and mean across all processes) - the runs at 256
processes and 512 processes are superimposed vertically. The pattern of interest is
the “troughs” of CPU floating point operations (the zero-height points on the green line)
– which have increased in significance at 512 processes, and represent greater share
of time. The two glitches in MPI for each case (blue sawtooth edges) – are also being
investigated.

© CRESTA Consortium Page 45 of 57

Figure 34: Zooming into the source code in a trough

The inline source code and the parallel stack display revealed the issue to be I/O.
Reducing the frequency of periodic stores restored performance and enhanced
scalability. This is leading the team at UCL to have a better understanding of the
impact of I/O on the code on larger systems.

In this case, fixes were obvious and did not require deeper insight, but in other cases
this will help to detect where problems lie and enable the use of targeted insight tools
within the CRESTA framework such as TU Dresden’s Vampir to explore specific MPI
usage patterns within a smaller more tractable part of the application.

6.2.2 Solving	
 a	
 50,000	
 Cores	
 Crash	

After having made performance improvements, the developers then attempted to take
HemeLB through to high-scale – running at 3k, 6k, 12k, 24k cores successfully. The
next attempt, to run the application 49,152 cores crashed repeatedly – and the
application was unable to progress the science as a result.

At this point, Allinea and UCL explored the issue together. It required access to
debugging that could handle this scale – Allinea DDT was installed and ready to use on
the system.

We were subsequently able to reproduce the issue on a 24,576 core run which we use
here for illustration of the method, only.

Initially it was not clear how far through the application the crash was, but it was
believed to be an error within the 3rd party ParMETIS partitioner. We ran the application
through with DDT once, to confirm this scenario, and then recompiled this core library
to enable debug information to be provided by the compiler.

© CRESTA Consortium Page 46 of 57

	

Figure 35: Allinea DDT window showing 80% pf processes crashing at the same ParMETIS line

This initial view identified almost 80% of the processes as crashing at the same
identical line of ParMETIS (illustrated above with the single blue line through the source
code). In Figure 36, 17,223 processes have crashed at xyzpart.c line 556. This should
be a “well proven” line of code in this well used library.

This particular line of code suggested only a few potential options – invalid arrays,
invalid array access, or general data corruption as a side effect of earlier errors.

Examining the array indexing into allpicks on the right hand side of the expression. We
could see that the data was sensible and consistent (given by the straight horizontal
line graph of ntsamples and npes):

Figure 36: Allinea DDT window showing that the data was sensible and consistent

© CRESTA Consortium Page 47 of 57

We then examined the expression used in the indexing and evaluated this within the
debugger:

Figure 37: Allinea DDT Window showing that indexing is overflowing

As could be clearly seen: the indexing was overflowing.

We were able to identify that indexes were by default 32-bit – which (given 15 bits are
used by the processor count alone) is not sufficient for such common indexing /
sampling multiplications in Petascale applications.

Having exactly identified the cause, the application was recompiled to use 64 bit
indexing (a difficult to find configuration option to ParMETIS) – and then successfully
completed the largest simulation ever achieved.

This problem was solved extremely quickly – and contrasts with what was expected to
be a near impossible task. Interactive, debugging was as effective and fast as
debugging only a handful of processes.

The bug and fix have been fed back to the ParMETIS team.

A case study on this result has been published on the CRESTA website, and widely
coverage by the industry press.

6.3 MPI	
 Correctness	
 Check	
 of	
 HemeLB	
 With	
 MUST	

Discussions with the developers of the CRESTA co-design applications highlighted
HemeLB as an interesting and challenging test case for MUST. The application makes
heavy use of MPI derived datatypes. This includes a continuous creation and
destruction of datatypes at runtime, whereas most applications create their datatypes
once in an initialization function. This behavior distinguishes HemeLB from existing test
cases for MUST. Particularly, the use of the struct datatype that HemeLB is employing
is known to decrease type matching performance in MUST, and the continuous
creation of datatypes stresses a component of MUST that received no scalability
services yet. As a result, our experiments serve to:

• Check whether MUST’s checks operate correctly,
• Check whether the adaptive communication in HemeLB exhibits no hidden MPI

usage errors, and
• Analyze scalability of MUST.

Initial runs with MUST yielded two deviations from expected behavior: First, the
correctness logs of MUST could become lengthy. Second, MUST reported suspicious
type matching errors or deadlocks. An investigation of the log file revealed a defect in
the filtering and aggregation rules that condense correctness reports of multiple
processes. We applied a correction to MUST to remove this defect. Afterwards, we
could trace the suspicious correctness errors to a second defect in MUST’s datatype

© CRESTA Consortium Page 48 of 57

handling. This defect resulted from an incorrect handling of reused identifiers. A second
correction then provided correct behavior in MUST.

The remaining items in MUST’s correctness log highlight the use of MPI_Waitall
directives with a count value of 0. This is correct application behavior, but suspicious,
which motivates us to highlight it as a warning with MUST. Additionally, we observe a
missing MPI_Type_free directive for a datatype created with
MPI_Type_create_resized. We still investigate the source of this report and whether it
highlights a small improvement option for HemeLB’s cleanup, or whether is a spurious
message.

Figure 38: Runtime with MUST divided by runtime of a reference run as “Slowdown” highlights the
impact of the fan-in.

Figure 39: Increasing event rates (from maximum number of analyses on a MUST tool process)
highlight the cause for increasing slowdowns.

1	

2	

4	

8	

16	

32	

64	

128	

Sl
ow

do
w
n	

Fan-­‐in	
 2	

Fan-­‐in	
 4	

Fan-­‐in	
 8	

Fan-­‐in	
 16	

0	

2000000	

4000000	

6000000	

8000000	

10000000	

16	

Processes	

32	

Processes	

64	

Processes	

128	

Processes	

256	

Processes	

512	

Processes	

768	

Processes	

1024	

Processes	

M
ax
	
 A
na

ly
se
s	
 p

er
	
 S
ec
on

d	

© CRESTA Consortium Page 49 of 57

Figure 40: Time (in seconds) per event analysis highlights no scalability problems.

To investigate the overhead of MUST for this challenging application, we use a simple
bifurcation dataset that is known to scale well to 768 MPI processes. We run our tests
on the Sierra Cluster at the Lawrence Livermore National Laboratory. With a reduced
feature set of MUST that focuses on point-to-point analysis and its associated type
matching checks we run experiments at increased scales. This feature set serves the
primary operation type in HemeLB well. Figure 41 presents MUST overheads for
increasing scale for this test case. We use different fan-ins for the MUST configuration
to control how many tool processes of MUST serve one application process. The lower
the fan-in, the lower the tool overhead (at the expense of extra compute resources).
The measurements highlight that even with the increased datatype matching costs for
the complex derived datatypes we can handle HemeLB at increased scale. Note that
the experiment setup is a strong scaling test, i.e., the rate at which MPI processes of
HemeLB issue MPI operations increases with scale (Figure 40). Thus, MUST overhead
increases with scale, since tool processes handle increasing loads. The slowdown for
768 and 1024 processes already highlights that the slowdown becomes about constant
when the application reaches its saturation point, i.e., when it cannot increase its MPI
operation rate anymore. Figure 41 highlights this notion by computing the runtime that
MUST consumes per event analysis. This value is about constant across scale and
highlights no linear increase that would denote a scalability problem (at lower scale it is
higher due to idle times on the tool processes).

6.4 Outstanding	
 Issues	
 and	
 Future	
 Work	

Development of Allinea tools continues as commercially supported products – and the
roadmap has taken on board feedback from experience within CRESTA. The R&D
team continues to work on next generation architectures and programming models.
Opportunities for R&D that were not ready to be addressed during CRESTA such as
fault-tolerant tools and checkpoint ready tools, or domain specific language support are
still in early days, which support our decision to not include these at the time, but may
see new R&D projects in the near future.

With the test cases of MUST, its benchmark experiments, and our co-design
experience, we see good scalability for MUST. We detail benchmark experience in
D3.7 “Frameworks for Exascale Applications” separately. The behavior of HemeLB to
continuously create derived MPI datatypes highlights one option for improvement in
MUST. To better support this scenario MUST could provide scalability services for its
management of user defined MPI resources (communicators, process groups,
requests, windows, datatypes). Another notion is that MUST can exhibit noticeable
slowdowns even with low fan-ins, e.g., about 8 for the experiments with HemeLB and a
fan-in of 2. Depending on the application use case, especially for long running
applications, this can decrease the applicability of MUST. Performance improvements

0	

0.000005	

0.00001	

0.000015	

0.00002	

0.000025	

64	

Processes	

128	

Processes	

256	

Processes	

512	

Processes	

768	

Processes	

1024	

Processes	

Ti
m
e	

pe

r	
 A
na

ly
si
s	
 [
s]
	

Fan-­‐in	
 2	

Fan-­‐in	
 4	

Fan-­‐in	
 8	

Fan-­‐in	
 16	

© CRESTA Consortium Page 50 of 57

for the event handling and processing in MUST and GTI could further decrease
slowdowns.

© CRESTA Consortium Page 51 of 57

7 Conclusions	

In this deliverable, we described the experiences gained with applying the methods and
tools developed in WP3 to benchmarks and co-design CRESTA applications. We
presented the experience with benchmarks and application for each WP3 task. For
each framework developed in WP3, a critical review of outstanding issues was
performed and future research directions were outlined.

We presented first the experiences gained with the PGAS programming model by
developing a Coarray Fortran benchmark suite, using the Coarray Fortran in the IFS
application to calculate Legendre Transforms and implementing Fast Fourier
Transforms in UPC. We reported the first results using the targetDP programming
framework in Ludwig, a lattice Boltzmann application.

We investigated the use of compiler support for GPU programming by porting the
Nek5000 code to multi-GPU systems and present the performance results. We
described the use of OpenACC in the GROMACS application. We used the first
implementation of an auto-tuning system for OpenACC codes to tune the OpenACC
version of the Nek5000 code. The co-design work, involving the development of the
adaptive runtime system and Nek5000, was described, and the use of different
components of the runtime systems in benchmarks was presented.

The new features of Score-P and Vampir (support for new programming systems and
new hardware counters, selective monitoring and enhanced scalability) have been
used in CRESTA applications: Nek5000, OpenFOAM, IFS, HemeLB, Gromacs.

The Allinea DDT and MAP tools and MUST correctness checker have been used in
HemeLB CRESTA application to detect and analyze software errors and correctness
on large scale HemeLB simulations.

© CRESTA Consortium Page 52 of 57

8 References	

[1] Frameworks for Exascale Applications, CRESTA Project Deliverable D3.7

[2] T. El-Ghazawi, W. Carlson, and J. Draper, UPC Manual v1.2, June, 2005,
https://upc-lang.org/upc-documentation

[3] J. Reid, Coarrays in the next Fortran Standard, April 21, 2010.
ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

[4] D. Henty, A Parallel Benchmark Suite for Fortran Coarrays, in Applications,
Tools and Techniques on the Road to Exascale Computing (IOS Press, 2012),
pp. 281-288.

[5] D. Henty, EPCC Fortran Coarray micro-benchmark suite (v1.0 at 01/11/2014),
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-
and-benchmarking/epcc-co-array-fortran-micro

[6] D. Henty, Performance of Fortran Coarrays on the Cray XE6, in Proceedings of
Cray User Group 2012,
cug.org/proceedings/attendee_program_cug2012/includes/files/pap181.pdf

[7] D. Henty, Fortran Coarrays: PGAS Performance on Cray XE6 and Cray XC30
Platforms, hot topic talk presented at EASC 2014, the Second Exascale
Applications and Software Conference, 2-3 April 2014 Stockholm, Sweden.

[8] J. Reid, Additional coarray features in Fortran, in Proceedings of the 7th
International Conference on PGAS Programming Models 3-4 Oct 2013,
Edinburgh, www.pgas2013.org.uk/sites/default/files/pgas2013proceedings.pdf

[9] Mozdzynski, George, et al. "A PGAS implementation by co-design of the
ECMWF Integrated Forecasting System (IFS)." High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:. IEEE, 2012.

[10] Järleberg, Erik, et al. "Communication and Computation Overlapping
Parallel Fast Fourier Transform in Cray UPC." 7th International Conference on
PGAS Programming Models.

[11] Fürlinger, Karl, and David Skinner. "Capturing and visualizing event flow
graphs of MPI applications." Euro-Par 2009–Parallel Processing Workshops.
Springer Berlin Heidelberg, 2010.

[12] Aguilar, Xavier, Karl Fürlinger, and Erwin Laure. "MPI Trace
Compression Using Event Flow Graphs." Euro-Par 2014 Parallel Processing.
Springer International Publishing, 2014. 1-12.

[13] NERSC-8/Trinity Benchmarks. http://www.nersc.gov/systems/trinity-
nersc-8-rfp/nersc-8-trinity-benchmarks/

[14] Alcouffe, Ray E., et al. "PARTISN: A time-dependent, parallel neutral
particle transport code system." Los Alamos National Laboratory, LA-UR-05-
3925 (May 2005) (2005).

[15] MPICH wiki : http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt.

[16] Adaptive runtime support design document (Update), Project CRESTA
Deliverable 3.2.2 (2013)

[17] Tufo, H.M., Fischer, P.F.: Fast Parallel Direct Solvers For Coarse Grid
Problems. In: J. Par. & Dist. Comput., 61, p. 151--177 (2001).

[18] Fox, G.C. et.al.: Solving Problems on Concurrent Processors: General
techniques and regular problems. Prentice Hall, Englewood Cliffs NJ (1988).

[19] Michael Schliephake and Erwin Laure. Performance Analysis of
Irregular Collective Communication with the Crystal Router Algorithm. EASC
2014 Exascale Applications and Software Conference. Stockholm, 2-3 April
2014.

© CRESTA Consortium Page 53 of 57

[20] Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Dan
Henningson, Philipp Schlatter, Adam Peplinski, Alistair Hart, Jens Doleschal,
David Henty, and Paul Fischer: Nek5000 with OpenACC. Proceedings of
EASC, 2014.

[21] Alistair Hart, Harvey Richardson, Jens Doleschal, Thomas Ilsche, Mario
Bielert und Matthew Kappel: User-level Power Monitoring and Application
Performance on Cray XC30 Supercomputers, 2014.

[22] Michael Wagner, Jens Doleschal, Andreas Knüpfer und Wolfgang E.
Nagel: Selective Runtime Monitoring: Non-intrusive Elimination of High-
frequency Functions. In High Performance Computing Simulation (HPCS), 2014
International Conference on, pages 295-302, 2014.

[23] Michael Wagner, Jens Doleschal, Andreas Knüpfer and Wolfgang E.
Nagel: Runtime Message Uniquification for Accurate Communication Analysis
on Incomplete MPI Event Traces. In: Proceedings of the 20th European MPI
Users' Group Meeting, Madrid, Spain, pages 123-128, ACM, 2013.

[24] G. Mozdzynski, M. Hamrud, N. Wedi, J. Doleschal, H. Richardson: A
PGAS Implementation by Co-design of the ECMWF Integrated Forecasting
System (IFS). In High Performance Computing, Networking, Storage and
Analysis 2012, 2012.

[25] W. Frings, F. Wolf, and V. Petkov: Scalable massively parallel i/o to
task-local files. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York, NY, USA
ACM, pages 17:1–17:11, 2009.

[26] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knüpfer, K.
Iskra, R. Ross, W. E. Nagel, and S. Poole: Enabling Event Tracing at
Leadership-Class Scale through I/O Forwarding Middleware. In Proceedings of
the 21th International Symposium on High Performance Distributed Computing,
ser. HPDC ’12. ACM, pages 49-60, 2012.

© CRESTA Consortium Page 54 of 57

Annex	
 A. GROMACS/OpenACC	
 Porting	

This Annex contains a report on the GROMACS/OpenACC porting work prepared by
the Cray Programming Environment compiler development team.

A.1 Summary	
 of	
 Cray	
 GROMACS	
 OpenACC	
 Work	

During the summer of 2013, Cray, Inc. employed a summer intern to attempt a port of
GROMACS 4.6.2-dev to use OpenACC in place of CUDA. This effort continued
intermittently into the early part of 2014.

Our intern worked the problem from two angles. He attempted to write OpenACC from
scratch starting with the CPU version while at the same time taking the low-level CUDA
version and replacing specific CUDA functions with equivalent OpenACC. Instead of
compiling the function with the Nvidia nvcc CUDA compiler, it was compiled with the
Cray compiler (CCE). We had a "working" version of the latter method first and
dropped the rewrite idea. Replacing specific CUDA with OpenACC had the advantage
of reusing the CUDA optimizations.

We got the OpenACC version to the point where performance was within 10-15% of
the CUDA version but the more we worked on it, the more we considered it a prototype
rather than implementation. The CUDA version through macros and C++ methods,
has 24 versions of the compute intensive kernel called "nbnxn". At runtime, depending
on the input data file, various versions of the kernel are called, some of which short-
circuit large amounts of work. Our OpenACC kernel was only one of the 24-kernels in
the CUDA version, therefore not close to an actual working version of Gromacs. In
addition, it was difficult to verify if accuracy of outputs were sufficient and some were
clearly wrong. For debugging, we used only one input file: rf.tpr.

The prototype can be used as an example of how to replace CUDA code with
OpenACC code, but replacing the entire CUDA version will require significant rewrite.
An OpenACC version has the advantage of being more independent of specific GPU
architectures, requiring less maintenance than the current low-level CUDA version.
CCE did add significant capability specifically for Gromacs in 8.3 such as:

• compile-time setting of max regs
• access to CUDA functions
• access to fast, low precision rsqrt instructions
• access to atomics
• kernel launch taking into account use or non-use of shared-memory setting

optimal cache-configuration.

The best performing versions of CUDA and OpenACC made use of OpenMP threading
in the CPU portion of the Gromacs.

A.2 Details	

The compute intensive part of GROMACS kernel nbnxn contains 24 CUDA versions,
and one is chosen at runtime by this call:
nb_kernel	
 =	
 select_nbnxn_kernel(cu_nb-­‐>kernel_ver,	
 nbp-­‐>eeltype,	
 bCalcEner,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 plist-­‐>bDoPrune	
 ||	
 always_prune);	

which choses the specific kernel from a 6x2x2 dimensioned decision table. The first
dimension has 6 entries (0=k_nbnxn_cutoff, 1=k_nbnxn_rf, 2=k_nbnxn_ewald_tab,
3=k_nbnxn_ewald_tab_twin, 4=k_nbnxn_ewald, 5=k_nbnxn_ewald_tab_twin). The
second dimension indicates whether energy is computed (0=energy not computed,
1=energy computed), and the third dimension indicates whether pruning is used (0=no
pruning, 1=pruning).

© CRESTA Consortium Page 55 of 57

The actual CUDA kernels executed at runtime are driven by the input data set. The
energy version of each kernel appears to be invoked every 100-iterations (beginning
with 1).

The kernel decision table is below:
nb_default_kfunc_ptr[eelCuNR][nEnergyKernelTypes][nPruneKernelTypes]	
 =	

{	

	
 	
 	
 	
 {	
 {	
 k_nbnxn_cutoff,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_cutoff_prune	
 },	

	
 	
 	
 	
 	
 	
 {	
 k_nbnxn_cutoff_ener,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_cutoff_ener_prune	
 }	
 },	

	
 	
 	
 	
 {	
 {	
 k_nbnxn_rf,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_rf_prune	
 },	

	
 	
 	
 	
 	
 	
 {	
 k_nbnxn_rf_ener,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_rf_ener_prune	
 }	
 },	

	
 	
 	
 	
 {	
 {	
 k_nbnxn_ewald_tab,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_tab_prune	
 },	

	
 	
 	
 	
 	
 	
 {	
 k_nbnxn_ewald_tab_ener,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_tab_ener_prune	
 }	
 },	

	
 	
 	
 	
 {	
 {	
 k_nbnxn_ewald_tab_twin,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_tab_twin_prune	
 },	

	
 	
 	
 	
 	
 	
 {	
 k_nbnxn_ewald_tab_twin_ener,	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_twin_ener_prune	
 }	

},	

	
 	
 	
 	
 {	
 {	
 k_nbnxn_ewald,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_prune	
 },	

	
 	
 	
 	
 	
 	
 {	
 k_nbnxn_ewald_ener,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_ener_prune	
 }	
 },	

	
 	
 	
 	
 {	
 {	
 k_nbnxn_ewald_twin,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_twin_prune	
 },	

	
 	
 	
 	
 	
 	
 {	
 k_nbnxn_ewald_twin_ener,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k_nbnxn_ewald_twin_ener_prune	
 }	

},	

};	

The actual call to the CUDA kernel is:
nb_kernel<<<dim_grid,	
 dim_block,	
 shmem,	
 stream>>>(*adat,	
 *nbp,	
 *plist,	

bCalcFshift);	

where "nb_kernel" is dynamically set to one of the 24 actual CUDA kernels.

The OpenACC version call is:
acc_test(aatomdata,anbparam,aplist,acc_bcalcfshift,nblock,CL_SIZE*CL_SIZE,shm
em,plist-­‐>bDoPrune||always_prune,bCalcEner,d_tmp,bcalc,tshift);	

where "acc_test" is static. All data movement in the OpenACC version is still done with
CUDA though this could easily be converted to use OpenACC.

For input data file rf.tpr, 2000-iterations of "rf" are called with the energy version called
every 100 trips (beginning with 1).

The developed OpenACC kernel used the CUDA kernel "rf" as a model because input
data file rf.tpr was used. However, the "energy" version of "rf" was not implemented,
and therefore "energy" results are not complete.

It was felt much optimization work had already been done so there was advantage to
reusing this optimization work. The alternative would have been to begin with the CPU
version and add OpenACC directives.

Because there is only one of 24 CUDA kernels developed using OpenACC, the Cray
effort is not a complete solution, but could be used as a model going forward. Source
changes would be required to mimic the CUDA kernel selection that chooses the
specific kernel. Alternatively, the kernel checks could be done at runtime though with
probably performance cost. Because CUDA is low level, maintenance costs may be
cheaper transitioning between GPU generations with OpenACC compared to CUDA.
Other functions currently done in CUDA, such as explicit data movement between CPU
and GPU, could be transitioned to OpenACC.

A.3 Modified	
 Files	

The following files were modified for this OpenACC experiment (all relative to the base
directory):

© CRESTA Consortium Page 56 of 57

• OpenACC call to synchronize CUDA and OpenACC streams. Note this file has
file extension of "cu" and therefore is processed by nvcc, not a C compiler such
as craycc (part of CCE). Because of this, the usual OpenACC interface file
(openacc.h), could not be referenced but instead a direct file path to openacc.h
was used as a workaround:
src/mdlib/nbnxn_cuda/nbnxn_cuda_data_mgmt.cu	

• Device is initialized with OpenACC:
src/kernel/mdrun.c	

• Invokes the OpenACC kernel multiple times:
src/mdlib/nbnxn_cuda/nbnxn_cuda.cu	

• The actual OpenACC kernel code:
src/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.c

• OpenACC types added:
src/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.h	

A.4 OpenACC	
 Performance	
 Issues	

When functional, performance was poor relative to CUDA. Analysis showed
performance suffered relative to the CUDA version for the following reasons:

• shared memory was not used to contain arrays defined and referenced by
different threads within a block, causing long latency global memory references

• poor occupancy caused by more than 128-registers per thread
• register spilling for same reason
• use of double precision reciprocal sqrt functions along with casts between

single and double.
• poor occupancy caused by amount of shared-memory usage (after eventual

usage of shared-memory)
• The CUDA version uses a block of 8x8x1 whereas OpenACC has no official

way to indicate block geometry. The OpenACC code converts a 64x1x1 block
shape to 8x8x1 through extra code.

A.5 Optimizations	

The following optimizations were made:

• To get similar arithmetic performance as the nvcc option "-use_fast_math",
CCE compiler option -hfp4 is used allowing rsqrt instruction instead of the much
slower discrete sqrt and divide operations. Option -hfp4 also allows for general
use of rounded versions of arithmetic instructions equivalent to nvcc options:

-­‐ftz=true	
 -­‐prec-­‐div=false	
 -­‐prec-­‐sqrt=false	
 	

• Use of the fast, low precision rsqrt instruction requires defensive coding style to

handle denormals explained in: https://developer.nvidia.com/content/cuda-pro-
tip-flush-denormals-confidence

• CCE compiler option -­‐Wx,"-­‐-­‐maxrregcount=64" (new with CCE 8.3) should
be used to set GPU kernel max registers to 64 which increases occupancy to
0.5 (up from 0.25) with CCE default 128 max registers. This new 8.3 CCE
capability allows options to be passed to ptxas from the CCE invocation.

• Similar to the CUDA version, shared memory is used to contain arrays defined
and referenced by different threads within a block.

• The CUDA version uses a block of 8x8x1 whereas OpenACC has no official
way to indicate block geometry. The OpenACC code converts a 64x1x1 block
shape to 8x8x1 through extra code.

© CRESTA Consortium Page 57 of 57

• At kernel launch, the OpenACC runtime uses amount of kernel shared-memory
to choose the optimal L1/shared-memory ratio configuration among:
1. 16KB L1 and 48KB shared-memory
2. 48KB L1 and 16KB shared-memory
3. 32KB L1 and 32KB shared-memory

• The single large CUDA kernel was split into 3 OpenACC kernels lessening the
max register count for the remaining dominate kernel.

• Use of OpenMP threading in addition to GPU threading improved performance.
Wall-clock speedup was approximately 2x when using 8 OpenMP threads as
measured on both Cray XK7 and Cray XC30 systems.

A.6 Next	
 Steps	

The routine containing the OpenACC kernel "acc_test" in file:

src/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.c	

requires integration into the Gromacs framework.

Further OpenACC work is required to cover the 24 possible CUDA kernels including
the 6 eeltype's, with and without and pruning.

	

