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1 Executive	  Summary	  
 
This document describes a domain-specific language (DSL) that serves as the central 
component of an autotuning framework for the tuning of parallel applications.  We 
describe what features the DSL was designed to provide, how it fits within a wider 
autotuning framework and outline the initial implementation. 

Our initial approach was to start from scratch without detailed reference to, or 
consideration of, existing autotuning technology but starting from the basis of a specific 
set of requirements we considered important.  One reason for this is that the remit of 
the CRESTA project is to define a distinct European approach.  We also need to be 
sure that we can be in control of (or define) an environment that will support particular 
aspects of tuning parallel applications. 

The following sections introduce and outline the scope and objectives of WP3 task 
3.2.1 giving an overview of what the actual deliverable addresses. We then consider 
the objectives for the DSL and move on to describing the specification and how it would 
be implemented within an autotuning framework. 

This document is an update of the initial DSL specification (D3.6.1).  Since that work 
we have incorporated changes based on experience in two areas: 

1) We implemented a mockup implementation as a platform for testing the 
practicality of the DSL and made it available to CRESTA partners 

2) The mockup script was used in the tuning of NekBone (D3.5.2) and new feature 
and implementation requests came from this work. 
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2 Introduction	  
The CRESTA WP3 work package contains a task (3.2) on Compiler and Runtime 
Environments of which subtask (3.2.1) deals with autotuning, a technology that can 
address the inherent complexity of the latest and future computer architectures.  In the 
context of this project, autotuning is the process by which an application may be 
optimised for a target platform by making automated optimal choices of how the 
application is built and deployed. Tuning choices can be made that target algorithms, 
source code (optional branches, data flow, loop transformations etc.), compilation and 
application launch.  We can express both the tuning choices and controls for an 
autotuning framework via the use of a domain specific language (DSL) and this is the 
focus of this specification. 

The DSL we are developing can expose these choices within an application and 
primarily concerns source mark-up; in particular we aim to address parallel tuning 
aspects and interoperability with existing and future autotuning technology. 

In subsequent sections we note how the work on the DSL fits in the wider context of 
the project and note in more detail the requirements and implementation choices we 
have made. 

2.1 Purpose	  
The purpose of this document is to provide an update to the initial DSL specification. 

2.2 Related	  work	  
One of the project partners (Cray) has extensive experience of production autotuning, 
specifically for the generation of optimized scientific subroutine libraries[1]. This was, in 
part, motivation for the new unrelated work under CRESTA to research more general 
library tuning and whole-application tuning of parallel applications which we present 
here. 

The DSL described here would exist in a more general autotuning framework, some 
components of which would be studied or provided within the CRESTA project.  Work 
on adaptive runtime and compiler autotuning are separate tasks in CRESTA.  The DSL 
will be subsequently developed in conjunction with the CRESTA co-design applications 
and be informed by those application requirements in addition to other project activities.  
This will happen later in the project. 

2.3 Scope	  and	  objectives	  
The DSL is primarily concerned with markup of tuning choices.  These may be either 
exposed by the programmer/user (for example algorithm choices, source optimization 
choices, library choices, runtime choices) or may be implementation choices of higher 
level programming “constructs” (for example stencils, communication patterns etc.). 

The DSL principally targets the application developer and possibly those concerned 
with application optimization.  Runtime features may be of interest to the application 
user.  Use of the DSL should facilitate exploration of the application tuning space to 
make it easier to produce an application optimized for a particular platform. 

DSL statements can appear in various places: in source files or files associated with 
source or in a configuration file describing the overall tuning process.  The particular 
aspects which would warrant placement in a global configuration file are the following: 

1. Runtime choices (for example how many threads for a mixed-mode application) 
2. Dependency information between tuning parameters 
3. Convenience grouping of tuning parameters 
4. Linking or disambiguating tuning parameters defined in multiple places in order 

to fix their scope 
5. Compiler options and build choices 
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6. Use of external tools/components for example compiler autotuners, parameter 
optimization, machine learning matcher 

7. Interfaces to above  

Note that there is some overlap and you could embed DSL in application code that 
could alternatively be placed in a configuration file. In addition, a global configuration 
could augment DSL in source files, for example by adding additional scoping.  For 
subsequent sections we will use the term XDSL to indicate DSL that would more 
naturally be placed in an external configuration file. 

We will also consider control information that would be required in order to perform an 
end-to-end autotuning session, this allows us to understand how the DSL would fit in a 
wider context and would give us something that we can mock up at the end of the 
project.  We have also defined some components as external modules (for example a 
parameter optimizer) because this gives us flexibility to build simple reduced-capability 
implementations or interface to other software that can provide the required 
functionality. 

Note that a basic autotuning infrastructure could be useful in general code 
development and testing, allowing a simple mechanism for the developer to explore 
choices even if an intelligent tuning framework is not required. 

One of our major goals is to provide something that is easy to use with minimal 
application changes. In practice this means that a new user should be able to use the 
framework very quickly without installing a complicated software stack or making 
significant changes to how the application is built and run. As a result we started by 
defining how a tuning session is accomplished and how an application is built, run and 
optimized.  Only after doing this did we consider the precise details of DSL embedded 
in source. 

Our aim is to support, at a minimum, applications that are written in C, C++ and Fortran 
and use OpenMP and MPI in addition to selected single-sided or PGAS programming 
models. 

Autotuning is a wide area of research with many aspects[2], in particular a lot of work 
has been done on autotuning compiler infrastructure; our focus is more on parallel 
application tuning in the context of a general framework. 

2.4 Glossary	  of	  Acronyms	  
cronym Definition 
D Deliverable 
DSL 
EC 
ML 
PGAS 

Domain Specific Language 
European Commission 
Machine Learning 
Partitioned Global Address Space 

PM  Project Manager/ Project Month 
WP Work Package 
XDSL 
XML 

External DSL 
Extensible Markup Language 
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3 Requirements	  
In this section we outline the requirements and objectives we had in designing the DSL 
and begin by considering the overall tuning framework. 

The DSL is a component of an autotuning framework and at the highest level we 
assume that this framework can optimize an application over a set of tuning 
parameters. Some parameters we term scenario characterization parameters and 
these may for example, map to input parameters relating to problem size.  This is 
illustrated in Figure 1 below where we have two scenario parameters S1 and S2 and 
show five scenarios. 

    
For each scenario, we aim to pick the best values for a set of tuning parameters (in the 
figure: t1, t2, and t3).  The tuning parameters will relate to build and runtime optimization 
choices which we can choose to give for example the best runtime. At its simplest, the 
autotuner framework can optimize over the tuning parameters, at the most complex it 
can build routines and applications choosing the best tuning parameters for a set of 
scenario characterization parameters. 

In this section we consider which features the DSL needs to support and we categorize 
them as follows: 

• Overall tuning configuration information 
• Details of tuning parameters and relationships 
• Parallel autotuning features 

o Stencils 
o Data movement primitives 
o Process placement 

• Build information and control 
• Runtime information and control 
• Interfaces to tools/components 

o Parameter optimization 
o Machine-learning (ML) matcher interface 
o Library tuners 
o Serial compilation and Compiler-based tools (profile feedback and 

autotuning) 

For now we will not consider the syntax and placement details of DSL constructs. 

3.1 Overall	  tuning	  configuration	  
We need a way to control an overall tuning session, describe the objectives for a tuning 
run, the parameter space and build and run details.  It is an implementation decision as 
to which aspects of the tuning configuration are described centrally or in application 
files.  The overall configuration should describe the following: 

S1 

S2 

t1 

t2 
t3 

Scenarios 

Figure 1: Scenario and Tuning spaces 
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3.1.1 Tuning	  Control	  
This is where we describe what an autotuning run should do.  There are likely two 
scenarios: 

1. Only tune across tuning parameters picking the best 
2. Run tuning (over tuning parameters) for a set of scenario characterization 

parameters and optionally post-process results with an ML system in order to 
build a tuned library or application that can cater for a range of scenario 
parameters. 

For option 2 we need to define or obtain the set of scenario parameters. 

3.1.2 Tuning	  target	  
We need to be able to describe optimization for a target performance metric which 
could be minimum execution time or be related to some output from the application.  
This should be flexible enough to support something like minimizing power 
consumption. 

3.1.3 Tuning	  scope	  
It is very likely that we would want to tune for some subset of tuning parameters or 
code base so some parameter grouping method should be provided to enable this. 

3.1.4 Previous	  state	  
State from previous tuning sessions may be available; this section would describe how 
this could be done.  In order to interface to an external optimizer it would most likely be 
a requirement to manage state. 

3.1.5 Logfiles	  
The tuning process should produce a log of progress to specified output streams/files. 

3.2 Tuning	  Parameters	  and	  relationships	  
Various aspects of autotuning require that we set parameters within some range.  This 
enables us to optimize over fixed choices of code paths, parallel decompositions, 
optimizations (for example blocking and unrolling) etc.  To do so we need to define that 
a parameter is a tuning parameter and describe any bounds and constraints. 

The parameter definition should support 

• Typing, to include integer, real, character and Boolean 
• Definition of a range of values or a specified set of values 
• Any constraints between parameters (for example we may have parameters N 

and M which have to satisfy some relationship M*N = P) 
• A way to indicate that particular parameter choices are not allowed; this could 

happen if machine-learning software was generating parameter values. 

Another requirement which was raised by users of the mockup implementation was the 
ability to have parameters which were only valid for particular values of another 
parameter.  For example if a tuning parameter is used to choose an OpenACC 
accelerated loop then other parameters choosing loop clauses become valid. 

At a higher level we need the ability to group parameters for the following reasons: 

1. So we can describe which parameters should be treated as dependent for 
tuning purposes.  All parameters are likely to be dependent to some degree but 
to cut down the search space and to aid understanding it will be useful to have 
the ability to declare parameters as independent. 

2. So we can tune over a subset of parameters. 
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3.3 Parallel	  autotuning	  features	  
To some extent traditional serial autotuning techniques can be applied to the parallel 
domain. We can use any features we have to choose amongst implementation choices 
at the routine or block level to choose different ways to implement parallel operations.  
However there is scope to move beyond this and more directly address parallel 
aspects of an application, for example to target standard patterns (stencils for example) 
or address data movement. These two aspects are where the DSL should have most 
utility as we expect to move beyond mere tuning choice parameterization. The other 
topic is that of decomposition and runtime process and thread distribution choices.  
These topics are considered in this subsection. 

3.3.1 Stencil	  computation	  	  	  
A stencil computation is a core component of some algorithms and comprises a 
distributed calculation on a grid.  On a local level this typically equates to an iteration 
encompassing data movement (to move data from other processors) and a local 
computation partly involving data that has been moved.  The classic examples are 
simple iterative schemes to solve for example the Laplace equation. 

Stencils are described at a very high level and require an appropriate infrastructure to 
manage the decomposition and communication.  Our approach will be to tackle stencils 
via aggregate data movement primitives described below.  It would be a bonus to 
integrate somehow with software that can optimize stencil computations. 

3.3.2 Data	  movement	  primitives	  
The idea here is to think about a particular pattern of computation that we think is 
lower-level than for example the stencil but will cover more real application usage.  
These primitives could, for example, address the data movement (halo exchange) that 
we see in stencil computation but be more general.  One approach we want to 
investigate is to describe locations in the code where data could be communicated and 
locations where that data needs to be available.  The autotuning infrastructure can use 
various choices on how that movement can take place to optimize the communication 
(likely to be the most expensive part).  Choices that would need to be made would be 
the use of non-blocking communications, use of buffers and synchronization. 

3.3.3 Process	  placement	  
By process placement we mean the ability to vary, for example, the number of 
processes and threads in a multi-process programming model.  Also the mapping of 
processes to the hardware is something that can be varied.  For GPU models we can 
vary the decomposition to the GPU (grid dimensions, number of threads etc.). 

This is more of a runtime concern for some programming models so would be part of a 
runtime configuration. 

3.4 Build	  description	  and	  control	  
We need to allow an autotuner to control the build process.  There are various aspects 
to this. 

We need to be able to describe how parameters defined in the global configuration can 
made available to the build process.  For example one scenario is that they are passed 
into a Makefile as variables that appear as –D options in compilations.  There should 
be enough flexibility that a script can be provided to enable this integration for a more 
general build infrastructure. 

There should be a way to name or tag any output binary with a tuning build for a set of 
parameters.  Note also that we need to define which parameters relate to a new build 
of a binary as we will have to rebuild if we vary those parameters.  Requiring a rebuild 
for any change in parameters is not acceptable. 

We should describe how to call a clean script provided for the application build. 
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We also need to be able to support compiler flag optimization; this is where we explore 
a set of compiler options applied to many or some source files. 

In order to build a version of the application for a specific set of tuning parameters 
defined in DSL embedded in source we need to either parse the DSL with a DSL-
capable compiler or process the source files appropriately for a specific set of tuning 
parameters and pass the resulting source into the build. 

Our approach needs to be flexible and not mandate new and invasive build 
procedures. 

3.5 Runtime	  information	  and	  control	  
We need a way to describe how to run the application. 

Some parameters may map to an input file for the application.  We should provide a 
standard format file for this and also allow a script to create the expected input for the 
application. 

One part of this is a correctness check where we can optionally determine that a run 
was successful; there would be no point in optimizing for the fastest incorrect run! 

3.6 Interfaces	  to	  tools	  and	  components	  
In order to provide a general autotuning framework there are some components that 
are essential or which it would be useful to interoperate with.  This means we can 
describe a modular structure which should be more attractive to potential users. 

3.6.1 Parameter	  Optimization	  
This is a core component of an autotuner and can be as simple as an exhaustive 
search of the parameter space, or as complex as a full machine-learning environment. 

There are two running scenarios that should be supported as outlined below: 

Parameter	  space	  optimization	  
This is where the tuning process finds the optimal parameters from the 
parameter space. 

Scenario	  exploration	  
This is a variation on the above where some parameters are characteristics of 
the application run, for example problem sizes.  The tuner would explore the 
remaining parameter space and a machine learning system could then build a 
model to find the optimal set of tunable parameters from the characterization 
parameters.  Note that there are compilation systems that work like this (the 
features are program fragments). 

To support these two scenarios we need the ability to run across the whole parameter 
space or to optimize all or part of the parameter space. 

Provision should be made to call a plugin tuner which would accept the parameter 
definitions and control the tuning process.  This would have to be some sort of 
“delegated control interface” such that the tuner passes back information on which set 
of parameters to use for the next run as it explores the parameter space to find the 
minimum.  Some state will have to be maintained by the tuner and possibly by the 
overall autotuner. 

We also need provision to send the results of scenario exploration to an ML system 
and integrate the results back into the build so that we can either choose an 
appropriate binary for a set of scenario characterization parameters or optimize 
individual routines for relevant characterization parameters as noted below in section 
3.6.2. 
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The core configuration should describe the primary metric for optimization and what 
that optimization is.  Additional secondary metrics (for example performance counter 
data) should be optionally provided to the optimizer. 

We should be able to incorporate compiler option tuning into a generic optimizer by 
having labels as independent tuning parameters. 

This process can and will involve many compilations and for some applications this will 
be time consuming.  The design should minimize the number of builds required to 
explore the tuning space. 

3.6.2 Machine	  learning	  matcher	  
In order to produce a library routine or application that is tuned for a range of scenarios 
this is an important component.  The purpose of the “matcher” as we have termed it is 
to build a mapping from scenario characterization parameters into a model that predicts 
the best set of tuning parameters for a given choice of scenario characterization 
parameters.  An interface is required that sends the tuning experiment results to the 
matcher and accepts back the model in a form that can be incorporated into a library 
interface or some sort of runtime launch.  At its most complex, the matcher could be a 
machine learning[3][4] system using decision trees or some other technique. 

3.6.3 Library	  tuners	  
One technology that is relatively mature is the library tuner that can produce optimal 
code for a library routine for a given architecture and set of input parameters.  We 
should support this aspect of tuning in the following ways: 

1. Allow grouping of parameters and their independent tuning for some source 
subset (the library routine). 

Library tuning fits into the overall architecture as follows.  The DSL describes the tuning 
location, the scenario characterization parameters and the tuning parameters at the call 
site.  The framework explores the scenario parameter space and passes the result to 
the ML system.  The ML system then creates an interface routine that maps the 
scenario parameters to the optimal choice of optimization parameters.  Note that for 
this to work at runtime the optimization parameters must be runtime parameters or we 
need a mechanism to create multiple versions of the library routine (which might be 
possible). 

It is likely that library tuning will be a separate component of whole-application tuning 
and could potentially be used to tune implementation of parallel data movement 
routines (like MPI collectives). 

3.6.4 Serial	  compilation	  and	  compiler-‐based	  tools	  
A crucial aspect of application performance is the optimal compilation of source code 
into machine instructions.  Performance-critical code sections typically involve loop 
nests and require the compiler to apply transformations such as loop unrolling and 
blocking for cache along with decisions concerning register use and instruction 
scheduling.  Some specific tunable aspects are unroll length, prefetch length, prefetch 
depth, loop order and blocking factors. 

We need to decide to what extent we want to support this aspect of tuning and we can 
consider various capabilities: 

1. We support the programmer in manually implementing tuning by using the 
general framework to tune for parameters that control loop transformations (our 
framework should at least provide this but it puts the onus very much on the 
programmer to do all the work. 

2. We provide DSL to allow the programmer to control loop transformations and 
arrange for these to be mapped to implementation-specific compiler directives 
or we generate source to manually implement the options. 
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3. We have a compilation system that can operate at the IR level and accept 
transformation instructions in terms of the IR or alternatively can output its 
tuning choices in such a way that we can mandate it picks one of those choices. 

4. We treat compiler-based tuning as something separate. 

Our initial approach is to support options 1, 3b and 4 and work towards supporting 
option 2 in the course of the project if we can add any value above existing compiler 
autotuning projects. 
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4 Implementation	  and	  DSL	  specification	  
In this section we consider which choices we have to make or have already made (or 
have deferred) in implementing a DSL/XDSL that meets the requirements previously 
outlined. 

The most high-level choices to be made are the style of the DSL and the 
implementation of the global configuration; various choices are possible[5].  The most 
flexible approach is going to be a DSL that is a first class addition to the language in 
use (primarily C and Fortran for Exascale applications).  An alternative is to use 
directives within application source. 

Our initial approach was to define a DSL with a view to an initial mockup 
implementation at the end of the project that would parse source and generate 
compilable source that did not require extra compiler infrastructure beyond standard 
language support.  As a result, this document outlines initial syntax in the form of 
directives/pragmas.  We also designed the DSL to be minimally invasive such that as 
far as possible only DSL directives need be added to an application and the source is 
untouched and remains valid compilable source. 

4.1 Software	  Architecture	  
The most appropriate architecture would seem to be to have an overall controlling 
application which reads the global configuration and controls the whole tuning process.  
This application would be responsible for building and running the application and 
interfacing with the optimizer (a separate component).  

 
Figure 2: Tuning Architecture – high level view 

The components shown in Figure 2 implements the scenarios outlined in the 
requirements section 3.1.1 as follows.  The autotuner component controls the whole 
process and starts by reading DSL in application source files and a global configuration 
file.  The autotuner will either scan all application source or call a special script which 
would cause a supplied preprocess script to be run over the application source.  The 
autotuner would then decide if a simple tuning run or scenario exploration run was 
required.  To accomplish a tuning run the source is appropriately preprocessed (or just 
compiled) and an optimization process organized.  Build and run scripts manage the 
build and run process and the optimization component can help streamline the search 
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for the best tuning parameters.  If a scenario explaration run is undertaken then the 
matcher is called to build a model that maps scenario parameters to the appropriate 
tuning parameters.  The output from this could be used to either build optimal versions 
of specific routines or to choose from alternative application binaries.  How this process 
is controlled and implemented is outlined in subsequent sections. 

We have implemented a mockup of the autotuner and optimizer components which 
implements some of the DSL features.  It can parse the global configuration and run an 
exhaustive-search tuning session.  We expect to extend this mockup further in the 
hope that we can apply it in practice to more application scenarios during the rest of the 
project. NOTE: Although we may define a compiler-parsed DSL by project completion 
we are not providing compiler infrastructure to compile it. 

4.2 An	  introduction	  to	  the	  source	  DSL	  
In this section we explain the most basic features of DSL that can appear in application 
source code. We outline here only the features that are required to inject parameters 
from a tuning run into application source.  Note that it is possible to tune without ever 
using DSL in the application source.  Subsequent sections introduce more specific DSL 
syntax for other purposes. 

Our DSL is implemented as compiler directives and the two forms accepted are 
!tune$ directive [clause] [clause]… 
#pragma tune directive [clause] [clause] … 

The basic form of the directives is 
[if-clause] [begin | end] tune-directive [clause…] 

The basic set of directives is: 
import param-name-list 
inject:text 
inject_r:text 
inject_r$:text 
skip [fill] 
replace 

The import directive makes a tuning parameter available for use in other directives. 
The inject directives cause the supplied text to be inserted into the program; the 
inject_r version replaces any occurrence of the parameter in the text with the value at 
the point the file was parsed.  The inject_r$ version only replaces text of the form 
$param or ${param}, this is the replacement style used in the tuning configuration file. 

Examples might be: 
!tune$ import NB 
!tune$ inject_r:  blocksize=NB 

The replace directive is used to inject parameters into enclosed source and the use of 
begin and end is required.  The skip directive also requires begin and end to define a 
section of code which will be removed (fill is optional and if present the source will be 
replaced by blank lines which may be useful to preserve line numbers for comparison 
purposes). 

Note that replacements should not take place inside quoted strings. 

The if clause takes the form 
if (lexpr) 

where lexpr is a logical expression which may reference any imported tuning 
parameters.  An implementation should support at least the following operators (!=,==, 
<,>,>=,<=,%,+,-,*,/) where % is modulus.  Should the expression evaluate to false then 
the tuning directive is ignored.  
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4.3 Overall	  tuning	  configuration	  
The overall tuning configuration is described in a configuration file with sections for the 
various parts of the configuration (build, run etc.).  This file will be defined in two styles, 
text and XML.  The XML form will be described at a later stage but would closely follow 
the text syntax described here. 

Syntax (case-sensitive text): 
begin configuration 
 configuration-entity 
end configuration 

Allowable configuration entries are available to set the tuning target, tuning scope, 
previous statefile and logfile locations. 

The configuration file may contain comments which are lines that are either empty, all 
whitespace or start with a “!” character as the first non-whitespace character. 

In general whitespace within the configuration file is not significant, it would be sensible 
to use indentation to increase readability as per some of the examples provided later. 

4.3.1 Tuning	  target	  and	  scope	  
This section describes the tuning objective for the optimization of parameters and how 
target metrics are obtained from tan application run. 

begin tune 
 tune-entity 
… 
end tune 

where the tune entity can be: 
mode: tune | scenarios 
target: min|max 
scope: param-list | collection 
metric-source: file | stdout | runtime 
metric-placement: lastregexp| validation 

If the mode is set to “tune” then the autotuner will optimize over the tune-scope 
parameters.  If the mode is set to scenarios then the autotuner will perform a scenario 
exploration run as described in the next subsection.   

The target entry defines how the optimizer should optimize the runtime metric.  The 
source of that metric can be from a named file, standard out or the runtime.  The 
following additional statement defines the location of the metric file. 

postrun-metric-file: filename 

The metric can also be obtained from the validation output (see section 4.8). 

It the metric is not obtained from the validation output then a regular expression must 
be supplied as follows: 

metric-regexp: regexp 

The supplied (ruby) regular expression extracts the metric from a match within braces 
“()”.  The default regular expression used if this is not defined is to match any number 
format you might obtain from program output (including exponential formats). 

The scope statement allows us to restrict the tuning session to part of the parameter 
space. 

4.3.1.1 Scenario	  Exploration	  
If the tuning mode is set to scenarios then the tuner will explore a set of scenarios and 
perform a tuning run over the tuning parameters for each scenario.  The following tune 
entities relate to scenario exploration 
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scenario-params: param-list | collection 
scenario-params-combiner: combinations | tuples 
scenario-params-source: parameters | file 
scenario-params-file: filename 
matcher-feedback: script | code(C) | code (Fortran) 

Once the mode is set to scenarios the default is to explore scenarios from all 
combinations of the values of any parameters mentioned in the scenario-params line.  
Note that the scope setting for parameters does not apply to scenario parameters as 
defining them as such puts them in scope.  Optionally the parameters can come from a 
file if scenario-params-source is set to file and the filename is defined.  If the parameter 
combiner is set to “tuple” then each scenario is formed as follows:  Scenario 1 takes 
the first value of each parameter, Scenario 2 takes the second value and so on. 

4.3.1.2 Repeated	  Runs	  
In order to allow for some performance variability the metric can be aggregated from 
multiple repeated runs.  The DSL to control this is 

run-repeats: nrepeats 
metric-aggregation: min | max | average 

If the metric aggregation method is not set then it is set to the same as the tuning 
target.  

4.3.2 Previous	  state	  
In order to cater for incorporation of previous state we can provide a filename for a file 
which will be used to store the state of a tuning run:: 

state-file: filename 

 
We also need to describe how this setting interacts with the autotuner implementation, 
the requirement being that by default the autotuner will record the state to the file if the 
state-file is set in the configuration file.  The autotuner should provide a control for a 
user to continue a previous run. 

The mockup script we implemented supports an argument (-continue n) which will 
continue a previous run from the step n or from the whole previous run if n is greater 
than or equal to the number of steps in the previous run. 

4.3.3 Logfiles	  
An autotuner implementing the DSL should provide summary information to the 
standard output stream and more detailed information on tuning progress to a log file. 

The following statement directs progress and state information to the specified location. 
progress-log: filename 

 

4.4 DSL	  parameters	  relating	  to	  application	  source	  
This section defines parameters relating to the location of DSL source and how that 
should be handled.  A sample set of parameters follows: 

begin sources 
dsl-filelist: filelist 
dsl-filenames-file: filename 
dsl-map-input: input-map 
dsl-map-output: output-map 
end sources 
 

The list of files to be processed is set by either supplying a list of filenames or a file 
which contains the filenames.  If either of these is present then the tuner enables DSL 
parsing from source.  The map definitions allow a mapping to be defined between the 
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file containing DSL and the processed version after DSL parsing.  This is best 
illustrated in the following example: 

begin sources 
dsl-filelist: a.f90.dsl b.c.dsl 
dsl-map-input: %.dsl 
dsl-map-output: % 
end sources 

The set of files is a.f90.dsl and b.c.dsl. These would be parsed to the files 
a.f90 and b.c respectively.  If a filenames file is provided then it can either contain 
one filename per line (in which case the mapping is used to obtain the output filename) 
or it can contain two filenames per line (the input and output filenames) 

Once DSL parsing is enabled, the parsing process is started before any tuning runs 
commence (to optionally pick up new parameter definitions) and then each time a new 
build is run.  The initial preprocess stage will parse the files assuming default values of 
tuning parameters.   

4.5 Tuning	  parameters	  and	  relationships	  
The properties of tuning parameters can be described as part of the overall 
configuration (appropriate for runtime parameters for example) or can be declared in 
source DSL. 

4.5.1 XDSL	  tuning	  parameter	  definition	  
The configuration contains a section where we define tuning parameters, their ranges 
constraints and aggregation.  The parameters section includes various parts: 

begin parameters 
 begin typing 
  type-entity 
 … 
 end typing 
 begin constraints 
  constraint-entity 
  … 
 end constraints 
 begin values 
  values-file: values-filename 
 end values 
 begin collections 
  collection-entity 
   … 
 end collections 
 begin dependencies 
  depend: depend-list 
 end dependencies 
end parameters 
 

The typing section allows parameters to be typed as int, real or label, more specifically: 
type-entity is  type param-name 
type        is  int | real | label 

For example: 
int np 
int m 
int Q 
label method 

The set of allowed values of a parameter are defined in the constraints section.  This 
section supports specific sets of values, ranges, parameter relationships and legality 
constraints. 
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constraint-entity is range | product | constraint | default 
range is value-list | value-range [ default value ] 
default is value 
value-range is value-list | value-triplet 
constraint is logical expression | assignment 

Some examples are: 
range N 1-100 
range M 20,40,60 
range M2 20:60:20 
range NB 100,110,120,130,140,150 default 120 
range opt1 –O1,-O2 
range threads 1,4 
range nppn 1,2,4 
range method buffer, nobuffer 
product OPTa.c opt1 {-m32,-m64} 
constraint M*N < NP 
constraint Q = P / N 

The default value is used when the parameter in question is not being varied by the 
tuning (otherwise the first value in the list or range is chosen).  This default value can 
be overridden in the tuning section. Note that a constraint as an assignment means 
that the parameter that is the target of the assignment should be generated from the 
expression. 

Parameters may be grouped into collections, for example: 
Blocksizes: M N 
decomposition: P Q 
runtime: np, threads, pagesize 

Note that collections may also be defined in the build and runtime configuration and 
some have special meanings. 

The dependency section allows us to say which parameters should be treated as 
dependent: depend-list is either a list of parameters or a list of collections. 

Note particularly the product definition which defines a product of the list of possibilities.  
Along with some (user-defined) naming convention understood by the build script this 
can be used to associate compile options with filenames by using the filename as part 
of the parameter name.  In the example above we used OPTa.c which could be 
understood by a build script to define the current compile options (or additional options) 
to be used when compiling the file a.c. 

The optional values section of the parameters section is used to define a file to import 
values for parameters. Normally parameters would be set from the constraints section 
but in the case of configuration parameters used for library routine tuning it is likely 
there could be a large number of parameters or they may come from an application 
run.  The values file contains sections per parameter as follows 

param param-name [ default default-value] 
v0 v1 v2 … 

Runtime and build parameters are naturally defined in the global configuration but we 
provide a related syntax to define parameter types and ranges in the source DSL as 
outlined below. 

4.5.2 A	  node	  on	  tuning	  parameter	  validity	  
As mentioned previously in section 4.3.1 it is possible to define which parameters are 
in scope for a tuning session.  As a result parameters can be fixed at their default 
values for a given run with minimal change to the configuration. 

A feature request was to support a more dynamic mechanism so that parameters could 
have validity based on the values of other parameters during the tuning session.  The 
following configuration parameters introduce new constraints to address this 
requirement: 
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constraint param inscope forscenario lexpr 
constraint param inscope if lexpr 

These definitions are valid in the constraints section of the configuration.  The first form 
introduces a constraint that applies to scenario exploration.  For each scenario this 
constraint is checked for each tuning parameter to see if it should be in scope for the 
tuning run.  The second form applies more generally to tuning parameters and instructs 
the optimizer to avoid varying the parameter if the expression if false.  To what extent 
this will reduce the search space depends on the ability of the optimizer to organize the 
search appropriately. 

The second feature is somewhat experimental.  A better (and much more complicated) 
approach which we may consider in the future would be to maintain a graph of 
parameter validity constraints.  

An example of using such constraints is found in section 5.4. 

4.5.3 DSL	  tuning	  parameter	  definition	  
Tuning parameters can also be declared in source DSL.   

The syntax mirrors the syntax described above but with the tune sentinel prepended 
and definitions combined into an all-in-one syntax 

#pragma tune param define p type t range r [default d] 

which defines a new parameter p of type t with values from the range r and with an 
optionally defined default value d.  

An example could be: 
#pragma tune parameter n type int range 10,20  

The parameters have global scope and can be used in DSL in source as described 
previously.  An import directive is not required for later use of the parameter in the 
same file where the parameter was defined. 

Tuning parameter constraints can also be defined in source DSL in the following 
variants 

#pragma tune param define p type t constraint p=expr 
#pragma tune constraint lexpr 

The first variant constrains the new parameter to be generated from other parameters 
from the expression expr.  The second form supplies a logical expression which 
determines if a set of tuning parameters is valid. 

4.6 Parallel	  Autotuning	  Features	  
This section addresses tuning specific to a parallel application.  Note that the generic 
framework can of course be used to do this by parameterization of control flow. 

The following subsections address specific aspects of parallel tuning. 

4.6.1 Stencil	  computation	  
This is the highest level aspect of parallel tuning that we hope to address. 

A stencil is an operation on a grid expressed as updates to grid values as functions of 
nearby grid values.  Once this is distributed in parallel we can decompose into local 
computation and a communication phase to move edge data that is required for 
computation on other processes.  There are various ways to organize this and a stencil 
approach defines the problem generally leaving the details to the framework.  
We support stencils by using the pattern feature of data movement primitives. 

4.6.2 Data	  movement	  primitives	  
Data movement primitives allow us to express parallel data movement and have the 
autotuner explore the best way to do this.  This is implemented as follows: 
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1. We use DSL to optionally define patterns of data movement in an aggregate 
way. 

2. We place DSL in source at points that data is available to be communicated 
and where it needs to be available. 

Data movement patterns could be for example an alltoall pattern or a halo-swap 
communication pattern. 

The DSL to accomplish this looks like the following: 
#pragma tune pattern label mylabel ptype M N pmodel  

#pragma tune label dlabel var available 
#pragma tune label dlabel var available 

… compute … 
 
#pragma tune label dlabel var required 
 

The pattern type (ptype) specifies one of predefined (or user supplied) patterns and this 
particular pattern is labelled with mylabel by the programmer.  The pattern data 
dependencies are defined by the dlabel clauses as appropriate for the pattern.  So to 
give an example we assume the availability of a 2D HALO pattern and the DSL would 
look like: 

#pragma tune pattern label myhalo type HALO_2D M N MPI 
myrank 
#pragma tune myhalo left A(1:n) available  
#pragma tune myhalo right B(1:n) available 
 
… compute 
 
#pragma tune myhalo left B(1:n) required 

A range of available patterns should be predefined (or potentially user-supplied). 

This idea can be used at a simpler level to just move data between locations.  We will 
need to experiment with these ideas and work on the restrictions on what restrictions 
will be required in the source for this to work.  Note that a pattern may require 
information from the program, in this case the global decomposition (M,N) and the 
variable containing the local rank (because we will use MPI). 

4.6.3 Process	  Placement	  
A parallel application brings a new level of complexity at launch beyond a serial 
application.  We can for example decide how many processes to use, where those 
processes are located and how they are mapped to the hardware.  For a hybrid 
application (for example MPI application with OpenMP threading) we can trade 
processes for threads within the same total thread count and have various options for 
thread affinity.  The framework of parameters can be used to explore this tuning space 
as these are all runtime parameters and just need mapped to the right environment 
variables or application launch options by the run script.  The support for constraints 
was added to particularly address this scenario where for example threads multiplied 
by processes would be constant for a tuning run.  Similarly an application may use an 
internal process decomposition (say Px * Py) which we may wish to vary. 

How processes are placed on nodes can have a performance impact, for example the 
correct arrangement can yield an optimal on-node and off-node communication pattern 
for an application with particular data topologies.  MPI implementations address this by 
either supporting a hostfile/mapfile for rank placement or a similar file or parameter to 
perform rank reordering.  Our tuning infrastructure can accommodate the choice of 
such a file controlled by a runtime parameter.  A possible rank order could be 
generated by a tool for a given topology or from MPI profiling data (the Cray software 
stack contains such tools).  In addition it would be possible to reorder communicators 
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within an MPI application per application phase and a reorder file could be an input to 
such a scheme, also controlled by a runtime parameter. 

4.7 Build	  description	  and	  control	  
This is controlled by a section of the global configuration file where we define the 
interface to the build process: 

begin build 
 prescan-type: directory | script 
 build-preprocess: directory | implicit 
 command: shell-command 
 param-file: filename 

  begin collection 
   BUILD: N M 
  end collection 
 
end build 

We need to build the application taking account of the current set of tuning parameters.  
Because the source can contain DSL and we start by implementing this as source 
directives we need a mechanism to parse the DSL source.  The prescan-type setting 
gives a choice of scanning a whole directory tree looking for source with DSL or calling 
a script that will cause the source to be scanned (this script could be the build 
command).  Note that this script is called with an argument that provides a script which 
converts source to compilable source. 

The initial scan is just looking for definitions of tuning parameters. 

When the actual build is done we also need to preprocess, and the build-preprocess 
setting defines again if a scan is undertaken or if the normal build will use the 
preprocess script. 

Note that we can alternatively define a specific set of files to scan in the sources 
section of the configuration.  That method is likely to be more useful and less invasive. 

The build progresses by running a shell-command which should exit with 0 exit code to 
indicate a successful build.  The parameter list can be provided as a keyword list or as 
a file containing names and values for the parameter set.  The parameters can be 
referenced as $param or ${param} in the command, the latter providing separation 
within a string.  Here is an example: 

begin build 
 command: make N=$N P=$P 
end build 

Note that the collection BUILD has a special meaning and defines the set of 
parameters that would require a new build.  This collection can be defined here or in 
the global configuration.  If this is not defined then it is assumed that any change of 
parameters will require a new build. 

Each build has an associated unique tag generated by the autotuner and this is 
available to the build command as $build_tag (or as ${build_tag}).  This could be used 
for example as part of the executable name.  The same tag is available to the run 
script. 

4.8 Runtime	  information	  and	  control	  
This section of the global configuration describes the run process and is similar to that 
for the build process: 

begin run 
 command: shell-command 
 param-file: filename 
 validation-source: stdout | command 
 validation-command: shell-command 
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 independence: none | n 
end run 

The application is run by the command script (which should return a successful exit 
status) and the current parameter values will be provided (optionally) in the command 
parameter file.  The run can be validated by supplying data at the end of the standard 
output or providing the validation data as the output of a script.  In particular the syntax 
of this output should be: 

  tune run status validation-status [ metric value ] 
  validation-status is validated | failed  

Only a validation status of validated indicates a successful run.  Optionally the tuning 
metric may be defined here.  Note that because the tuning metric can be obtained from 
a script this allows extra flexibility, for example to obtain metrics that relate to power 
consumption, something that is not likely to be available to the application.  Note that if 
validation is used the devault is to abort if a run is not validated.  This behaviour can be 
changed by setting the failure mode: 

Validation-failure-mode: abort | warning 

Tuning parameter values and $build_tag are available to the run command. If more 
than one instance of the application can be run at the same time then the extent of 
execution parallelism can be declared via the independence setting.  Two more 
variables (run_id) and (repeat_id) are available to the run command. The former is 
unique for each run and the latter would be defined for repeating runs and would be 
unique for each repeat.  (Note that these variables are also available when defining the 
metric and validation filenames as these relate to a run.) 

Environment variables can be provided to the run by including parameters in a 
collection called RUN_ENVARS.  If this is done then at runtime the parameters will be 
mapped to environment variables of the same name, if the parameter is set to the 
value unset then the environment variable will not be defined. 

4.9 Interfaces	  to	  tools	  and	  components	  
This section of the global configuration describes how we interact with external 
components.  This is part of the global configuration. 

4.9.1 Parameter	  optimization	  
This is where we describe the interface to the optimizer that explores the parameter 
space searching for the optimal set of parameters. 

We do this via a “delegated control” interface where we setup the optimizer and then 
act on its responses by running the application and returning the resultant metric to the 
optimizer.  Using this technique means that we only need the autotuner to understand 
how to optimize a set of parameters and not understand how to run the application. 

The control section is as follows: 
begin optimizer 
 command: shell-cmd 
 cycles: <integer> 
end optimizer 

The interaction with the optimizer proceeds as follows: 

It is sent a start command and the parameter configuration (types, ranges, constraints, 
objective and a pointer to a file containing previous history of optimizer runs). 

The optimizer should respond asking for a tuning run of the application for a given set 
of parameters.  The framework sends back the results of the tuning run by returning the 
primary metric along with any secondary metrics.  The process continues until the 
parameter space has been explored.  The cycles parameter limits how many times the 
optimizer will be called, this would be used with a complex (intractable) search space 
and an optimizer that does not do exhaustive search in order to limit the computation. 
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4.9.2 Machine	  learning	  matcher	  
It is outside the scope of this project to implement a full machine learning system for 
the matcher component but our intention is describe the interface to this component for 
the full DSL specification.  With the mockup we may be able to implement a simple 
closest match model and apply it to a library routine tuning example. 

4.9.3 Library	  tuners	  
In this section we are concerned with the capability of specifically tuning a 
subroutine/function, something we would do if producing a library or optimized routines. 

Our implementation uses the scenario exploration run where the scenario 
characterization parameters map to input parameters to the routine in question.  So for 
example consider that we wish to tune a routine NORMALS which accepts arguments 
M,N.  This function includes DSL to expose tuning choices with parameters B,L,O. 

We perform a scenario run over values of M,N (assume for now these can be program 
input). The matcher produces a model mapping any M,N to the optimal choices or 
B,L,O and we instantiate that logic into a wrapper to call NORMALS appropriately.  So 
in DSL this would look like: 

#pragma tune library NORMALS scenario-params M, N tune 
B,L,O wrapper NORMALS_wrap 

This declares the parameters and names a wrapper routine that can be inserted after 
the matcher has run. 

Additional features allow capturing the values of variables from within the program and 
supporting timing: 

#pragma tune library NORMALS scenario-params M,N tune B,L,O 
wrapper NORMALS EXPORT M,N timer 

This would cause the program to be instrumented to export the M,N values and 
implement a timer which could be used as the tune metric. 

 

4.9.4 Compiler-‐based	  tools	  
As discussed in section 3.6.4 this is a complex area and initially we will only support 
this by parameterized control flow and describing an interface whereby we could 
interact with a compiler that can expose its tuning choices. 

For the latter we would hope that the compiler could create a companion file with the 
name “file.ctune” which contains the following DSL: 

#pragma tune compiler-export 
#pragma tune… 

where the second and subsequent lines define tuning parameters. 

The compiler should accept as input a file “file.ctune.in” in the same directory that sets 
those parameters. 
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5 Tuning	  Configuration	  Examples	  
Here we provide a set of examples with full configuration files to illustrate various 
features of the DSL. 

5.1 Build	  and	  runtime	  parameter	  examples	  
In this example consider an application that has one tuneable parameter, some 
blocksize (NB) and that this can be set on the command line. 

A possible autotuner configuration to tune for NB is as follows: 
begin configuration 
 begin tune 
  mode: tune 
  scope: NB 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  int NB 
 end typing 
 begin constraints 
  range NB 80,90,100,120,140 
 end constraints 
end parameters 
begin build 
 command: make 
end build 
begin run 
 command: ./solver NB=$NB 
end run 
 

We could have used a run script and picked up the value of NB from a provided input 
file (param-file) or from an environment variable (the RUN_ENVAR collection). 

In the next example we assume that we have an additional tuning choice which is 
controlled at compile time by a preprocessor variable USE_EXTRA_BUFFER: 

begin configuration 
 begin tune 
  mode: tune 
  scope: NB EXTRA_BUFFERING 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  int NB 
  label EXTRA_BUFFERING 
 end typing 
 begin collections 
  BUILD: EXTRA_BUFFERING 
 end collections 
 begin constraints 
  range NB 80,90,100,120,140 
  range EXTRA_BUFFERING “YES”,”NO” 
  depends NB EXTRA_BUFFERING 
 end constraints 
end parameters 
begin build 
 command: make EXTRA_BUFFERING=$EXTRA_BUFFERING 
end build 
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begin run 
 command: ./solver NB=$NB 
end run 

The differences are that we added the new parameter and passed it into the build.  We 
included it in the BUILD collection to make sure that any changes cause a new build 
and we marked NB and EXTRA_BUFFERING as dependent so that the optimizer 
would not treat them independently in tuning. 

5.2 Scenario	  Exploration	  
This example extends the previous example to add three scenarios SMALL, MEDIUM 
and LARGE.  

begin configuration 
 begin tune 
  mode: scenarios 
  scenario-params: SIZE 
  scope: NB EXTRA_BUFFERING 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  int NB 
  label EXTRA_BUFFERING 
  label SIZE 
 end typing 
 begin collections 
  BUILD: EXTRA_BUFFERING 
 end collections 
 begin constraints 
  range NB 80,90,100,120,140 
  range EXTRA_BUFFERING “YES”,”NO” 
  range SIZE X100,X500,X10000 
  depends NB EXTRA_BUFFERING 
 end constraints 
end parameters 
begin build 
 command: make EXTRA_BUFFERING=$EXTRA_BUFFERING 
end build 
begin run 
 command: ./solver NB=$NB < input.$SIZE 
end run 

The additions define SIZE to have values of either X100, X500 or X10000 and these 
values will be used in turn to tune for the optimum values of EXTRA_BUFFERING and 
NB.  In this case the SIZE parameter was used to choose the input file for the run 
command.  It would be easy to keep the binary corresponding to the optimum 
parameters obtained for each scenario. 

5.3 Example	  of	  DSL	  in	  source	  
This is a simple example to show how a source file may have DSL to control values of 
a variable. 

!tune$ param define bfac type int range 20,40,80 
!tune$ inject_r$:bfac = $bfac 
do jb=1,n,bfac 
 do ib=1,m,bfac 
  do j=jb, min(jb+bfac,n) 
  do i=ib, min(ib+bfac,m) 
   … 
   end do 
   end do 
 end do 
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end do 
 

An alternative would be for the global configuration to name bfac as a tuning 
parameter and to use an import directive instead of the parameter definition. 

5.4 Scenario	  exploration	  with	  constrained	  parameters	  
This example shows how we can make some tuning parameters invalid for particular 
scenario runs.  This shows what is likely to be a particular usage pattern for scenarios: 
where scenarios are used to explore different algorithms.   

Consider this configuration: 
begin configuration 
 begin tune 
  mode: scenarios 
  scenario-params: LOOP 
  scenario-params-combiner: combinations 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 
  int NB 
  int block 
  int unroll 
  label LOOP 
 end typing 
 begin constraints 
  range NB 80,90,100 
  range block 2,4,8 
  range unroll 1,2,4 
  range LOOP blocking,unrolling 
  constraint unroll inscope forscenario LOOP=="unrolling" 
  constraint block inscope forscenario LOOP=="blocking" 
 end constraints 
end parameters 
begin build 
 command: make 
end build 
begin run 
 command: ./solver NB=$NB 
end run 

This file defines a scenario run where the parameter LOOP takes the values “blocking” 
and “unrolling”, for each scenario a tuning run is started to find the optimum values of 
NB, block and unroll.  But the constraints make sure that block is only varied for the 
scenario with LOOP=”blocking” and unroll is only varied for the scenario with 
LOOP=”unrolling”. 

5.5 Compiler	  flag	  tuning	  
This example shows how tuning of compiler flags can be achieved with the framework.  
Assume that there are various source files main.c, solver.c, stats.c and that we wish to 
explore the use of certain options in the build.  A sample configuration is shown below: 

begin configuration 
 begin tune 
  mode: tune 
  scope: copts 
  target: min 
  metric-source: runtime 
 end tune 
end configuration 
begin parameters 
 begin typing 



 
Copyright © CRESTA Consortium Partners 2014 

  Page 24 of 28 

 

  label OPT_strength 
  label OPT_fp 
  label OPT_default 
  label OPT_num 
  label FOPT_main.c  
  label FOPT_solver.c 
  label FOPT_stats.c 
 end typing 
 begin constraints 
  range OPT_base –m64 
  range OPT_fp –fp_model=strict,-fp_model=precise 
  range OPT_strength –O2,-O3 
  product OPT_num OPT_fp OPT_strength 
  range FOPT_main.c OPT_num 
  range FOPT_solver.c OPT_num 
  range FOPT_stats.c OPT_num 
 end constraints 
 begin collections 
  BUILD: OPT_base FOPT_main.c FOPT_solver.c FOPT_stats.c 
 end collections 
 begin dependencies 
  depend: OPT_fp OPT_strength 
 end dependencies 
end parameters 
begin build 
 command: make 
end build 
begin run 
 command: ./program 
end run 

 

In this case the assumption is that the Makefile is expecting to use $OPT_base and the 
FOPT_xxx parameters to set the compilation options for each file.  Note that in this 
example the same options are applied to the files, but if we split OPT_num to 
OPT_num1 and OPT_num2 and made those independent then each file would get 
distinct choices of OPT_fp and OPT_strength when the parameter search was done. 
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Annex	  A. Autotuning	  Mockup	  
A.1 Introduction	  
In parallel with development of the DSL described here we produced a simple mockup 
autotuner implementation that could be used to inform the development of the DSL, 
give a view on practicability of features and provide something that CRESTA partners 
could use. The initial version was made available as an alpha prototype (this met a 
project milestone).  Note that this is not production software but is an implementation 
internal to the CRESTA project that serves as motivator and demonstrator for the 
autotuning DSL specification (which is the actual deliverable of the project.) 

A.2 Mockup	  status	  
The autotuner prototype is a ruby script that is capable of a rudimentary autotuning 
session controlled by a configuration script.  Development is using ruby 1.9.1 with 
some very limited testing on 1.8.7.   

Currently the following aspects are implemented: 

• configuration script parsing 
• sources section 
• tune parameters 

o mode, scope, target, metric source 
o scenario setup (from configuration only) 
o metric-placement 

• parameters section 
o typing section 

• collections definition 
• constraints 

o ranges, depends 
o product (but not the inline value syntax) 
o expression and assignment constraint types 
o scenario tune parameter validity/scope constraints 

• build section 
o command definition with embedded parameters 
o param-file 
o build dependency from BUILD collection 
o executing build command 

• run section 
o command definition with embedded parameters 
o param-file 
o executing run commands 
o validation behavior 

• DSL source parsing (simple parameter definition, constraints,  import, skip, 
replace and the three inject variants) 

• determination of the order of executions and of best parameters by exhaustive 
search of parameter space. 

 
Specific features not currently supported are: value input from file, parallel runs, plugins 
and the more advanced source DSL. 

As the mockup developed, some new features were added and the syntax for existing 
features altered or extended.  Those additions were incorporated into the DSL 
description elsewhere in this document so are not described here. 

A.3 Mockup	  execution	  
The mockup autotuner is a command line application which is executed as follows: 

% tune linpack.conf 
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This will start a tuning session controlled by the configuration file specified.  The default 
log file will be tune.log.  The autotuner accepts the following additional arguments: 

   -help          Print this usage information 
   -nobuild       Progress without executing the build command (for testing) 
   -norun         Progress without executing the run command (for testing 
   -noopt         Do not run the optimizer 
   -stripdsl      Parse DSL files removing DSL, do not run optimizer. 
   -continue seq  Continue a previous run from the seq'th run 
   -colour        Colorize standard output (at present just red for warnings) 
   -csv    file   Sent summary output to file in csv format 
   cfile          Name of the file that holds the tuning configuration 

 

A.4 Acknowledgements,	  feature	  additions	  and	  suggestions	  
The mockup was used to tune OpenACC implementations in the Nek5000 
application[6].   

The main feature requests coming from that work were 

• The ability to have better control over scope and validity of parameters. 
For example some parameters were only valid when a particular algorithm 
implementation was chosen. 

• Required implementation of the scenarios 

• Better summary of the results 

The author received complimentary feedback about the usability of the software, in 
particular that is was not difficult to interface to the build and run of an application and 
extract the tuning metric. 

The author acknowledges useful feedback on the DSL and mockup from Alistair 
Hart(Cray UK), David Henty(EPCC) and Luis Cebamanos(EPCC). 

A.5 Availability	  
The mockup is currently only available internally to the project partners from the author 
or from the CRESTA SVN.   
 
The SVN location is: 
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp3/autotuning/ 

The mockup files can be found in trunk/mockup 
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Annex	  B. Future	  Work	  
We expect to look at additional aspects of the DSL and tuning between publication of 
this deliverable and the end of the project.  The following areas are of specific interest. 

 
Table 1: Future work 

DSL constructs Expand support from current set 

Matcher Can we implement a simple closest-
match or decision tree matcher for 
scenario runs? 

DSL XML Format Reconsider. Perhaps something like 
JSON is more appropriate. 

Other project interactions What can we learn from other projects? 
What software (ML, optimizers etc.) can 
we interoperate with and how? 

Project interactions Use tuner with an additional co-design 
application. 

Parallel Data Mover Runtime Experiment with data mover aspects 

 

 


