

Copyright © CRESTA Consortium Partners 2014

D3.6.2	 –	 	
Domain	 Specific	 Language	 (DSL)	 for	

expressing	 parallel	 auto-‐tuning	

WP3:	 Development	 environment	

Due date: M30

Submission date: 31/03/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization KTH

Version: 1.0

Status Final

Author(s): Harvey Richardson (CRAY UK)

Reviewer(s) Stephano Markidis (KTH), Bastian Koller (USTUTT)

Dissemination level

PU PU – Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 26/2/2014 Base version from D3.6.1 Harvey Richardson
(CRAY UK)

0.2 1/3/2014 Incorporate mockup developments Harvey Richardson
(CRAY UK)

0.3 7/3/2014 Scenarios and DSL source updates Harvey Richardson
(CRAY UK)

0.31 7/3/2014 Version for internal WP review Harvey Richardson
(CRAY UK)

0.4 20/3/2014 Address comments from reviews Harvey Richardson
(CRAY UK)

1.0 31/03/2014 Final version of the deliverable Harvey Richardson
(CRAY UK)

Copyright © CRESTA Consortium Partners 2014

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 PURPOSE	 ...	 2	
2.2	 RELATED	 WORK	 ...	 2	
2.3	 SCOPE	 AND	 OBJECTIVES	 ..	 2	
2.4	 GLOSSARY	 OF	 ACRONYMS	 ...	 3	

3	 REQUIREMENTS	 ...	 4	
3.1	 OVERALL	 TUNING	 CONFIGURATION	 ...	 4	

3.1.1	 Tuning	 Control	 ..	 5	
3.1.2	 Tuning	 target	 ..	 5	
3.1.3	 Tuning	 scope	 ...	 5	
3.1.4	 Previous	 state	 ..	 5	
3.1.5	 Logfiles	 ..	 5	

3.2	 TUNING	 PARAMETERS	 AND	 RELATIONSHIPS	 ..	 5	
3.3	 PARALLEL	 AUTOTUNING	 FEATURES	 ..	 6	

3.3.1	 Stencil	 computation	 ..	 6	
3.3.2	 Data	 movement	 primitives	 ...	 6	
3.3.3	 Process	 placement	 ..	 6	

3.4	 BUILD	 DESCRIPTION	 AND	 CONTROL	 ...	 6	
3.5	 RUNTIME	 INFORMATION	 AND	 CONTROL	 ...	 7	
3.6	 INTERFACES	 TO	 TOOLS	 AND	 COMPONENTS	 ..	 7	

3.6.1	 Parameter	 Optimization	 ...	 7	
3.6.2	 Machine	 learning	 matcher	 ..	 8	
3.6.3	 Library	 tuners	 ..	 8	
3.6.4	 Serial	 compilation	 and	 compiler-‐based	 tools	 ..	 8	

4	 IMPLEMENTATION	 AND	 DSL	 SPECIFICATION	 ..	 10	
4.1	 SOFTWARE	 ARCHITECTURE	 ..	 10	
4.2	 AN	 INTRODUCTION	 TO	 THE	 SOURCE	 DSL	 ..	 11	
4.3	 OVERALL	 TUNING	 CONFIGURATION	 ...	 12	

4.3.1	 Tuning	 target	 and	 scope	 ...	 12	
4.3.2	 Previous	 state	 ..	 13	
4.3.3	 Logfiles	 ..	 13	

4.4	 DSL	 PARAMETERS	 RELATING	 TO	 APPLICATION	 SOURCE	 ..	 13	
4.5	 TUNING	 PARAMETERS	 AND	 RELATIONSHIPS	 ...	 14	

4.5.1	 XDSL	 tuning	 parameter	 definition	 ...	 14	
4.5.2	 A	 node	 on	 tuning	 parameter	 validity	 ..	 15	
4.5.3	 DSL	 tuning	 parameter	 definition	 ...	 16	

4.6	 PARALLEL	 AUTOTUNING	 FEATURES	 ...	 16	
4.6.1	 Stencil	 computation	 ..	 16	
4.6.2	 Data	 movement	 primitives	 ...	 16	
4.6.3	 Process	 Placement	 ..	 17	

4.7	 BUILD	 DESCRIPTION	 AND	 CONTROL	 ...	 18	
4.8	 RUNTIME	 INFORMATION	 AND	 CONTROL	 ...	 18	
4.9	 INTERFACES	 TO	 TOOLS	 AND	 COMPONENTS	 ..	 19	

4.9.1	 Parameter	 optimization	 ..	 19	
4.9.2	 Machine	 learning	 matcher	 ..	 20	
4.9.3	 Library	 tuners	 ..	 20	
4.9.4	 Compiler-‐based	 tools	 ..	 20	

5	 TUNING	 CONFIGURATION	 EXAMPLES	 ..	 21	
5.1	 BUILD	 AND	 RUNTIME	 PARAMETER	 EXAMPLES	 ..	 21	
5.2	 SCENARIO	 EXPLORATION	 ...	 22	
5.3	 EXAMPLE	 OF	 DSL	 IN	 SOURCE	 ...	 22	

Copyright © CRESTA Consortium Partners 2014

5.4	 SCENARIO	 EXPLORATION	 WITH	 CONSTRAINED	 PARAMETERS	 ...	 23	
5.5	 COMPILER	 FLAG	 TUNING	 ...	 23	

6	 REFERENCES	 ..	 25	
ANNEX	 A.	 AUTOTUNING	 MOCKUP	 ...	 26	
ANNEX	 B.	 FUTURE	 WORK	 ..	 28	

	

Index	 of	 Figures	
Figure 1: Scenario and Tuning spaces ... 4	

Figure 2: Tuning Architecture – high level view .. 10	

Index	 of	 Tables	
Table 1: Future work ... 28	

	

Copyright © CRESTA Consortium Partners 2014

 Page 1 of 28

1 Executive	 Summary	

This document describes a domain-specific language (DSL) that serves as the central
component of an autotuning framework for the tuning of parallel applications. We
describe what features the DSL was designed to provide, how it fits within a wider
autotuning framework and outline the initial implementation.

Our initial approach was to start from scratch without detailed reference to, or
consideration of, existing autotuning technology but starting from the basis of a specific
set of requirements we considered important. One reason for this is that the remit of
the CRESTA project is to define a distinct European approach. We also need to be
sure that we can be in control of (or define) an environment that will support particular
aspects of tuning parallel applications.

The following sections introduce and outline the scope and objectives of WP3 task
3.2.1 giving an overview of what the actual deliverable addresses. We then consider
the objectives for the DSL and move on to describing the specification and how it would
be implemented within an autotuning framework.

This document is an update of the initial DSL specification (D3.6.1). Since that work
we have incorporated changes based on experience in two areas:

1) We implemented a mockup implementation as a platform for testing the
practicality of the DSL and made it available to CRESTA partners

2) The mockup script was used in the tuning of NekBone (D3.5.2) and new feature
and implementation requests came from this work.

Copyright © CRESTA Consortium Partners 2014

 Page 2 of 28

2 Introduction	
The CRESTA WP3 work package contains a task (3.2) on Compiler and Runtime
Environments of which subtask (3.2.1) deals with autotuning, a technology that can
address the inherent complexity of the latest and future computer architectures. In the
context of this project, autotuning is the process by which an application may be
optimised for a target platform by making automated optimal choices of how the
application is built and deployed. Tuning choices can be made that target algorithms,
source code (optional branches, data flow, loop transformations etc.), compilation and
application launch. We can express both the tuning choices and controls for an
autotuning framework via the use of a domain specific language (DSL) and this is the
focus of this specification.

The DSL we are developing can expose these choices within an application and
primarily concerns source mark-up; in particular we aim to address parallel tuning
aspects and interoperability with existing and future autotuning technology.

In subsequent sections we note how the work on the DSL fits in the wider context of
the project and note in more detail the requirements and implementation choices we
have made.

2.1 Purpose	
The purpose of this document is to provide an update to the initial DSL specification.

2.2 Related	 work	
One of the project partners (Cray) has extensive experience of production autotuning,
specifically for the generation of optimized scientific subroutine libraries[1]. This was, in
part, motivation for the new unrelated work under CRESTA to research more general
library tuning and whole-application tuning of parallel applications which we present
here.

The DSL described here would exist in a more general autotuning framework, some
components of which would be studied or provided within the CRESTA project. Work
on adaptive runtime and compiler autotuning are separate tasks in CRESTA. The DSL
will be subsequently developed in conjunction with the CRESTA co-design applications
and be informed by those application requirements in addition to other project activities.
This will happen later in the project.

2.3 Scope	 and	 objectives	
The DSL is primarily concerned with markup of tuning choices. These may be either
exposed by the programmer/user (for example algorithm choices, source optimization
choices, library choices, runtime choices) or may be implementation choices of higher
level programming “constructs” (for example stencils, communication patterns etc.).

The DSL principally targets the application developer and possibly those concerned
with application optimization. Runtime features may be of interest to the application
user. Use of the DSL should facilitate exploration of the application tuning space to
make it easier to produce an application optimized for a particular platform.

DSL statements can appear in various places: in source files or files associated with
source or in a configuration file describing the overall tuning process. The particular
aspects which would warrant placement in a global configuration file are the following:

1. Runtime choices (for example how many threads for a mixed-mode application)
2. Dependency information between tuning parameters
3. Convenience grouping of tuning parameters
4. Linking or disambiguating tuning parameters defined in multiple places in order

to fix their scope
5. Compiler options and build choices

Copyright © CRESTA Consortium Partners 2014

 Page 3 of 28

6. Use of external tools/components for example compiler autotuners, parameter
optimization, machine learning matcher

7. Interfaces to above

Note that there is some overlap and you could embed DSL in application code that
could alternatively be placed in a configuration file. In addition, a global configuration
could augment DSL in source files, for example by adding additional scoping. For
subsequent sections we will use the term XDSL to indicate DSL that would more
naturally be placed in an external configuration file.

We will also consider control information that would be required in order to perform an
end-to-end autotuning session, this allows us to understand how the DSL would fit in a
wider context and would give us something that we can mock up at the end of the
project. We have also defined some components as external modules (for example a
parameter optimizer) because this gives us flexibility to build simple reduced-capability
implementations or interface to other software that can provide the required
functionality.

Note that a basic autotuning infrastructure could be useful in general code
development and testing, allowing a simple mechanism for the developer to explore
choices even if an intelligent tuning framework is not required.

One of our major goals is to provide something that is easy to use with minimal
application changes. In practice this means that a new user should be able to use the
framework very quickly without installing a complicated software stack or making
significant changes to how the application is built and run. As a result we started by
defining how a tuning session is accomplished and how an application is built, run and
optimized. Only after doing this did we consider the precise details of DSL embedded
in source.

Our aim is to support, at a minimum, applications that are written in C, C++ and Fortran
and use OpenMP and MPI in addition to selected single-sided or PGAS programming
models.

Autotuning is a wide area of research with many aspects[2], in particular a lot of work
has been done on autotuning compiler infrastructure; our focus is more on parallel
application tuning in the context of a general framework.

2.4 Glossary	 of	 Acronyms	
cronym Definition
D Deliverable
DSL
EC
ML
PGAS

Domain Specific Language
European Commission
Machine Learning
Partitioned Global Address Space

PM Project Manager/ Project Month
WP Work Package
XDSL
XML

External DSL
Extensible Markup Language

Copyright © CRESTA Consortium Partners 2014

 Page 4 of 28

3 Requirements	
In this section we outline the requirements and objectives we had in designing the DSL
and begin by considering the overall tuning framework.

The DSL is a component of an autotuning framework and at the highest level we
assume that this framework can optimize an application over a set of tuning
parameters. Some parameters we term scenario characterization parameters and
these may for example, map to input parameters relating to problem size. This is
illustrated in Figure 1 below where we have two scenario parameters S1 and S2 and
show five scenarios.

For each scenario, we aim to pick the best values for a set of tuning parameters (in the
figure: t1, t2, and t3). The tuning parameters will relate to build and runtime optimization
choices which we can choose to give for example the best runtime. At its simplest, the
autotuner framework can optimize over the tuning parameters, at the most complex it
can build routines and applications choosing the best tuning parameters for a set of
scenario characterization parameters.

In this section we consider which features the DSL needs to support and we categorize
them as follows:

• Overall tuning configuration information
• Details of tuning parameters and relationships
• Parallel autotuning features

o Stencils
o Data movement primitives
o Process placement

• Build information and control
• Runtime information and control
• Interfaces to tools/components

o Parameter optimization
o Machine-learning (ML) matcher interface
o Library tuners
o Serial compilation and Compiler-based tools (profile feedback and

autotuning)

For now we will not consider the syntax and placement details of DSL constructs.

3.1 Overall	 tuning	 configuration	
We need a way to control an overall tuning session, describe the objectives for a tuning
run, the parameter space and build and run details. It is an implementation decision as
to which aspects of the tuning configuration are described centrally or in application
files. The overall configuration should describe the following:

S1

S2

t1

t2
t3

Scenarios

Figure 1: Scenario and Tuning spaces

Copyright © CRESTA Consortium Partners 2014

 Page 5 of 28

3.1.1 Tuning	 Control	
This is where we describe what an autotuning run should do. There are likely two
scenarios:

1. Only tune across tuning parameters picking the best
2. Run tuning (over tuning parameters) for a set of scenario characterization

parameters and optionally post-process results with an ML system in order to
build a tuned library or application that can cater for a range of scenario
parameters.

For option 2 we need to define or obtain the set of scenario parameters.

3.1.2 Tuning	 target	
We need to be able to describe optimization for a target performance metric which
could be minimum execution time or be related to some output from the application.
This should be flexible enough to support something like minimizing power
consumption.

3.1.3 Tuning	 scope	
It is very likely that we would want to tune for some subset of tuning parameters or
code base so some parameter grouping method should be provided to enable this.

3.1.4 Previous	 state	
State from previous tuning sessions may be available; this section would describe how
this could be done. In order to interface to an external optimizer it would most likely be
a requirement to manage state.

3.1.5 Logfiles	
The tuning process should produce a log of progress to specified output streams/files.

3.2 Tuning	 Parameters	 and	 relationships	
Various aspects of autotuning require that we set parameters within some range. This
enables us to optimize over fixed choices of code paths, parallel decompositions,
optimizations (for example blocking and unrolling) etc. To do so we need to define that
a parameter is a tuning parameter and describe any bounds and constraints.

The parameter definition should support

• Typing, to include integer, real, character and Boolean
• Definition of a range of values or a specified set of values
• Any constraints between parameters (for example we may have parameters N

and M which have to satisfy some relationship M*N = P)
• A way to indicate that particular parameter choices are not allowed; this could

happen if machine-learning software was generating parameter values.

Another requirement which was raised by users of the mockup implementation was the
ability to have parameters which were only valid for particular values of another
parameter. For example if a tuning parameter is used to choose an OpenACC
accelerated loop then other parameters choosing loop clauses become valid.

At a higher level we need the ability to group parameters for the following reasons:

1. So we can describe which parameters should be treated as dependent for
tuning purposes. All parameters are likely to be dependent to some degree but
to cut down the search space and to aid understanding it will be useful to have
the ability to declare parameters as independent.

2. So we can tune over a subset of parameters.

Copyright © CRESTA Consortium Partners 2014

 Page 6 of 28

3.3 Parallel	 autotuning	 features	
To some extent traditional serial autotuning techniques can be applied to the parallel
domain. We can use any features we have to choose amongst implementation choices
at the routine or block level to choose different ways to implement parallel operations.
However there is scope to move beyond this and more directly address parallel
aspects of an application, for example to target standard patterns (stencils for example)
or address data movement. These two aspects are where the DSL should have most
utility as we expect to move beyond mere tuning choice parameterization. The other
topic is that of decomposition and runtime process and thread distribution choices.
These topics are considered in this subsection.

3.3.1 Stencil	 computation	 	 	
A stencil computation is a core component of some algorithms and comprises a
distributed calculation on a grid. On a local level this typically equates to an iteration
encompassing data movement (to move data from other processors) and a local
computation partly involving data that has been moved. The classic examples are
simple iterative schemes to solve for example the Laplace equation.

Stencils are described at a very high level and require an appropriate infrastructure to
manage the decomposition and communication. Our approach will be to tackle stencils
via aggregate data movement primitives described below. It would be a bonus to
integrate somehow with software that can optimize stencil computations.

3.3.2 Data	 movement	 primitives	
The idea here is to think about a particular pattern of computation that we think is
lower-level than for example the stencil but will cover more real application usage.
These primitives could, for example, address the data movement (halo exchange) that
we see in stencil computation but be more general. One approach we want to
investigate is to describe locations in the code where data could be communicated and
locations where that data needs to be available. The autotuning infrastructure can use
various choices on how that movement can take place to optimize the communication
(likely to be the most expensive part). Choices that would need to be made would be
the use of non-blocking communications, use of buffers and synchronization.

3.3.3 Process	 placement	
By process placement we mean the ability to vary, for example, the number of
processes and threads in a multi-process programming model. Also the mapping of
processes to the hardware is something that can be varied. For GPU models we can
vary the decomposition to the GPU (grid dimensions, number of threads etc.).

This is more of a runtime concern for some programming models so would be part of a
runtime configuration.

3.4 Build	 description	 and	 control	
We need to allow an autotuner to control the build process. There are various aspects
to this.

We need to be able to describe how parameters defined in the global configuration can
made available to the build process. For example one scenario is that they are passed
into a Makefile as variables that appear as –D options in compilations. There should
be enough flexibility that a script can be provided to enable this integration for a more
general build infrastructure.

There should be a way to name or tag any output binary with a tuning build for a set of
parameters. Note also that we need to define which parameters relate to a new build
of a binary as we will have to rebuild if we vary those parameters. Requiring a rebuild
for any change in parameters is not acceptable.

We should describe how to call a clean script provided for the application build.

Copyright © CRESTA Consortium Partners 2014

 Page 7 of 28

We also need to be able to support compiler flag optimization; this is where we explore
a set of compiler options applied to many or some source files.

In order to build a version of the application for a specific set of tuning parameters
defined in DSL embedded in source we need to either parse the DSL with a DSL-
capable compiler or process the source files appropriately for a specific set of tuning
parameters and pass the resulting source into the build.

Our approach needs to be flexible and not mandate new and invasive build
procedures.

3.5 Runtime	 information	 and	 control	
We need a way to describe how to run the application.

Some parameters may map to an input file for the application. We should provide a
standard format file for this and also allow a script to create the expected input for the
application.

One part of this is a correctness check where we can optionally determine that a run
was successful; there would be no point in optimizing for the fastest incorrect run!

3.6 Interfaces	 to	 tools	 and	 components	
In order to provide a general autotuning framework there are some components that
are essential or which it would be useful to interoperate with. This means we can
describe a modular structure which should be more attractive to potential users.

3.6.1 Parameter	 Optimization	
This is a core component of an autotuner and can be as simple as an exhaustive
search of the parameter space, or as complex as a full machine-learning environment.

There are two running scenarios that should be supported as outlined below:

Parameter	 space	 optimization	
This is where the tuning process finds the optimal parameters from the
parameter space.

Scenario	 exploration	
This is a variation on the above where some parameters are characteristics of
the application run, for example problem sizes. The tuner would explore the
remaining parameter space and a machine learning system could then build a
model to find the optimal set of tunable parameters from the characterization
parameters. Note that there are compilation systems that work like this (the
features are program fragments).

To support these two scenarios we need the ability to run across the whole parameter
space or to optimize all or part of the parameter space.

Provision should be made to call a plugin tuner which would accept the parameter
definitions and control the tuning process. This would have to be some sort of
“delegated control interface” such that the tuner passes back information on which set
of parameters to use for the next run as it explores the parameter space to find the
minimum. Some state will have to be maintained by the tuner and possibly by the
overall autotuner.

We also need provision to send the results of scenario exploration to an ML system
and integrate the results back into the build so that we can either choose an
appropriate binary for a set of scenario characterization parameters or optimize
individual routines for relevant characterization parameters as noted below in section
3.6.2.

Copyright © CRESTA Consortium Partners 2014

 Page 8 of 28

The core configuration should describe the primary metric for optimization and what
that optimization is. Additional secondary metrics (for example performance counter
data) should be optionally provided to the optimizer.

We should be able to incorporate compiler option tuning into a generic optimizer by
having labels as independent tuning parameters.

This process can and will involve many compilations and for some applications this will
be time consuming. The design should minimize the number of builds required to
explore the tuning space.

3.6.2 Machine	 learning	 matcher	
In order to produce a library routine or application that is tuned for a range of scenarios
this is an important component. The purpose of the “matcher” as we have termed it is
to build a mapping from scenario characterization parameters into a model that predicts
the best set of tuning parameters for a given choice of scenario characterization
parameters. An interface is required that sends the tuning experiment results to the
matcher and accepts back the model in a form that can be incorporated into a library
interface or some sort of runtime launch. At its most complex, the matcher could be a
machine learning[3][4] system using decision trees or some other technique.

3.6.3 Library	 tuners	
One technology that is relatively mature is the library tuner that can produce optimal
code for a library routine for a given architecture and set of input parameters. We
should support this aspect of tuning in the following ways:

1. Allow grouping of parameters and their independent tuning for some source
subset (the library routine).

Library tuning fits into the overall architecture as follows. The DSL describes the tuning
location, the scenario characterization parameters and the tuning parameters at the call
site. The framework explores the scenario parameter space and passes the result to
the ML system. The ML system then creates an interface routine that maps the
scenario parameters to the optimal choice of optimization parameters. Note that for
this to work at runtime the optimization parameters must be runtime parameters or we
need a mechanism to create multiple versions of the library routine (which might be
possible).

It is likely that library tuning will be a separate component of whole-application tuning
and could potentially be used to tune implementation of parallel data movement
routines (like MPI collectives).

3.6.4 Serial	 compilation	 and	 compiler-‐based	 tools	
A crucial aspect of application performance is the optimal compilation of source code
into machine instructions. Performance-critical code sections typically involve loop
nests and require the compiler to apply transformations such as loop unrolling and
blocking for cache along with decisions concerning register use and instruction
scheduling. Some specific tunable aspects are unroll length, prefetch length, prefetch
depth, loop order and blocking factors.

We need to decide to what extent we want to support this aspect of tuning and we can
consider various capabilities:

1. We support the programmer in manually implementing tuning by using the
general framework to tune for parameters that control loop transformations (our
framework should at least provide this but it puts the onus very much on the
programmer to do all the work.

2. We provide DSL to allow the programmer to control loop transformations and
arrange for these to be mapped to implementation-specific compiler directives
or we generate source to manually implement the options.

Copyright © CRESTA Consortium Partners 2014

 Page 9 of 28

3. We have a compilation system that can operate at the IR level and accept
transformation instructions in terms of the IR or alternatively can output its
tuning choices in such a way that we can mandate it picks one of those choices.

4. We treat compiler-based tuning as something separate.

Our initial approach is to support options 1, 3b and 4 and work towards supporting
option 2 in the course of the project if we can add any value above existing compiler
autotuning projects.

Copyright © CRESTA Consortium Partners 2014

 Page 10 of 28

4 Implementation	 and	 DSL	 specification	
In this section we consider which choices we have to make or have already made (or
have deferred) in implementing a DSL/XDSL that meets the requirements previously
outlined.

The most high-level choices to be made are the style of the DSL and the
implementation of the global configuration; various choices are possible[5]. The most
flexible approach is going to be a DSL that is a first class addition to the language in
use (primarily C and Fortran for Exascale applications). An alternative is to use
directives within application source.

Our initial approach was to define a DSL with a view to an initial mockup
implementation at the end of the project that would parse source and generate
compilable source that did not require extra compiler infrastructure beyond standard
language support. As a result, this document outlines initial syntax in the form of
directives/pragmas. We also designed the DSL to be minimally invasive such that as
far as possible only DSL directives need be added to an application and the source is
untouched and remains valid compilable source.

4.1 Software	 Architecture	
The most appropriate architecture would seem to be to have an overall controlling
application which reads the global configuration and controls the whole tuning process.
This application would be responsible for building and running the application and
interfacing with the optimizer (a separate component).

Figure 2: Tuning Architecture – high level view

The components shown in Figure 2 implements the scenarios outlined in the
requirements section 3.1.1 as follows. The autotuner component controls the whole
process and starts by reading DSL in application source files and a global configuration
file. The autotuner will either scan all application source or call a special script which
would cause a supplied preprocess script to be run over the application source. The
autotuner would then decide if a simple tuning run or scenario exploration run was
required. To accomplish a tuning run the source is appropriately preprocessed (or just
compiled) and an optimization process organized. Build and run scripts manage the
build and run process and the optimization component can help streamline the search

parse / preprocess

Autotuner

Application

Configuration

DSL

DSL

 script

build

 script

run

 optimizer

matcher

sources

Copyright © CRESTA Consortium Partners 2014

 Page 11 of 28

for the best tuning parameters. If a scenario explaration run is undertaken then the
matcher is called to build a model that maps scenario parameters to the appropriate
tuning parameters. The output from this could be used to either build optimal versions
of specific routines or to choose from alternative application binaries. How this process
is controlled and implemented is outlined in subsequent sections.

We have implemented a mockup of the autotuner and optimizer components which
implements some of the DSL features. It can parse the global configuration and run an
exhaustive-search tuning session. We expect to extend this mockup further in the
hope that we can apply it in practice to more application scenarios during the rest of the
project. NOTE: Although we may define a compiler-parsed DSL by project completion
we are not providing compiler infrastructure to compile it.

4.2 An	 introduction	 to	 the	 source	 DSL	
In this section we explain the most basic features of DSL that can appear in application
source code. We outline here only the features that are required to inject parameters
from a tuning run into application source. Note that it is possible to tune without ever
using DSL in the application source. Subsequent sections introduce more specific DSL
syntax for other purposes.

Our DSL is implemented as compiler directives and the two forms accepted are
!tune$ directive [clause] [clause]…
#pragma tune directive [clause] [clause] …

The basic form of the directives is
[if-clause] [begin | end] tune-directive [clause…]

The basic set of directives is:
import param-name-list
inject:text
inject_r:text
inject_r$:text
skip [fill]
replace

The import directive makes a tuning parameter available for use in other directives.
The inject directives cause the supplied text to be inserted into the program; the
inject_r version replaces any occurrence of the parameter in the text with the value at
the point the file was parsed. The inject_r$ version only replaces text of the form
$param or ${param}, this is the replacement style used in the tuning configuration file.

Examples might be:
!tune$ import NB
!tune$ inject_r: blocksize=NB

The replace directive is used to inject parameters into enclosed source and the use of
begin and end is required. The skip directive also requires begin and end to define a
section of code which will be removed (fill is optional and if present the source will be
replaced by blank lines which may be useful to preserve line numbers for comparison
purposes).

Note that replacements should not take place inside quoted strings.

The if clause takes the form
if (lexpr)

where lexpr is a logical expression which may reference any imported tuning
parameters. An implementation should support at least the following operators (!=,==,
<,>,>=,<=,%,+,-,*,/) where % is modulus. Should the expression evaluate to false then
the tuning directive is ignored.

Copyright © CRESTA Consortium Partners 2014

 Page 12 of 28

4.3 Overall	 tuning	 configuration	
The overall tuning configuration is described in a configuration file with sections for the
various parts of the configuration (build, run etc.). This file will be defined in two styles,
text and XML. The XML form will be described at a later stage but would closely follow
the text syntax described here.

Syntax (case-sensitive text):
begin configuration
 configuration-entity
end configuration

Allowable configuration entries are available to set the tuning target, tuning scope,
previous statefile and logfile locations.

The configuration file may contain comments which are lines that are either empty, all
whitespace or start with a “!” character as the first non-whitespace character.

In general whitespace within the configuration file is not significant, it would be sensible
to use indentation to increase readability as per some of the examples provided later.

4.3.1 Tuning	 target	 and	 scope	
This section describes the tuning objective for the optimization of parameters and how
target metrics are obtained from tan application run.

begin tune
 tune-entity
…
end tune

where the tune entity can be:
mode: tune | scenarios
target: min|max
scope: param-list | collection
metric-source: file | stdout | runtime
metric-placement: lastregexp| validation

If the mode is set to “tune” then the autotuner will optimize over the tune-scope
parameters. If the mode is set to scenarios then the autotuner will perform a scenario
exploration run as described in the next subsection.

The target entry defines how the optimizer should optimize the runtime metric. The
source of that metric can be from a named file, standard out or the runtime. The
following additional statement defines the location of the metric file.

postrun-metric-file: filename

The metric can also be obtained from the validation output (see section 4.8).

It the metric is not obtained from the validation output then a regular expression must
be supplied as follows:

metric-regexp: regexp

The supplied (ruby) regular expression extracts the metric from a match within braces
“()”. The default regular expression used if this is not defined is to match any number
format you might obtain from program output (including exponential formats).

The scope statement allows us to restrict the tuning session to part of the parameter
space.

4.3.1.1 Scenario	 Exploration	
If the tuning mode is set to scenarios then the tuner will explore a set of scenarios and
perform a tuning run over the tuning parameters for each scenario. The following tune
entities relate to scenario exploration

Copyright © CRESTA Consortium Partners 2014

 Page 13 of 28

scenario-params: param-list | collection
scenario-params-combiner: combinations | tuples
scenario-params-source: parameters | file
scenario-params-file: filename
matcher-feedback: script | code(C) | code (Fortran)

Once the mode is set to scenarios the default is to explore scenarios from all
combinations of the values of any parameters mentioned in the scenario-params line.
Note that the scope setting for parameters does not apply to scenario parameters as
defining them as such puts them in scope. Optionally the parameters can come from a
file if scenario-params-source is set to file and the filename is defined. If the parameter
combiner is set to “tuple” then each scenario is formed as follows: Scenario 1 takes
the first value of each parameter, Scenario 2 takes the second value and so on.

4.3.1.2 Repeated	 Runs	
In order to allow for some performance variability the metric can be aggregated from
multiple repeated runs. The DSL to control this is

run-repeats: nrepeats
metric-aggregation: min | max | average

If the metric aggregation method is not set then it is set to the same as the tuning
target.

4.3.2 Previous	 state	
In order to cater for incorporation of previous state we can provide a filename for a file
which will be used to store the state of a tuning run::

state-file: filename

We also need to describe how this setting interacts with the autotuner implementation,
the requirement being that by default the autotuner will record the state to the file if the
state-file is set in the configuration file. The autotuner should provide a control for a
user to continue a previous run.

The mockup script we implemented supports an argument (-continue n) which will
continue a previous run from the step n or from the whole previous run if n is greater
than or equal to the number of steps in the previous run.

4.3.3 Logfiles	
An autotuner implementing the DSL should provide summary information to the
standard output stream and more detailed information on tuning progress to a log file.

The following statement directs progress and state information to the specified location.
progress-log: filename

4.4 DSL	 parameters	 relating	 to	 application	 source	
This section defines parameters relating to the location of DSL source and how that
should be handled. A sample set of parameters follows:

begin sources
dsl-filelist: filelist
dsl-filenames-file: filename
dsl-map-input: input-map
dsl-map-output: output-map
end sources

The list of files to be processed is set by either supplying a list of filenames or a file
which contains the filenames. If either of these is present then the tuner enables DSL
parsing from source. The map definitions allow a mapping to be defined between the

Copyright © CRESTA Consortium Partners 2014

 Page 14 of 28

file containing DSL and the processed version after DSL parsing. This is best
illustrated in the following example:

begin sources
dsl-filelist: a.f90.dsl b.c.dsl
dsl-map-input: %.dsl
dsl-map-output: %
end sources

The set of files is a.f90.dsl and b.c.dsl. These would be parsed to the files
a.f90 and b.c respectively. If a filenames file is provided then it can either contain
one filename per line (in which case the mapping is used to obtain the output filename)
or it can contain two filenames per line (the input and output filenames)

Once DSL parsing is enabled, the parsing process is started before any tuning runs
commence (to optionally pick up new parameter definitions) and then each time a new
build is run. The initial preprocess stage will parse the files assuming default values of
tuning parameters.

4.5 Tuning	 parameters	 and	 relationships	
The properties of tuning parameters can be described as part of the overall
configuration (appropriate for runtime parameters for example) or can be declared in
source DSL.

4.5.1 XDSL	 tuning	 parameter	 definition	
The configuration contains a section where we define tuning parameters, their ranges
constraints and aggregation. The parameters section includes various parts:

begin parameters
 begin typing
 type-entity
 …
 end typing
 begin constraints
 constraint-entity
 …
 end constraints
 begin values
 values-file: values-filename
 end values
 begin collections
 collection-entity
 …
 end collections
 begin dependencies
 depend: depend-list
 end dependencies
end parameters

The typing section allows parameters to be typed as int, real or label, more specifically:
type-entity is type param-name
type is int | real | label

For example:
int np
int m
int Q
label method

The set of allowed values of a parameter are defined in the constraints section. This
section supports specific sets of values, ranges, parameter relationships and legality
constraints.

Copyright © CRESTA Consortium Partners 2014

 Page 15 of 28

constraint-entity is range | product | constraint | default
range is value-list | value-range [default value]
default is value
value-range is value-list | value-triplet
constraint is logical expression | assignment

Some examples are:
range N 1-100
range M 20,40,60
range M2 20:60:20
range NB 100,110,120,130,140,150 default 120
range opt1 –O1,-O2
range threads 1,4
range nppn 1,2,4
range method buffer, nobuffer
product OPTa.c opt1 {-m32,-m64}
constraint M*N < NP
constraint Q = P / N

The default value is used when the parameter in question is not being varied by the
tuning (otherwise the first value in the list or range is chosen). This default value can
be overridden in the tuning section. Note that a constraint as an assignment means
that the parameter that is the target of the assignment should be generated from the
expression.

Parameters may be grouped into collections, for example:
Blocksizes: M N
decomposition: P Q
runtime: np, threads, pagesize

Note that collections may also be defined in the build and runtime configuration and
some have special meanings.

The dependency section allows us to say which parameters should be treated as
dependent: depend-list is either a list of parameters or a list of collections.

Note particularly the product definition which defines a product of the list of possibilities.
Along with some (user-defined) naming convention understood by the build script this
can be used to associate compile options with filenames by using the filename as part
of the parameter name. In the example above we used OPTa.c which could be
understood by a build script to define the current compile options (or additional options)
to be used when compiling the file a.c.

The optional values section of the parameters section is used to define a file to import
values for parameters. Normally parameters would be set from the constraints section
but in the case of configuration parameters used for library routine tuning it is likely
there could be a large number of parameters or they may come from an application
run. The values file contains sections per parameter as follows

param param-name [default default-value]
v0 v1 v2 …

Runtime and build parameters are naturally defined in the global configuration but we
provide a related syntax to define parameter types and ranges in the source DSL as
outlined below.

4.5.2 A	 node	 on	 tuning	 parameter	 validity	
As mentioned previously in section 4.3.1 it is possible to define which parameters are
in scope for a tuning session. As a result parameters can be fixed at their default
values for a given run with minimal change to the configuration.

A feature request was to support a more dynamic mechanism so that parameters could
have validity based on the values of other parameters during the tuning session. The
following configuration parameters introduce new constraints to address this
requirement:

Copyright © CRESTA Consortium Partners 2014

 Page 16 of 28

constraint param inscope forscenario lexpr
constraint param inscope if lexpr

These definitions are valid in the constraints section of the configuration. The first form
introduces a constraint that applies to scenario exploration. For each scenario this
constraint is checked for each tuning parameter to see if it should be in scope for the
tuning run. The second form applies more generally to tuning parameters and instructs
the optimizer to avoid varying the parameter if the expression if false. To what extent
this will reduce the search space depends on the ability of the optimizer to organize the
search appropriately.

The second feature is somewhat experimental. A better (and much more complicated)
approach which we may consider in the future would be to maintain a graph of
parameter validity constraints.

An example of using such constraints is found in section 5.4.

4.5.3 DSL	 tuning	 parameter	 definition	
Tuning parameters can also be declared in source DSL.

The syntax mirrors the syntax described above but with the tune sentinel prepended
and definitions combined into an all-in-one syntax

#pragma tune param define p type t range r [default d]

which defines a new parameter p of type t with values from the range r and with an
optionally defined default value d.

An example could be:
#pragma tune parameter n type int range 10,20

The parameters have global scope and can be used in DSL in source as described
previously. An import directive is not required for later use of the parameter in the
same file where the parameter was defined.

Tuning parameter constraints can also be defined in source DSL in the following
variants

#pragma tune param define p type t constraint p=expr
#pragma tune constraint lexpr

The first variant constrains the new parameter to be generated from other parameters
from the expression expr. The second form supplies a logical expression which
determines if a set of tuning parameters is valid.

4.6 Parallel	 Autotuning	 Features	
This section addresses tuning specific to a parallel application. Note that the generic
framework can of course be used to do this by parameterization of control flow.

The following subsections address specific aspects of parallel tuning.

4.6.1 Stencil	 computation	
This is the highest level aspect of parallel tuning that we hope to address.

A stencil is an operation on a grid expressed as updates to grid values as functions of
nearby grid values. Once this is distributed in parallel we can decompose into local
computation and a communication phase to move edge data that is required for
computation on other processes. There are various ways to organize this and a stencil
approach defines the problem generally leaving the details to the framework.
We support stencils by using the pattern feature of data movement primitives.

4.6.2 Data	 movement	 primitives	
Data movement primitives allow us to express parallel data movement and have the
autotuner explore the best way to do this. This is implemented as follows:

Copyright © CRESTA Consortium Partners 2014

 Page 17 of 28

1. We use DSL to optionally define patterns of data movement in an aggregate
way.

2. We place DSL in source at points that data is available to be communicated
and where it needs to be available.

Data movement patterns could be for example an alltoall pattern or a halo-swap
communication pattern.

The DSL to accomplish this looks like the following:
#pragma tune pattern label mylabel ptype M N pmodel

#pragma tune label dlabel var available
#pragma tune label dlabel var available

… compute …

#pragma tune label dlabel var required

The pattern type (ptype) specifies one of predefined (or user supplied) patterns and this
particular pattern is labelled with mylabel by the programmer. The pattern data
dependencies are defined by the dlabel clauses as appropriate for the pattern. So to
give an example we assume the availability of a 2D HALO pattern and the DSL would
look like:

#pragma tune pattern label myhalo type HALO_2D M N MPI
myrank
#pragma tune myhalo left A(1:n) available
#pragma tune myhalo right B(1:n) available

… compute

#pragma tune myhalo left B(1:n) required

A range of available patterns should be predefined (or potentially user-supplied).

This idea can be used at a simpler level to just move data between locations. We will
need to experiment with these ideas and work on the restrictions on what restrictions
will be required in the source for this to work. Note that a pattern may require
information from the program, in this case the global decomposition (M,N) and the
variable containing the local rank (because we will use MPI).

4.6.3 Process	 Placement	
A parallel application brings a new level of complexity at launch beyond a serial
application. We can for example decide how many processes to use, where those
processes are located and how they are mapped to the hardware. For a hybrid
application (for example MPI application with OpenMP threading) we can trade
processes for threads within the same total thread count and have various options for
thread affinity. The framework of parameters can be used to explore this tuning space
as these are all runtime parameters and just need mapped to the right environment
variables or application launch options by the run script. The support for constraints
was added to particularly address this scenario where for example threads multiplied
by processes would be constant for a tuning run. Similarly an application may use an
internal process decomposition (say Px * Py) which we may wish to vary.

How processes are placed on nodes can have a performance impact, for example the
correct arrangement can yield an optimal on-node and off-node communication pattern
for an application with particular data topologies. MPI implementations address this by
either supporting a hostfile/mapfile for rank placement or a similar file or parameter to
perform rank reordering. Our tuning infrastructure can accommodate the choice of
such a file controlled by a runtime parameter. A possible rank order could be
generated by a tool for a given topology or from MPI profiling data (the Cray software
stack contains such tools). In addition it would be possible to reorder communicators

Copyright © CRESTA Consortium Partners 2014

 Page 18 of 28

within an MPI application per application phase and a reorder file could be an input to
such a scheme, also controlled by a runtime parameter.

4.7 Build	 description	 and	 control	
This is controlled by a section of the global configuration file where we define the
interface to the build process:

begin build
 prescan-type: directory | script
 build-preprocess: directory | implicit
 command: shell-command
 param-file: filename

 begin collection
 BUILD: N M
 end collection

end build

We need to build the application taking account of the current set of tuning parameters.
Because the source can contain DSL and we start by implementing this as source
directives we need a mechanism to parse the DSL source. The prescan-type setting
gives a choice of scanning a whole directory tree looking for source with DSL or calling
a script that will cause the source to be scanned (this script could be the build
command). Note that this script is called with an argument that provides a script which
converts source to compilable source.

The initial scan is just looking for definitions of tuning parameters.

When the actual build is done we also need to preprocess, and the build-preprocess
setting defines again if a scan is undertaken or if the normal build will use the
preprocess script.

Note that we can alternatively define a specific set of files to scan in the sources
section of the configuration. That method is likely to be more useful and less invasive.

The build progresses by running a shell-command which should exit with 0 exit code to
indicate a successful build. The parameter list can be provided as a keyword list or as
a file containing names and values for the parameter set. The parameters can be
referenced as $param or ${param} in the command, the latter providing separation
within a string. Here is an example:

begin build
 command: make N=$N P=$P
end build

Note that the collection BUILD has a special meaning and defines the set of
parameters that would require a new build. This collection can be defined here or in
the global configuration. If this is not defined then it is assumed that any change of
parameters will require a new build.

Each build has an associated unique tag generated by the autotuner and this is
available to the build command as $build_tag (or as ${build_tag}). This could be used
for example as part of the executable name. The same tag is available to the run
script.

4.8 Runtime	 information	 and	 control	
This section of the global configuration describes the run process and is similar to that
for the build process:

begin run
 command: shell-command
 param-file: filename
 validation-source: stdout | command
 validation-command: shell-command

Copyright © CRESTA Consortium Partners 2014

 Page 19 of 28

 independence: none | n
end run

The application is run by the command script (which should return a successful exit
status) and the current parameter values will be provided (optionally) in the command
parameter file. The run can be validated by supplying data at the end of the standard
output or providing the validation data as the output of a script. In particular the syntax
of this output should be:

 tune run status validation-status [metric value]
 validation-status is validated | failed

Only a validation status of validated indicates a successful run. Optionally the tuning
metric may be defined here. Note that because the tuning metric can be obtained from
a script this allows extra flexibility, for example to obtain metrics that relate to power
consumption, something that is not likely to be available to the application. Note that if
validation is used the devault is to abort if a run is not validated. This behaviour can be
changed by setting the failure mode:

Validation-failure-mode: abort | warning

Tuning parameter values and $build_tag are available to the run command. If more
than one instance of the application can be run at the same time then the extent of
execution parallelism can be declared via the independence setting. Two more
variables (run_id) and (repeat_id) are available to the run command. The former is
unique for each run and the latter would be defined for repeating runs and would be
unique for each repeat. (Note that these variables are also available when defining the
metric and validation filenames as these relate to a run.)

Environment variables can be provided to the run by including parameters in a
collection called RUN_ENVARS. If this is done then at runtime the parameters will be
mapped to environment variables of the same name, if the parameter is set to the
value unset then the environment variable will not be defined.

4.9 Interfaces	 to	 tools	 and	 components	
This section of the global configuration describes how we interact with external
components. This is part of the global configuration.

4.9.1 Parameter	 optimization	
This is where we describe the interface to the optimizer that explores the parameter
space searching for the optimal set of parameters.

We do this via a “delegated control” interface where we setup the optimizer and then
act on its responses by running the application and returning the resultant metric to the
optimizer. Using this technique means that we only need the autotuner to understand
how to optimize a set of parameters and not understand how to run the application.

The control section is as follows:
begin optimizer
 command: shell-cmd
 cycles: <integer>
end optimizer

The interaction with the optimizer proceeds as follows:

It is sent a start command and the parameter configuration (types, ranges, constraints,
objective and a pointer to a file containing previous history of optimizer runs).

The optimizer should respond asking for a tuning run of the application for a given set
of parameters. The framework sends back the results of the tuning run by returning the
primary metric along with any secondary metrics. The process continues until the
parameter space has been explored. The cycles parameter limits how many times the
optimizer will be called, this would be used with a complex (intractable) search space
and an optimizer that does not do exhaustive search in order to limit the computation.

Copyright © CRESTA Consortium Partners 2014

 Page 20 of 28

4.9.2 Machine	 learning	 matcher	
It is outside the scope of this project to implement a full machine learning system for
the matcher component but our intention is describe the interface to this component for
the full DSL specification. With the mockup we may be able to implement a simple
closest match model and apply it to a library routine tuning example.

4.9.3 Library	 tuners	
In this section we are concerned with the capability of specifically tuning a
subroutine/function, something we would do if producing a library or optimized routines.

Our implementation uses the scenario exploration run where the scenario
characterization parameters map to input parameters to the routine in question. So for
example consider that we wish to tune a routine NORMALS which accepts arguments
M,N. This function includes DSL to expose tuning choices with parameters B,L,O.

We perform a scenario run over values of M,N (assume for now these can be program
input). The matcher produces a model mapping any M,N to the optimal choices or
B,L,O and we instantiate that logic into a wrapper to call NORMALS appropriately. So
in DSL this would look like:

#pragma tune library NORMALS scenario-params M, N tune
B,L,O wrapper NORMALS_wrap

This declares the parameters and names a wrapper routine that can be inserted after
the matcher has run.

Additional features allow capturing the values of variables from within the program and
supporting timing:

#pragma tune library NORMALS scenario-params M,N tune B,L,O
wrapper NORMALS EXPORT M,N timer

This would cause the program to be instrumented to export the M,N values and
implement a timer which could be used as the tune metric.

4.9.4 Compiler-‐based	 tools	
As discussed in section 3.6.4 this is a complex area and initially we will only support
this by parameterized control flow and describing an interface whereby we could
interact with a compiler that can expose its tuning choices.

For the latter we would hope that the compiler could create a companion file with the
name “file.ctune” which contains the following DSL:

#pragma tune compiler-export
#pragma tune…

where the second and subsequent lines define tuning parameters.

The compiler should accept as input a file “file.ctune.in” in the same directory that sets
those parameters.

Copyright © CRESTA Consortium Partners 2014

 Page 21 of 28

5 Tuning	 Configuration	 Examples	
Here we provide a set of examples with full configuration files to illustrate various
features of the DSL.

5.1 Build	 and	 runtime	 parameter	 examples	
In this example consider an application that has one tuneable parameter, some
blocksize (NB) and that this can be set on the command line.

A possible autotuner configuration to tune for NB is as follows:
begin configuration
 begin tune
 mode: tune
 scope: NB
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 int NB
 end typing
 begin constraints
 range NB 80,90,100,120,140
 end constraints
end parameters
begin build
 command: make
end build
begin run
 command: ./solver NB=$NB
end run

We could have used a run script and picked up the value of NB from a provided input
file (param-file) or from an environment variable (the RUN_ENVAR collection).

In the next example we assume that we have an additional tuning choice which is
controlled at compile time by a preprocessor variable USE_EXTRA_BUFFER:

begin configuration
 begin tune
 mode: tune
 scope: NB EXTRA_BUFFERING
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 int NB
 label EXTRA_BUFFERING
 end typing
 begin collections
 BUILD: EXTRA_BUFFERING
 end collections
 begin constraints
 range NB 80,90,100,120,140
 range EXTRA_BUFFERING “YES”,”NO”
 depends NB EXTRA_BUFFERING
 end constraints
end parameters
begin build
 command: make EXTRA_BUFFERING=$EXTRA_BUFFERING
end build

Copyright © CRESTA Consortium Partners 2014

 Page 22 of 28

begin run
 command: ./solver NB=$NB
end run

The differences are that we added the new parameter and passed it into the build. We
included it in the BUILD collection to make sure that any changes cause a new build
and we marked NB and EXTRA_BUFFERING as dependent so that the optimizer
would not treat them independently in tuning.

5.2 Scenario	 Exploration	
This example extends the previous example to add three scenarios SMALL, MEDIUM
and LARGE.

begin configuration
 begin tune
 mode: scenarios
 scenario-params: SIZE
 scope: NB EXTRA_BUFFERING
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 int NB
 label EXTRA_BUFFERING
 label SIZE
 end typing
 begin collections
 BUILD: EXTRA_BUFFERING
 end collections
 begin constraints
 range NB 80,90,100,120,140
 range EXTRA_BUFFERING “YES”,”NO”
 range SIZE X100,X500,X10000
 depends NB EXTRA_BUFFERING
 end constraints
end parameters
begin build
 command: make EXTRA_BUFFERING=$EXTRA_BUFFERING
end build
begin run
 command: ./solver NB=$NB < input.$SIZE
end run

The additions define SIZE to have values of either X100, X500 or X10000 and these
values will be used in turn to tune for the optimum values of EXTRA_BUFFERING and
NB. In this case the SIZE parameter was used to choose the input file for the run
command. It would be easy to keep the binary corresponding to the optimum
parameters obtained for each scenario.

5.3 Example	 of	 DSL	 in	 source	
This is a simple example to show how a source file may have DSL to control values of
a variable.

!tune$ param define bfac type int range 20,40,80
!tune$ inject_r$:bfac = $bfac
do jb=1,n,bfac
 do ib=1,m,bfac
 do j=jb, min(jb+bfac,n)
 do i=ib, min(ib+bfac,m)
 …
 end do
 end do
 end do

Copyright © CRESTA Consortium Partners 2014

 Page 23 of 28

end do

An alternative would be for the global configuration to name bfac as a tuning
parameter and to use an import directive instead of the parameter definition.

5.4 Scenario	 exploration	 with	 constrained	 parameters	
This example shows how we can make some tuning parameters invalid for particular
scenario runs. This shows what is likely to be a particular usage pattern for scenarios:
where scenarios are used to explore different algorithms.

Consider this configuration:
begin configuration
 begin tune
 mode: scenarios
 scenario-params: LOOP
 scenario-params-combiner: combinations
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing
 int NB
 int block
 int unroll
 label LOOP
 end typing
 begin constraints
 range NB 80,90,100
 range block 2,4,8
 range unroll 1,2,4
 range LOOP blocking,unrolling
 constraint unroll inscope forscenario LOOP=="unrolling"
 constraint block inscope forscenario LOOP=="blocking"
 end constraints
end parameters
begin build
 command: make
end build
begin run
 command: ./solver NB=$NB
end run

This file defines a scenario run where the parameter LOOP takes the values “blocking”
and “unrolling”, for each scenario a tuning run is started to find the optimum values of
NB, block and unroll. But the constraints make sure that block is only varied for the
scenario with LOOP=”blocking” and unroll is only varied for the scenario with
LOOP=”unrolling”.

5.5 Compiler	 flag	 tuning	
This example shows how tuning of compiler flags can be achieved with the framework.
Assume that there are various source files main.c, solver.c, stats.c and that we wish to
explore the use of certain options in the build. A sample configuration is shown below:

begin configuration
 begin tune
 mode: tune
 scope: copts
 target: min
 metric-source: runtime
 end tune
end configuration
begin parameters
 begin typing

Copyright © CRESTA Consortium Partners 2014

 Page 24 of 28

 label OPT_strength
 label OPT_fp
 label OPT_default
 label OPT_num
 label FOPT_main.c
 label FOPT_solver.c
 label FOPT_stats.c
 end typing
 begin constraints
 range OPT_base –m64
 range OPT_fp –fp_model=strict,-fp_model=precise
 range OPT_strength –O2,-O3
 product OPT_num OPT_fp OPT_strength
 range FOPT_main.c OPT_num
 range FOPT_solver.c OPT_num
 range FOPT_stats.c OPT_num
 end constraints
 begin collections
 BUILD: OPT_base FOPT_main.c FOPT_solver.c FOPT_stats.c
 end collections
 begin dependencies
 depend: OPT_fp OPT_strength
 end dependencies
end parameters
begin build
 command: make
end build
begin run
 command: ./program
end run

In this case the assumption is that the Makefile is expecting to use $OPT_base and the
FOPT_xxx parameters to set the compilation options for each file. Note that in this
example the same options are applied to the files, but if we split OPT_num to
OPT_num1 and OPT_num2 and made those independent then each file would get
distinct choices of OPT_fp and OPT_strength when the parameter search was done.

Copyright © CRESTA Consortium Partners 2014

 Page 25 of 28

6 References	
[1] Adrian Tate, “Industrial Auto-tuning with CrayATF”, iWAPT, Tokyo, Oct 2009,

(abstract, presentation)

[2] Eds. Ken Naono, Kerita Teranishi, John Cavazons and Riji Suda, Software
Automatic Tuning: From Concepts to State-of-the-Art Results, Springer 2010.

[3] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd ed. Springer 2009.

[4] Sholom M. Weiss, Casimir A. Kulikowski, Computer Systems that Learn:
classification and prediction methods from statistics, neural nets, machine
learning and expert systems. M. Kaufmann Publishers, 1991

[5] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv. 37, 4 (December 2005), 316-
344. DOI=10.1145/1118890.1118892

[6] David Henty, Luis Cebamanos, Jing Gong, Stefano Markidis and Alistair Hart,
CRESTA project deliverable D3.5.2 – Compiler Support for Exascale,

[7] Luis Cebamanos, David Henty, Harvey Richardson and Alistair Hart, “Auto-
tuning an OpenACC accelerated version of Nek5000”, EASC 2014, (to be
presented).

Copyright © CRESTA Consortium Partners 2014

 Page 26 of 28

Annex	 A. Autotuning	 Mockup	
A.1 Introduction	
In parallel with development of the DSL described here we produced a simple mockup
autotuner implementation that could be used to inform the development of the DSL,
give a view on practicability of features and provide something that CRESTA partners
could use. The initial version was made available as an alpha prototype (this met a
project milestone). Note that this is not production software but is an implementation
internal to the CRESTA project that serves as motivator and demonstrator for the
autotuning DSL specification (which is the actual deliverable of the project.)

A.2 Mockup	 status	
The autotuner prototype is a ruby script that is capable of a rudimentary autotuning
session controlled by a configuration script. Development is using ruby 1.9.1 with
some very limited testing on 1.8.7.

Currently the following aspects are implemented:

• configuration script parsing
• sources section
• tune parameters

o mode, scope, target, metric source
o scenario setup (from configuration only)
o metric-placement

• parameters section
o typing section

• collections definition
• constraints

o ranges, depends
o product (but not the inline value syntax)
o expression and assignment constraint types
o scenario tune parameter validity/scope constraints

• build section
o command definition with embedded parameters
o param-file
o build dependency from BUILD collection
o executing build command

• run section
o command definition with embedded parameters
o param-file
o executing run commands
o validation behavior

• DSL source parsing (simple parameter definition, constraints, import, skip,
replace and the three inject variants)

• determination of the order of executions and of best parameters by exhaustive
search of parameter space.

Specific features not currently supported are: value input from file, parallel runs, plugins
and the more advanced source DSL.

As the mockup developed, some new features were added and the syntax for existing
features altered or extended. Those additions were incorporated into the DSL
description elsewhere in this document so are not described here.

A.3 Mockup	 execution	
The mockup autotuner is a command line application which is executed as follows:

% tune linpack.conf

Copyright © CRESTA Consortium Partners 2014

 Page 27 of 28

This will start a tuning session controlled by the configuration file specified. The default
log file will be tune.log. The autotuner accepts the following additional arguments:

 -help Print this usage information
 -nobuild Progress without executing the build command (for testing)
 -norun Progress without executing the run command (for testing
 -noopt Do not run the optimizer
 -stripdsl Parse DSL files removing DSL, do not run optimizer.
 -continue seq Continue a previous run from the seq'th run
 -colour Colorize standard output (at present just red for warnings)
 -csv file Sent summary output to file in csv format
 cfile Name of the file that holds the tuning configuration

A.4 Acknowledgements,	 feature	 additions	 and	 suggestions	
The mockup was used to tune OpenACC implementations in the Nek5000
application[6].

The main feature requests coming from that work were

• The ability to have better control over scope and validity of parameters.
For example some parameters were only valid when a particular algorithm
implementation was chosen.

• Required implementation of the scenarios

• Better summary of the results

The author received complimentary feedback about the usability of the software, in
particular that is was not difficult to interface to the build and run of an application and
extract the tuning metric.

The author acknowledges useful feedback on the DSL and mockup from Alistair
Hart(Cray UK), David Henty(EPCC) and Luis Cebamanos(EPCC).

A.5 Availability	
The mockup is currently only available internally to the project partners from the author
or from the CRESTA SVN.

The SVN location is:
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp3/autotuning/

The mockup files can be found in trunk/mockup

Copyright © CRESTA Consortium Partners 2014

 Page 28 of 28

Annex	 B. Future	 Work	
We expect to look at additional aspects of the DSL and tuning between publication of
this deliverable and the end of the project. The following areas are of specific interest.

Table 1: Future work

DSL constructs Expand support from current set

Matcher Can we implement a simple closest-
match or decision tree matcher for
scenario runs?

DSL XML Format Reconsider. Perhaps something like
JSON is more appropriate.

Other project interactions What can we learn from other projects?
What software (ML, optimizers etc.) can
we interoperate with and how?

Project interactions Use tuner with an additional co-design
application.

Parallel Data Mover Runtime Experiment with data mover aspects

