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1 Executive	  Summary	  
This deliverable reports on the development, extensions and modifications to different 
frameworks that have been developed by CRESTA WP3 to enable efficient execution 
of parallel applications on exascale machines. 

We describe first the development of a new framework, called “targetDP”, to express 
thread and instruction level parallelism for lattice-based codes. CRESTA participation 
in standardization committees, such as the MPI Forum and OpenACC and OpenMP 
committees, is briefly described. 

We present a first mock-up implementation of the CRESTA DSL specification to enable 
automatic tuning of OpenACC codes. 

The software architecture and the performance of two components (runtime 
administration and monitoring components) of the CRESTA run-time system are 
provided. 

Extensions and modifications to the Score-P and Vampir performance monitoring and 
analysis tools are presented. To deal effectively with large amount of data from 
performance hardware counters, selective instrumentation and monitoring, hierarchical 
buffer management, runtime event reduction and message matching have been 
implemented. In addition, we report on how to handle file system limitations, to support 
performance monitoring for new programming systems and application using hybrid 
approaches, and how to monitor energy and network performance hardware counters. 

Together with the extensions and modifications to Allinea DDT and Dresden Technical 
University MUST debuggers, we describe the integration of the MUST MPI correctness 
checker into Allinea DDT parallel debugger. 
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2 Introduction	  
The development and implementation of efficient computer codes for exascale 
supercomputers will require combined advancement of all development environment 
components: programming models compilers, automatic tuning frameworks, run-time 
systems, debuggers and performance monitoring and analysis tools. The exascale era 
poses unprecedented challenges [1]. Because the presence of accelerators is more 
and more common among the fastest supercomputer and will play a role in exascale 
computing, compilers will need to support hybrid computer architectures and generate 
efficient code hiding the complexity of programming accelerators [1],[2]. Hand 
optimization of the code will be very difficult on exascale machine and will be 
increasingly assisted by automatic tuners. Application tuning will be more focus on 
parallel aspects of the computation because of large amount of available parallelism. 
The application workload will be distributed over million of processes, and to implement 
ad-hoc strategies directly in the application will be probably unfeasible while an 
adaptive run-time system will provide automatic load balancing. Debuggers and 
performance monitoring tools will deal with million processes and with huge amount of 
data from application and hardware counters, but they will still be required to minimize 
the overhead and retain scalability.  

In CRESTA WP3, we developed, extended and modified different frameworks to 
enable efficient execution of parallel applications on exascale machines. The CRESTA 
frameworks of the development environment are presented in the Figure below. 

 
Figure 1: Different CRESTA frameworks for exascale applications 

WP3 work was divided in four tasks:  

• Programming models. 
• Compilation and runtime environments. 
• Performance analysis tools 
• Debuggers. 

The goal of programming framework task was to investigate programming models with 
exascale potential. An investigation of how to use effectively these programming 
models in applications is presented in CRESTA D3.11 (“Experiences with benchmarks 
and co-design applications”). In this deliverable, we present a new programming 
framework, called “targetDP”. CRESTA compilation and runtime environment task 
focused on the design of new Domain Specific Language for auto-tuning and of run-
time system; the performance analysis tools task studied the extension and 
modification of performance monitoring and analysis tools of Technische Universitaet 
Dresden (TUD) (Score-P and Vampir). The debugger and correctness checker task 
focuses on the extensions of parallel debugger Allinea DDT and of MPI Correctness 
checker, TUD MUST. 
In this deliverable, we report on the development, extensions and modifications to 
these frameworks that have been developed by CRESTA WP3 to enable efficient 
execution of parallel applications on exascale machines.The deliverable is organized 
as follows. The third section presents the work on programming models and describes 

CRESTA CRESTA CRESTA 



 

© CRESTA Consortium   Page 3 of 41 

 

the standardization efforts in CRESTA. The fourth section presents the CRESTA DSL 
for auto-tuning and the CRESTA runtime system. The fifth section describes the 
modifications and extensions to the Score-P and Vampir performance monitoring and 
analysis tools. The sixth section describes the improvement in Allinea DDT and MUST 
MPI correctness checker. Finally, the seventh section concludes the deliverable 
summarizing the results. 

2.1 Purpose	  
To goals of this deliverable are: 

• To present the frameworks, developed and implemented in the CRESTA 
project, to support a productive and an effective development of exascale 
applications. 

• To describe the targetDP framework for lattice-based codes 
• To describe standardization activities by CRESTA membersin MPI Forum, 

OpenACC and OpenMP committees. 
• To present the development of a mock-up version of the CRESTA DSL for auto-

tuning of OpenACC codes 
• To present the new CRESTA adaptive runtime system for exascale 

applications. 
• To describe the enhancements and modifications to the performance 

monitoring framework, Score-P, and visualization and performance analysis 
tool, Vampir. 

• To present modifications and extensions of the parallel debuggers and MPI 
correctness checker, Allinea DDT and MUST. 

• To describe the integration of the MPI Correctness checker, MUST, into the 
Allinea DDT parallel debugger. 

2.2 Glossary	  of	  Acronyms	  
AVX Advanced Vector eXtension 
D Deliverable 
DSL Domain Specific Language 
CUDA Compute Unified Device Architecture 
GPU Graphics Processing Units 
GTI Generic Tool Infrastructure 
IFS Integrated Forecast System 
ILP Instruction Level Parallelism 
IOSL I/O Forwarding Scalability Layer 
IPM Integrated Performance Monitoring 
MPI Message Passing Interface 
NUMA Non Uniform Memory Access 
OTF2 Open Trace Format 2 
PGAS Partitioned Global Address Space 
PIA Performance Introspection API 
RMA Remote Memory Access 
SIMD Single Instruction Multiple Data 
TBON Tree-Based Overlay Network 
TLP Thread Level Parallelism 
UPC Unified Parallel C 
VVL Virtual Vector Length 
WP Work Package 

 
 . 
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3 Programming	  Models	  
The trend towards the exascale is of increasing parallelism, partitioned into a hierarchy 
of levels within the hardware. At the most coarse-grained level, many nodes may be 
coupled via a high performance interconnect. Each node features one or more CPUs 
each with multiple compute cores.  At the finest level, each core features a vector 
floating point unit, which can perform multiple operations per clock cycle. Furthermore, 
many systems now feature accelerators such as Graphics Processing Units (GPUs), 
on which computationally intensive kernels can be offloaded and executed with high 
efficiently on many low-power cores using high bandwidth graphics memory. 
Accelerators are used in conjunction with CPUs, and can result in additional complexity 
such as distinct physical memory spaces within a single application. The challenge for 
the programmer is to expose algorithmic parallelism in a way that maps on to the 
hierarchy of architectural parallelism. Ideally, this would be done in a way that 
optimises performance, but also allows intuitive expression of algorithmic content whilst 
promoting software maintainability across different systems such as those with and 
without accelerators. 

3.1 TargetDP:	   thread	   and	   instruction	   level	   parallelism	   for	   CPU	  
and	  GPU.	  

targetDP is a lightweight framework we have developed to target the data parallelism 
inherent in lattice-based applications to the hierarchy of hardware parallelism for either 
SIMD multi-core CPUs or NVIDIA GPUs.  targetDP consists of a set of (C99) standard 
C preprocessor macros, and a small C library interface for set up and memory 
management.  It therefore requires no new pseudo-language intermediate code, or 
compiler-like translation software layer.  

The new abstraction promotes optimal mapping of code to hardware thread-level 
parallelism (TLP) and instruction-level parallelism (ILP), via the partitioning of lattice-
based parallelism and translation to OpenMP or CUDA threads (for TLP) and perfectly 
SIMDizable parallel loops (for ILP). For large-scale parallel applications, targetDP may 
be used in conjunction with coarse-grained node-level parallelism, e.g. that provided by 
MPI. Thus, targetDP allows maintenance of a single source code base with portable 
performance on the majority of leading edge computational architectures. The 
programmer expresses the parallelism and memory management using targetDP 
functionality, and the relevant targetDP implementation can be chosen for a specific 
hardware platform at compile-time.  

3.1.1 Memory	  management	  
Lattice based applications use ``lattice field'' data structures: arrays that have values 
(or sets of values) defined at every point on the lattice. The runtime of such 
applications is dominated by operations on lattice fields: these are data parallel in 
nature since they involve the same operation at all lattice sites.  We use the 
terminology ``host'' to refer to the CPU that is hosting the execution of the application, 
and ``target'' to refer to the device targeted for execution of lattice-based operations. 
The target may be an accelerator such as a GPU or it may simply be the host CPU 
itself. It is an important aspect of our model that even in the case of the latter, we retain 
the distinction between host and target. We maintain both host and target copies of our 
lattice data, where the target copy is located in a memory space suitable for access on 
the target, and is treated as the master copy within those lattice-based computations. 
The host copy is located on the host memory, and is updated from the target copy as 
and when required to permit those (non computationally demanding) operations that 
should always be performed by the host. The targetDP library provides facilities to 
manage the host and target data structures. The basic functionality consists of memory 
allocation, de-allocation and copying. These operations map, in a straightforward 
manner, to the relevant CUDA operations in our GPU implementation, and to the 
equivalent C operations in our CPU implantation. For example, the copyToTarget 
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routine can map to either cudaMemcpy or memcpy at compile time, depending on the 
targetDP implementation selected. More sophisticated targetDP operations allow 
host/target value synchronization for only subsets of lattice data: this is important for 
minimisation of overheads in large-scale complex parallel applications. In these 
operations, compressed buffers are populated, transferred and uncompressed. Also 
included is functionality to utilize fast on-chip read-only memory (important for GPU 
performance). 

3.1.2 Execution	  model	  
targetDP aims to expose the data parallelism inherent in the application in a way that 
can be mapped to the hardware efficiently. TLP will map to CUDA threads on a GPU or 
OpenMP threads on a CPU.  When the target is an X86 CPU, ILP can be mapped to 
those vector instructions that extend the X86 set, such as 128-bit SSE, 256-bit AVX 
and 512-bit IMCI. ILP can similarly be mapped to equivalent vector instructions on 
other CPU architectures. On NVIDIA GPUs, exposure of ILP within a kernel can also 
be very beneficial, since it can facilitate latency hiding through use of fewer thread 
blocks, with more instructions per block.  

Consider a simple example: the scaling of a 3-vector field by a constant, often used in 
Lattice-Boltzmann codes. This is, schematically:  
//loop over lattice sites 
for (idx = 0; idx < N; idx++) {  
 
int iDim; 
for (iDim = 0; iDim < 3; iDim++)  
field[iDim*N+idx] = a*field[iDim*N+idx]; 
 
} 
We can introduce targetDP by replacing the above code with the following function: 
TARGET_ENTRY void scale(double* t_field) { 
 
int baseIndex; 
 
  TARGET_TLP(baseIndex, N) { 
 
int iDim, vecIndex = 0; 
for (iDim = 0; iDim < 3; iDim++) { 
      TARGET_ILP(vecIndex) \ 
t_field[iDim*N + baseIndex + vecIndex] = \  
t_a*t_field[iDim*N + baseIndex + vecIndex];        
    } 
 
  } 
return; 
} 

For the C implementation, the TARGET_ENTRY macro holds no value, and the code 
will compile as a standard C function. For the CUDA implementation, it is defined as 
__global__ to specify compilation for the GPU. We similarly provide a TARGET 
macro for use on subroutines called from TARGET_ENTRY functions. The t_ prefix 
syntax is used to identify target data structures, where these can be managed using 
the library functionality described above. The function is launched in “host” code using 
additional targetDP syntax, which is trivial for the C implementation, but for CUDA 
specifies the relevant decomposition based on the lattice size. 

We expose the lattice-based parallelism to each of the TLP and ILP levels of hardware 
parallelism through use of C-preprocessor macros in the following way.  We re-express 
the original loop over lattice sites using the TARGET_TLP(baseIndex,N) macro, 
where baseIndex is an index for lattice sites, and N is the total number of lattice sites. 
The ``base'' terminology will become clearer below. 

In our C implementation of targetDP, this macro is expanded as a loop over lattice 
sites, decomposed between OpenMP threads. Importantly, the TLP loop is strided in 
steps of a virtual vector length VVL: a tunable parameter that represents the width of 
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ILP that we wish to present to the hardware. Thus, each TLP thread operates not on a 
single lattice site but instead a chunk of VVL lattice sites, and baseIndex corresponds 
to the first index in the chunk. In other words, we are strip-mining the original loop.  

For our CUDA implementation, it can be seen that this macro appears inside a kernel 
function and therefore expands as a CUDA thread lookup, where again a virtual vector 
length is used such that each CUDA thread becomes responsible for a chunk of lattice 
sites. 

The lattice-based operation to be performed for the chunk of VVL sites is implemented 
using the TARGET_ILP(vecIndex) macro prepended to the innermost operation. The 
vecIndex variable is an integer that acts as an offset to the base index within the 
chunk of lattice sites. The operation that follows this macro can then use the 
combination baseIndex+vecIndex when accessing array data, ensuring that all 
elements of the lattice chunk are operated on. For C, VVL can be tuned to allow the 
compiler to generate optimal SIMD instructions. For example, setting VVL to 4m will 
create m AVX instructions, where m is a small integer. m=1 is an obvious choice, but it 
can be the case that m>1 gives better performance. VVL can similarly be tuned for the 
CUDA implementation, giving latency hiding benefits. 

The results of using targetDP in a lattice-based code (Ludwig code) are presented in 
CRESTA D3.11 (“Experiences with benchmarks and co-design applications”). 

 

3.2 CRESTA’s	  standardization	  effort	  in	  the	  MPI	  Forum	  
The CRESTA project followed closely the standardization process in MPI. CRESTA 
participated in standardization meetings and contributed to discussions on new 
proposals in MPI. 

A member of the EPCC partner in CRESTA, Daniel Holmes, regularly attended the MPI 
Forum meetings and served as both a Working Group Leader and a Chapter 
Committee Chair. CRESTA, together with the EPiGRAM project, has on-going 
involvement and influence within both the Hybrid Working Group and the Point-to-Point 
Working Group. Significant contributions have been made to the “endpoints” proposal 
as a direct consequence of the work carried out during the CRESTA project and the 
first year of the EPiGRAM project. 

 

3.3 CRESTA’s	  standardization	  effort	  for	  OpenACC	  and	  OpenMP	  
The OpenACC non-profit corporation develops and standardises the OpenACC API. 
Membership of the organisation is on an institutional basis, with single representatives 
from member and supporter organisations sitting on the Technical Committee. 
CRESTA was represented on the Technical Committee through the Cray (one if the 
founder members) and EPCC at the University of Edinburgh representatives.	  

OpenMP has a subcommittee developing a subset of OpenMP directives that can be 
used to accelerate applications in a similar manner to OpenACC. James Beyer (Cray 
US) co-chairs this subcommittee and CRESTA was also directly represented on this 
subcommittee through Cray UK staff attending the weekly telephone meeting. 
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4 Compilation	  and	  Runtime	  Environments	  
In this section, we present the development of CRESTA DSL and adaptive runtime 
system. 

4.1 A	   Domain	   Specific	   Language	   for	   auto-‐tuning	   and	   exascale	  
compiler	  support	  to	  exascale	  

Exascale systems are going to be inherently complex and we believe there is a place 
for more automated and intelligent software to build and run applications.  One specific 
area (accelerators) illustrated this most aptly.  

Accelerators and, in particular, GPUs have emerged as promising computing 
technologies which may be suitable for the future exascale systems. However the 
complexity of their architectures and the impenetrable structure of some large 
applications make the hand-tuning algorithm process more challenging and 
unproductive. On the contrary, auto-tuning technologies have appeared as a solution to 
this problems since it can address the inherent complexity of computer architectures.  

Early in the project we engaged with the Institute for Computing Systems Architecture 
at Edinburgh University to tune Nek5000 kernels using a compiler-based machine-
learning auto-tuning framework.  The results were promising but in practice there were 
some important issues: firstly they could only deal with C but more importantly they 
were the only ones with expertise in their tools so we had to hand over our code for 
tuning.  So although compiler-centric technologies were interesting we moved on to 
work with our own auto-tuning approach. 

The CRESTA DSL implementation we developed can explore a tuning parameter 
space by repeatedly building and running an application. The best run is chosen using 
a metric from the program execution and currently is done by exhaustive search. The 
tuning session is control by DSL either from a global configuration file or embedded in 
application source. This DSL has been extremely useful for the auto-tuning process of 
the CRESTA co-design application Nek5000 and NekBone, a standalone benchmark 
for the Nek5000 code. Through different scenarios we have been able to explore the 
performance of Nek5000 using a wide range of parameter settings. Each scenario is 
able to pick the best values for a given set of tuning parameters. The tuning 
parameters will relate to build and runtime optimization choices that we can choose.  

Nek5000 is an open-source code used to simulate incompressible flow with thermal 
and passive scalar transport. The code consists of 100,000 lines of code and it is many 
written in Fortran (70,000 lines of code) and C (30,000 lines of code), and uses MPI for 
message passing communication.  

The CRESTA DSL was first used to optimise the performance of NekBone on a Cray 
XC30 system accelerated with Nvidia K20x GPUs. The results were impressive, giving 
a 200% speed-up over the default OpenACC parameter settings and over 15% speed-
up over an exceptionally optimised OpenACC hand-tuned version. Then, similar work 
was extended to the full Nek5000 application. And although this was much more 
challenging due to the high number of code sections and different parameters to tune, 
the auto-tuner has been able to achieve performance improvements of around 32% 
compared to the best OpenACC hand-tuned implementation of Nek5000. 

In addition, the autotuning mockup was used in two other situations by a member of the 
Cray performance team.  The first was to explore vector lengths of specific parallel 
OpenACC loops in the Delta5d fusion code.  The result was that only marginal gains 
could be found from such tuning.  The second was to investigate performance of the 
IOR benchmark using various MPI_IO tuning parameters.  This resulted in a better 
understanding of the important parameters for the particular scenario studied. 

Once the DSL mockup was exposed to applications some features were added or 
enhanced.  For example scenarios were implemented in the mockup and tuning 
parameters could be enabled given the context of a particular scenario.  Also the 
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reporting of the results was improved with the addition of a new table of results, 
comparison with default parameters and new optional csv output format. 

 

4.2 Hybrid	  and	  adaptive	  runtime	  systems	  
In order to achieve good application performance on exascale machines, highly 
system-specific features have to be exploited. This means that best practices in 
programming and software development have to be relaxed and the resulting code is 
difficult to port to different systems. Runtime systems help to build portable applications 
for a broad range of HPC infrastructures in a modular way[5]. The heterogeneous 
character of recent hardware as well as the parallel program’s highly dynamic 
behaviour not known before their execution require runtime systems to take into 
consideration the hardware topology as well as monitoring information of the on-going 
program execution. The runtime system consists therefore of a resource manager, a 
library for runtime administration of parallel applications, and a performance monitoring 
and analysis tool. The design is based on a task-oriented programming model. 

One of the hardest requirements in the development of simulation applications is their 
adaptation to different computer systems due to the varying technical parameters that 
have a huge influence to the numerical performance: cache- and memory hierarchies, 
the number of cores per CPU, the number of sockets per node, and the characteristics 
of the interconnect network. 

Today, optimisations are typically implemented directly in the code. The necessary 
effort to do this would grow immensely in the future due to the increasing heterogeneity 
and diversity of HPC computer systems. A runtime system must aim to improve the 
performance portability that can be achieved with one certain implementation. 

An important requirement for a tool development is the reuse of existing application 
codes often implemented in Fortran or C. The introduction of new software tools should 
allow its incremental adoption, keeping the need for reimplementation or adaptation of 
existing code to a minimum.  A further requirement connected to the previous one is 
the wish that software tools support an adaptive use of best practices, which otherwise 
would not be applied due to prohibitive implementation effort. Finally, given that hybrid 
programming models gain more importance, the runtime system may not prevent the 
use of parallelisation technologies that it does not address itself. 

While different application classes put different requirements on runtime support, we 
focus on numerical simulation applications. Typical requirements of numerical 
simulations are 

• Integration of data and task parallelism, 

• Use of multi-level parallelism in the algorithm design, 

• Development of algorithms with a high degree of parallel executable tasks, 
which have a moderate size, can be created very quickly, and avoid global 
communication operations, 

• Usage of multi-threading, asynchronous communication and one-sided 
communication, 

• Consideration of the increasing depth of the memory hierarchy, 

• Optimised scheduling and mapping taking into account chip-architectures, 
memory hierarchies, internal communication abilities, etc. to provide a higher 
degree of parallelism and decrease memory and communication bandwidth 
usage. 

4.2.1 Programming	  model	  and	  user	  interface	  
The runtime-system developed in CRESTA supports a task-oriented programming 
model featuring hierarchical multiprocessor tasks. Such tasks are computational units 
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that can be also parallel in themselves and can be subdivided hierarchically again into 
subtasks.  The example in Figure 2 shows which tasks could be defined in a typical 
algorithm of a molecular dynamic simulation.  

 
Figure 2: Example of an application structure using a coarse-grained hierarchical decomposition 

The hierarchical nature of the computational tasks and their inner parallelism is clearly 
visible.  Such a task model matches how programmers typically express parallelism 
during algorithm design and in program descriptions.  The runtime system with its task 
model makes this parallelism explicitly visible in the source code, while traditional and 
widely used programming languages cannot easily express it. 

Hierarchical multi-processor tasks allow to model also hybrid parallelisation and can be 
used to describe task parallel programs, i.e. sequences of operations, as well as data 
parallel programs like the parallel work on sub-domains. Hierarchical tasks reflect the 
hierarchical architecture of most computer systems well. Furthermore, their use 
integrates with existing programming models like MPI and OpenMP. Finally, the 
modelling of the simulation program as a task graph allows us to apply a broad range 
of algorithms from the theory of scheduling and graph partitioning for the mapping of 
tasks onto a computer system. 

The runtime system uses currently a hardware performance model that models a 
computer system as graph from computational cores over nodes up to the complete 
system. The nodes of the graph are the computational cores respectively aggregations 
of them like dies, CPUs, cluster nodes, network partitions, and finally the whole cluster. 
They are characterised by their computational capabilities expressed through the 
computational performance. The edges of the hardware graph model the 
communication capabilities of the connection between the respective nodes. Shared 
caches or NUMA nodes connected to a few cores provide the fastest communication 
speeds. The speed then decreases for communication between different sockets, 
between nodes, and finally different parts of the cluster depending on the interconnect 
network topology. Therefore, this model does not only reflect the network topology but 
indirectly also the memory hierarchy within nodes. 

The combined use of both models, the task-based programming model and the 
hardware model allows graph partitioning and mapping algorithms the selection of the 
most appropriate system part, i.e. a hardware model sub-tree, for the execution of a 
certain part of the application, i.e. a task sub-tree (see Figure 3). This will be explained 
in more detail in the description of the runtime administration component. 
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Figure 3: Use of the task and the hardware models to optimize the program execution 

The user interface consists of five elements that will be used by an application 
developer. These comprise the definition of computational tasks, support for the 
automatic re-mapping of distributed arrays as well as user-defined data that define the 
state of a computational tasks, a control function to perform dynamic load-balancing, 
and the management of MPI communicators. This interface has been designed with 
simplicity in mind in order to allow its convenient introduction into existing simulation 
codes. Furthermore, the current implementation of the user interface to the runtime 
system focusing on the dynamic gradual improvement of task mappings and load-
balance allows developers to optionally deactivate automatic load-balancing if a certain 
computer system cannot be well supported for some reason. This can be compared to 
a parallelisation similar to the OpenMP approach that allows compiling a program 
optionally with OpenMP support. 

A task is identified by a key. The possibility to define tasks hierarchically leads naturally 
to a tree structure of tasks, examples of task keys are “task_1” or 
“task_1/subtask_a”. A number of parameters for a task can be specified in a 
structure task_params. These comprise the number of allocated processors, 
estimations of computational work and communication, and a callback function that is 
used to serialize respective de-serialize the task status. The following function can be 
used for the definition of the task tree. 
task_tree *define_task(task_tree *parent, int n, 
                       string *keys, task_parms *children); 

One call to define_task() adds the number of n sub-tasks to the parent task that 
are allowed to run in parallel. Several calls to this function define a sequence of tasks. 
Arbitrary task trees may be constructed in that way. 

The begin and end of the execution of a certain task can be registered in the code by 
calls to the functions begin_task(key) resp. end_task(key). 

It is necessary to transport the state of a computational task between processes in 
order to move tasks during the runtime. The application developer has to provide a 
function that can serialise resp. de-serialise the state of a computational task. The state 
of a task will be serialised in the owner process of a task, transported to the destination 
process, and finally de-serialised there. A ready-to-use convenience implementation is 
provided for the transport of arrays, which are one of the most frequently used data 
structures in numerical simulations. Arrays can be registered at their owning 
computational tasks and will be handled by the runtime system automatically. This 
avoids repeating coding tasks of serialisation for the developer as well as allows 
optimised handling of memory allocations. The prototype for callbacks is defined as 
int (*task_serialisation_cb)(int opcode, void *buffer); 
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The value of opcode defines if the requested operation is a serialisation or a de-
serialisation, and buffer is used to store the serialised data to write or read from. The 
registration of arrays at their owning tasks will be done with the function 
void register_array(task_tree *owner, void *array, 
                    int dtype, int n, int *dims); 

that specifies the dimensions of the array and the type of its elements. 

The runtime system supports the re-mapping and execution of computational tasks by 
means of MPI, whereas the choice of the inner parallelisation technique for multi-
processor tasks is under control of the application developer. This would lead to the 
need of maintaining a directory of task mappings onto MPI ranks in order to perform 
communication between the owning processes of computational tasks in need of 
message-passing. The design choice for the runtime system was, to avoid explicit 
bookkeeping. MPI communicators will be used for that instead. Initially when setting up 
the calculation in typical numerical simulations, processes determine their 
communication partners rank-wise. These ranks are defined often as global properties 
of the MPI processes and updated occasionally, for example when re-distributions of 
data occur. In a program running under the control of the runtime system, however, the 
rank numbers of the communication partners become part of the state of computational 
tasks. They will be moved together with the other data defining the state of a task and 
used in all subsequent communication operations until an update is required due to re-
distributions of data initiated by the simulation application itself. It is the responsibility of 
the runtime system to provide a MPI communicator to the application that reflects 
updated mappings of computational tasks onto MPI processes after their re-
distribution. This functionality has been implemented by means of communicator 
management functions as provided by the MPI-2 standard. From an application 
developer point of view, the programmer defines a so-called load-balancing context 
that connects the group of a certain MPI communicator with a sub-tree of the task tree. 
Load-balancing will then be performed amongst the participating MPI processes of the 
context’s communicator. The load-balancing context is defined by using the function 
MPI_Comm *define_lb_context(MPI_Comm comm, 
                            task_tree *root_task); 

The function returns a MPI communicator for communication operations using the 
previously defined rank numbers of partner processes. 

The runtime system monitors the execution of a parallel program. It is necessary from 
time to time to hand-over the control to the runtime system. A new task mapping is then 
calculated based on the previous monitoring. The callbacks specified during the 
definition of tasks will be activated for the serialisation and deserialization of tasks, and 
the runtime system manages the transport of these data between the processes. 
Finally, a new MPI communicator reflecting the new task distribution will be created 
and returned to the application for subsequent use in communication between the 
computational tasks. The user triggers these activities at suited points in time by calling 
the following function, which also returns the new MPI communicator to the application. 
void perform_load_balancing(MPI_Comm *comm); 

4.2.2 Software	  Architecture	  
The runtime system consists of three main components: a runtime administration 
component (Rta-C) schedules tasks and monitors their execution status; a monitoring 
component (Mon-C) provides information on the hardware utilisation, which is for 
scheduling decisions as well as to complement potentially incomplete or imprecise 
resource requirement specifications; and finally a performance analysis component 
(Pan-C) that analyses recorded monitoring data to provide more sophisticated hints for 
application control, beyond the capabilities of single run monitoring (see Figure 5). 
Implementations of the components Rta-C and Mon-C have been realised within 
CRESTA. 
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Figure 4: Components of the CRESTA runtime system 

 

4.2.3 Runtime	  administration	  component	  (Rta-‐C)	  
Rta-C provides the user API allowing the definition of computational tasks as well as to 
control the load-balancing execution. It maintains internally the task tree as well as the 
hardware model. This component receives monitoring data from the monitoring 
component (Mon-C). Furthermore, it comprises the mapping algorithm as well as the 
functionality for moving tasks. 

Rta-C creates the task tree within each process from the task definitions provided by 
the application. The cost estimates for computational work and communication 
volumes provided in the task definitions will be used for the calculation of task 
mappings on platforms that do not have the capability to monitor these parameters 
during the execution. Otherwise, these values will be replaced by data acquired by 
Mon-C as described below. 

The hardware model is provided either as a static graph with weighted nodes and 
edges representing computing and communication capabilities or constructed 
dynamically during the program execution. The latter is done by measuring 
communication capabilities during the runtime of the parallel program. The advantage 
of this approach is that the real communication performance of the nodes allocated to a 
batch job is determined in the moment of the measurement. Influences from a concrete 
load on a HPC system as well as effects of dynamic routing configurations can be 
taken into account in this way. Even occasional updates of the hardware model are 
possible during long-running simulations. 

Mon-C is clocked by the starting and end markers of computational tasks. It provides at 
least timing information about the execution of the computational tasks. Counter values 
of executed floating-point operations and MPI communications will be provided if 
available on the platform. Rta-C maintains a record of these measurements. This is for 
the time being a moving average value of a configurable number of time steps. The 
monitoring data are used to update the task definitions and provide in that way an up-
to-date picture of the workload during the recent time steps. 

The re-mapping of tasks in order to improve the load-balancing can be triggered by the 
application explicitly or automatically when a certain degree of load-imbalance has 
been reached. The wall clock time per time step is used as metric of load-imbalance. 

The task mapping is calculated in a two-phase process that is illustrated in Figure 5.  
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Figure 5: Two-phase calculation of task mapping 

The implementation of this functionality has been based on the library SCOTCH, which 
provides extensible algorithms for graph partitioning and mapping[7]. The mapping of 
tasks to compute nodes is defined in the first phase. Compute nodes are represented 
for this calculation in the hardware graph as single nodes with a heavier weight 
according to the number of cores per node. The results of this calculation are task 
groups that will be assigned to one node. Afterwards, the mapping of task groups onto 
the different cores of a node is decided during the second phase. These calculations 
will be done in parallel on each node. The final task mapping is then distributed in order 
to allow the reconfiguration of the MPI communicator used in the load-balancing 
context. 

For example, the mapping calculations for Cray XE6 systems that have been used in 
CRESTA, define the global hardware model with the network links as edges that 
connect the Gemini network ASICs, which are present in this graph as nodes 
summarizing the computational capabilities of the two servers that are connected to 
each of the ASICs. The local model comprises in fact both compute nodes that share 
one ASIC. 

Figure 7 shows the wall clock time per time step for different task mapping strategies of 
a molecular dynamics simulation. The performance improvement of optimised task 
mappings in comparison to randomly chosen distributions is clearly visible. The 
molecular dynamics simulation for short-range potentials has been implemented as 
pure MPI application based on the linked cell method. It is characterised by 
neighbourhood communication and can benefit from an optimised task placement. 
Beside the communication topology, the task placement also has been balanced with 
respect to the overall number of particles of all MPI processes on a node. Such a cost 
function does not balance the work done by the different processes, of course. But, it 
supports that there will be about the same amount of data on each node. This implies 
that each node has to access about the same amount of data in main memory. 
Memory access, the bottleneck in memory-bound algorithms, is balanced in that way. 
The optimised task mappings allowed a reduction of at least 10% wall clock time per 
time step in all experiments. However, the improvement is of course dependent on the 
complex interplay of many factors coming from the task decomposition as well as from 
the properties of the hardware. The experiments confirmed the expectation from the 
design phase that the runtime system can manage well a large number of smaller 
tasks, whereas configurations with fewer, heavier tasks provide fewer possibilities for 
optimisations. The diagram given here is an example of such a job with smaller tasks 
and demonstrates performance improvements up to 50%. The experiments confirm the 
expectations that have been put up in the design phase. We expected there from 
experiments with separate components improvements between 15 and 50% as well as 
the introduction of about 5% overhead. This expectation has been met with overall 
performance improvements of at least 10% so far. 
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Figure 6: Time per-step for a molecular dynamics simulation using different strategies for task 

mappings 

4.2.4 Monitoring	  component	  	  (Mon-‐C)	  
The monitoring component in the runtime system uses the Integrated Performance 
Monitoring (IPM) tool [8] to capture the performance behavior of MPI applications. IPM 
provides reports on several program events introducing minimum overhead. Such 
events can be MPI operations, Posix-I/O file operations, CUDA, or OpenMP events 
among others. IPM has been widely used by HPC centers such as NERSC to collect 
more then 310K batch profiles in the past 6 years. 

CRESTA WP3 has extended the IPM monitoring tool with the Performance 
Introspection API (PIA) [9] to provide online feedback to the runtime system as the 
application runs. This API is designed to be a simple and lightweight interface written in 
C that can be used from C, C++, and Fortran. The Performance Introspection API 
provides each process a local view of its own performance behavior through the 
access to two different data entities, user-defined code regions and activities.  

User-defined regions are measurement intervals defined by the runtime system within 
the application, for instance, tasks, functions, or blocks of code. These delimited 
regions can be nested and are annotated in the source code with the routine 
ipm_region. For each one of these regions the associated performance data is fixed 
and includes performance metrics such as wall clock time of the region, MPI time, the 
number of executed instances for that region, and hardware performance counters. As 
all these metrics are accumulated during program execution, the amount of memory 
needed to store them is small, in the order of a few kilobytes. The following code listing 
shows how to use the Performance Introspection API to access the total time, MPI 
time, and number of executed instances for a defined regions called foo. 
void foo( ) 

{ 
  // Defining region start 
  ipm_region( IPM_START, “foo”); 

  // Do whatever here 

  // Defining region end 
  ipm_region( IPM_END, “foo”); 

} 
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int main( int argc, char *argv[]) 
{ 

pia_regid_t id;      // Stores region ID 
   pia_regdata_t data;  // Stores region data 

foo( ); 

   // Obtain region ID 
   id = pia_find_region_by_name(“foo”); 

   // Obtain performance data for that region 
   pia_get_region_data(&data, id); 

fprintf( stderr, “%f Walltime\n”, data.wtime); 
   fprintf( stderr, “%f MPI time\n”, data.mtime); 
   fprintf( stderr, “%d times executed\n”, data.count); 

} 

 

The other entity the runtime can access using the Performance Introspection API is 
activities. Activities are statistics associated to certain program events such as MPI 
calls, Posix-IO calls, or OpenMP phases. For instance, the runtime can consult the 
activity MPI_Recv, obtaining the total number of times the call has been executed, total 
time inside the call, maximum and minimum execution time, or number of bytes 
received for the whole run or for a certain defined region. Activities are accessed 
through their activity ID as shown in the following code snippet: 
// Activity name 
chat *act1 = “MPI_Send”; 

// Activity ID 
pia_act_t id; 

// Activity data 
pia_actdata_t data; 

// Acces the data 
pia_init_activity_data(&adata); 
id = pia_find_activity_by_name(act1); 
pia_get_activity_data(&data, id); 

fprintf(stderr, 
        “MPI_Send happened %d times and transferred %d bytes, 
        adata.ncalls, adata.nbytes); 

The efficiency and overhead introduced by the monitoring component and the 
Performance Introspection API has been tested with several experiments.  

The first experiment measured the time for accessing performance data associated to 
user-defined regions by using a synthetic application that creates thousands of user-
defined regions, and accesses the performance data of one of them randomly chosen. 
Figure 6 shows the average access time to a random region using the API as the 
number of defined regions increases on an AMD Opteron 6274 at 2.2 Ghz. As it can be 
seen, the access time is small, not exceeding 300 ns for 20,000 regions. Moreover, the 
access time is almost constant for the first 8,000 regions where all the measurements 
are in the range of 238-248 ns. This small variability in the measurements was caused 
by the nature of the experiment in which the region selected was not always the same 
but randomly selected. 
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Figure 7: Average time in nanoseconds for accessing the performance data associated to a user-

defined region 

 

The second experiment performed measured the access time for activities. The data 
used for computing activities is stored within IPM in a hash table as explained in [10]. 
Thus, a benchmark was designed to test the access time for an activity as the hash 
table fills up. This benchmark stores 10 millions random events in a hash table of 32K 
entries increasing on each step the number of unique keys used. Figure 7 provides the 
time in microseconds for accessing the activity MPI_Send among 10 million random 
events as the number of unique hash keys increases. The experiments were performed 
again in an AMD Opteron 6274 based system at 2.2 Ghz. As it is shown in the figure, 
the access time increases slightly as the hash table fills up and collisions become more 
probable (more unique keys leads to more entries used in the hash table). However, as 
pointed in [10], in the vast majority of applications the observed fill rate for the hash 
table is below 50%, being their access time between 800 and 850 microseconds. 

 

 
Figure 8: Access time in microseconds to an activity among 10 millions of events in the activity 

hash table 
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Finally, the aim of the last experiment was to measure the total overhead introduced by 
the monitoring component and the Performance Introspection API when used in 
conjunction with a real application. In this experiment, we used Sweep3D [11], a solver 
that models 1-group-time-independent discrete ordinates (Sn) 3D Cartesian (XYZ) 
geometry neutron transport problem. Using the Performance Introspection API we 
checked on each iteration of the program main loop the total time, the average time, 
and the number of executed instances of MPI_Send and MPI_Recv. We also accessed 
the wall clock time, MPI time, and number of instances for the function sweep.  

We run the benchmark in a Cray XE6 system with AMD Opteron 12-core ”Magny-
Cours” (2.1 Ghz) processors. Each node had 24 cores divided between 2 sockets and 
32GB of DDR3 memory. The nodes were interconnected with a Cray Gemini 
Interconnect network. The benchmark was run several times using a base grid of 
10x10x400 with weak scaling up to 8,160 processors. Table 1 shows the execution 
times for Sweep3D with and without the monitoring component and the Performance 
Introspection API. It can be observed that the overhead introduced does not perturb the 
application, fluctuating always under 1% due to the natural runtime variations in HPC 
systems. It is also noticeable that the overhead does not increase with the number of 
cores as the Performance Introspection API operates locally and does not require any 
communication between processes.  

 
Table 1: Total execution time for the Sweep3D benchmark and percentage of overhead 

introduced by the monitoring component (IPM) and the Performance Introspection API. 

MPI processes Original Sweep3D Sweep3D with IPM 
+ PIA Overhead 

1032 226.1 s 225.768 s 0% 

2064 244.975 s 245.437 s 0.19% 

4080 267.72 s 269.448 s 0.65% 

8160 306.751 s 308.234 s 0.48% 
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5 Performance	  analysis	  tools	  
Event tracing tools record parallel applications in detail by logging runtime events with 
a precise timestamp and further event specific metrics. This allows capturing the 
dynamic interaction between thousands of concurrent processing elements and 
enables the identification of outliers from the regular behavior. While single events are 
rather small, event-based tracing frequently results in huge data volumes. In particular, 
tiny and often used functions such as get/set class methods or helper functions can 
easily overwhelm any recording trace buffer. Due to the instrumentation all functions 
that are usually inlined by the compiler are executed and monitored. By itself this 
provides a very detailed view on an application’s behavior. However, if tiny functions 
are heavily used – like in C++ applications – monitoring such can result in tremendous 
data volumes and runtime overhead. 

In a study including Gromacs [13] we showed that for many applications short running 
functions contribute 90-99% of the recorded data volume. In the same time, these tiny 
functions call contribute very little to the analysis and overall understanding of the 
application behavior. To handle these tiny short-running function calls, in particular, for 
long running applications we developed the following strategies. 

5.1.1 Selective	  Instrumentation	  
Since automated instrumentation techniques are most convenient and easy-to-use, the 
majority of event tracing tools use compiler instrumentation as their default to define 
events[14][15][16][17]. However, compiler instrumentation automatically instruments all 
functions regardless of their size and whether they would be inlined. By comparing the 
set of symbols from the original application (A) with the set of symbols of the fully 
instrumented application without any symbols from the monitoring system (B).The set 
of originally inlined functions (I) is the difference of set A from B. By excluding the 
originally inlined functions from the instrumentation not only the resulting data volume 
is tremendously reduced but also the runtime overhead of the monitoring. With this 
approach it was possible to reduce the monitoring overhead for Gromacs by a factor of 
3.5 and the resulting trace size by a factor of 400 [13]. In addition, it is also possible to 
use a profiling run to determine the most often called functions and their average 
duration. This information can be used to exclude additional functions from the 
instrumentation (see also [13]). 

Hybrid applications that use multiple paradigms can also be instrumented to record 
only a subset of aspects or paradigms. A hybrid version of Gromacs that uses 
massage passing (MPI), threading (OpenMP), and accelerators (CUDA) was 
instrumented to record different subsets of all parallel paradigms. Depending on the 
number of paradigms the resulting trace size was reduced to 2.8% for recording only 
MPI and CUDA [18]. It is also possible to apply different levels of details to different 
nodes of the application to get a complete view over some nodes and a coarse view 
over the remaining nodes. Figure 9 shows a visualization of Gromacs using different 
levels of detail for each node and the according trace size reduction (the reduction is 
always relative to the corresponding node with full instrumentation). 
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Figure 9: Vampir visualization of Gromacs with different levels of detail for each node. Reduction is 

relative to the corresponding node with full instrumentation. 

 

5.1.2 Selective	  Monitoring	  
Selective monitoring is another approach to decrease the number of collected events. 
The difference to selective instrumentation is that all code regions of an application are 
instrumented and recorded but only a subset is finally stored. We focused on two 
defined code regions: iterations and functions. 

In iterative applications it is reasonable to avoid storing every single iteration because 
most of them show more or less the same behavior. The selection of these iterations 
can be done statically or dynamically depending on certain parameters. The first 
method is to statically define which iteration is recorded and stored, e.g., every 10th or 
100th iteration. With this it is still possible to analyze the behavior over time but the 
amount of recorded data is reduced to ten or one percent, respectively. However, 
iterations with either interesting behavior or a performance problem might be lost. The 
second method is to record every iteration and dynamically decide whether it is stored 
or discarded by evaluating its behavior, e.g., only store an iteration when its runtime 
varies from the average runtime by a defined threshold. To realize such a subsequent 
removal of iterations we developed and applied a rewind method to rewind the 
recorded event stream to any pre-defined point (e.g. the beginning of the current 
iteration), which eliminates everything record after that point. Figure 10 shows an 
example visualization with Vampir of Gromacs where only every 5th iteration block is 
stored. This topic is also covered in more detail in [19]. 
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Figure 10: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom) 

event trace visualized with Vampir zoomed in to about 6 iteration blocks (Source: [19]). 

 

Next to iterations, specific functions calls can be discarded from the trace. This 
approach also targets short-running highly frequent functions calls as in Section 5.1.1 
but instead of removing an entire function from the trace only individual calls to a 
function are removed. Besides the trivial approach to stop recording a function after it is 
called a pre-defined amount of times, we developed an approach that evaluates the 
duration of each function call and only stores it when its duration is longer than a pre-
defined minimum duration. This approach effectively discards all short-running function 
calls while still keeping the outliers that are of interest for a performance analysis. 

We applied a minimum duration of one microsecond, i.e., all function calls shorter than 
one microsecond are filtered. This way, all short-running functions are eliminated while 
all important routines including all communication routines remain in the trace. For all 
applications that heavily use short-running functions the trace sizes can be remarkably 
reduced down to 0.1% of the original trace size. For Gromacs, this approach reduced 
the trace size to about 1.7% while still keeping the coarse program behavior [13]. 

Figure 11 and Figure 12 show the resulting event trace visualized with Vampir. The 
fully monitored measurement can be seen on the upper half of each Figure (white 
background), the measurement with duration filtering on the lower half (blue 
background). Both figures demonstrate that the filtering of short-running functions does 
not alter the general application behavior; except for the missing short-running 
functions. The function summary in Figure 11 shows that the total number of function 
calls is reduced from about 4 billion to 68 million. Figure 12 additionally shows the 
process timeline of process zero in detail with the calling depth on the vertical axis. The 
process timeline demonstrates that the highly frequent function calls on calling depth 
10 and 11 are effectively eliminated while the outliers that run longer are still contained 
in the trace. This topic is also covered in more detail in [13]. 
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Figure 11: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom) 

event trace visualized with Vampir (Source: [13]). 

 

 
Figure 12: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom) 

event trace visualized with Vampir zoomed to an application phase of about 3.8ms (Source: [13]). 

 

5.1.3 Hierarchical	  buffer	  management	  and	  runtime	  event	  reduction	  
To support the efficient elimination of short-running function but also further techniques 
we applied a hierarchical memory buffer [20]. Instead of one flat continuous memory 
buffer the hierarchical memory buffer uses additional hierarchy information such as call 
stack depth or event class to sort events in a multi-dimensional array. This provides the 
opportunity to remove events of a specific hierarchy class very efficiently. For example, 
the elimination of short-running function calls benefits from this memory buffer layout 
because all function enter and exit events are sorted by their according calling depth 
and are separated from all other types of events. Thus, the according enter and leave 
event of a function call are guaranteed to be right next to each other in the memory 
buffer and, therefore, can be easily and efficiently removed. 
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In addition, the hierarchical memory buffer allows further techniques to reduce the 
number of events within the memory buffer. It is particularly designed to keep an entire 
measurement with in a fixed-sized single memory buffer to avoid the bias introduced by 
intermediate memory buffer flushes. Moreover, it entirely avoids file system interaction, 
which provides a solution to the limitations in parallel file systems (see Section 5.2.1). 
Further techniques that reduce the number of stored events whenever the memory 
buffer is exhausted are described in detail in [21]. These techniques include, for 
instance, a reduction of events by their calling depth or their event class to reduce the 
level of detail for function calls or different paradigms automatically during runtime. 

5.1.4 Message	  matching	  
While the approaches in Section 5.1.2 and 5.1.3 are essential to reduced the number 
of recorded event, unfortunately, the analysis of the communication behavior may 
partly or completely fail when even a single specific event is missing; especially MPI 
[10]. The basis of a correct post-mortem communication analysis is the correct 
matching of send and receives calls of each message. This can be done either by a 
replay of the communication based on the recorded MPI events or by matching MPI 
send and receive events by their order of occurrence [16][14]. In both ways, whenever 
multiple MPI messages have the same communicator and message tag the associated 
events can only be matched by their order of occurrence, e.g., first send event with first 
receive event and so on. Consequently, if one send or receive event is missing, the 
correct matching of send and receive events and, therefore, the post-mortem 
communication analysis fails. But, a correct post-mortem communication analysis is 
essential to understand complex communication behavior and to identify performance 
problems. In addition, all metrics derived from MPI events like latency or bandwidth rely 
on a correct matching, as well. Therefore, it is quite unsatisfying, to lose all this 
analysis options by dropping even a single event. 

To circumvent those restrictions, we developed an approach to make each MPI event 
distinguishable from others with the same communicator and message tag by 
introducing an unique sequential message identifier. With this approach it is possible to 
clearly identify, which MPI events are missing and, thus, it is possible to correctly 
match MPI send and receive calls even with missing MPI events. With this, it will 
become feasible to apply the described selective monitoring techniques without 
sacrificing a detailed communication analysis. 

In [19] we described and evaluated this approach in detail and demonstrated that the 
slight increase in memory allocation and overhead due to the additional information is 
more than justified considering the tremendous reduction that can be achieved with the 
mentioned selective monitoring and runtime event reduction approaches. 

The approach and implementation are based on the Open Trace Format 2 (OTF2) [22], 
a state-of-the-art Open Source event trace library used by Score-P and the 
performance analysis tools Vampir, Scalasca, and TAU [14][16][17]. Nevertheless, the 
methods can also be generalized on other event based tracing libraries. 

 

5.2 Exascale	  challenges	  
In this section, we present the exascale challenges in dealing with file system 
limitations, with new programming paradigms and hybrid applications and with 
monitoring energy and interconnection network performance. 

5.2.1 Dealing	  with	  file	  system	  limitations	  
Post-mortem performance analysis techniques have to handle the amount of 
information of a whole measurement run and usually store this information in entire on 
the parallel file system. At an exascale level, creating one file per measured processing 
element results in disaster for parallel file systems. Current file systems can create only 
a few thousand files per second [23]. Two approaches that are dealing with the file 
system limitations and are applied to event tracing are SIONlib and the I/O Forwarding 
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Scalability Layer (IOFSL) [24][25]. Both approaches try to merge many logical files into 
a single or a few physical files. While SIONlib relies on the file system’s capability to 
handle large sparse files to pre-allocate segments for the logical file handles within a 
single file, the I/O Forwarding and Scalability layer, as the name suggests, provides an 
I/O forwarding layer to offload I/O requests to dedicated I/O servers that can aggregate 
and merge requests before passing them to the actual file system. 

Both approaches have proved to support monitoring at high scales. VampirTrace 
successfully recorded a full system run on the Jaguar system at Oak Ridge National 
Laboratory with 200.000 processes and Scalasca used SIONlib to record a full system 
run on the JuGene system at the Jülich Supercomputing Center with almost 300.000 
processes [25][24]. 

Since version 1.0 Score-P supports the usage of SIONlib but was restricted to pure 
MPI applications. With the upcoming release, Score-P 1.4 will support hybrid programs 
including accelerators, as well. 

 

5.2.2 New	  paradigms	  and	  hybrid	  applications	  

5.2.2.1 CUDA	  and	  OpenACC	  
As mentioned in the Section 3, in the last years CUDA/OpenACC capable devices 
became more and more popular in the High Performance Computing area since they 
are promising more floating point operations per seconds than a typical CPU will ever 
provide in a user application. 

Monitoring of CUDA applications can be done either via the CUDA Profiling Tools 
Interface (CUPTI) or by a library wrapping approach. CUPTI provides different APIs 
that can be used to get insight into the CPU and GPU behavior of CUDA applications. 
The benefits of CUPTI in comparison to the library wrapping approach are the reduced 
perturbation of the kernel execution and precise event (kernel) time information. An 
exemplary study with the Nek5000 benchmark can be found in [27]. 

Since version 1.3 Score-P is able to monitor CUDA activities via CUPTI and OpenACC 
activities via a shared library wrapping approach. The use of the new developed 
generic one-sided RMA event model allows us to monitor memory transfers between 
host and graphic card as one-sided communication. 

5.2.2.2 SHMEM	  
SHMEM is a PGAS paradigm very similar with one-sided paradigm in MPI to pass data 
between cooperating parallel processes on logically shared distributed memory. 

The one-sided communication operations of Cray SHMEM can be easily recorded with 
Score-P’s generic RMA event model. Cray SHMEM allows the coexistence of MPI and, 
therefore, initialization and finalization of the measurement system can be easily used 
with the MPI interface of Score-P. The instrumentation can either be done by a library 
wrapping approach or by defining weak symbols and use of the strong symbols 
provided by the Cray SHMEM library, this approach is very similar to the PMPI 
interface of MPI. Figure 13 shows the visualization of the performance monitoring of a 
Cray SHMEM application. 
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Figure 13: Performance visualization of a massive parallel bucket sort parallelized with Cray 

SHMEM. The master timeline shows very impressively the master-slave communication 
implemented with shmem_get64 operations colored in light blue between the different processes 

surrounded by tow shmem_barrier_all operations colored in yellow. 

5.2.2.3 Support	  for	  hybrid	  applications	  
Score-P supports the tracing of most of the parallel paradigms and standards including 
MPI, SHMEM, OpenMP, Pthreads, CUDA, and OpenCL/OpenACC. In addition, all this 
parallel paradigms can be recorded simultaneously. 

We monitored Gromacs with various numbers of threads of execution and different 
parallel paradigms from pure MPI applications to hybrid versions of Gromacs using 
MPI, OpenMP, and CUDA (see Figure 14). 

 
Figure 14: Performance visualisation of a hybrid version of Gromacs parallelized with MPI, 

OpenMP, and CUDA running on 8 nodes with 16 cores and 2 Nvidia K20 each. Every process uses 
one Nvidia graphic card and sends its kernels coloured in blue to two different streams. 
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5.2.3 System	  behavior:	  energy	  and	  network	  
Energy and power consumption are increasingly important topics in High Performance 
Computing. Wholesale electricity prices have recently risen sharply in many regions of 
the world, including in the European states, prompting an interest in lowering energy 
consumption of HPC systems. Environmental (and political) concerns also motivate 
HPC data centers to reduce their “carbon footprints”. This has driven an interest in 
energy-efficient supercomputing, as shown by the rise in popularity of the “Green 500” 
list of the most efficient HPC systems since its introduction in 2007. 

However, energy efficiency goes beyond hardware design. Delivering sustained but 
energy-efficient performance of real-world applications will require software 
engineering decisions, both at the system-ware level but also in the applications 
themselves. Such application decisions might be made when the software is designed 
or at runtime via an auto-tuning framework. 

For these to be possible, fine-grained instrumentation is needed to measure energy 
and power usage not just of overall HPC systems but also of individual components 
within the architecture. This information also needs to be accessible not just to 
privileged system administrators but also to individual users of the system, and in a 
way that is easily correlated with the execution of their applications. 

Score-P has been able to record external generic and user-defined hierarchical 
performance counters since version 1.2. This is done with a flexible “metric plugins” 
interface to address the complexity of machine architectures both today and in the 
future. The metric plugin interface provides an easy way to extend the core functionality 
of Score-P to record additional counters, which can be defined in external libraries and 
loaded at application runtime by the measurement system. We built a Score-P metric 
plugin to monitor the application external energy and power information. Figure 15 
shows the visualization of Gromacs with energy and power consumption for host and 
accelerator in Vampir. A monitoring study of energy and power consumption on Cray 
supercomputers was done in [28]. 

 
Figure 15: Color-coded visualization of 4000 iterations of a hybrid version of Gromacs running on 

four nodes (with each node hosting one MPI process with six CPU threads and two GPU CUDA 
streams running on the accelerator) with according timelines for the events on all four nodes 
(topmost) and corresponding energy (second timeline), instantaneous power (third timeline), 

average board power derived from energy (fourth timeline), instantaneous accelerator power (fifth 
timeline), average accelerator power derived from accelerator power (lowest timeline) for the four 

nodes, and according statistics for the exclusive time on the right part of the figure. 
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With systems getting larger and more complex, networks within HPC systems are 
getting more and more complex as well. Since network problems or high network load 
can tremendously affect the behavior of parallel applications it is important to enable an 
analysis of the correlations between network and application behavior. 

Similar to external energy counters, network statistics and counters can be monitored 
and integrated in an application trace with the Score-P metric plugin interface by using 
an according plugin that calls PAPI interface asynchronously per node. Figure 16 
shows the correlation of application behavior and network activity with Vampir. 

 
Figure 16: Vampir screenshot showing the application behavior and correlated network activity. 

 

5.3 Selective	  visualization	  in	  Vampir	  
5.3.1 Selective	  visualization	  of	  program	  phases	  and	  processes	  
Exascale performance analysis will require solutions to reduce the amount of data that 
tools display. One such option is to only display “interesting” locations that behave 
differently, which requires an automatic approach for pre-processing. Vampir uses pre-
calculated summary information to partially load and analyze large event trace 
information and to visualize only specific segments of the whole monitoring run. In 
addition, it allows the exclusion of specific threads of execution from the analysis and 
visualization. Figure 17 shows an example for this feature while loading a NEK5000 
trace file. 
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Figure 17: Vampir’s Partial Loading Dialog showing the loading of the NEK5000 trace in the time 

range of 0 seconds to 1.6 seconds for the processes 512-1024. 

5.3.2 Critical	  path	  analysis	  
Identifying the performance bottlenecks or critical program regions can be difficult, in 
particular, for long running applications, applications using a large number of 
processing elements, or applications using multiple parallel paradigms. Multiple layers 
of parallelism need to be exploited to efficiently utilize the available resources. To 
support application developers and performance analysts we propose a technique for 
identifying the most performance critical optimization targets in distributed 
heterogeneous applications. We have developed CASITA, a tool that uses an 
execution trace and the knowledge about the programming models MPI, OpenMP and 
CUDA as well as their hierarchy among each other to build a distributed event 
dependency graph. After locating wait states in this graph, we detect their root cause 
and compute the critical path, an important property for performance optimizations. 
Compared to existing analysis approaches, we incorporate the hierarchy of multiple 
programming models and derive a metric from both the time an activity spends on the 
critical path and the waiting time it caused. For the purpose of visualization, CASITA 
enriches the input trace with additional counter information so that results can be 
inspected in the Vampir trace viewer. Figure 18 shows the critical path as well as 
caused wit time for a hybrid use case with MPI, OpenMP, and CUDA. This topic is also 
covered in more detail in [29]. 
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Figure 18: Vampir visualization of a simple use case with MPI, OpenMP, and CUDA. The application 

behavior is shown in the topmost timeline, the critical path in the second timeline and the cause 
wait times in the bottom timeline. 

5.3.3 Alternative	  visualization	  with	  circular	  hierarchies	  
Load imbalances are often the root cause for inefficiencies resulting in an increased 
waiting time during the communication phase of the processes and, therefore, in a 
decreased parallel efficiency. Tools for automatic analysis often provide insight into a 
predefined set of performance problems only, whereas inefficiencies are often not 
obviously visible in comprehensive performance visualization tools. Therefore, there is 
a need for a more intuitive visualization of performance data that assists application 
developers similar to automatic analysis in identifying inefficiencies and their root 
cause. Furthermore, it allows a discussion of the gathered data from multiple other 
perspectives and the drawing of new conclusions and results. 

We applied a scalable approach that combines the visualization of communicating 
entities of a distributed system with an arbitrary number of correlated performance 
metrics, such as MPI function call counts and runtimes, number of sent messages or 
the frequency of occurrence for a group of functions. Our visualization of performance 
data is based on the established concept of circular hierarchies. They allow developers 
to intuitively deduce the communication scheme and existing imbalances in a 
distributed application. We further correlate additional performance metrics with the 
respective communication resources in the same view, which provide valuable 
information about the cause of potential inefficiencies. Taking the actual system 
topology into account, communication can be categorized (e.g., intra-node and inter-
node) and performance information aggregated to the desired level of detail in the 
system hierarchy. Aggregation of communication entities is necessary for multiple 
reasons: First, it is hard or even impossible to conceive data for extreme-scale 
programs consisting of tens of thousands of processes when visualized in its raw form, 
because the human perception is limited. Second, the size of screens is limited and 
only a specific amount of data can be presented at once (see also [30]). 

Figure 19 gives an example of this circular visualization for Gromacs with 384 
processes in an MPI-only run. 
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Figure 19: Circular visualization of the communication behavior of Gromacs with 384 processes. 
The outer circle depicts functions groups (MPI in red, user code in green), the middle circle the 

message volume (ranging from 1.8 GB in light yellow to 2.1 GB in dark red), and the inner circle the 
point-to-point messages between the nodes (thicker arrows mean more communication). 

 

5.3.4 Online	  performance	  analysis	  
Projections for potential exascale architectures and systems highlight a need for large 
numbers of cores per node or the use of accelerators. In both cases, the compute 
cores share the available main memory, which is projected to increase at a far lower 
rate than the core count. Thus, available memory per core is likely to decrease for 
exascale systems. Projections indicate amounts such as 20 MB per core. Current 
accelerators such as Xeon Phi underline this trend with model versions with about 100 
MB of memory per core. At the same time, a similar scenario exists for the available I/O 
resources. I/O bandwidth is projected to also increase at a lower rate than the number 
of compute cores.  These two trends pose challenges to traditional trace-based 
performance optimization workflows, e.g., for the Vampir tool suite: First, with less 
memory per core, traces must include little detail or be short in duration. However, fine-
grain detail can uncover interesting performance behavior and long running 
applications are common for many HPC workloads. Additionally, the limited I/O 
resources will make storage of extremely large exascale performance traces 
challenging. The available storage capacity and the available I/O bandwidth can both 
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become bottlenecks.  Within CRESTA, we investigated an online workflow for trace-
based performance analysis[26]. In this workflow, an in-memory tracing library provides 
a mechanism to cope with reduced availability of main memory per core. The library 
can automatically discard and condense tracing data before it would exceed the 
available main memory. This allows an automatic adaption of fine-grain tracing for 
short time periods and coarse-grain tracing for long running applications. Additionally, 
the library avoids the use of the I/O system altogether. Instead, an online analysis 
directly operates on tracing data and visualizes it to the tool user while the application 
runs. We investigated memory consumption of the library and event rates of 
benchmark applications with our early prototype implementation. These numbers 
provide a promising approach to cope with the architectural challenges of potential 
exascale systems.  
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6 Debuggers	  
In this section, we present extensions and modifications to Allinea DDT and MUST 
debuggers and the integration of MUST into Allinea DDT. 

6.1 Extension	  to	  Allinea	  DDT	  
One of the major extensions is the development of a plugin infrastructure to enable 
integration with the MUST tool – which we describe subsequently. Initial plugin 
infrastructure development had the side effect of directly enabling Allinea to create 
performance profiling support which ultimately led to the Allinea MAP profiling tool.  

New support for integrating the workflow of HPC applications with tools was developed. 
This was inspired by the need to sit tools within existing frameworks, the parameters 
and datasets created for applications are often provided by workflows.  This did not fit 
with the typical GUI launch provided by tools.  Rather than acting as standalone tool 
with its own launch system, we explored the capability of a launch mode that required 
significantly no changes to the user’s own method of launching jobs.  

Enabling user access to tools in the presence of complex system limits such as no X 
support, or strict firewalls, means that HPC access to tools is not as easy for users as it 
should be.  This was identified as one of the major issues during the application survey 
in year 1. Direct experience with the ECMWF IFS CRESTA codesign application and 
the act of debugging remote systems such as national supercomputers led to a lower 
bandwidth solution for interactive tools – this work was subsequently extensively 
developed into the product.  

There was little interest in new programming models during the project – with Coarray 
Fortran (ECWMF IFS) being one notable exception.  As this was already supported by 
Allinea there was no action other than a demonstration of this by Allinea. 

One new platform of major significance appeared during the project. Initially CRESTA 
had a strong GPU focus – but the arrival of Intel Xeon Phi allowed us to examine this 
platform and the tool issues of developers.  A number of applications expressed 
interest in this. We tackled both Offload, Native and Symmetric mode. Offload required 
significant experimentation and development as the platform was still instable and 
preproduction.  Whilst the platform may now be unlikely to survive, with the forthcoming 
KNL being a self-hosted CPU rather than an accelerator, the changes made to support 
this platform, provided an opportunity to address heterogeneous architecture 
debugging. 

6.2 Extension	  to	  MUST	  
This section describes extensions to the runtime MPI correctness checking tool MUST 
and its underlying parallel tools infrastructure GTI. Goals of the extension are: 

• Increased scalability of MUST’s correctness checks, especially of its point-to-
point analysis, collective analysis, and deadlock detection 

• An investigation of support for novel parallel programming paradigms with a 
PGAS paradigm as demonstrator 

• Contributions towards more efficient development of HPC runtime tools 

6.2.1 Scalable	  MPI	  correctness	  analysis	  
The development of MUST within the CRESTA project was based on version 1.1 of the 
tool. This tool version provided a wide range of runtime MPI correctness checks. 
However, this version executed correctness analyses that involved information from 
two or more processes on a single process. Thus, with increasing scale this process 
becomes a scalability bottleneck, ultimately limiting the approach for use cases with 
about one hundred application processes. We extended MUST according to 
deliverable D3.4.2 “Debugging Design Document: Update of D3.4.1” to overcome this 
limitation.  
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We performed a study [34][35] of the time complexities that are associated with an 
analysis of MPI operations as part of a runtime deadlock detection. This analysis 
provides a low-overhead approach to handle individual MPI operations. This analysis 
remained centralized, i.e., was executed on a single process, but the achieved 
reductions in the analysis are a prerequisite for a distributed and scalable 
implementation. Additionally, we used this study to generalize our wait-for graph model 
to capture the dependencies of complex MPI operations, such as an MPI_Waitall that 
waits for multiple non-blocking wildcard receive operations. The generalization and 
improvements to our centralized deadlock detection also motivated an investigation 
[36] of improved error visualization techniques that target use cases such as 
mismatches in MPI tags or communicators.  

Based on these initial studies and improvements we incorporated scalability into MUST 
in three steps: 

• A distributed concept for MPI point-to-point analysis, 
• A distributed concept for MPI collective analysis, and 
• A theoretic foundation and concept for a distributed deadlock detection. 

Analysis of MPI point-to-point operations must mimic the message matching of an MPI 
implementation. It monitors all send and receive operations of all MPI processes. This 
task must not be implemented in a centralized manner, as to not introduce a scalability 
bottleneck. An analysis [39] of this workload identifies the use of a so-called intralayer 
communication direction in a Tree-Based Overlay Network (TBON) as a promising 
approach to distribute the matching of point-to-point messages. This study also 
describes the implementation that we use in MUST and compares it to a TBON 
approach that does not apply intralayer communication. The comparison uses two 
benchmark suites (SPEC MPI2007 and the NAS Parallel Benchmarks) on two compute 
systems (Sierra a cluster at the Lawrence Livermore National Laboratory and Juqueen 
a BlueGene/Q system at the Research Center Jülich) with up to 16,384 application 
processes. The results are promising and highlight good scalability and wide 
applicability of the approach. In comparison to existing MPI correctness approaches, 
our concept is scalable and provides full MPI type matching capabilities, without the 
use of heuristics that can introduce false positives or false negatives. 

In order to analyze MPI collective operations in a scalable manner, we investigated [37] 
the use of hierarchical correctness checks that execute on all layers of a TBON. This 
concept provides an efficient and scalable concept for almost all correctness analyses 
that apply to these operations. Type matching checks for a subset of the collective 
operations, e.g., for MPI_Alltoallv, form an exception and do not directly map to a 
TBON hierarchy. For these operations we utilize our intralayer communication to 
distribute their workload efficiently. Our investigation of these extensions relies on the 
same compute systems and benchmarks as for the point-to-point operations. They 
demonstrate scalability and highlight drastic performance improvements in comparison 
to a centralized reference implementation. 

Our initial study of analysis costs for MPI deadlock detection [34][35] highlights that 
running a graph-based approach continuously is impractical. Following this result, we 
formalized a transition system that captures the semantic of MPI [38]. This transition 
system uses a single state vector to represent an execution state of an MPI application. 
As opposed to existing MPI transition systems that try to provide non-determinism 
coverage, our small execution states enable an efficient distributed implementation in 
MUST. Processes on one layer of the TBON execute this transition system. Each 
process manages the state for an exclusive subset of the state vector. We then 
combine our intralayer communication with hierarchical communication in the TBON to 
synchronize the state of these processes. As a result, we derive a distributed 
implementation of the transition system in MUST. We study one of the before 
mentioned benchmarks with up to 2,048 processes for this implementation. A 
comparison to the centralized implementation in MUST demonstrates dramatic 
performance improvements. We will publish subsequent measurements on the second 
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compute system with up to 16,384 processes for an improved version of this 
implementation. 

Overall, our scalability extensions of MUST enable a first distributed tool for runtime 
MPI correctness analysis, which does not use heuristics. Existing tools either use a 
centralized implementation as in MUST version 1.1, or they rely on simplifications in 
their analysis that can yield false positives or false negatives (unreported errors or 
incorrect reports). At the same time, we documented our approach in detail to make it 
accessible for other tools and other parallel programming paradigms. Beyond that, the 
complete implementation of MUST relies on the parallel tools infrastructure GTI that 
targets simplified tool development with reduced time-to-solution.  

6.2.2 Parallel	  programming	  paradigms	  
As to investigate runtime correctness checking for novel and upcoming parallel 
programming paradigms, we target prototype support for a PGAS (Partioned Global 
Address Space) paradigm in MUST. We selected the paradigm OpenSHMEM for this 
purpose, since we saw an increasing adoption and increasing support in other tools. 
Additionally, OpenSHMEM can cooperate with an existing MPI parallelization, which 
simplifies implementation in GTI and MUST. We report on the prototype checks in 
MUST in the following steps: 

• Instrumentation and infrastructure extensions, 
• Prototype checks, and 
• Experiments. 

In order to analyze OpenSHMEM directives for their correctness, MUST has to observe 
them at runtime. The OpenSHMEM reference implementation, as well as the CRAY 
implementation, provides weak symbols for this purpose. We provide a description of 
these calls to GTI, which enables it to generate wrappers for them. We generate our 
initial description for the OpenSHMEM calls with a script that parses a C header with all 
library calls. OpenSHMEM implementations that do not provide weak symbols will 
require an adapted instrumentation scheme that relies on library interposition. 

Additionally we extended GTI to support a generalized handling of function 
instrumentation and to forward return values to MUST analysis in case they are 
needed. 

Based on the available instrumentation for all OpenSHMEM directives we implement 
the following prototype correctness checks in MUST: 

• Direct argument checks: 
o Error if size argument in get/put is negative 
o Warning if size in get/put is zero 

• Out of bound memory access: 
o Error if memory access in get/put operations exceeds allocated memory 

regions 

The direct argument checks highlight the reusability of our MUST analysis. Even 
though these existing analyses target MPI functions, we could successfully reuse the 
checks by mapping these analyses to OpenSHMEM function arguments. 
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Figure 20: MUST output for a simple OpenSHMEM test case with an invalid data access and a put 

of count 0. 

To access remote memory with OpenSHMEM, chunks of memory needs to be 
remotely addressable. Therefore the OpenSHMEM standard provides a malloc 
interface function. Memory allocated by this function can be addressed in put or get 
operations. The analysis we provide keeps track of these malloc operations and 
detects memory accesses that are outside of the allocated bounds. We use test cases 
to evaluate our prototype checks. For one such test case that runs without a crash or 
an error message with the current version of the OpenSHMEM library, we detect the 
issues in Figure 20. Our analysis successfully detects an out of bound access that the 
OpenSHMEM library fails to detect and also issues a warning for a zero size memory 
access. 

6.2.3 Parallel	  tools	  infrastructures	  
MUST is implemented on top of GTI, an infrastructure for parallel tools. As a result, the 
MUST implementation consists of modules (dynamically loadable libraries) that 
implement so-called analyses, i.e., the actions of the tool. These modules can be 
reused across different tools and across different parallel programming paradigms. Our 
prototype checks for OpenSHMEM demonstrate this by reusing basic correctness 
checks for MPI. We see the development of parallel tools infrastructures such as GTI 
as an important step towards more efficient tools development in the future. Our goal is 
that GTI can provide as many common tool services to tools developers as possible. 
This includes instrumentation, tool startup/shutdown, acquisition of additional 
processes and threads to offload tool activities from application processes/threads, and 
providing communication services. We rely on a TBON concept that demonstrated 
scalability to millions of compute cores in existing approaches. 

We concisely describe the underlying abstraction of GTI to document its notion of 
events and analyses in a report [43]. This report serves to highlight advantages of 
development with GTI and to provide its underlying concept to other tool 
infrastructures. As our experience in the development with MUST indicated, some 
types of analyses do not map well onto a TBON hierarchy. We introduce the intralayer 
communication direction [39] for this purpose. Existing tools infrastructures only provide 
such a communication system on the application processes. With the implementation 



 

© CRESTA Consortium   Page 35 of 41 

 

in GTI, tool developers can utilize a point-to-point style communication on other layers 
of the TBON. This enables the scalable correctness checks of MUST. 

An important notion is that MUST requires a mechanism to tolerate an MPI related 
application crash. It must be able to analyze all events that occur before the crash, in 
order to detect whether it resulted from incorrect MPI usage. Within CRESTA we 
studied [41] different techniques to provide such a crash handling scheme and selected 
a fully asynchronous solution. It allows us to utilize asynchronous communication and 
event analysis that enables scalability. GTI implements this scheme with a combination 
of signal/error handlers and an alternate means of communication.  

Our tests at increased scale identified out-of-memory issues for complex MUST 
analyses. We observed these issues especially for long running applications with high 
event rates. An investigation [40] of them yielded a detailed understanding of the 
importance of event selection. We implemented two techniques to overcome this issue 
and to enable correct operation of MUST in all of our test cases. The techniques that 
we propose and the event-selection problem apply to different types of event-based 
tools and can occur for simple tasks such as MPI message matching already. 

Finally, we implemented a prototype tool for trace-based online performance analysis 
on top of GTI. This use case [42] highlights the advantages of tool development with 
GTI. The development of the prototype did not require extensions of GTI and allowed 
us to completely focus on developing the functional parts of the tool. Furthermore, we 
could reuse portions of the MUST implementation for the prototype, even though both 
tools serve widely different use cases. 

 

6.3 Integration	  of	  MUST	  in	  Allinea	  DDT	  
A combination of both MUST and Allinea DDT is promising since: 

• Some errors that MUST detects do not manifest into a crash within an 
application run, thus, MUST output can make programmers aware of unnoticed 
issues in the software; 

• Some MPI usage errors are a consequence of another software fault, 
understanding these errors is simpler with a debugger such as Allinea DDT. 

Within CRESTA we developed a combination of Allinea DDT and MUST that is based 
on an existing concept of configurable breakpoints. When MUST detects an MPI usage 
error it triggers a function to which Allinea DDT automatically sets a breakpoint. Thus, 
the debugger can stop the execution of the parallel application and notify the user of 
the tool. This enables a detailed investigation of the execution state that surrounds the 
detected error.  

This concept is challenged by MUST’s non-local correctness analyses. MUST 
implements correctness analyses that require information from more than one process 
(non-local) on additional processes. Additionally, it executes these checks 
asynchronously, i.e., when MUST detects a correctness issue the application may have 
advanced to a subsequent execution state already. Previous approaches to couple 
debuggers with runtime correctness tools did not support non-local analyses as a 
consequence. We developed the workflow that Figure 21 illustrates to overcome this 
limitation.  
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Figure 21: Workflow for the DDT-MUST integration 

The user starts Allinea DDT as usual and selects a MUST plugin to enable the 
integration. In order to simplify a simultaneous startup of both tools we use the manual 
launch mode of Allinea DDT, it allows the user of the tool to start the application under 
the control of MUST and to connect it with Allinea DDT. Launching the application with 
mustrun works as usual, but uses the additional flag --must:ddt. Specifying the 
additional flag --must:capture lets MUST write a log file for all errors it detected. MUST 
then automatically ads the ddt-client command to connect the application with the 
running GUI of Allinea DDT. When MUST detects a process local correctness issue it 
directly triggers a breakpoint that enables investigation in Allinea DDT. If it detects a 
non-local correctness issue, it notifies the user, but immediate investigation is not 
possible since the error was detected asynchronously. Assuming a deterministic 
application, the user can use the log file that details all errors that MUST detected 
(MUST_Output.repro) to run the application a second time (with the --must:reproduce 
option). In that case, MUST reads in the error log file and triggers its respective 
warnings and errors when the application executes these commands. This mode even 
allows MUST to trigger breakpoints for MPI operations that are only involved in (but do 
not cause) the MPI usage error. As an example, if MUST detects a datatype mismatch 
between a send and a receive operation, using the --must:reproduce option, a user will 
not only get breakpoints for the send and the receive, but also for operations that 
create or commit the involved datatypes. This scheme both enables investigation of 
errors in Allinea DDT and it allows us to breakpoint at all involved operations of an MPI 
usage error. 
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7 Conclusions	  
In this deliverable, we have presented the development, extensions and modifications 
to different frameworks that have been developed by CRESTA WP3 to enable efficient 
execution and development of parallel applications on exascale machines. 

We have described the development of a new framework, called “targetDP”, to support 
thread and instruction level parallelism for lattice-based codes. CRESTA participation 
in MPI Forum OpenACC and OpenMP committees has been briefly described. 

We presented a first mock-up implementation of the CRESTA DSL specification to 
enable automatic tuning of OpenACC codes. 

The software architecture and the performance of two components (runtime 
administration and monitoring components) of the CRESTA run-time system have been 
discussed. 

Extensions and modifications to the Score-P and Vampir performance monitoring and 
analysis tools have been presented. Selective instrumentation and monitoring, 
hierarchical buffer management, runtime event reduction and message matching have 
been implemented. In addition, we reported how to deal with file system limitations, to 
support performance monitoring for new programming systems and application using 
hybrid approaches, and how to monitor energy and network performance hardware 
counters. 

Together with the extensions and modifications to Allinea DDT and Dresden Technical 
University MUST debuggers, we presented the integration of the MUST MPI 
correctness checker into Allinea DDT parallel debugger. 
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