

Copyright © CRESTA Consortium Partners 2014

D3.7	 –	 Frameworks	 for	 Exascale	
Applications	

WP3:	 Development	 Environment	

Due date: M38

Submission date: 30/11/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization KTH

Version: 1.0

Status Final

Author(s):
Xavier Aguilar, Stefano Markidis, Michael Schliephake (KTH),
Alan Luis Cebamanos, Alan Gray, David Henty (EPCC), Alistair
Hart, Harvey Richardson (Cray UK) Jens Doleschal, Tobias
Hilbrich, Michael Wagner (TUD), David Lecomber (Allinea)

Reviewer(s) Dmitry Khabi (HLRS), Lorna Smith (EPCC)

Dissemination level

PU PU - Public

	

 	

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 05/08/2014 First skeleton version of the deliverable Stefano Markidis (KTH)

0.2 15/08/2014 Added Alan’s Contribution Stefano Markidis (KTH)

0.3 17/09/2014 Added Luis’ Contribution Stefano Markidis (KTH)

0.4 19/09/2014 Added Michael and Xavier Contribution Stefano Markidis (KTH)

0.5 26/09/2014 Added Tobias’ contribution Stefano Markidis (KTH)

0.6 30/09/2014 Added Jens and Michael Contribution Stefano Markidis (KTH)

0.7 03/10/2014 Combining all contributions Stefano Markidis (KTH)

0.8 04/11/2014 Changing Performance Monitoring part Stefano Markidis (KTH)

0.9 25/11/2014 Responding to Reviewers Stefano Markidis (KTH)

1.0 27/11/2014 Final version for submission Lorna Smith (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 PURPOSE	 ..	 3	
2.2	 GLOSSARY	 OF	 ACRONYMS	 ..	 3	

3	 PROGRAMMING	 MODELS	 ..	 4	
3.1	 TARGETDP:	 THREAD	 AND	 INSTRUCTION	 LEVEL	 PARALLELISM	 FOR	 CPU	 AND	 GPU.	 ...	 4	

3.1.1	 Memory	 management	 ...	 4	
3.1.2	 Execution	 model	 ...	 5	

3.2	 CRESTA’S	 STANDARDIZATION	 EFFORT	 IN	 THE	 MPI	 FORUM	 ..	 6	
3.3	 CRESTA’S	 STANDARDIZATION	 EFFORT	 FOR	 OPENACC	 AND	 OPENMP	 ..	 6	

4	 COMPILATION	 AND	 RUNTIME	 ENVIRONMENTS	 ...	 7	
4.1	 A	 DOMAIN	 SPECIFIC	 LANGUAGE	 FOR	 AUTO-‐TUNING	 AND	 EXASCALE	 COMPILER	 SUPPORT	 TO	 EXASCALE	 	 7	
4.2	 HYBRID	 AND	 ADAPTIVE	 RUNTIME	 SYSTEMS	 ...	 8	

4.2.1	 Programming	 model	 and	 user	 interface	 ..	 8	
4.2.2	 Software	 Architecture	 ..	 11	
4.2.3	 Runtime	 administration	 component	 (Rta-‐C)	 ..	 12	
4.2.4	 Monitoring	 component	 	 (Mon-‐C)	 ...	 14	

5	 PERFORMANCE	 ANALYSIS	 TOOLS	 ...	 18	
5.1.1	 Selective	 Instrumentation	 ..	 18	
5.1.2	 Selective	 Monitoring	 ..	 19	
5.1.3	 Hierarchical	 buffer	 management	 and	 runtime	 event	 reduction	 ..	 21	
5.1.4	 Message	 matching	 ...	 22	

5.2	 EXASCALE	 CHALLENGES	 ..	 22	
5.2.1	 Dealing	 with	 file	 system	 limitations	 ...	 22	
5.2.2	 New	 paradigms	 and	 hybrid	 applications	 ..	 23	
5.2.3	 System	 behavior:	 energy	 and	 network	 ...	 25	

5.3	 SELECTIVE	 VISUALIZATION	 IN	 VAMPIR	 ...	 26	
5.3.1	 Selective	 visualization	 of	 program	 phases	 and	 processes	 ..	 26	
5.3.2	 Critical	 path	 analysis	 ..	 27	
5.3.3	 Alternative	 visualization	 with	 circular	 hierarchies	 ...	 28	
5.3.4	 Online	 performance	 analysis	 ..	 29	

6	 DEBUGGERS	 ...	 31	
6.1	 EXTENSION	 TO	 ALLINEA	 DDT	 ..	 31	
6.2	 EXTENSION	 TO	 MUST	 ...	 31	

6.2.1	 Scalable	 MPI	 correctness	 analysis	 ..	 31	
6.2.2	 Parallel	 programming	 paradigms	 ..	 33	
6.2.3	 Parallel	 tools	 infrastructures	 ..	 34	

6.3	 INTEGRATION	 OF	 MUST	 IN	 ALLINEA	 DDT	 ...	 35	
7	 CONCLUSIONS	 ...	 37	
8	 REFERENCES	 ...	 38	

Index	 of	 Figures	
Figure 1: Different CRESTA frameworks for exascale applications 2	
Figure 2: Example of an application structure using a coarse-grained hierarchical
decomposition .. 9	
Figure 3: Use of the task and the hardware models to optimize the program execution
 .. 10	

Copyright © CRESTA Consortium Partners 2014

Figure 4: Components of the CRESTA runtime system ... 12	
Figure 5: Two-phase calculation of task mapping .. 13	
Figure 6: Time per-step for a molecular dynamics simulation using different strategies
for task mappings ... 14	
Figure 7: Average time in nanoseconds for accessing the performance data associated
to a user-defined region .. 16	
Figure 8: Access time in microseconds to an activity among 10 millions of events in the
activity hash table ... 16	
Figure 9: Vampir visualization of Gromacs with different levels of detail for each node.
Reduction is relative to the corresponding node with full instrumentation. 19	
Figure 10: Gromacs on 144 processes fully monitored (top) and selectively monitored
(bottom) event trace visualized with Vampir zoomed in to about 6 iteration blocks
(Source: [19]). ... 20	
Figure 11: Gromacs on 144 processes fully monitored (top) and selectively monitored
(bottom) event trace visualized with Vampir (Source: [13]). ... 21	
Figure 12: Gromacs on 144 processes fully monitored (top) and selectively monitored
(bottom) event trace visualized with Vampir zoomed to an application phase of about
3.8ms (Source: [13]). .. 21	
Figure 13: Performance visualization of a massive parallel bucket sort parallelized with
Cray SHMEM. The master timeline shows very impressively the master-slave
communication implemented with shmem_get64 operations colored in light blue
between the different processes surrounded by tow shmem_barrier_all operations
colored in yellow. .. 24	
Figure 14: Performance visualisation of a hybrid version of Gromacs parallelized with
MPI, OpenMP, and CUDA running on 8 nodes with 16 cores and 2 Nvidia K20 each.
Every process uses one Nvidia graphic card and sends its kernels coloured in blue to
two different streams. ... 24	
Figure 15: Color-coded visualization of 4000 iterations of a hybrid version of Gromacs
running on four nodes (with each node hosting one MPI process with six CPU threads
and two GPU CUDA streams running on the accelerator) with according timelines for
the events on all four nodes (topmost) and corresponding energy (second timeline),
instantaneous power (third timeline), average board power derived from energy (fourth
timeline), instantaneous accelerator power (fifth timeline), average accelerator power
derived from accelerator power (lowest timeline) for the four nodes, and according
statistics for the exclusive time on the right part of the figure. 25	
Figure 16: Vampir screenshot showing the application behavior and correlated network
activity. .. 26	
Figure 17: Vampir’s Partial Loading Dialog showing the loading of the NEK5000 trace
in the time range of 0 seconds to 1.6 seconds for the processes 512-1024. 27	
Figure 18: Vampir visualization of a simple use case with MPI, OpenMP, and CUDA.
The application behavior is shown in the topmost timeline, the critical path in the
second timeline and the cause wait times in the bottom timeline. 28	
Figure 19: Circular visualization of the communication behavior of Gromacs with 384
processes. The outer circle depicts functions groups (MPI in red, user code in green),
the middle circle the message volume (ranging from 1.8 GB in light yellow to 2.1 GB in
dark red), and the inner circle the point-to-point messages between the nodes (thicker
arrows mean more communication). .. 29	
Figure 20: MUST output for a simple OpenSHMEM test case with an invalid data
access and a put of count 0. ... 34	
Figure 21: Workflow for the DDT-MUST integration ... 36	

Copyright © CRESTA Consortium Partners 2014

Index	 of	 Tables	
Table 1: Total execution time for the Sweep3D benchmark and percentage of overhead
introduced by the monitoring component (IPM) and the Performance Introspection API.
 .. 17	

© CRESTA Consortium Page 1 of 41

1 Executive	 Summary	
This deliverable reports on the development, extensions and modifications to different
frameworks that have been developed by CRESTA WP3 to enable efficient execution
of parallel applications on exascale machines.

We describe first the development of a new framework, called “targetDP”, to express
thread and instruction level parallelism for lattice-based codes. CRESTA participation
in standardization committees, such as the MPI Forum and OpenACC and OpenMP
committees, is briefly described.

We present a first mock-up implementation of the CRESTA DSL specification to enable
automatic tuning of OpenACC codes.

The software architecture and the performance of two components (runtime
administration and monitoring components) of the CRESTA run-time system are
provided.

Extensions and modifications to the Score-P and Vampir performance monitoring and
analysis tools are presented. To deal effectively with large amount of data from
performance hardware counters, selective instrumentation and monitoring, hierarchical
buffer management, runtime event reduction and message matching have been
implemented. In addition, we report on how to handle file system limitations, to support
performance monitoring for new programming systems and application using hybrid
approaches, and how to monitor energy and network performance hardware counters.

Together with the extensions and modifications to Allinea DDT and Dresden Technical
University MUST debuggers, we describe the integration of the MUST MPI correctness
checker into Allinea DDT parallel debugger.

© CRESTA Consortium Page 2 of 41

2 Introduction	
The development and implementation of efficient computer codes for exascale
supercomputers will require combined advancement of all development environment
components: programming models compilers, automatic tuning frameworks, run-time
systems, debuggers and performance monitoring and analysis tools. The exascale era
poses unprecedented challenges [1]. Because the presence of accelerators is more
and more common among the fastest supercomputer and will play a role in exascale
computing, compilers will need to support hybrid computer architectures and generate
efficient code hiding the complexity of programming accelerators [1],[2]. Hand
optimization of the code will be very difficult on exascale machine and will be
increasingly assisted by automatic tuners. Application tuning will be more focus on
parallel aspects of the computation because of large amount of available parallelism.
The application workload will be distributed over million of processes, and to implement
ad-hoc strategies directly in the application will be probably unfeasible while an
adaptive run-time system will provide automatic load balancing. Debuggers and
performance monitoring tools will deal with million processes and with huge amount of
data from application and hardware counters, but they will still be required to minimize
the overhead and retain scalability.

In CRESTA WP3, we developed, extended and modified different frameworks to
enable efficient execution of parallel applications on exascale machines. The CRESTA
frameworks of the development environment are presented in the Figure below.

Figure 1: Different CRESTA frameworks for exascale applications

WP3 work was divided in four tasks:

• Programming models.
• Compilation and runtime environments.
• Performance analysis tools
• Debuggers.

The goal of programming framework task was to investigate programming models with
exascale potential. An investigation of how to use effectively these programming
models in applications is presented in CRESTA D3.11 (“Experiences with benchmarks
and co-design applications”). In this deliverable, we present a new programming
framework, called “targetDP”. CRESTA compilation and runtime environment task
focused on the design of new Domain Specific Language for auto-tuning and of run-
time system; the performance analysis tools task studied the extension and
modification of performance monitoring and analysis tools of Technische Universitaet
Dresden (TUD) (Score-P and Vampir). The debugger and correctness checker task
focuses on the extensions of parallel debugger Allinea DDT and of MPI Correctness
checker, TUD MUST.
In this deliverable, we report on the development, extensions and modifications to
these frameworks that have been developed by CRESTA WP3 to enable efficient
execution of parallel applications on exascale machines.The deliverable is organized
as follows. The third section presents the work on programming models and describes

CRESTA CRESTA CRESTA

© CRESTA Consortium Page 3 of 41

the standardization efforts in CRESTA. The fourth section presents the CRESTA DSL
for auto-tuning and the CRESTA runtime system. The fifth section describes the
modifications and extensions to the Score-P and Vampir performance monitoring and
analysis tools. The sixth section describes the improvement in Allinea DDT and MUST
MPI correctness checker. Finally, the seventh section concludes the deliverable
summarizing the results.

2.1 Purpose	
To goals of this deliverable are:

• To present the frameworks, developed and implemented in the CRESTA
project, to support a productive and an effective development of exascale
applications.

• To describe the targetDP framework for lattice-based codes
• To describe standardization activities by CRESTA membersin MPI Forum,

OpenACC and OpenMP committees.
• To present the development of a mock-up version of the CRESTA DSL for auto-

tuning of OpenACC codes
• To present the new CRESTA adaptive runtime system for exascale

applications.
• To describe the enhancements and modifications to the performance

monitoring framework, Score-P, and visualization and performance analysis
tool, Vampir.

• To present modifications and extensions of the parallel debuggers and MPI
correctness checker, Allinea DDT and MUST.

• To describe the integration of the MPI Correctness checker, MUST, into the
Allinea DDT parallel debugger.

2.2 Glossary	 of	 Acronyms	
AVX Advanced Vector eXtension
D Deliverable
DSL Domain Specific Language
CUDA Compute Unified Device Architecture
GPU Graphics Processing Units
GTI Generic Tool Infrastructure
IFS Integrated Forecast System
ILP Instruction Level Parallelism
IOSL I/O Forwarding Scalability Layer
IPM Integrated Performance Monitoring
MPI Message Passing Interface
NUMA Non Uniform Memory Access
OTF2 Open Trace Format 2
PGAS Partitioned Global Address Space
PIA Performance Introspection API
RMA Remote Memory Access
SIMD Single Instruction Multiple Data
TBON Tree-Based Overlay Network
TLP Thread Level Parallelism
UPC Unified Parallel C
VVL Virtual Vector Length
WP Work Package

 .

© CRESTA Consortium Page 4 of 41

3 Programming	 Models	
The trend towards the exascale is of increasing parallelism, partitioned into a hierarchy
of levels within the hardware. At the most coarse-grained level, many nodes may be
coupled via a high performance interconnect. Each node features one or more CPUs
each with multiple compute cores. At the finest level, each core features a vector
floating point unit, which can perform multiple operations per clock cycle. Furthermore,
many systems now feature accelerators such as Graphics Processing Units (GPUs),
on which computationally intensive kernels can be offloaded and executed with high
efficiently on many low-power cores using high bandwidth graphics memory.
Accelerators are used in conjunction with CPUs, and can result in additional complexity
such as distinct physical memory spaces within a single application. The challenge for
the programmer is to expose algorithmic parallelism in a way that maps on to the
hierarchy of architectural parallelism. Ideally, this would be done in a way that
optimises performance, but also allows intuitive expression of algorithmic content whilst
promoting software maintainability across different systems such as those with and
without accelerators.

3.1 TargetDP:	 thread	 and	 instruction	 level	 parallelism	 for	 CPU	
and	 GPU.	

targetDP is a lightweight framework we have developed to target the data parallelism
inherent in lattice-based applications to the hierarchy of hardware parallelism for either
SIMD multi-core CPUs or NVIDIA GPUs. targetDP consists of a set of (C99) standard
C preprocessor macros, and a small C library interface for set up and memory
management. It therefore requires no new pseudo-language intermediate code, or
compiler-like translation software layer.

The new abstraction promotes optimal mapping of code to hardware thread-level
parallelism (TLP) and instruction-level parallelism (ILP), via the partitioning of lattice-
based parallelism and translation to OpenMP or CUDA threads (for TLP) and perfectly
SIMDizable parallel loops (for ILP). For large-scale parallel applications, targetDP may
be used in conjunction with coarse-grained node-level parallelism, e.g. that provided by
MPI. Thus, targetDP allows maintenance of a single source code base with portable
performance on the majority of leading edge computational architectures. The
programmer expresses the parallelism and memory management using targetDP
functionality, and the relevant targetDP implementation can be chosen for a specific
hardware platform at compile-time.

3.1.1 Memory	 management	
Lattice based applications use ``lattice field'' data structures: arrays that have values
(or sets of values) defined at every point on the lattice. The runtime of such
applications is dominated by operations on lattice fields: these are data parallel in
nature since they involve the same operation at all lattice sites. We use the
terminology ``host'' to refer to the CPU that is hosting the execution of the application,
and ``target'' to refer to the device targeted for execution of lattice-based operations.
The target may be an accelerator such as a GPU or it may simply be the host CPU
itself. It is an important aspect of our model that even in the case of the latter, we retain
the distinction between host and target. We maintain both host and target copies of our
lattice data, where the target copy is located in a memory space suitable for access on
the target, and is treated as the master copy within those lattice-based computations.
The host copy is located on the host memory, and is updated from the target copy as
and when required to permit those (non computationally demanding) operations that
should always be performed by the host. The targetDP library provides facilities to
manage the host and target data structures. The basic functionality consists of memory
allocation, de-allocation and copying. These operations map, in a straightforward
manner, to the relevant CUDA operations in our GPU implementation, and to the
equivalent C operations in our CPU implantation. For example, the copyToTarget

© CRESTA Consortium Page 5 of 41

routine can map to either cudaMemcpy or memcpy at compile time, depending on the
targetDP implementation selected. More sophisticated targetDP operations allow
host/target value synchronization for only subsets of lattice data: this is important for
minimisation of overheads in large-scale complex parallel applications. In these
operations, compressed buffers are populated, transferred and uncompressed. Also
included is functionality to utilize fast on-chip read-only memory (important for GPU
performance).

3.1.2 Execution	 model	
targetDP aims to expose the data parallelism inherent in the application in a way that
can be mapped to the hardware efficiently. TLP will map to CUDA threads on a GPU or
OpenMP threads on a CPU. When the target is an X86 CPU, ILP can be mapped to
those vector instructions that extend the X86 set, such as 128-bit SSE, 256-bit AVX
and 512-bit IMCI. ILP can similarly be mapped to equivalent vector instructions on
other CPU architectures. On NVIDIA GPUs, exposure of ILP within a kernel can also
be very beneficial, since it can facilitate latency hiding through use of fewer thread
blocks, with more instructions per block.

Consider a simple example: the scaling of a 3-vector field by a constant, often used in
Lattice-Boltzmann codes. This is, schematically:
//loop over lattice sites
for (idx = 0; idx < N; idx++) {

int iDim;
for (iDim = 0; iDim < 3; iDim++)
field[iDim*N+idx] = a*field[iDim*N+idx];

}
We can introduce targetDP by replacing the above code with the following function:
TARGET_ENTRY void scale(double* t_field) {

int baseIndex;

 TARGET_TLP(baseIndex, N) {

int iDim, vecIndex = 0;
for (iDim = 0; iDim < 3; iDim++) {
 TARGET_ILP(vecIndex) \
t_field[iDim*N + baseIndex + vecIndex] = \
t_a*t_field[iDim*N + baseIndex + vecIndex];
 }

 }
return;
}

For the C implementation, the TARGET_ENTRY macro holds no value, and the code
will compile as a standard C function. For the CUDA implementation, it is defined as
__global__ to specify compilation for the GPU. We similarly provide a TARGET
macro for use on subroutines called from TARGET_ENTRY functions. The t_ prefix
syntax is used to identify target data structures, where these can be managed using
the library functionality described above. The function is launched in “host” code using
additional targetDP syntax, which is trivial for the C implementation, but for CUDA
specifies the relevant decomposition based on the lattice size.

We expose the lattice-based parallelism to each of the TLP and ILP levels of hardware
parallelism through use of C-preprocessor macros in the following way. We re-express
the original loop over lattice sites using the TARGET_TLP(baseIndex,N) macro,
where baseIndex is an index for lattice sites, and N is the total number of lattice sites.
The ``base'' terminology will become clearer below.

In our C implementation of targetDP, this macro is expanded as a loop over lattice
sites, decomposed between OpenMP threads. Importantly, the TLP loop is strided in
steps of a virtual vector length VVL: a tunable parameter that represents the width of

© CRESTA Consortium Page 6 of 41

ILP that we wish to present to the hardware. Thus, each TLP thread operates not on a
single lattice site but instead a chunk of VVL lattice sites, and baseIndex corresponds
to the first index in the chunk. In other words, we are strip-mining the original loop.

For our CUDA implementation, it can be seen that this macro appears inside a kernel
function and therefore expands as a CUDA thread lookup, where again a virtual vector
length is used such that each CUDA thread becomes responsible for a chunk of lattice
sites.

The lattice-based operation to be performed for the chunk of VVL sites is implemented
using the TARGET_ILP(vecIndex) macro prepended to the innermost operation. The
vecIndex variable is an integer that acts as an offset to the base index within the
chunk of lattice sites. The operation that follows this macro can then use the
combination baseIndex+vecIndex when accessing array data, ensuring that all
elements of the lattice chunk are operated on. For C, VVL can be tuned to allow the
compiler to generate optimal SIMD instructions. For example, setting VVL to 4m will
create m AVX instructions, where m is a small integer. m=1 is an obvious choice, but it
can be the case that m>1 gives better performance. VVL can similarly be tuned for the
CUDA implementation, giving latency hiding benefits.

The results of using targetDP in a lattice-based code (Ludwig code) are presented in
CRESTA D3.11 (“Experiences with benchmarks and co-design applications”).

3.2 CRESTA’s	 standardization	 effort	 in	 the	 MPI	 Forum	
The CRESTA project followed closely the standardization process in MPI. CRESTA
participated in standardization meetings and contributed to discussions on new
proposals in MPI.

A member of the EPCC partner in CRESTA, Daniel Holmes, regularly attended the MPI
Forum meetings and served as both a Working Group Leader and a Chapter
Committee Chair. CRESTA, together with the EPiGRAM project, has on-going
involvement and influence within both the Hybrid Working Group and the Point-to-Point
Working Group. Significant contributions have been made to the “endpoints” proposal
as a direct consequence of the work carried out during the CRESTA project and the
first year of the EPiGRAM project.

3.3 CRESTA’s	 standardization	 effort	 for	 OpenACC	 and	 OpenMP	
The OpenACC non-profit corporation develops and standardises the OpenACC API.
Membership of the organisation is on an institutional basis, with single representatives
from member and supporter organisations sitting on the Technical Committee.
CRESTA was represented on the Technical Committee through the Cray (one if the
founder members) and EPCC at the University of Edinburgh representatives.	

OpenMP has a subcommittee developing a subset of OpenMP directives that can be
used to accelerate applications in a similar manner to OpenACC. James Beyer (Cray
US) co-chairs this subcommittee and CRESTA was also directly represented on this
subcommittee through Cray UK staff attending the weekly telephone meeting.

	

© CRESTA Consortium Page 7 of 41

4 Compilation	 and	 Runtime	 Environments	
In this section, we present the development of CRESTA DSL and adaptive runtime
system.

4.1 A	 Domain	 Specific	 Language	 for	 auto-‐tuning	 and	 exascale	
compiler	 support	 to	 exascale	

Exascale systems are going to be inherently complex and we believe there is a place
for more automated and intelligent software to build and run applications. One specific
area (accelerators) illustrated this most aptly.

Accelerators and, in particular, GPUs have emerged as promising computing
technologies which may be suitable for the future exascale systems. However the
complexity of their architectures and the impenetrable structure of some large
applications make the hand-tuning algorithm process more challenging and
unproductive. On the contrary, auto-tuning technologies have appeared as a solution to
this problems since it can address the inherent complexity of computer architectures.

Early in the project we engaged with the Institute for Computing Systems Architecture
at Edinburgh University to tune Nek5000 kernels using a compiler-based machine-
learning auto-tuning framework. The results were promising but in practice there were
some important issues: firstly they could only deal with C but more importantly they
were the only ones with expertise in their tools so we had to hand over our code for
tuning. So although compiler-centric technologies were interesting we moved on to
work with our own auto-tuning approach.

The CRESTA DSL implementation we developed can explore a tuning parameter
space by repeatedly building and running an application. The best run is chosen using
a metric from the program execution and currently is done by exhaustive search. The
tuning session is control by DSL either from a global configuration file or embedded in
application source. This DSL has been extremely useful for the auto-tuning process of
the CRESTA co-design application Nek5000 and NekBone, a standalone benchmark
for the Nek5000 code. Through different scenarios we have been able to explore the
performance of Nek5000 using a wide range of parameter settings. Each scenario is
able to pick the best values for a given set of tuning parameters. The tuning
parameters will relate to build and runtime optimization choices that we can choose.

Nek5000 is an open-source code used to simulate incompressible flow with thermal
and passive scalar transport. The code consists of 100,000 lines of code and it is many
written in Fortran (70,000 lines of code) and C (30,000 lines of code), and uses MPI for
message passing communication.

The CRESTA DSL was first used to optimise the performance of NekBone on a Cray
XC30 system accelerated with Nvidia K20x GPUs. The results were impressive, giving
a 200% speed-up over the default OpenACC parameter settings and over 15% speed-
up over an exceptionally optimised OpenACC hand-tuned version. Then, similar work
was extended to the full Nek5000 application. And although this was much more
challenging due to the high number of code sections and different parameters to tune,
the auto-tuner has been able to achieve performance improvements of around 32%
compared to the best OpenACC hand-tuned implementation of Nek5000.

In addition, the autotuning mockup was used in two other situations by a member of the
Cray performance team. The first was to explore vector lengths of specific parallel
OpenACC loops in the Delta5d fusion code. The result was that only marginal gains
could be found from such tuning. The second was to investigate performance of the
IOR benchmark using various MPI_IO tuning parameters. This resulted in a better
understanding of the important parameters for the particular scenario studied.

Once the DSL mockup was exposed to applications some features were added or
enhanced. For example scenarios were implemented in the mockup and tuning
parameters could be enabled given the context of a particular scenario. Also the

© CRESTA Consortium Page 8 of 41

reporting of the results was improved with the addition of a new table of results,
comparison with default parameters and new optional csv output format.

4.2 Hybrid	 and	 adaptive	 runtime	 systems	
In order to achieve good application performance on exascale machines, highly
system-specific features have to be exploited. This means that best practices in
programming and software development have to be relaxed and the resulting code is
difficult to port to different systems. Runtime systems help to build portable applications
for a broad range of HPC infrastructures in a modular way[5]. The heterogeneous
character of recent hardware as well as the parallel program’s highly dynamic
behaviour not known before their execution require runtime systems to take into
consideration the hardware topology as well as monitoring information of the on-going
program execution. The runtime system consists therefore of a resource manager, a
library for runtime administration of parallel applications, and a performance monitoring
and analysis tool. The design is based on a task-oriented programming model.

One of the hardest requirements in the development of simulation applications is their
adaptation to different computer systems due to the varying technical parameters that
have a huge influence to the numerical performance: cache- and memory hierarchies,
the number of cores per CPU, the number of sockets per node, and the characteristics
of the interconnect network.

Today, optimisations are typically implemented directly in the code. The necessary
effort to do this would grow immensely in the future due to the increasing heterogeneity
and diversity of HPC computer systems. A runtime system must aim to improve the
performance portability that can be achieved with one certain implementation.

An important requirement for a tool development is the reuse of existing application
codes often implemented in Fortran or C. The introduction of new software tools should
allow its incremental adoption, keeping the need for reimplementation or adaptation of
existing code to a minimum. A further requirement connected to the previous one is
the wish that software tools support an adaptive use of best practices, which otherwise
would not be applied due to prohibitive implementation effort. Finally, given that hybrid
programming models gain more importance, the runtime system may not prevent the
use of parallelisation technologies that it does not address itself.

While different application classes put different requirements on runtime support, we
focus on numerical simulation applications. Typical requirements of numerical
simulations are

• Integration of data and task parallelism,

• Use of multi-level parallelism in the algorithm design,

• Development of algorithms with a high degree of parallel executable tasks,
which have a moderate size, can be created very quickly, and avoid global
communication operations,

• Usage of multi-threading, asynchronous communication and one-sided
communication,

• Consideration of the increasing depth of the memory hierarchy,

• Optimised scheduling and mapping taking into account chip-architectures,
memory hierarchies, internal communication abilities, etc. to provide a higher
degree of parallelism and decrease memory and communication bandwidth
usage.

4.2.1 Programming	 model	 and	 user	 interface	
The runtime-system developed in CRESTA supports a task-oriented programming
model featuring hierarchical multiprocessor tasks. Such tasks are computational units

© CRESTA Consortium Page 9 of 41

that can be also parallel in themselves and can be subdivided hierarchically again into
subtasks. The example in Figure 2 shows which tasks could be defined in a typical
algorithm of a molecular dynamic simulation.

Figure 2: Example of an application structure using a coarse-grained hierarchical decomposition

The hierarchical nature of the computational tasks and their inner parallelism is clearly
visible. Such a task model matches how programmers typically express parallelism
during algorithm design and in program descriptions. The runtime system with its task
model makes this parallelism explicitly visible in the source code, while traditional and
widely used programming languages cannot easily express it.

Hierarchical multi-processor tasks allow to model also hybrid parallelisation and can be
used to describe task parallel programs, i.e. sequences of operations, as well as data
parallel programs like the parallel work on sub-domains. Hierarchical tasks reflect the
hierarchical architecture of most computer systems well. Furthermore, their use
integrates with existing programming models like MPI and OpenMP. Finally, the
modelling of the simulation program as a task graph allows us to apply a broad range
of algorithms from the theory of scheduling and graph partitioning for the mapping of
tasks onto a computer system.

The runtime system uses currently a hardware performance model that models a
computer system as graph from computational cores over nodes up to the complete
system. The nodes of the graph are the computational cores respectively aggregations
of them like dies, CPUs, cluster nodes, network partitions, and finally the whole cluster.
They are characterised by their computational capabilities expressed through the
computational performance. The edges of the hardware graph model the
communication capabilities of the connection between the respective nodes. Shared
caches or NUMA nodes connected to a few cores provide the fastest communication
speeds. The speed then decreases for communication between different sockets,
between nodes, and finally different parts of the cluster depending on the interconnect
network topology. Therefore, this model does not only reflect the network topology but
indirectly also the memory hierarchy within nodes.

The combined use of both models, the task-based programming model and the
hardware model allows graph partitioning and mapping algorithms the selection of the
most appropriate system part, i.e. a hardware model sub-tree, for the execution of a
certain part of the application, i.e. a task sub-tree (see Figure 3). This will be explained
in more detail in the description of the runtime administration component.

© CRESTA Consortium Page 10 of 41

Figure 3: Use of the task and the hardware models to optimize the program execution

The user interface consists of five elements that will be used by an application
developer. These comprise the definition of computational tasks, support for the
automatic re-mapping of distributed arrays as well as user-defined data that define the
state of a computational tasks, a control function to perform dynamic load-balancing,
and the management of MPI communicators. This interface has been designed with
simplicity in mind in order to allow its convenient introduction into existing simulation
codes. Furthermore, the current implementation of the user interface to the runtime
system focusing on the dynamic gradual improvement of task mappings and load-
balance allows developers to optionally deactivate automatic load-balancing if a certain
computer system cannot be well supported for some reason. This can be compared to
a parallelisation similar to the OpenMP approach that allows compiling a program
optionally with OpenMP support.

A task is identified by a key. The possibility to define tasks hierarchically leads naturally
to a tree structure of tasks, examples of task keys are “task_1” or
“task_1/subtask_a”. A number of parameters for a task can be specified in a
structure task_params. These comprise the number of allocated processors,
estimations of computational work and communication, and a callback function that is
used to serialize respective de-serialize the task status. The following function can be
used for the definition of the task tree.
task_tree *define_task(task_tree *parent, int n,
 string *keys, task_parms *children);

One call to define_task() adds the number of n sub-tasks to the parent task that
are allowed to run in parallel. Several calls to this function define a sequence of tasks.
Arbitrary task trees may be constructed in that way.

The begin and end of the execution of a certain task can be registered in the code by
calls to the functions begin_task(key) resp. end_task(key).

It is necessary to transport the state of a computational task between processes in
order to move tasks during the runtime. The application developer has to provide a
function that can serialise resp. de-serialise the state of a computational task. The state
of a task will be serialised in the owner process of a task, transported to the destination
process, and finally de-serialised there. A ready-to-use convenience implementation is
provided for the transport of arrays, which are one of the most frequently used data
structures in numerical simulations. Arrays can be registered at their owning
computational tasks and will be handled by the runtime system automatically. This
avoids repeating coding tasks of serialisation for the developer as well as allows
optimised handling of memory allocations. The prototype for callbacks is defined as
int (*task_serialisation_cb)(int opcode, void *buffer);

© CRESTA Consortium Page 11 of 41

The value of opcode defines if the requested operation is a serialisation or a de-
serialisation, and buffer is used to store the serialised data to write or read from. The
registration of arrays at their owning tasks will be done with the function
void register_array(task_tree *owner, void *array,
 int dtype, int n, int *dims);

that specifies the dimensions of the array and the type of its elements.

The runtime system supports the re-mapping and execution of computational tasks by
means of MPI, whereas the choice of the inner parallelisation technique for multi-
processor tasks is under control of the application developer. This would lead to the
need of maintaining a directory of task mappings onto MPI ranks in order to perform
communication between the owning processes of computational tasks in need of
message-passing. The design choice for the runtime system was, to avoid explicit
bookkeeping. MPI communicators will be used for that instead. Initially when setting up
the calculation in typical numerical simulations, processes determine their
communication partners rank-wise. These ranks are defined often as global properties
of the MPI processes and updated occasionally, for example when re-distributions of
data occur. In a program running under the control of the runtime system, however, the
rank numbers of the communication partners become part of the state of computational
tasks. They will be moved together with the other data defining the state of a task and
used in all subsequent communication operations until an update is required due to re-
distributions of data initiated by the simulation application itself. It is the responsibility of
the runtime system to provide a MPI communicator to the application that reflects
updated mappings of computational tasks onto MPI processes after their re-
distribution. This functionality has been implemented by means of communicator
management functions as provided by the MPI-2 standard. From an application
developer point of view, the programmer defines a so-called load-balancing context
that connects the group of a certain MPI communicator with a sub-tree of the task tree.
Load-balancing will then be performed amongst the participating MPI processes of the
context’s communicator. The load-balancing context is defined by using the function
MPI_Comm *define_lb_context(MPI_Comm comm,
 task_tree *root_task);

The function returns a MPI communicator for communication operations using the
previously defined rank numbers of partner processes.

The runtime system monitors the execution of a parallel program. It is necessary from
time to time to hand-over the control to the runtime system. A new task mapping is then
calculated based on the previous monitoring. The callbacks specified during the
definition of tasks will be activated for the serialisation and deserialization of tasks, and
the runtime system manages the transport of these data between the processes.
Finally, a new MPI communicator reflecting the new task distribution will be created
and returned to the application for subsequent use in communication between the
computational tasks. The user triggers these activities at suited points in time by calling
the following function, which also returns the new MPI communicator to the application.
void perform_load_balancing(MPI_Comm *comm);

4.2.2 Software	 Architecture	
The runtime system consists of three main components: a runtime administration
component (Rta-C) schedules tasks and monitors their execution status; a monitoring
component (Mon-C) provides information on the hardware utilisation, which is for
scheduling decisions as well as to complement potentially incomplete or imprecise
resource requirement specifications; and finally a performance analysis component
(Pan-C) that analyses recorded monitoring data to provide more sophisticated hints for
application control, beyond the capabilities of single run monitoring (see Figure 5).
Implementations of the components Rta-C and Mon-C have been realised within
CRESTA.

© CRESTA Consortium Page 12 of 41

Figure 4: Components of the CRESTA runtime system

4.2.3 Runtime	 administration	 component	 (Rta-‐C)	
Rta-C provides the user API allowing the definition of computational tasks as well as to
control the load-balancing execution. It maintains internally the task tree as well as the
hardware model. This component receives monitoring data from the monitoring
component (Mon-C). Furthermore, it comprises the mapping algorithm as well as the
functionality for moving tasks.

Rta-C creates the task tree within each process from the task definitions provided by
the application. The cost estimates for computational work and communication
volumes provided in the task definitions will be used for the calculation of task
mappings on platforms that do not have the capability to monitor these parameters
during the execution. Otherwise, these values will be replaced by data acquired by
Mon-C as described below.

The hardware model is provided either as a static graph with weighted nodes and
edges representing computing and communication capabilities or constructed
dynamically during the program execution. The latter is done by measuring
communication capabilities during the runtime of the parallel program. The advantage
of this approach is that the real communication performance of the nodes allocated to a
batch job is determined in the moment of the measurement. Influences from a concrete
load on a HPC system as well as effects of dynamic routing configurations can be
taken into account in this way. Even occasional updates of the hardware model are
possible during long-running simulations.

Mon-C is clocked by the starting and end markers of computational tasks. It provides at
least timing information about the execution of the computational tasks. Counter values
of executed floating-point operations and MPI communications will be provided if
available on the platform. Rta-C maintains a record of these measurements. This is for
the time being a moving average value of a configurable number of time steps. The
monitoring data are used to update the task definitions and provide in that way an up-
to-date picture of the workload during the recent time steps.

The re-mapping of tasks in order to improve the load-balancing can be triggered by the
application explicitly or automatically when a certain degree of load-imbalance has
been reached. The wall clock time per time step is used as metric of load-imbalance.

The task mapping is calculated in a two-phase process that is illustrated in Figure 5.

© CRESTA Consortium Page 13 of 41

Figure 5: Two-phase calculation of task mapping

The implementation of this functionality has been based on the library SCOTCH, which
provides extensible algorithms for graph partitioning and mapping[7]. The mapping of
tasks to compute nodes is defined in the first phase. Compute nodes are represented
for this calculation in the hardware graph as single nodes with a heavier weight
according to the number of cores per node. The results of this calculation are task
groups that will be assigned to one node. Afterwards, the mapping of task groups onto
the different cores of a node is decided during the second phase. These calculations
will be done in parallel on each node. The final task mapping is then distributed in order
to allow the reconfiguration of the MPI communicator used in the load-balancing
context.

For example, the mapping calculations for Cray XE6 systems that have been used in
CRESTA, define the global hardware model with the network links as edges that
connect the Gemini network ASICs, which are present in this graph as nodes
summarizing the computational capabilities of the two servers that are connected to
each of the ASICs. The local model comprises in fact both compute nodes that share
one ASIC.

Figure 7 shows the wall clock time per time step for different task mapping strategies of
a molecular dynamics simulation. The performance improvement of optimised task
mappings in comparison to randomly chosen distributions is clearly visible. The
molecular dynamics simulation for short-range potentials has been implemented as
pure MPI application based on the linked cell method. It is characterised by
neighbourhood communication and can benefit from an optimised task placement.
Beside the communication topology, the task placement also has been balanced with
respect to the overall number of particles of all MPI processes on a node. Such a cost
function does not balance the work done by the different processes, of course. But, it
supports that there will be about the same amount of data on each node. This implies
that each node has to access about the same amount of data in main memory.
Memory access, the bottleneck in memory-bound algorithms, is balanced in that way.
The optimised task mappings allowed a reduction of at least 10% wall clock time per
time step in all experiments. However, the improvement is of course dependent on the
complex interplay of many factors coming from the task decomposition as well as from
the properties of the hardware. The experiments confirmed the expectation from the
design phase that the runtime system can manage well a large number of smaller
tasks, whereas configurations with fewer, heavier tasks provide fewer possibilities for
optimisations. The diagram given here is an example of such a job with smaller tasks
and demonstrates performance improvements up to 50%. The experiments confirm the
expectations that have been put up in the design phase. We expected there from
experiments with separate components improvements between 15 and 50% as well as
the introduction of about 5% overhead. This expectation has been met with overall
performance improvements of at least 10% so far.

© CRESTA Consortium Page 14 of 41

Figure 6: Time per-step for a molecular dynamics simulation using different strategies for task

mappings

4.2.4 Monitoring	 component	 	 (Mon-‐C)	
The monitoring component in the runtime system uses the Integrated Performance
Monitoring (IPM) tool [8] to capture the performance behavior of MPI applications. IPM
provides reports on several program events introducing minimum overhead. Such
events can be MPI operations, Posix-I/O file operations, CUDA, or OpenMP events
among others. IPM has been widely used by HPC centers such as NERSC to collect
more then 310K batch profiles in the past 6 years.

CRESTA WP3 has extended the IPM monitoring tool with the Performance
Introspection API (PIA) [9] to provide online feedback to the runtime system as the
application runs. This API is designed to be a simple and lightweight interface written in
C that can be used from C, C++, and Fortran. The Performance Introspection API
provides each process a local view of its own performance behavior through the
access to two different data entities, user-defined code regions and activities.

User-defined regions are measurement intervals defined by the runtime system within
the application, for instance, tasks, functions, or blocks of code. These delimited
regions can be nested and are annotated in the source code with the routine
ipm_region. For each one of these regions the associated performance data is fixed
and includes performance metrics such as wall clock time of the region, MPI time, the
number of executed instances for that region, and hardware performance counters. As
all these metrics are accumulated during program execution, the amount of memory
needed to store them is small, in the order of a few kilobytes. The following code listing
shows how to use the Performance Introspection API to access the total time, MPI
time, and number of executed instances for a defined regions called foo.
void foo()

{
 // Defining region start
 ipm_region(IPM_START, “foo”);

 // Do whatever here

 // Defining region end
 ipm_region(IPM_END, “foo”);

}

© CRESTA Consortium Page 15 of 41

int main(int argc, char *argv[])
{

pia_regid_t id; // Stores region ID
 pia_regdata_t data; // Stores region data

foo();

 // Obtain region ID
 id = pia_find_region_by_name(“foo”);

 // Obtain performance data for that region
 pia_get_region_data(&data, id);

fprintf(stderr, “%f Walltime\n”, data.wtime);
 fprintf(stderr, “%f MPI time\n”, data.mtime);
 fprintf(stderr, “%d times executed\n”, data.count);

}

The other entity the runtime can access using the Performance Introspection API is
activities. Activities are statistics associated to certain program events such as MPI
calls, Posix-IO calls, or OpenMP phases. For instance, the runtime can consult the
activity MPI_Recv, obtaining the total number of times the call has been executed, total
time inside the call, maximum and minimum execution time, or number of bytes
received for the whole run or for a certain defined region. Activities are accessed
through their activity ID as shown in the following code snippet:
// Activity name
chat *act1 = “MPI_Send”;

// Activity ID
pia_act_t id;

// Activity data
pia_actdata_t data;

// Acces the data
pia_init_activity_data(&adata);
id = pia_find_activity_by_name(act1);
pia_get_activity_data(&data, id);

fprintf(stderr,
 “MPI_Send happened %d times and transferred %d bytes,
 adata.ncalls, adata.nbytes);

The efficiency and overhead introduced by the monitoring component and the
Performance Introspection API has been tested with several experiments.

The first experiment measured the time for accessing performance data associated to
user-defined regions by using a synthetic application that creates thousands of user-
defined regions, and accesses the performance data of one of them randomly chosen.
Figure 6 shows the average access time to a random region using the API as the
number of defined regions increases on an AMD Opteron 6274 at 2.2 Ghz. As it can be
seen, the access time is small, not exceeding 300 ns for 20,000 regions. Moreover, the
access time is almost constant for the first 8,000 regions where all the measurements
are in the range of 238-248 ns. This small variability in the measurements was caused
by the nature of the experiment in which the region selected was not always the same
but randomly selected.

© CRESTA Consortium Page 16 of 41

Figure 7: Average time in nanoseconds for accessing the performance data associated to a user-

defined region

The second experiment performed measured the access time for activities. The data
used for computing activities is stored within IPM in a hash table as explained in [10].
Thus, a benchmark was designed to test the access time for an activity as the hash
table fills up. This benchmark stores 10 millions random events in a hash table of 32K
entries increasing on each step the number of unique keys used. Figure 7 provides the
time in microseconds for accessing the activity MPI_Send among 10 million random
events as the number of unique hash keys increases. The experiments were performed
again in an AMD Opteron 6274 based system at 2.2 Ghz. As it is shown in the figure,
the access time increases slightly as the hash table fills up and collisions become more
probable (more unique keys leads to more entries used in the hash table). However, as
pointed in [10], in the vast majority of applications the observed fill rate for the hash
table is below 50%, being their access time between 800 and 850 microseconds.

Figure 8: Access time in microseconds to an activity among 10 millions of events in the activity

hash table

 150

 200

 250

 300

 350

 0 4000 8000 12000 16000 20000

A
cc

e
ss

 t
im

e
 (

n
s)

Number of user-defined regions

Average access time to a user-defined region data

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 0 4000 8000 12000 16000 20000

A
cc

e
ss

 t
im

e
 (

u
s)

Number of unique hash keys

Access time to an activity among 10 million events

© CRESTA Consortium Page 17 of 41

Finally, the aim of the last experiment was to measure the total overhead introduced by
the monitoring component and the Performance Introspection API when used in
conjunction with a real application. In this experiment, we used Sweep3D [11], a solver
that models 1-group-time-independent discrete ordinates (Sn) 3D Cartesian (XYZ)
geometry neutron transport problem. Using the Performance Introspection API we
checked on each iteration of the program main loop the total time, the average time,
and the number of executed instances of MPI_Send and MPI_Recv. We also accessed
the wall clock time, MPI time, and number of instances for the function sweep.

We run the benchmark in a Cray XE6 system with AMD Opteron 12-core ”Magny-
Cours” (2.1 Ghz) processors. Each node had 24 cores divided between 2 sockets and
32GB of DDR3 memory. The nodes were interconnected with a Cray Gemini
Interconnect network. The benchmark was run several times using a base grid of
10x10x400 with weak scaling up to 8,160 processors. Table 1 shows the execution
times for Sweep3D with and without the monitoring component and the Performance
Introspection API. It can be observed that the overhead introduced does not perturb the
application, fluctuating always under 1% due to the natural runtime variations in HPC
systems. It is also noticeable that the overhead does not increase with the number of
cores as the Performance Introspection API operates locally and does not require any
communication between processes.

Table 1: Total execution time for the Sweep3D benchmark and percentage of overhead

introduced by the monitoring component (IPM) and the Performance Introspection API.

MPI processes Original Sweep3D Sweep3D with IPM
+ PIA Overhead

1032 226.1 s 225.768 s 0%

2064 244.975 s 245.437 s 0.19%

4080 267.72 s 269.448 s 0.65%

8160 306.751 s 308.234 s 0.48%

© CRESTA Consortium Page 18 of 41

5 Performance	 analysis	 tools	
Event tracing tools record parallel applications in detail by logging runtime events with
a precise timestamp and further event specific metrics. This allows capturing the
dynamic interaction between thousands of concurrent processing elements and
enables the identification of outliers from the regular behavior. While single events are
rather small, event-based tracing frequently results in huge data volumes. In particular,
tiny and often used functions such as get/set class methods or helper functions can
easily overwhelm any recording trace buffer. Due to the instrumentation all functions
that are usually inlined by the compiler are executed and monitored. By itself this
provides a very detailed view on an application’s behavior. However, if tiny functions
are heavily used – like in C++ applications – monitoring such can result in tremendous
data volumes and runtime overhead.

In a study including Gromacs [13] we showed that for many applications short running
functions contribute 90-99% of the recorded data volume. In the same time, these tiny
functions call contribute very little to the analysis and overall understanding of the
application behavior. To handle these tiny short-running function calls, in particular, for
long running applications we developed the following strategies.

5.1.1 Selective	 Instrumentation	
Since automated instrumentation techniques are most convenient and easy-to-use, the
majority of event tracing tools use compiler instrumentation as their default to define
events[14][15][16][17]. However, compiler instrumentation automatically instruments all
functions regardless of their size and whether they would be inlined. By comparing the
set of symbols from the original application (A) with the set of symbols of the fully
instrumented application without any symbols from the monitoring system (B).The set
of originally inlined functions (I) is the difference of set A from B. By excluding the
originally inlined functions from the instrumentation not only the resulting data volume
is tremendously reduced but also the runtime overhead of the monitoring. With this
approach it was possible to reduce the monitoring overhead for Gromacs by a factor of
3.5 and the resulting trace size by a factor of 400 [13]. In addition, it is also possible to
use a profiling run to determine the most often called functions and their average
duration. This information can be used to exclude additional functions from the
instrumentation (see also [13]).

Hybrid applications that use multiple paradigms can also be instrumented to record
only a subset of aspects or paradigms. A hybrid version of Gromacs that uses
massage passing (MPI), threading (OpenMP), and accelerators (CUDA) was
instrumented to record different subsets of all parallel paradigms. Depending on the
number of paradigms the resulting trace size was reduced to 2.8% for recording only
MPI and CUDA [18]. It is also possible to apply different levels of details to different
nodes of the application to get a complete view over some nodes and a coarse view
over the remaining nodes. Figure 9 shows a visualization of Gromacs using different
levels of detail for each node and the according trace size reduction (the reduction is
always relative to the corresponding node with full instrumentation).

© CRESTA Consortium Page 19 of 41

Figure 9: Vampir visualization of Gromacs with different levels of detail for each node. Reduction is

relative to the corresponding node with full instrumentation.

5.1.2 Selective	 Monitoring	
Selective monitoring is another approach to decrease the number of collected events.
The difference to selective instrumentation is that all code regions of an application are
instrumented and recorded but only a subset is finally stored. We focused on two
defined code regions: iterations and functions.

In iterative applications it is reasonable to avoid storing every single iteration because
most of them show more or less the same behavior. The selection of these iterations
can be done statically or dynamically depending on certain parameters. The first
method is to statically define which iteration is recorded and stored, e.g., every 10th or
100th iteration. With this it is still possible to analyze the behavior over time but the
amount of recorded data is reduced to ten or one percent, respectively. However,
iterations with either interesting behavior or a performance problem might be lost. The
second method is to record every iteration and dynamically decide whether it is stored
or discarded by evaluating its behavior, e.g., only store an iteration when its runtime
varies from the average runtime by a defined threshold. To realize such a subsequent
removal of iterations we developed and applied a rewind method to rewind the
recorded event stream to any pre-defined point (e.g. the beginning of the current
iteration), which eliminates everything record after that point. Figure 10 shows an
example visualization with Vampir of Gromacs where only every 5th iteration block is
stored. This topic is also covered in more detail in [19].

© CRESTA Consortium Page 20 of 41

Figure 10: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom)

event trace visualized with Vampir zoomed in to about 6 iteration blocks (Source: [19]).

Next to iterations, specific functions calls can be discarded from the trace. This
approach also targets short-running highly frequent functions calls as in Section 5.1.1
but instead of removing an entire function from the trace only individual calls to a
function are removed. Besides the trivial approach to stop recording a function after it is
called a pre-defined amount of times, we developed an approach that evaluates the
duration of each function call and only stores it when its duration is longer than a pre-
defined minimum duration. This approach effectively discards all short-running function
calls while still keeping the outliers that are of interest for a performance analysis.

We applied a minimum duration of one microsecond, i.e., all function calls shorter than
one microsecond are filtered. This way, all short-running functions are eliminated while
all important routines including all communication routines remain in the trace. For all
applications that heavily use short-running functions the trace sizes can be remarkably
reduced down to 0.1% of the original trace size. For Gromacs, this approach reduced
the trace size to about 1.7% while still keeping the coarse program behavior [13].

Figure 11 and Figure 12 show the resulting event trace visualized with Vampir. The
fully monitored measurement can be seen on the upper half of each Figure (white
background), the measurement with duration filtering on the lower half (blue
background). Both figures demonstrate that the filtering of short-running functions does
not alter the general application behavior; except for the missing short-running
functions. The function summary in Figure 11 shows that the total number of function
calls is reduced from about 4 billion to 68 million. Figure 12 additionally shows the
process timeline of process zero in detail with the calling depth on the vertical axis. The
process timeline demonstrates that the highly frequent function calls on calling depth
10 and 11 are effectively eliminated while the outliers that run longer are still contained
in the trace. This topic is also covered in more detail in [13].

© CRESTA Consortium Page 21 of 41

Figure 11: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom)

event trace visualized with Vampir (Source: [13]).

Figure 12: Gromacs on 144 processes fully monitored (top) and selectively monitored (bottom)

event trace visualized with Vampir zoomed to an application phase of about 3.8ms (Source: [13]).

5.1.3 Hierarchical	 buffer	 management	 and	 runtime	 event	 reduction	
To support the efficient elimination of short-running function but also further techniques
we applied a hierarchical memory buffer [20]. Instead of one flat continuous memory
buffer the hierarchical memory buffer uses additional hierarchy information such as call
stack depth or event class to sort events in a multi-dimensional array. This provides the
opportunity to remove events of a specific hierarchy class very efficiently. For example,
the elimination of short-running function calls benefits from this memory buffer layout
because all function enter and exit events are sorted by their according calling depth
and are separated from all other types of events. Thus, the according enter and leave
event of a function call are guaranteed to be right next to each other in the memory
buffer and, therefore, can be easily and efficiently removed.

© CRESTA Consortium Page 22 of 41

In addition, the hierarchical memory buffer allows further techniques to reduce the
number of events within the memory buffer. It is particularly designed to keep an entire
measurement with in a fixed-sized single memory buffer to avoid the bias introduced by
intermediate memory buffer flushes. Moreover, it entirely avoids file system interaction,
which provides a solution to the limitations in parallel file systems (see Section 5.2.1).
Further techniques that reduce the number of stored events whenever the memory
buffer is exhausted are described in detail in [21]. These techniques include, for
instance, a reduction of events by their calling depth or their event class to reduce the
level of detail for function calls or different paradigms automatically during runtime.

5.1.4 Message	 matching	
While the approaches in Section 5.1.2 and 5.1.3 are essential to reduced the number
of recorded event, unfortunately, the analysis of the communication behavior may
partly or completely fail when even a single specific event is missing; especially MPI
[10]. The basis of a correct post-mortem communication analysis is the correct
matching of send and receives calls of each message. This can be done either by a
replay of the communication based on the recorded MPI events or by matching MPI
send and receive events by their order of occurrence [16][14]. In both ways, whenever
multiple MPI messages have the same communicator and message tag the associated
events can only be matched by their order of occurrence, e.g., first send event with first
receive event and so on. Consequently, if one send or receive event is missing, the
correct matching of send and receive events and, therefore, the post-mortem
communication analysis fails. But, a correct post-mortem communication analysis is
essential to understand complex communication behavior and to identify performance
problems. In addition, all metrics derived from MPI events like latency or bandwidth rely
on a correct matching, as well. Therefore, it is quite unsatisfying, to lose all this
analysis options by dropping even a single event.

To circumvent those restrictions, we developed an approach to make each MPI event
distinguishable from others with the same communicator and message tag by
introducing an unique sequential message identifier. With this approach it is possible to
clearly identify, which MPI events are missing and, thus, it is possible to correctly
match MPI send and receive calls even with missing MPI events. With this, it will
become feasible to apply the described selective monitoring techniques without
sacrificing a detailed communication analysis.

In [19] we described and evaluated this approach in detail and demonstrated that the
slight increase in memory allocation and overhead due to the additional information is
more than justified considering the tremendous reduction that can be achieved with the
mentioned selective monitoring and runtime event reduction approaches.

The approach and implementation are based on the Open Trace Format 2 (OTF2) [22],
a state-of-the-art Open Source event trace library used by Score-P and the
performance analysis tools Vampir, Scalasca, and TAU [14][16][17]. Nevertheless, the
methods can also be generalized on other event based tracing libraries.

5.2 Exascale	 challenges	
In this section, we present the exascale challenges in dealing with file system
limitations, with new programming paradigms and hybrid applications and with
monitoring energy and interconnection network performance.

5.2.1 Dealing	 with	 file	 system	 limitations	
Post-mortem performance analysis techniques have to handle the amount of
information of a whole measurement run and usually store this information in entire on
the parallel file system. At an exascale level, creating one file per measured processing
element results in disaster for parallel file systems. Current file systems can create only
a few thousand files per second [23]. Two approaches that are dealing with the file
system limitations and are applied to event tracing are SIONlib and the I/O Forwarding

© CRESTA Consortium Page 23 of 41

Scalability Layer (IOFSL) [24][25]. Both approaches try to merge many logical files into
a single or a few physical files. While SIONlib relies on the file system’s capability to
handle large sparse files to pre-allocate segments for the logical file handles within a
single file, the I/O Forwarding and Scalability layer, as the name suggests, provides an
I/O forwarding layer to offload I/O requests to dedicated I/O servers that can aggregate
and merge requests before passing them to the actual file system.

Both approaches have proved to support monitoring at high scales. VampirTrace
successfully recorded a full system run on the Jaguar system at Oak Ridge National
Laboratory with 200.000 processes and Scalasca used SIONlib to record a full system
run on the JuGene system at the Jülich Supercomputing Center with almost 300.000
processes [25][24].

Since version 1.0 Score-P supports the usage of SIONlib but was restricted to pure
MPI applications. With the upcoming release, Score-P 1.4 will support hybrid programs
including accelerators, as well.

5.2.2 New	 paradigms	 and	 hybrid	 applications	

5.2.2.1 CUDA	 and	 OpenACC	
As mentioned in the Section 3, in the last years CUDA/OpenACC capable devices
became more and more popular in the High Performance Computing area since they
are promising more floating point operations per seconds than a typical CPU will ever
provide in a user application.

Monitoring of CUDA applications can be done either via the CUDA Profiling Tools
Interface (CUPTI) or by a library wrapping approach. CUPTI provides different APIs
that can be used to get insight into the CPU and GPU behavior of CUDA applications.
The benefits of CUPTI in comparison to the library wrapping approach are the reduced
perturbation of the kernel execution and precise event (kernel) time information. An
exemplary study with the Nek5000 benchmark can be found in [27].

Since version 1.3 Score-P is able to monitor CUDA activities via CUPTI and OpenACC
activities via a shared library wrapping approach. The use of the new developed
generic one-sided RMA event model allows us to monitor memory transfers between
host and graphic card as one-sided communication.

5.2.2.2 SHMEM	
SHMEM is a PGAS paradigm very similar with one-sided paradigm in MPI to pass data
between cooperating parallel processes on logically shared distributed memory.

The one-sided communication operations of Cray SHMEM can be easily recorded with
Score-P’s generic RMA event model. Cray SHMEM allows the coexistence of MPI and,
therefore, initialization and finalization of the measurement system can be easily used
with the MPI interface of Score-P. The instrumentation can either be done by a library
wrapping approach or by defining weak symbols and use of the strong symbols
provided by the Cray SHMEM library, this approach is very similar to the PMPI
interface of MPI. Figure 13 shows the visualization of the performance monitoring of a
Cray SHMEM application.

© CRESTA Consortium Page 24 of 41

Figure 13: Performance visualization of a massive parallel bucket sort parallelized with Cray

SHMEM. The master timeline shows very impressively the master-slave communication
implemented with shmem_get64 operations colored in light blue between the different processes

surrounded by tow shmem_barrier_all operations colored in yellow.

5.2.2.3 Support	 for	 hybrid	 applications	
Score-P supports the tracing of most of the parallel paradigms and standards including
MPI, SHMEM, OpenMP, Pthreads, CUDA, and OpenCL/OpenACC. In addition, all this
parallel paradigms can be recorded simultaneously.

We monitored Gromacs with various numbers of threads of execution and different
parallel paradigms from pure MPI applications to hybrid versions of Gromacs using
MPI, OpenMP, and CUDA (see Figure 14).

Figure 14: Performance visualisation of a hybrid version of Gromacs parallelized with MPI,

OpenMP, and CUDA running on 8 nodes with 16 cores and 2 Nvidia K20 each. Every process uses
one Nvidia graphic card and sends its kernels coloured in blue to two different streams.

© CRESTA Consortium Page 25 of 41

5.2.3 System	 behavior:	 energy	 and	 network	
Energy and power consumption are increasingly important topics in High Performance
Computing. Wholesale electricity prices have recently risen sharply in many regions of
the world, including in the European states, prompting an interest in lowering energy
consumption of HPC systems. Environmental (and political) concerns also motivate
HPC data centers to reduce their “carbon footprints”. This has driven an interest in
energy-efficient supercomputing, as shown by the rise in popularity of the “Green 500”
list of the most efficient HPC systems since its introduction in 2007.

However, energy efficiency goes beyond hardware design. Delivering sustained but
energy-efficient performance of real-world applications will require software
engineering decisions, both at the system-ware level but also in the applications
themselves. Such application decisions might be made when the software is designed
or at runtime via an auto-tuning framework.

For these to be possible, fine-grained instrumentation is needed to measure energy
and power usage not just of overall HPC systems but also of individual components
within the architecture. This information also needs to be accessible not just to
privileged system administrators but also to individual users of the system, and in a
way that is easily correlated with the execution of their applications.

Score-P has been able to record external generic and user-defined hierarchical
performance counters since version 1.2. This is done with a flexible “metric plugins”
interface to address the complexity of machine architectures both today and in the
future. The metric plugin interface provides an easy way to extend the core functionality
of Score-P to record additional counters, which can be defined in external libraries and
loaded at application runtime by the measurement system. We built a Score-P metric
plugin to monitor the application external energy and power information. Figure 15
shows the visualization of Gromacs with energy and power consumption for host and
accelerator in Vampir. A monitoring study of energy and power consumption on Cray
supercomputers was done in [28].

Figure 15: Color-coded visualization of 4000 iterations of a hybrid version of Gromacs running on

four nodes (with each node hosting one MPI process with six CPU threads and two GPU CUDA
streams running on the accelerator) with according timelines for the events on all four nodes
(topmost) and corresponding energy (second timeline), instantaneous power (third timeline),

average board power derived from energy (fourth timeline), instantaneous accelerator power (fifth
timeline), average accelerator power derived from accelerator power (lowest timeline) for the four

nodes, and according statistics for the exclusive time on the right part of the figure.

© CRESTA Consortium Page 26 of 41

With systems getting larger and more complex, networks within HPC systems are
getting more and more complex as well. Since network problems or high network load
can tremendously affect the behavior of parallel applications it is important to enable an
analysis of the correlations between network and application behavior.

Similar to external energy counters, network statistics and counters can be monitored
and integrated in an application trace with the Score-P metric plugin interface by using
an according plugin that calls PAPI interface asynchronously per node. Figure 16
shows the correlation of application behavior and network activity with Vampir.

Figure 16: Vampir screenshot showing the application behavior and correlated network activity.

5.3 Selective	 visualization	 in	 Vampir	
5.3.1 Selective	 visualization	 of	 program	 phases	 and	 processes	
Exascale performance analysis will require solutions to reduce the amount of data that
tools display. One such option is to only display “interesting” locations that behave
differently, which requires an automatic approach for pre-processing. Vampir uses pre-
calculated summary information to partially load and analyze large event trace
information and to visualize only specific segments of the whole monitoring run. In
addition, it allows the exclusion of specific threads of execution from the analysis and
visualization. Figure 17 shows an example for this feature while loading a NEK5000
trace file.

© CRESTA Consortium Page 27 of 41

Figure 17: Vampir’s Partial Loading Dialog showing the loading of the NEK5000 trace in the time

range of 0 seconds to 1.6 seconds for the processes 512-1024.

5.3.2 Critical	 path	 analysis	
Identifying the performance bottlenecks or critical program regions can be difficult, in
particular, for long running applications, applications using a large number of
processing elements, or applications using multiple parallel paradigms. Multiple layers
of parallelism need to be exploited to efficiently utilize the available resources. To
support application developers and performance analysts we propose a technique for
identifying the most performance critical optimization targets in distributed
heterogeneous applications. We have developed CASITA, a tool that uses an
execution trace and the knowledge about the programming models MPI, OpenMP and
CUDA as well as their hierarchy among each other to build a distributed event
dependency graph. After locating wait states in this graph, we detect their root cause
and compute the critical path, an important property for performance optimizations.
Compared to existing analysis approaches, we incorporate the hierarchy of multiple
programming models and derive a metric from both the time an activity spends on the
critical path and the waiting time it caused. For the purpose of visualization, CASITA
enriches the input trace with additional counter information so that results can be
inspected in the Vampir trace viewer. Figure 18 shows the critical path as well as
caused wit time for a hybrid use case with MPI, OpenMP, and CUDA. This topic is also
covered in more detail in [29].

© CRESTA Consortium Page 28 of 41

Figure 18: Vampir visualization of a simple use case with MPI, OpenMP, and CUDA. The application

behavior is shown in the topmost timeline, the critical path in the second timeline and the cause
wait times in the bottom timeline.

5.3.3 Alternative	 visualization	 with	 circular	 hierarchies	
Load imbalances are often the root cause for inefficiencies resulting in an increased
waiting time during the communication phase of the processes and, therefore, in a
decreased parallel efficiency. Tools for automatic analysis often provide insight into a
predefined set of performance problems only, whereas inefficiencies are often not
obviously visible in comprehensive performance visualization tools. Therefore, there is
a need for a more intuitive visualization of performance data that assists application
developers similar to automatic analysis in identifying inefficiencies and their root
cause. Furthermore, it allows a discussion of the gathered data from multiple other
perspectives and the drawing of new conclusions and results.

We applied a scalable approach that combines the visualization of communicating
entities of a distributed system with an arbitrary number of correlated performance
metrics, such as MPI function call counts and runtimes, number of sent messages or
the frequency of occurrence for a group of functions. Our visualization of performance
data is based on the established concept of circular hierarchies. They allow developers
to intuitively deduce the communication scheme and existing imbalances in a
distributed application. We further correlate additional performance metrics with the
respective communication resources in the same view, which provide valuable
information about the cause of potential inefficiencies. Taking the actual system
topology into account, communication can be categorized (e.g., intra-node and inter-
node) and performance information aggregated to the desired level of detail in the
system hierarchy. Aggregation of communication entities is necessary for multiple
reasons: First, it is hard or even impossible to conceive data for extreme-scale
programs consisting of tens of thousands of processes when visualized in its raw form,
because the human perception is limited. Second, the size of screens is limited and
only a specific amount of data can be presented at once (see also [30]).

Figure 19 gives an example of this circular visualization for Gromacs with 384
processes in an MPI-only run.

© CRESTA Consortium Page 29 of 41

Figure 19: Circular visualization of the communication behavior of Gromacs with 384 processes.
The outer circle depicts functions groups (MPI in red, user code in green), the middle circle the

message volume (ranging from 1.8 GB in light yellow to 2.1 GB in dark red), and the inner circle the
point-to-point messages between the nodes (thicker arrows mean more communication).

5.3.4 Online	 performance	 analysis	
Projections for potential exascale architectures and systems highlight a need for large
numbers of cores per node or the use of accelerators. In both cases, the compute
cores share the available main memory, which is projected to increase at a far lower
rate than the core count. Thus, available memory per core is likely to decrease for
exascale systems. Projections indicate amounts such as 20 MB per core. Current
accelerators such as Xeon Phi underline this trend with model versions with about 100
MB of memory per core. At the same time, a similar scenario exists for the available I/O
resources. I/O bandwidth is projected to also increase at a lower rate than the number
of compute cores. These two trends pose challenges to traditional trace-based
performance optimization workflows, e.g., for the Vampir tool suite: First, with less
memory per core, traces must include little detail or be short in duration. However, fine-
grain detail can uncover interesting performance behavior and long running
applications are common for many HPC workloads. Additionally, the limited I/O
resources will make storage of extremely large exascale performance traces
challenging. The available storage capacity and the available I/O bandwidth can both

© CRESTA Consortium Page 30 of 41

become bottlenecks. Within CRESTA, we investigated an online workflow for trace-
based performance analysis[26]. In this workflow, an in-memory tracing library provides
a mechanism to cope with reduced availability of main memory per core. The library
can automatically discard and condense tracing data before it would exceed the
available main memory. This allows an automatic adaption of fine-grain tracing for
short time periods and coarse-grain tracing for long running applications. Additionally,
the library avoids the use of the I/O system altogether. Instead, an online analysis
directly operates on tracing data and visualizes it to the tool user while the application
runs. We investigated memory consumption of the library and event rates of
benchmark applications with our early prototype implementation. These numbers
provide a promising approach to cope with the architectural challenges of potential
exascale systems.

© CRESTA Consortium Page 31 of 41

6 Debuggers	
In this section, we present extensions and modifications to Allinea DDT and MUST
debuggers and the integration of MUST into Allinea DDT.

6.1 Extension	 to	 Allinea	 DDT	
One of the major extensions is the development of a plugin infrastructure to enable
integration with the MUST tool – which we describe subsequently. Initial plugin
infrastructure development had the side effect of directly enabling Allinea to create
performance profiling support which ultimately led to the Allinea MAP profiling tool.

New support for integrating the workflow of HPC applications with tools was developed.
This was inspired by the need to sit tools within existing frameworks, the parameters
and datasets created for applications are often provided by workflows. This did not fit
with the typical GUI launch provided by tools. Rather than acting as standalone tool
with its own launch system, we explored the capability of a launch mode that required
significantly no changes to the user’s own method of launching jobs.

Enabling user access to tools in the presence of complex system limits such as no X
support, or strict firewalls, means that HPC access to tools is not as easy for users as it
should be. This was identified as one of the major issues during the application survey
in year 1. Direct experience with the ECMWF IFS CRESTA codesign application and
the act of debugging remote systems such as national supercomputers led to a lower
bandwidth solution for interactive tools – this work was subsequently extensively
developed into the product.

There was little interest in new programming models during the project – with Coarray
Fortran (ECWMF IFS) being one notable exception. As this was already supported by
Allinea there was no action other than a demonstration of this by Allinea.

One new platform of major significance appeared during the project. Initially CRESTA
had a strong GPU focus – but the arrival of Intel Xeon Phi allowed us to examine this
platform and the tool issues of developers. A number of applications expressed
interest in this. We tackled both Offload, Native and Symmetric mode. Offload required
significant experimentation and development as the platform was still instable and
preproduction. Whilst the platform may now be unlikely to survive, with the forthcoming
KNL being a self-hosted CPU rather than an accelerator, the changes made to support
this platform, provided an opportunity to address heterogeneous architecture
debugging.

6.2 Extension	 to	 MUST	
This section describes extensions to the runtime MPI correctness checking tool MUST
and its underlying parallel tools infrastructure GTI. Goals of the extension are:

• Increased scalability of MUST’s correctness checks, especially of its point-to-
point analysis, collective analysis, and deadlock detection

• An investigation of support for novel parallel programming paradigms with a
PGAS paradigm as demonstrator

• Contributions towards more efficient development of HPC runtime tools

6.2.1 Scalable	 MPI	 correctness	 analysis	
The development of MUST within the CRESTA project was based on version 1.1 of the
tool. This tool version provided a wide range of runtime MPI correctness checks.
However, this version executed correctness analyses that involved information from
two or more processes on a single process. Thus, with increasing scale this process
becomes a scalability bottleneck, ultimately limiting the approach for use cases with
about one hundred application processes. We extended MUST according to
deliverable D3.4.2 “Debugging Design Document: Update of D3.4.1” to overcome this
limitation.

© CRESTA Consortium Page 32 of 41

We performed a study [34][35] of the time complexities that are associated with an
analysis of MPI operations as part of a runtime deadlock detection. This analysis
provides a low-overhead approach to handle individual MPI operations. This analysis
remained centralized, i.e., was executed on a single process, but the achieved
reductions in the analysis are a prerequisite for a distributed and scalable
implementation. Additionally, we used this study to generalize our wait-for graph model
to capture the dependencies of complex MPI operations, such as an MPI_Waitall that
waits for multiple non-blocking wildcard receive operations. The generalization and
improvements to our centralized deadlock detection also motivated an investigation
[36] of improved error visualization techniques that target use cases such as
mismatches in MPI tags or communicators.

Based on these initial studies and improvements we incorporated scalability into MUST
in three steps:

• A distributed concept for MPI point-to-point analysis,
• A distributed concept for MPI collective analysis, and
• A theoretic foundation and concept for a distributed deadlock detection.

Analysis of MPI point-to-point operations must mimic the message matching of an MPI
implementation. It monitors all send and receive operations of all MPI processes. This
task must not be implemented in a centralized manner, as to not introduce a scalability
bottleneck. An analysis [39] of this workload identifies the use of a so-called intralayer
communication direction in a Tree-Based Overlay Network (TBON) as a promising
approach to distribute the matching of point-to-point messages. This study also
describes the implementation that we use in MUST and compares it to a TBON
approach that does not apply intralayer communication. The comparison uses two
benchmark suites (SPEC MPI2007 and the NAS Parallel Benchmarks) on two compute
systems (Sierra a cluster at the Lawrence Livermore National Laboratory and Juqueen
a BlueGene/Q system at the Research Center Jülich) with up to 16,384 application
processes. The results are promising and highlight good scalability and wide
applicability of the approach. In comparison to existing MPI correctness approaches,
our concept is scalable and provides full MPI type matching capabilities, without the
use of heuristics that can introduce false positives or false negatives.

In order to analyze MPI collective operations in a scalable manner, we investigated [37]
the use of hierarchical correctness checks that execute on all layers of a TBON. This
concept provides an efficient and scalable concept for almost all correctness analyses
that apply to these operations. Type matching checks for a subset of the collective
operations, e.g., for MPI_Alltoallv, form an exception and do not directly map to a
TBON hierarchy. For these operations we utilize our intralayer communication to
distribute their workload efficiently. Our investigation of these extensions relies on the
same compute systems and benchmarks as for the point-to-point operations. They
demonstrate scalability and highlight drastic performance improvements in comparison
to a centralized reference implementation.

Our initial study of analysis costs for MPI deadlock detection [34][35] highlights that
running a graph-based approach continuously is impractical. Following this result, we
formalized a transition system that captures the semantic of MPI [38]. This transition
system uses a single state vector to represent an execution state of an MPI application.
As opposed to existing MPI transition systems that try to provide non-determinism
coverage, our small execution states enable an efficient distributed implementation in
MUST. Processes on one layer of the TBON execute this transition system. Each
process manages the state for an exclusive subset of the state vector. We then
combine our intralayer communication with hierarchical communication in the TBON to
synchronize the state of these processes. As a result, we derive a distributed
implementation of the transition system in MUST. We study one of the before
mentioned benchmarks with up to 2,048 processes for this implementation. A
comparison to the centralized implementation in MUST demonstrates dramatic
performance improvements. We will publish subsequent measurements on the second

© CRESTA Consortium Page 33 of 41

compute system with up to 16,384 processes for an improved version of this
implementation.

Overall, our scalability extensions of MUST enable a first distributed tool for runtime
MPI correctness analysis, which does not use heuristics. Existing tools either use a
centralized implementation as in MUST version 1.1, or they rely on simplifications in
their analysis that can yield false positives or false negatives (unreported errors or
incorrect reports). At the same time, we documented our approach in detail to make it
accessible for other tools and other parallel programming paradigms. Beyond that, the
complete implementation of MUST relies on the parallel tools infrastructure GTI that
targets simplified tool development with reduced time-to-solution.

6.2.2 Parallel	 programming	 paradigms	
As to investigate runtime correctness checking for novel and upcoming parallel
programming paradigms, we target prototype support for a PGAS (Partioned Global
Address Space) paradigm in MUST. We selected the paradigm OpenSHMEM for this
purpose, since we saw an increasing adoption and increasing support in other tools.
Additionally, OpenSHMEM can cooperate with an existing MPI parallelization, which
simplifies implementation in GTI and MUST. We report on the prototype checks in
MUST in the following steps:

• Instrumentation and infrastructure extensions,
• Prototype checks, and
• Experiments.

In order to analyze OpenSHMEM directives for their correctness, MUST has to observe
them at runtime. The OpenSHMEM reference implementation, as well as the CRAY
implementation, provides weak symbols for this purpose. We provide a description of
these calls to GTI, which enables it to generate wrappers for them. We generate our
initial description for the OpenSHMEM calls with a script that parses a C header with all
library calls. OpenSHMEM implementations that do not provide weak symbols will
require an adapted instrumentation scheme that relies on library interposition.

Additionally we extended GTI to support a generalized handling of function
instrumentation and to forward return values to MUST analysis in case they are
needed.

Based on the available instrumentation for all OpenSHMEM directives we implement
the following prototype correctness checks in MUST:

• Direct argument checks:
o Error if size argument in get/put is negative
o Warning if size in get/put is zero

• Out of bound memory access:
o Error if memory access in get/put operations exceeds allocated memory

regions

The direct argument checks highlight the reusability of our MUST analysis. Even
though these existing analyses target MPI functions, we could successfully reuse the
checks by mapping these analyses to OpenSHMEM function arguments.

© CRESTA Consortium Page 34 of 41

Figure 20: MUST output for a simple OpenSHMEM test case with an invalid data access and a put

of count 0.

To access remote memory with OpenSHMEM, chunks of memory needs to be
remotely addressable. Therefore the OpenSHMEM standard provides a malloc
interface function. Memory allocated by this function can be addressed in put or get
operations. The analysis we provide keeps track of these malloc operations and
detects memory accesses that are outside of the allocated bounds. We use test cases
to evaluate our prototype checks. For one such test case that runs without a crash or
an error message with the current version of the OpenSHMEM library, we detect the
issues in Figure 20. Our analysis successfully detects an out of bound access that the
OpenSHMEM library fails to detect and also issues a warning for a zero size memory
access.

6.2.3 Parallel	 tools	 infrastructures	
MUST is implemented on top of GTI, an infrastructure for parallel tools. As a result, the
MUST implementation consists of modules (dynamically loadable libraries) that
implement so-called analyses, i.e., the actions of the tool. These modules can be
reused across different tools and across different parallel programming paradigms. Our
prototype checks for OpenSHMEM demonstrate this by reusing basic correctness
checks for MPI. We see the development of parallel tools infrastructures such as GTI
as an important step towards more efficient tools development in the future. Our goal is
that GTI can provide as many common tool services to tools developers as possible.
This includes instrumentation, tool startup/shutdown, acquisition of additional
processes and threads to offload tool activities from application processes/threads, and
providing communication services. We rely on a TBON concept that demonstrated
scalability to millions of compute cores in existing approaches.

We concisely describe the underlying abstraction of GTI to document its notion of
events and analyses in a report [43]. This report serves to highlight advantages of
development with GTI and to provide its underlying concept to other tool
infrastructures. As our experience in the development with MUST indicated, some
types of analyses do not map well onto a TBON hierarchy. We introduce the intralayer
communication direction [39] for this purpose. Existing tools infrastructures only provide
such a communication system on the application processes. With the implementation

© CRESTA Consortium Page 35 of 41

in GTI, tool developers can utilize a point-to-point style communication on other layers
of the TBON. This enables the scalable correctness checks of MUST.

An important notion is that MUST requires a mechanism to tolerate an MPI related
application crash. It must be able to analyze all events that occur before the crash, in
order to detect whether it resulted from incorrect MPI usage. Within CRESTA we
studied [41] different techniques to provide such a crash handling scheme and selected
a fully asynchronous solution. It allows us to utilize asynchronous communication and
event analysis that enables scalability. GTI implements this scheme with a combination
of signal/error handlers and an alternate means of communication.

Our tests at increased scale identified out-of-memory issues for complex MUST
analyses. We observed these issues especially for long running applications with high
event rates. An investigation [40] of them yielded a detailed understanding of the
importance of event selection. We implemented two techniques to overcome this issue
and to enable correct operation of MUST in all of our test cases. The techniques that
we propose and the event-selection problem apply to different types of event-based
tools and can occur for simple tasks such as MPI message matching already.

Finally, we implemented a prototype tool for trace-based online performance analysis
on top of GTI. This use case [42] highlights the advantages of tool development with
GTI. The development of the prototype did not require extensions of GTI and allowed
us to completely focus on developing the functional parts of the tool. Furthermore, we
could reuse portions of the MUST implementation for the prototype, even though both
tools serve widely different use cases.

6.3 Integration	 of	 MUST	 in	 Allinea	 DDT	
A combination of both MUST and Allinea DDT is promising since:

• Some errors that MUST detects do not manifest into a crash within an
application run, thus, MUST output can make programmers aware of unnoticed
issues in the software;

• Some MPI usage errors are a consequence of another software fault,
understanding these errors is simpler with a debugger such as Allinea DDT.

Within CRESTA we developed a combination of Allinea DDT and MUST that is based
on an existing concept of configurable breakpoints. When MUST detects an MPI usage
error it triggers a function to which Allinea DDT automatically sets a breakpoint. Thus,
the debugger can stop the execution of the parallel application and notify the user of
the tool. This enables a detailed investigation of the execution state that surrounds the
detected error.

This concept is challenged by MUST’s non-local correctness analyses. MUST
implements correctness analyses that require information from more than one process
(non-local) on additional processes. Additionally, it executes these checks
asynchronously, i.e., when MUST detects a correctness issue the application may have
advanced to a subsequent execution state already. Previous approaches to couple
debuggers with runtime correctness tools did not support non-local analyses as a
consequence. We developed the workflow that Figure 21 illustrates to overcome this
limitation.

© CRESTA Consortium Page 36 of 41

Figure 21: Workflow for the DDT-MUST integration

The user starts Allinea DDT as usual and selects a MUST plugin to enable the
integration. In order to simplify a simultaneous startup of both tools we use the manual
launch mode of Allinea DDT, it allows the user of the tool to start the application under
the control of MUST and to connect it with Allinea DDT. Launching the application with
mustrun works as usual, but uses the additional flag --must:ddt. Specifying the
additional flag --must:capture lets MUST write a log file for all errors it detected. MUST
then automatically ads the ddt-client command to connect the application with the
running GUI of Allinea DDT. When MUST detects a process local correctness issue it
directly triggers a breakpoint that enables investigation in Allinea DDT. If it detects a
non-local correctness issue, it notifies the user, but immediate investigation is not
possible since the error was detected asynchronously. Assuming a deterministic
application, the user can use the log file that details all errors that MUST detected
(MUST_Output.repro) to run the application a second time (with the --must:reproduce
option). In that case, MUST reads in the error log file and triggers its respective
warnings and errors when the application executes these commands. This mode even
allows MUST to trigger breakpoints for MPI operations that are only involved in (but do
not cause) the MPI usage error. As an example, if MUST detects a datatype mismatch
between a send and a receive operation, using the --must:reproduce option, a user will
not only get breakpoints for the send and the receive, but also for operations that
create or commit the involved datatypes. This scheme both enables investigation of
errors in Allinea DDT and it allows us to breakpoint at all involved operations of an MPI
usage error.

DDT# MUST#

Start%

Start%
Allinea%DDT%

Manual%
Launch%

Add%MUST%
Plugin%

$mustrun%
with%%

::must:ddt%
::must:capture%

$mpirun%...%
ddt:client%…%

MUST_Output.repro%

Reproduce%MUST%%
detected%error?%

$mustrun%
with%%

::must:ddt%%
::must:reproduce%

Issue%
breakpoint%

for%
invesIgaIon%

Log%error%
locaIon%

AJach%to%
processes%

Detected%local%error?%
OR%arrived%at%

recorded%error?%

yesno

yes$

no$

Separate%
MUST%tool%
processes%

Readin

Write$

© CRESTA Consortium Page 37 of 41

7 Conclusions	
In this deliverable, we have presented the development, extensions and modifications
to different frameworks that have been developed by CRESTA WP3 to enable efficient
execution and development of parallel applications on exascale machines.

We have described the development of a new framework, called “targetDP”, to support
thread and instruction level parallelism for lattice-based codes. CRESTA participation
in MPI Forum OpenACC and OpenMP committees has been briefly described.

We presented a first mock-up implementation of the CRESTA DSL specification to
enable automatic tuning of OpenACC codes.

The software architecture and the performance of two components (runtime
administration and monitoring components) of the CRESTA run-time system have been
discussed.

Extensions and modifications to the Score-P and Vampir performance monitoring and
analysis tools have been presented. Selective instrumentation and monitoring,
hierarchical buffer management, runtime event reduction and message matching have
been implemented. In addition, we reported how to deal with file system limitations, to
support performance monitoring for new programming systems and application using
hybrid approaches, and how to monitor energy and network performance hardware
counters.

Together with the extensions and modifications to Allinea DDT and Dresden Technical
University MUST debuggers, we presented the integration of the MUST MPI
correctness checker into Allinea DDT parallel debugger.

© CRESTA Consortium Page 38 of 41

8 References	
[1] Kogge, Peter, Keren Bergman, Shekhar Borkar, Dan Campbell, W. Carson,

William Dally, Monty Denneau, Paul Franzon, William Harrod, and Kerry Hill.
"Exascale computing study: Technology challenges in achieving exascale
systems." (2008).

[2] Dongarra, Jack, et al. "The international exascale software project: a call to
cooperative action by the global high-performance community." International
Journal of High Performance Computing Applications (2009)

[3] State of the art and gap analysis - Development environment, Project CRESTA
Deliverable 3.1 (2012).

[4] Adaptive runtime support design document (Update), Project CRESTA
Deliverable 3.2.2 (2013)

[5] Michael Schliephake, Xavier Aguilar, Erwin Laure: Design and Implementation
of a Runtime System for Parallel Numerical Simulations on Large-Scale
Clusters. Procedia Computer Science, Volume 4, Proceedings of the
International Conference on Computational Science, ICCS 2011, 2011, Pages
2105-2114.

[6] Tunstig, Sebastian: System modelling for process mapping onto scattered
computational nodes in high performance computing clusters. MS thesis KTH
Royal Institute of Technology. Stockholm, 2014.

[7] Pellegrini, Francoise; Roman, Jean: SCOTCH: A Software Package for Static
Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs.
Proceedings of HPCN'96, Brussels, Belgium. LNCS 1067, pages 493-498.
Springer, April 1996. F. Pellegrini and J. Roman.

[8] The Integrated Performance Monitoring tool (IPM). www.ipm2.org

[9] Aguilar, Xavier, Erwin Laure, and Karl Fürlinger: "Online Performance
Introspection with IPM." High Performance Computing and Communications &
2013 IEEE International Conference on Embedded and Ubiquitous Computing
(HPCC_EUC), 2013 IEEE 10th International Conference on. IEEE, 2013.

[10] Fuerlinger, Karl, Nicholas J. Wright, and David Skinner: "Effective
performance measurement at petascale using IPM." Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference on. IEEE, 2010.

[11] Initiative, Accelerated Strategic Computing: "The ASCI sweep3d
benchmark code." (1995).

[12] Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Dan
Henningson, Philipp Schlatter, Adam Peplinski, Alistair Hart, Jens Doleschal,
David Henty, and Paul Fischer: Nek5000 with OpenACC. Proceedings of
EASC, 2014.

[13] Michael Wagner, Jens Doleschal, Andreas Knüpfer und Wolfgang E.
Nagel, “Selective Runtime Monitoring: Non-intrusive Elimination of High-
frequency Functions”, in High Performance Computing Simulation (HPCS),
2014 International Conference on, pages 295-302, 2014.

[14] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M.
S. Müller, and W. E. Nagel, “The Vampir Performance Analysis Tool Set,” in
Tools for High Performance Computing. Springer, pp. 139–155, 2007.

[15] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm, D. Eschweiler,
M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, P.
Philippen, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B.
Wesarg, and F. Wolf, “Score-P: A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir,” in Tools for High
Performance Computing 2011, Springer, pp. 79–91, 2012.

© CRESTA Consortium Page 39 of 41

[16] M. Geimer, F. Wolf, B.J. Wylie, E. Abraham, D. Becker, and B. Mohr,
“The Scalasca Performance Toolset Architecture,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 6, pp. 702–719, 2010.

[17] S. S. Shende and A. D. Malony, “The Tau Parallel Performance
System,” International Journal on High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[18] Jens Doleschal, Thomas William, Bert Wesarg, Johannes Ziegenbalg,
Holger Brunst, Andreas Knüpfer, and Wolfgang E. Nagel, “Towards Detailed
Exascale Application Analysis – Selective Monitoring and Visualisation”, in
Proceedings of EASC, 2014.

[19] Michael Wagner, Jens Doleschal, Andreas Knüpfer and Wolfgang E.
Nagel, “Runtime Message Uniquification for Accurate Communication Analysis
on Incomplete MPI Event Traces”, in Proceedings of the 20th European MPI
Users' Group Meeting, Madrid, Spain, pages 123-128, ACM, 2013.

[20] Michael Wagner, Andreas Knüpfer, and Wolfgang E. Nagel,
“Hierarchical Memory Buffering Techniques for an In-Memory Event Tracing
Extension to the Open Trace Format 2”, in Parallel Processing (ICPP), 2013
42nd International Conference on, pp. 970–976, 2013.

[21] Michael Wagner and Wolfgang E. Nagel, “Strategies for Real-Time
Event Reduction”, in Euro-Par 2012: Parallel Processing Workshops, ser.
Lecture Notes in Computer Science. Springer, vol. 7640, pp. 429–438, 2013.

[22] Domenic Eschweiler, Michael Wagner, Markus Geimer, Andreas
Knüpfer, Wolfgang E. Nagel, and Felix Wolf, "Open Trace Format 2: The Next
Generation of Scalable Trace Formats and Support Libraries", in Applications,
Tools and Techniques on the Road to Exascale Computing, volume 22 of
Advances in Parallel Computing, pages 481–490, 2012.

[23] S. R. Alam, H. N. El-Harake, K.R Howard, N. Stringfellow and F.
Verzelloni, “Parallel I/O and the Metadata Wall“, Parallel Data Storage
Workshop (PDSW’11), 2011.

[24] W. Frings, F. Wolf, and V. Petkov, “Scalable massively parallel i/o to
task-local files”, in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09, ACM, pp. 17:1–
17:11, 2009.

[25] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knüpfer, K.
Iskra, R. Ross, W. E. Nagel, and S. Poole, “Enabling Event Tracing at
Leadership-Class Scale through I/O Forwarding Middleware”, in Proceedings of
the 21th International Symposium on High Performance Distributed Computing,
ser. HPDC ’12. ACM, pp. 49–60, 2012.

[26] Michael Wagner, Tobias Hilbrich, and Holger Brunst, “Online
Performance Analysis: An Event-based Workflow Design Towards Exascale”, in
Proceedings of the 16th International Conference on High Performance
Computing and Communication (HPCC), 2014. Online draft:
http://rcswww.zih.tu-dresden.de/~hilbrich/drafts/online-performance.pdf

[27] Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Dan
Henningson, Philipp Schlatter, Adam Peplinski, Alistair Hart, Jens Doleschal,
David Henty, and Paul Fischer, “Nek5000 with OpenACC”, in Proceedings of
EASC, 2014.

[28] Alistair Hart, Harvey Richardson, Jens Doleschal, Thomas Ilsche, Mario
Bielert und Matthew Kappel, “User-level Power Monitoring and Application
Performance on Cray XC30 Supercomputers”, 2014.

[29] Felix Schmitt, Jonas Stolle, and Robert Dietrich, "CASITA: A Tool for
Identifying Critical Optimization Targets in Distributed Heterogeneous

© CRESTA Consortium Page 40 of 41

Applications" in 44rd International Conference on Parallel Processing
Workshops (ICPPW), 2014.

[30] Felix Schmitt, Robert Dietrich, René Kuß, Jens Doleschal, and Andreas
Knüpfer, “Visualization of Performance Data for MPI Applications Using Circular
Hierarchies, 1st Workshop on Visual Performance Analysis (VPA), 2014.

[31] G. Mozdzynski, M. Hamrud, N. Wedi, J. Doleschal, H. Richardson: A
PGAS Implementation by Co-design of the ECMWF Integrated Forecasting
System (IFS). In High Performance Computing, Networking, Storage and
Analysis 2012, 2012.

[32] W. Frings, F. Wolf, and V. Petkov: Scalable massively parallel i/o to
task-local files. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York, NY, USA
ACM, pages 17:1–17:11, 2009.

[33] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knüpfer, K.
Iskra, R. Ross, W. E. Nagel, and S. Poole: Enabling Event Tracing at
Leadership-Class Scale through I/O Forwarding Middleware. In Proceedings of
the 21th International Symposium on High Performance Distributed Computing,
ser. HPDC ’12. ACM, pages 49-60, 2012.

[34] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski,
and Matthias S. Müller. „MPI Runtime Error Detection with MUST: Advances in
Deadlock Detection.“ In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages
30:1–30:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[35] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski,
and Matthias S. Müller. „MPI Runtime Error Detection with MUST: Advances in
Deadlock Detection.“ Scientific Programming, 21(3–4):109–121, 2013.

[36] Joachim Protze, Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz,
and Matthias S. Müller. „MPI Runtime Error Detection with MUST: Advanced
Error Reports.“ In Alexey Cheptsov, Steffen Brinkmann, José Gracia, Michael
M. Resch, and Wolfgang E. Nagel, editors, Tools for High Performance
Computing 2012, pages 25–38. HLRS, Springer Berlin Heidelberg, 2013.

[37] Tobias Hilbrich, Fabian Hänsel, Martin Schulz, Bronis R. de Supinski,
Matthias S. Müller, Wolfgang E. Nagel, and Joachim Protze. „Runtime MPI
Collective Checking with Tree-Based Overlay Networks.“ In Proceedings of the
20th European MPI Users’ Group Meeting, EuroMPI’13, pages 129–134, New
York, NY, USA, 2013. ACM.

[38] Tobias Hilbrich, Bronis R. de Supinski, Wolfgang E. Nagel, Joachim
Protze, Christel Baier, and Matthias S. Müller. „Distributed Wait State Tracking
for Runtime MPI Deadlock Detection.“ In Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC’13, pages 16:1–16:12, New York, NY, USA, 2013. ACM.

[39] Tobias Hilbrich, Joachim Protze, Bronis R. de Supinski, Martin Schulz,
Matthias S. Müller, and Wolfgang E. Nagel. „Intralayer Communication for Tree-
Based Overlay Networks.“ In 42nd International Conference on Parallel
Processing (ICPP), Fourth International Workshop on Parallel Software Tools
and Tool Infrastructures, pages 995–1003, Los Alamitos, CA, USA, 2013. IEEE
Computer Society Press.

[40] Tobias Hilbrich, Joachim Protze, Michael Wagner, Matthias S. Müller,
Martin Schulz, Bronis R. de Supinski, and Wolfgang E. Nagel. „Memory Usage
Optimizations for Online Event Analysis.“ To appear in: Solving Software
Challenges for Exascale, EASC ’14. Springer Berlin Heidelberg, 2014. Online
version: https://e-reports-ext.llnl.gov/pdf/772313.pdf

© CRESTA Consortium Page 41 of 41

[41] Joachim Protze, Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski,
Wolfgang E. Nagel, and Matthias S. Müller. „MPI Runtime Error Detection with
MUST: A Scalable and Crash-Safe Approach.“ To appear in: 43nd International
Conference on Parallel Processing (ICPP), Fifth International Workshop on
Parallel Software Tools and Tool Infrastructures, Los Alamitos, CA, USA, 2014.
IEEE Computer Society. Online draft: http://rcswww.zih.tu-
dresden.de/~hilbrich/drafts/crash-handling.pdf

[42] Michael Wagner, Tobias Hilbrich, and Holger Brunst. „Online
Performance Analysis: An Event-based Workflow Design Towards Exascale.“
To appear in: The 16th IEEE Inter- national Conference on High Performance
Computing and Communications, HPCC 2014, 2014. Online draft:
http://rcswww.zih.tu-dresden.de/~hilbrich/drafts/online-performance.pdf

[43] Tobias Hilbrich, Martin Schulz, Holger Brunst, Joachim Protze, Bronis R.
de Supinski, and Matthias S. Müller. „An Event-Action Mapping Abstraction for
Parallel Tools Infrastructures.“ Submitted to: Proceedings of the 2015 IEEE
29th International Parallel and Distributed Processing Symposium, IPDPS ’15,
Washington, DC, USA, 2015. IEEE Computer Society. Online draft:
http://rcswww.zih.tu-dresden.de/~hilbrich/drafts/mapping-abstraction.pdf

	

