

Copyright © CRESTA Consortium Partners 2014

D3.8	
 –	
 Final	
 release	
 of	
 adaptive	

runtime	
 systems	

WP3:	
 Development	
 Environment	

Due date: M38

Submission date: 30/11/2014

Project start date: 01/10/2011

Project duration: 36 months

Deliverable lead
organization KTH

Version: 1.0

Status Final

Author(s): Xavier Aguilar (KTH), Michael Schliephake (KTH)

Reviewer(s) Weronika Filinger (UEDIN), Ulf Schiller (UCL)

Dissemination level

<PU/PP/RE/CO> PU

	

 	

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 14/11/2014 First version of the deliverable Aguilar, Schliephake
(KTH)

0.2 27/11/2014 First revision of the deliverable Aguilar, Schliephake
(KTH)

1.0 28/11/2014 Final version for submission Lorna Smith (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 PURPOSE	
 ..	
 2	

2.2	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 2	

3	
 PURPOSE	
 AND	
 RELEVANCE	
 OF	
 THE	
 RUNTIME	
 SYSTEM	
 ...	
 3	

3.1	
 RATIONALE	
 FOR	
 THE	
 DEVELOPMENT	
 OF	
 A	
 RUNTIME	
 SYSTEM	
 ..	
 3	

3.2	
 RELEVANCE	
 OF	
 THE	
 RUNTIME	
 SYSTEM	
 ...	
 4	

4	
 RUNTIME	
 SYSTEM	
 ..	
 5	

4.1	
 DOWNLOAD	
 AND	
 INSTALLATION	
 ..	
 5	

4.2	
 INSTALLATION	
 OF	
 THE	
 RUNTIME	
 MONITORING	
 COMPONENT	
 (MON-­‐C)	
 ..	
 5	

4.3	
 INSTALLATION	
 OF	
 THE	
 RUNTIME	
 ADMINISTRATION	
 COMPONENT	
 (RTA-­‐C)	
 ...	
 5	

5	
 A	
 SHORT	
 OVERVIEW	
 OF	
 THE	
 RUNTIME	
 SYSTEM	
 ...	
 7	

5.1.1	
 User	
 interface	
 of	
 the	
 runtime	
 system	
 ...	
 7	

5.1.2	
 Software	
 architecture	
 ...	
 8	

5.1.3	
 Runtime	
 administration	
 component	
 (Rta-­‐C)	
 ..	
 9	

5.1.4	
 Monitoring	
 component	
 	
 (Mon-­‐C)	
 ...	
 12	

6	
 REFERENCES	
 ...	
 14	

	
 	

© CRESTA Consortium Page 1 of 14

1 Executive	
 Summary	

In the CRESTA project, part of the effort was devoted to designing different frameworks
in the CRESTA development environment of exascale applications. This deliverable is
a software deliverable, delivering a final release of the runtime environment. In this
associated report, we present the installation instructions for the runtime system
environment developed within the CRESTA project.

The runtime environment developed within this project has been shown to benefit
applications on the medium- to large- scale and represents a significant step on the
software’s roadmap towards the utilisation with applications on the scale of future
exascale platforms.

© CRESTA Consortium Page 2 of 14

2 Introduction	

2.1 Purpose	

The purpose of this deliverable is to describe the runtime system that has been
produced in the CRESTA project. The software is on the CRESTA Subversion
repository. The purposes of this associated document are:

• to motivate the purpose of the software and its relevance to co-design briefly in
section 3

• to describe the installation and compilation of the runtime system in section 4,
and

• to give a short overview of the runtime system software developed during the
CRESTA project in section 5.

2.2 Glossary	
 of	
 Acronyms	

cronym Definition
D Deliverable
EC European Commission
EPCC Edinburgh Parallel Computing Centre
PM Project Manager
WP Work Package
Mon-C Monitoring component of the runtime system

© CRESTA Consortium Page 3 of 14

3 Purpose	
 and	
 relevance	
 of	
 the	
 runtime	
 system	

3.1 Rationale	
 for	
 the	
 development	
 of	
 a	
 runtime	
 system	

The rationale for the development of this runtime system has already been described in
the design document of the runtime system (deliverable D3.2 [7]) and was summarised
in deliverable D3.7 [6]. For convenience we reproduce the text from D3.7 here.

Massive parallel computing is a major driving force in computational science and
scientific discovery and the systems are permanently getting larger and more complex.
Future exascale systems will be composed of hundreds of thousands of cores and will
have complex designs that are likely to use heterogeneous technologies. It will,
therefore, be a challenging task to achieve good application and system performance.
In addition, the increasing complexity of these machines will also increase the
complexity of the applications and operating systems.

These new kinds of heterogeneous systems pose new challenges in the development
and porting of applications, and require significant effort to achieve the systems peak
capability. Human experts who optimise and port applications for these systems need
to be complemented with intelligent software tools providing support in a transparent
and automated way.

In order to achieve good performance, typically highly system-specific features have to
be exploited, which often means that best practices in programming and software
development have to be relaxed and the resulting code is difficult to port to different
systems. Runtime systems help to build portable applications for a broad range of HPC
infrastructures in a modular way. The heterogeneous character of recent hardware as
well as the parallel program’s highly dynamic behaviour not known before their
execution require runtime systems to take into consideration the hardware topology as
well as monitoring information of the on-going program execution. The runtime system
consists therefore of a resource manager, a library for runtime administration of parallel
applications, and a performance monitoring and analysis tool. The design is based on a
task-oriented programming model.

Requirements. One of the hardest requirements in the development of simulation
applications is their adaptation to different computer systems due to the varying
technical parameters that have a huge influence on the numerical performance: cache
and memory hierarchies, the number of cores per CPU, the number of sockets per
node, and the characteristics of the interconnect network.

Today, optimisations are typically implemented directly in the code. The necessary
effort to do this will grow immensely in the future due to the increasing heterogeneity
and diversity of HPC computer systems. A runtime system must aim to improve the
performance portability that can be achieved with one certain implementation.

An important requirement for tool development is the reuse of existing application
codes often implemented in Fortran or C. The introduction of new software tools should
allow its incremental adoption, keeping the need for reimplementation or adaptation of
existing code to a minimum. A further requirement connected to the previous one is
the wish that software tools support an adaptive use of best practices, which otherwise
would not be applied due to prohibitive implementation effort. Finally, given that hybrid
programming models gain more importance, the runtime system may not prevent the
use of parallelisation technologies that it does not address itself.

While different application classes put different requirements on runtime support, we
focus on numerical simulation applications. Typical requirements of numerical
simulations are:

• Integration of data and task parallelism,

• Use of multi-level parallelism in the algorithm design,

© CRESTA Consortium Page 4 of 14

• Development of algorithms with a high degree of parallel executable tasks,
which have a moderate size, can be created very quickly, and avoid global
communication operations,

• Usage of multi-threading, asynchronous communication and one-sided
communication,

• Consideration of the increasing depth of the memory hierarchy,

• Optimised scheduling and mapping taking into account chip-architectures,
memory hierarchies, internal communication abilities, etc. to provide a higher
degree of parallelism and decrease memory and communication bandwidth
usage.

3.2 Relevance	
 of	
 the	
 runtime	
 system	

In co-design terms, the development of the runtime system benefited significantly from
access and input from the real simulation applications in the project. This is an example
of the final software tools being of a better quality than they would otherwise have been
without the applications. In particular, the application NEK5000 provided input and
direction as to how scalable communication could be implemented. A module for fast
collective communication operations has been developed based on the existing
implementation in NEK5000. These functions will not only be used in the runtime
system itself. This component will be used by simulation programs for neuroinformatics
as well as quantum chemistry, as these need a significant reduction in communication
latency as well. Hence the final software is of benefit to other applications beyond
NEK5000.

The runtime system itself provided the expected performance improvements of about
10% measured in wallclock time for tested applications. These have been measured in
tests up to several hundred nodes[6]. This means that the software can be used for
practical purposes in medium- to large- scale simulation applications. This is also a
significant milestone on the software’s roadmap towards utilisation on exascale scale
applications. The next stage in the software’s roadmap to exascale is to improve the
distributed mapping and scheduling algorithms as well as further improvements of the
task model.

© CRESTA Consortium Page 5 of 14

4 Runtime	
 System	

4.1 Download	
 and	
 installation	

The software is available from the CRESTA software repository hosted at EPCC. Its
URL is

https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp3/runtime

The archive file there can be downloaded and uncompressed on the local system. The
software package consists of several modules that are located in different directories of
the file tree. The compilation will be done in two steps. The monitoring component will
be compiled first. The second step is the compilation of the runtime administration
component.

4.2 Installation	
 of	
 the	
 Runtime	
 Monitoring	
 Component	
 (Mon-­‐C)	

The monitoring component is located in the subdirectory mon-c of the file tree provided
in the archive file.

Installing the monitoring component follows the normal procedure of configuring the
package with “configure CFLAGS=-DHAVE_RDTSC”, building it with “make” and
installing it with “make install”. In most cases that would be sufficient, however, some
systems may require the use of different flags in the configuring process.

Example of configure in a Cray XE6 system installing the basic functionalities:

./configure --prefix=/opt/monC CC=cc F77=ftn CFLAGS=-DHAVE_RDTSC

More configuration options can be obtained by executing:

./configure --help

If Hardware Performance Counters are available in the target system through the PAPI
interface [3], it is recommended to configure the monitoring package to use them by
adding the flag “—with-papi” in the configure process:

./configure --with-papi=/opt/papi/4.3/ --prefix=/opt/monC CC=cc
F77=ftn CFLAGS=-DHAVE_RDTSC

Afterwards, the user has to add the flag “-DHAVE_PAPI” to the runtime compilation
flags.

4.3 Installation	
 of	
 the	
 Runtime	
 Administration	
 Component	
 (Rta-­‐
C)	

The monitoring component is located in the subdirectory rta-c of the file tree provided
in the archive file.

The component itself consists of several sub-components located in subdirectories of
rta-c. The list of components is

devtools General tools used in Rta-C

mampicl Implementation of latency-optimised communication routines

rts Routines for ask management and relocation

© CRESTA Consortium Page 6 of 14

All sub-components can be configured and compiled separately if needed. Normally,
this is not needed.

The configuration will be done by adaptation of a file named custom.mk that is
contained in the directory of each sub-component. Definitions of symbols that control
the compilation can be made here. Each of the custom.mk files in the sub-
components includes again another file custom.mk from its parent directory. The
parent directory is the directory rta-c, i.e. the main directory of the Rta-C component.
General settings for all subcomponents can be defined at a central place in that way.

The files custom.mk will be included into makefiles during the compilation process.
They can therefore contain everything that is allowed according to the syntax of
makefiles – symbols, functions, rule definitions etc. Information about possible
definitions and typical settings are given in the provided example files. In most cases,
only specific definitions should be needed in case the system will be linked together
with certain tools having specific requirements on the compilation. To this end, the
symbols CCFLAGS_USER, CXXFLAGS_USER, and LDFLAGS_USER can be defined.
They will be used to extend the definitions of the typically present symbols CFLAGS,
CXXFLAGS, and LDFLAGS. The introduction of these symbols minimises the risk of
unwanted inference with predefined default options from software environment
modules or other systems and user-specific environment configurations. Furthermore,
the compilation of modules with the MPI compilers uses the definitions from the
additional modules MPICFLAGS_USER, MPICXXFLAGS_USER, and
MPILDFLAGS_USER.

Prerequisites for the compilation:

• The names of the compilers have to be defined in environment variables. These
variables are CC for the C-compiler, CXX for the C++-compiler, MPICC for the
MPI-C-compiler and MPICXX for the MPI-C++-compiler. C modules can be
compiled also with the C++ compiler if desired.

• The library Scotch [4] has to be provided on the system. Two symbols have to
be defined in the custom.mk file of Rta-C – SCOTCH_INCLUDE, which provides
the path of the directory with the included files and SCOTCH_LIB, which
provides the path of the directory with the compiled library.

Having done the configuration, the compilation could be done entering every sub-
directory and executing the make command. While this will be used when developing
within Rta-CA, a one-step compilation is provided in the sub-directory build. The
makefile there will recursively compile all sub-components of Rta-C at once.

The compilation can be performed for an arbitrary number of different configurations.
The makefiles have been prepared for two configurations: release and debug. The
outcome from the compilation for these configurations is a library for normal use
respective libraries for debugging purposes. The configuration release will be used
as default, the compilation for debug will be triggered by the symbol definition DEBUG,
for example by the command “make DEBUG=1”.

The compilation for a certain configuration ensures that the object and library files as
well as other intermediate data of the compilation product will be saved in a
subdirectory of the component with the name of the configuration. Configuration names
other than release and debug will be defined with the symbols MK_CONFIG. For
example “make MK_CONFIG=spec-conf-1”. The compilation process can be
customised for a certain configuration then again in the custom.mk files where it is
possible to provide conditional definitions based on the MK_CONFIG setting.

The library of the compiled Rta-C that can be linked to applications and the header files
containing the external definitions will be available after the compilation in the
subdirectories lib respective include.

© CRESTA Consortium Page 7 of 14

5 A	
 short	
 overview	
 of	
 the	
 runtime	
 system	

This section provides an excerpt from the deliverable D3.7 that presented the CRESTA
development environment. The excerpt here reproduces the descriptions of the
components of the runtime system. More details about the approach, programming
model, and performance measurements can be found in Deliverable D3.7.[6]

5.1.1 User	
 interface	
 of	
 the	
 runtime	
 system	

The user interface consists of five elements that will be used by an application
developer. These comprise the definition of computational tasks, support for the
automatic re-mapping of distributed arrays as well as user-defined data that define the
state of a computational task, a control function to perform dynamic load-balancing,
and the management of MPI communicators. This interface has been designed with
simplicity in mind in order to allow its convenient introduction into existing simulation
codes. Furthermore, the current implementation of the user interface to the runtime
system, focusing on the dynamic gradual improvement of task mappings and load-
balance, allows developers to optionally deactivate automatic load-balancing if a
certain computer system cannot be well supported for some reason. This can be
compared to a parallelisation similar to the OpenMP approach that allows compiling a
program optionally with OpenMP support.

The definition of tasks: A task is identified by a key. The possibility to define tasks
hierarchically leads naturally to a tree structure of tasks. Examples of task keys are
“task_1” or “task_1/subtask_a”. A number of parameters for a task can be
specified in a structure task_params. These comprise the number of allocated
processors, estimations of computational work and communication, and a callback
function that is used to serialize respective de-serialize the task status. The following
function can be used for the definition of the task tree.
task_tree *define_task(task_tree *parent, int n,
 string *keys, task_parms *children);

One call to define_task() adds the number of n sub-tasks to the parent task that
are allowed to run in parallel. Several calls to this function define a sequence of tasks.
Arbitrary task trees may be constructed in that way.

The beginning and end of the execution of a certain task can be registered in the code
by calls to the functions begin_task(key) resp. end_task(key).

Support for re-mapping of tasks: It is necessary to transport the state of a
computational task between processes in order to move tasks during the runtime. The
application developer has to provide a function that can serialise resp. de-serialise the
state of a computational task. The state of a task will be serialised in the owner process
of a task, transported to the destination process, and finally de-serialised there. A
ready-to-use convenience implementation is provided for the transport of arrays, which
are one of the most frequently-used data structures in numerical simulations. Arrays
can be registered at their owning computational tasks and will be handled by the
runtime system automatically. This avoids repeating coding tasks of serialisation for the
developer as well as allowing optimised handling of memory allocations. The prototype
for callbacks is defined as
int (*task_serialisation_cb)(int opcode, void *buffer);

The value of opcode defines whether the requested operation is a serialisation or a
de-serialisation, and buffer is used to store the serialised data to write or read from.
The registration of arrays at their owning tasks will be done with the function
void register_array(task_tree *owner, void *array,
 int dtype, int n, int *dims);

which specifies the dimensions of the array and the type of its elements.

© CRESTA Consortium Page 8 of 14

Support for the management of MPI communicators: The runtime system supports
the re-mapping and execution of computational tasks by means of MPI, whereas the
choice of the inner parallelisation technique for multi-processor tasks is under control of
the application developer. This would lead to the need of maintaining a directory of task
mappings onto MPI ranks in order to perform communication between the owning
processes of computational tasks in need of message-passing. The design choice for
the runtime system was to avoid explicit bookkeeping. MPI communicators will be used
for that instead. Initially when setting up the calculation in typical numerical simulations,
processes determine their communication partners rank-wise. These ranks are defined
often as global properties of the MPI processes and updated occasionally, for example
when re-distributions of data occur. In a program running under the control of the
runtime system, however, the rank numbers of the communication partners become
part of the state of computational tasks. They will be moved together with the other
data defining the state of a task and used in all subsequent communication operations
until an update is required due to re-distributions of data initiated by the simulation
application itself. It is the responsibility of the runtime system to provide an MPI
communicator to the application that reflects updated mappings of computational tasks
onto MPI processes after their re-distribution. This functionality has been implemented
by means of communicator management functions as provided by the MPI-2 standard.
From an application developer’s point of view, the programmer defines a so-called
load-balancing context that connects the group of a certain MPI communicator with a
sub-tree of the task tree. Load-balancing will then be performed amongst the
participating MPI processes of the context’s communicator. The load-balancing context
is defined by using the function
MPI_Comm *define_lb_context(MPI_Comm comm,
 task_tree *root_task);

The function returns an MPI communicator for communication operations using the
previously defined rank numbers of partner processes.

Developer control of the load-balancing process: The runtime system monitors the
execution of a parallel program. It is necessary from time to time to hand over the
control to the runtime system. A new task mapping is then calculated based on the
previous monitoring. The callbacks specified during the definition of tasks will be
activated for the serialisation and deserialization of tasks, and the runtime system
manages the transport of these data between the processes. Finally, a new MPI
communicator reflecting the new task distribution will be created and returned to the
application for subsequent use in communication between the computational tasks.
The user triggers these activities at suitable points in time by calling the following
function, which also returns the new MPI communicator to the application.
void perform_load_balancing(MPI_Comm *comm);

5.1.2 Software	
 architecture	

The runtime system consists of three main components: a runtime administration
component (Rta-C) schedules tasks and monitors their execution status; a monitoring
component (Mon-C) provides information on the hardware utilisation, which is for
scheduling decisions as well as to complement potentially incomplete or imprecise
resource requirement specifications; and finally a performance analysis component
(Pan-C) that analyses recorded monitoring data to provide more sophisticated hints for
application control, beyond the capabilities of single run monitoring (see figure 1).
Implementations of the components Rta-C and Mon-C have been realised within
CRESTA. The performance analysis component (Pan-C) as well as the data storage in
the performance database will be developed in future projects.

© CRESTA Consortium Page 9 of 14

5.1.3 Runtime	
 administration	
 component	
 (Rta-­‐C)	

Rta-C provides the user API allowing the definition of computational tasks as well as
control of the load-balancing execution. It maintains internally the task tree as well as
the hardware model. This component receives monitoring data from the monitoring
component (Mon-C). Furthermore, it comprises the mapping algorithm as well as the
functionality for moving tasks.

Rta-C creates the task tree within each process from the task definitions provided by
the application. The cost estimates for computational work and communication
volumes provided in the task definitions will be used for the calculation of task
mappings on platforms that do not have the capability to monitor these parameters
during the execution. Otherwise, these values will be replaced by data acquired by
Mon-C as described below.

The hardware model is either provided as a static graph with weighted nodes and
edges representing computing and communication capabilities, or constructed
dynamically during the program execution. The latter is done by measuring
communication capabilities during the runtime of the parallel program. The advantage
of this approach is that the real communication performance of the nodes allocated to a
batch job is determined at the moment of the measurement. Influences from a concrete
load on an HPC system as well as effects of dynamic routing configurations can be
taken into account in this way. Even occasional updates of the hardware model are
possible during long-running simulations.

Mon-C is clocked by the start and end markers of computational tasks. It provides at
least timing information about the execution of the computational tasks. Counter values
of executed floating-point operations and MPI communications will be provided if
available on the platform. Rta-C maintains a record of these measurements. This is for
the time being a moving average value of a configurable number of time steps. The
monitoring data are used to update the task definitions and provide in that way an up-
to-date picture of the workload during the recent time steps.

The re-mapping of tasks in order to improve the load-balancing can be triggered by the
application explicitly or automatically when a certain degree of load-imbalance has
been reached. The wall clock time per time step is used as metric of load-imbalance.

Figure 1: Components of the runtime-system

© CRESTA Consortium Page 10 of 14

The task mapping is calculated in a two-phase process. The implementation of this
functionality has been based on the library SCOTCH, which provides extensible
algorithms for graph partitioning and mapping. The mapping of tasks to compute nodes
is defined in the first phase. Compute nodes are represented for this calculation in the
hardware graph as single nodes with a heavier weight according to the number of
cores per node. The results of this calculation are task groups that will be assigned to
one node. Afterwards, the mapping of task groups onto the different cores of a node is
decided during the second phase. These calculations will be done in parallel on each
node. The final task mapping is then distributed in order to allow the reconfiguration of
the MPI communicator used in the load-balancing context.

Program example for the definition of tasks and the activation of the load
balancing during the program execution. This example is taken from a molecular
dynamics simulation that implements a linked cell algorithm. Each MPI process is
responsible for the calculations needed in a certain sub-domain. The load-balancing
will be used to exchange tasks between processes in order to achieve equal
computational load that implies similar numbers of memory accesses, which is the
limiting factor in this memory bound application.

The following function shows the initialisation of a few computational tasks. The task
“timeIntegr” embraces three sub-tasks “compF”, “compX”, “compV” used for the
computation of forces between particles as well as their speed and location.
Furthermore, we initialise a load balancing context. The returned MPI communicator
uses the task mapping in order to provide the application communication possibilities
without keeping track of the task mapping itself.
task_tree *timeIntegr, *compF, *compX, *compV;
MPI_Comm simm_comm;

int (*task_serialisation_cb)(int opcode, void *buffer)
{

 if (opcode == RECV_TASK) {
 // convert buffer content into local task data
 }

 else if (opcode == SEND_TASK) {

 // convert local task data into buffer content
 }

 return 0;
}

void moduleInit_md_simulation()
{

 task_parms parms;

 parms.send_task_cb = &move_cb;
 parms.recv_task_cb = &move_cb;

 timeIntegr = define_task(NULL, 1, “Time Integration, NULL);

 compF = define_task(timeIntegr, 1, “Compute F”, &parms);
 compX = define_task(timeIntegr, 1, “Compute X”, &parms);
 compV = define_task(timeIntegr, 1, “Compute V”, &parms);

 simm_comm = *define_lb_context(MPI_COMM_WORLD, timeIntegration);

}

The next code fragment shows the use of the previously defined tasks. Here, only the
start and end of tasks has to be marked by calls to the corresponding functions. Time
and performance measurements are done in the background.
real timeIntegration_LC(MD_Sim *sim, real t, real t_end, real delta_t)

{

© CRESTA Consortium Page 11 of 14

 if (t >= t_end)
 return t;

 World *world = sim->world;
 Cell *grid = world->sd->grid;

 if (sim->initialized == 0)
 {
 compF_LC(grid, world->sd);
 sim->initialized = !sim->initialized;
 }

 begin_task(timeIntegration);
 while (t < t_end)
 {
 t += delta_t;

 begin_task(compX);
 compX_LC(grid, world->sd, delta_t);
 end_task(compX);

 begin_task(compF);
 compF_LC(grid,world->sd);
 end_task(compF);

 begin_task(compV);
 compV_LC(grid, world->sd, delta_t);
 end_task(compV);

 compoutStatistic_base(p, N, t);
 }
 end_task(timeIntegration);

 return t;
}

This function implements one time step. The hierarchical structure of the tasks can be
recognised easily. The runtime system aggregates the performance measurements
over a certain user-defined number of time steps and uses the collected information for
the re-mapping of tasks. This can be seen in the implementation of the calling function
that manages the timestepping. Tasks will be re-mapped every LOADBAL_ INTERVAL
time steps. During this re-mapping, the callback function defined above will be called in
order to serialise and de-serialise the task data that needs to be moved. This
serialisation is completely free for the application and can be adapted as needed. The
activation of the load balancing will also update the load balancing context, i.e. the MPI
communicator used by the tasks. Therefore, it is important for applications not to
duplicate this handle respectively to keep copies synchronised with the output of the
function perform_load_balancing.
#define LOADBAL_INTERVAL 100

void doSimulationRun(MD_Sim *sim)
{
 World *world = sim->world;

 log_msg("PROGRESS: Starting time integration\n");
 t_end_global = fminl(world->t_end, t_end_global);

 outputResults_LC(BaseName, 0, sim->t_cur, sim);
 saveCheckpoint(CheckpointName, 0, sim);
 mapProcesses(sim);

 for (int i = 0; i < world->n_out; i++)
 {
 real t_new, t_next_end;
 if (sim->t_cur >= t_end_global) break;
 t_next_end = fminl(t_end_global, world->t_out[i]);

 if (sim->t_cur >= t_next_end) continue;

© CRESTA Consortium Page 12 of 14

 if (i%LOADBAL_INTERVAL == 0)
 perform_laod_balancing(&simm_comm);

 t_new = timeIntegration_LC(sim, sim->t_cur, t_next_end,
 world->delta_t);

 outputResults_LC(BaseName, i + 1, t_new, sim);
 sim->t_cur = t_new;

 saveCheckpoint(CheckpointName, i + 1, sim);

 }

 log_msg("PROGRESS: Finished time integration\n");

}

5.1.4 Monitoring	
 component	
 	
 (Mon-­‐C)	

The monitoring component in the runtime system uses the Integrated Performance
Monitoring (IPM) tool [1] to capture the performance behaviour of MPI applications.
IPM provides reports on several program events introducing minimum overhead. Such
events can be MPI operations, Posix-I/O file operations, CUDA, or OpenMP events
among others. IPM has been widely used by HPC centres such as NERSC to collect
more then 310K batch profiles in the past 6 years.

WP3 has extended the IPM monitoring tool with the Performance Introspection API
(PIA) [2] to provide online feedback to the runtime system as the application runs. This
API is designed to be a simple and lightweight interface written in C that can be used
from C, C++, and Fortran. The Performance Introspection API provides for each
process a local view of its own performance behaviour through the access to two
different data entities, user-defined code regions and activities.

User-defined regions are measurement intervals defined by the runtime system within
the application, for instance, tasks, functions, or blocks of code. These delimited
regions can be nested and are annotated in the source code with the routine
ipm_region. For each one of these regions the associated performance data is fixed
and includes performance metrics such as wall clock time of the region, MPI time,
number of executed instances for that region, and hardware performance counters. As
all these metrics are accumulated during program execution, the amount of memory
needed to store them is small, in the order of a few kilobytes. The following code listing
shows how to use the Performance Introspection API to access the total time, MPI
time, and number of executed instances for a defined region called foo.

void foo()

{
 // Defining region start
 ipm_region(IPM_START, “foo”);

 // Do whatever here

 // Defining region end
 ipm_region(IPM_END, “foo”);

}

int main(int argc, char *argv[])
{

 pia_regid_t id; // Stores region ID
 pia_regdata_t data; // Stores region data

 foo();

 // Obtain region ID
 id = pia_find_region_by_name(“foo”);

© CRESTA Consortium Page 13 of 14

 // Obtain performance data for that region
 pia_get_region_data(&data, id);

 fprintf(stderr, “%f Walltime\n”, data.wtime);
 fprintf(stderr, “%f MPI time\n”, data.mtime);
 fprintf(stderr, “%d times executed\n”, data.count);

}

The other entity the runtime can access using the Performance Introspection API is
activities. Activities are statistics associated with certain program events such as MPI
calls, Posix-IO calls, or OpenMP phases. For instance, the runtime can consult the
activity MPI_Recv, obtaining the total number of times the call has been executed, total
time inside the call, maximum and minimum execution time, or number of bytes
received for the whole run or for a certain defined region. Activities are accessed
through their activity ID as shown in the following code snippet:

// Activity name
chat *act1 = “MPI_Send”;

// Activity ID
pia_act_t id;

// Activity data
pia_actdata_t data;

// Acces the data
pia_init_activity_data(&adata);
id = pia_find_activity_by_name(act1);
pia_get_activity_data(&data, id);

fprintf(stderr,
 “MPI_Send happened %d times and “
 “transferred %d bytes, adata.ncalls, adata.nbytes);

© CRESTA Consortium Page 14 of 14

6 References	

[1] The Integrated Performance Monitoring tool (IPM). www.ipm2.org

[2] Xavier Aguilar and Erwin Laure and Karl Fürlinger: Online Performance
Introspection with IPM. In High Performance Computing and Communications &
2013 IEEE International Conference on Embedded and Ubiquitous Computing
(HPCC_EUC), 2013 IEEE 10th International Conference on. IEEE, 2013.

[3] The Performance Application Programming Interface (PAPI)
http://icl.cs.utk.edu/papi/

[4] Francoise Pellegrini and Jean Roman: SCOTCH - A Software Package for
Static Mapping by Dual Recursive Bipartitioning of Process and Architecture
Graphs. In Proceedings of HPCN'96, Brussels, Belgium. LNCS 1067, pages
493-498. Springer, April 1996.

[5] Michael Schliephake and Xavier Aguilar and Erwin Laure: Design and
Implementation of a Runtime System for Parallel Numerical Simulations on
Large-Scale Clusters. In Procedia Computer Science, Volume 4, Proceedings
of the International Conference on Computational Science, ICCS 2011, 2011,
Pages 2105-2114.

[6] Frameworks for Exascale Applications. Project CRESTA, Deliverable D3.7
(2014).

[7] Adaptive runtime-support design document. Project CRESTA, Deliverable D3.2
(2012).

