

© CRESTA Consortium Page 1 of 10

D3.9	
 –	
 Final	
 Release	
 of	
 Performance	

Analysis	
 Tools	

WP3:	
 Development	
 Environment	

Due date: M38

Submission date: 30/11/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization KTH

Version: 1.0

Status Final version

Author(s): Michael Wagner (TUD), Jens Doleschal (TUD)

Reviewer(s) Luis Cebamanos (EPCC), Derek Groen (UCL)

Dissemination level

PU PU

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

© CRESTA Consortium Page 2 of 10

	

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 14/11/2014 First draft version Michael Wagner (TUD),
Jens Doleschal (TUD)

0.2 17/11/2014 Review comments Luis Cebamanos (EPCC),
Derek Groen (UCL)

0.3 24/11/2014 Revised version Michael Wagner (TUD),
Jens Doleschal (TUD)

1.0 27/11/2014 Final version for submission Catherine Inglis (EPCC)

© CRESTA Consortium Page 3 of 10

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 4	

2	
 INTRODUCTION	
 ...	
 5	

2.1	
 PURPOSE	
 ..	
 5	

3	
 PERFORMANCE	
 ANALYSIS	
 TOOLS	
 ...	
 6	

3.1	
 ACCESSING	
 THE	
 SOFTWARE	
 PACKAGES	
 ..	
 6	

3.1.1	
 Score-­‐P	
 ...	
 6	

3.1.2	
 Plugins	
 for	
 Energy	
 and	
 Network	
 Information	
 Monitoring	
 ..	
 6	

3.1.3	
 Vampir	
 ..	
 6	

3.2	
 TRACING	
 NEW	
 PARADIGMS,	
 ENERGY	
 AND	
 NETWORK	
 INFORMATION	
 ..	
 6	

3.2.1	
 Tracing	
 OpenACC	
 Usage	
 ...	
 6	

3.2.2	
 Tracing	
 Energy	
 and	
 Power	
 Information	
 ...	
 7	

3.2.3	
 Tracing	
 of	
 Network	
 Information	
 ...	
 7	

3.3	
 SELECTIVE	
 MONITORING	
 ..	
 8	

3.3.1	
 Monitoring	
 Different	
 Levels	
 of	
 Details	
 for	
 Each	
 Process	
 ..	
 8	

3.3.2	
 Selective	
 Monitoring	
 of	
 Iterations	
 ..	
 9	

3.4	
 SCALABILITY	
 ..	
 9	

4	
 REFERENCES	
 ...	
 10	

	

© CRESTA Consortium Page 4 of 10

1 Executive	
 Summary	

This deliverable reports on the availability of, and access to, the final versions of the
performance analysis tools developed in WP3 of the CRESTA project. This includes
two tools:

• Score-P and
• Vampir

Score-P is a highly scalable tool to monitor parallel applications. It supports a wide
range of programming languages and parallel programming paradigms. In addition,
Score-P provides different monitoring modes namely profiling, tracing, and online
monitoring.

Vampir is a graphical tool to visualize and analyze applications monitored with Score-P
in post-mortem. It provides different displays and techniques to visualize the details of
highly parallel applications in a scalable and user-friendly way.

© CRESTA Consortium Page 5 of 10

2 Introduction	

We report on the availability of both Score-P and Vampir in Section 3. The general
usage of both Score-P and Vampir is documented in the Score-P and Vampir user
manual contained in the software distribution. This section covers functionality that is
not or only partly covered in the Score-P user manual and is of specific interest for the
CRESTA project.

2.1 Purpose	

The purpose of this deliverable is to:

• Provide access information for the performance visualizer Vampir
• Provide access information for the performance monitor Score-P
• Provide usage information for the performance monitor Score-P

	

© CRESTA Consortium Page 6 of 10

3 Performance	
 Analysis	
 Tools	

This section describes how to obtain the tools used in the CRESTA project and how to
use the new features.

3.1 Accessing	
 the	
 Software	
 Packages	

3.1.1 Score-­‐P	

The Score-P measurement infrastructure [1] is a highly scalable and easy-to-use tool
suite for profiling, event tracing, and online analysis of HPC applications. Score-P is
distributed under a BSD-License and can be obtained at:

http://www.vi-hps.org/projects/score-p/

Score-P 1.4 will be released soon and Score-P 1.4 alpha is available from the CRESTA
repository with the name scorep-1.4-alpha.tar.gz.

3.1.2 Plugins	
 for	
 Energy	
 and	
 Network	
 Information	
 Monitoring	

To monitor energy and network counter information on Cray XC platforms, Score-P
provides a plugin interface to collect this data and to correlate them with the application
information [2]. For this purpose there are two plugins available from the CRESTA
repository as follows:

• Energy and power monitoring: pm_plugin.tar
• Network counter monitoring: apapi.tar

3.1.3 Vampir	

Vampir 8.3 [3] focuses on extending the graphical presentation of performance data
and adds support for the collaborative Score-P performance monitor release version
1.2. Compatibility with earlier OTF and VampirTrace releases is maintained. New
feature highlights include:

• Hierarchical process folding in the master timeline.
• Introduction of combinable peer-to-peer communication metrics in the

performance radar.
• Complete revision of comparison and alignment mode for multiple traces with

session buffering support and a session manager.
• Pre-selection of processes or threads prior to loading performance data.
• A kiviat chart mode in the process summary chart.
• Quick access to color settings with support for unique or random color

schemes.

Furthermore, various features and performance improvements, scalability and stability
enhancements have been incorporated.

Vampir is distributed as commercial software. A demo version can be obtained at:

http://www.vampir.eu/

3.2 Tracing	
 New	
 Paradigms,	
 Energy	
 and	
 Network	
 Information	

This section covers approaches to monitoring and analyzing new parallel paradigms
and system metrics such as energy and network information.

3.2.1 Tracing	
 OpenACC	
 Usage	
 	

In the last few years, CUDA/OpenACC-capable devices have become more and more
popular in the High Performance Computing area since they are promising more
floating point operations per second than a typical CPU will ever provide in a user
application.

© CRESTA Consortium Page 7 of 10

Host-side activities of OpenACC-capable devices can be monitored either by
instrumenting the library (if source code is available) or by using a shared library
wrapper approach that uses the LD_PRELOAD mechanism.

Besides the host-based recording, some activities of the kernel can be monitored
directly. For example, kernel execution and data transfers. Monitoring of CUDA
applications can either be done via the CUDA Profiling Tools Interface (CUPTI) or by
the previously mentioned library wrapping approach. CUPTI provides different APIs
that can be used to get insight into the CPU and GPU behavior of CUDA applications.
The benefits of CUPTI in comparison to the library wrapping approach are the reduced
perturbation of the kernel execution and precise event (kernel) time information.

Since version 1.3, Score-P has been able to monitor CUDA activities via CUPTI and
OpenACC activities via a shared library wrapping approach. The use of the newly-
developed generic one-sided RMA event model allows us to monitor memory transfers
between host and graphic card as one-sided communication. To enable the monitoring
of these events the application has to be linked against the monitoring library and the
following runtime environment variables must be set:

SCOREP_CUDA_ENABLE=kernel,memcpy,driver,concurrent	

SCOREP_CUDA_BUFFER=3M	

3.2.2 Tracing	
 Energy	
 and	
 Power	
 Information	

Energy and power consumption are increasingly important topics in High Performance
Computing. Delivering sustained but energy-efficient performance of real-world
applications will require software engineering decisions, both at the systemware level
but also in the applications themselves. Such application decisions might be made
when the software is designed or at runtime via an auto-tuning framework.

For these to be possible, fine-grained instrumentation is needed to measure energy
and power usage not just of overall HPC systems but also of individual components
within the architecture. This information also needs to be accessible not just to
privileged system administrators but also to individual users of the system, and in a
way that is easily correlated with the execution of their applications.

Score-P has been able to record external generic and user-defined hierarchical
performance counters since version 1.2. This is done with a flexible “metric plugins”
interface to address the complexity of machine architectures both today and in the
future. The metric plugin interface provides an easy way to extend the core functionality
of Score-P to record additional counters, which can be defined in external libraries and
loaded at application runtime by the measurement system. We built a Score-P metric
plugin to monitor application-external energy and power information on Cray platforms
during the application measurement to run asynchronously per node [1].

To use the power monitoring plugin it must be built on the target system and the
application must be instrumented at the desired level of detail. Setting the according
environment variables activates this power monitoring plugin:

export	
 SCOREP_METRIC_PLUGINS=pm_plugin	

export	
 SCOREP_METRIC_PM_PLUGIN=”all”

3.2.3 Tracing	
 of	
 Network	
 Information	

With systems getting larger and more complex, networks within HPC systems are
getting more and more complex as well. Since network problems or high network load
can tremendously affect the behavior of parallel applications it is important to enable an
analysis of the correlations between network and application behavior.

Similar to external energy counters, network statistics and counters can be monitored
and integrated in an application trace with the Score-P metric plugin interface by using

© CRESTA Consortium Page 8 of 10

an according plugin that calls PAPI interface asynchronously per node. In addition, the
according environment variables must be set. However, the available counters may
vary on each platform:

export	
 SCOREP_METRIC_PLUGINS=APAPI	

export	
 \	

	
 	
 	
 	
 SCOREP_METRIC_APAPI="AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_STALLED,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_STALLED,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_PKTS,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_PKTS,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_FLITS,\	
 	

	
 	
 	
 	
 AR_NIC_NETMON_ORB_EVENT_CNTR_RSP_FLITS"	

3.3 Selective	
 Monitoring	

Event tracing tools record each event of a parallel application in detail. Thus, it allows
the dynamic interaction between thousands of concurrent processing elements to be
captured and enables the identification of outliers from the regular behavior. While
single events are rather small, event-based tracing frequently results in huge data
volumes. We developed and evaluated three approaches to address the large amount
of collected data, in particular for massively parallel or long-running applications. First,
using different levels of detail by enabling or disabling certain parallel paradigms or
preventing the instrumentation of functions that are usually inlined by the compiler.
Second, applying a rewind within the record event stream to subsequently remove
iterations that are not of interest and only keep those that represent deviating behavior.
Third, removing highly frequent short-running function calls that can overwhelm any
recording memory buffer while at the same time contributing very little to the analysis
and understanding of the overall application behavior.

3.3.1 Monitoring	
 Different	
 Levels	
 of	
 Details	
 for	
 Each	
 Process	

To compare different levels of details it is possible to build different instrumented
versions of an application. For a multi-paradigm application like Gromacs this could be:

• Compiler instrumentation + MPI + OpenMP + CUDA,
• Compiler instrumentation with filters + MPI + OpenMP + CUDA,
• MPI + OpenMP + CUDA, or
• MPI + CUDA.

This can be achieved by setting the according instrumentation options in Score-P:

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=omp:pomp_tpd	

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=omp:pomp_tpd	
 -­‐-­‐filter=<file>	

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=omp:pomp_tpd	
 -­‐-­‐nocompiler	

scorep	
 -­‐-­‐mpp=mpi	
 -­‐-­‐thread=none	
 -­‐-­‐nocompiler	

Currently the minimal instrumentation must contain MPI to get an entry point with
MPI_Init and MPI_Finalize. In the future a wrapper that intercepts only MPI_Init and
MPI_Finalize would reduce the minimal instrumentation further.

You can use aprun to launch the differently instrumented application in MPMD mode.
Shell scripts can be used to set different environments for each version:

aprun	
 -­‐n	
 pes	
 [aprun_options]	
 executable1	
 [args_	
 executable1]	
 :	
 \	

	
 	
 	
 	
 	
 	
 -­‐n	
 pes	
 [aprun_options]	
 executable2	
 [args_	
 executable2]	
 :	
 \	

	
 	
 	
 	
 	
 	
 -­‐n	
 pes	
 [aprun_options]	
 executable3	
 [args_	
 executable3]	

	

aprun	
 -­‐n	
 12	
 ./app1	
 :	
 -­‐n	
 8	
 ./app2	
 :	
 -­‐n	
 32	
 ./app3	

© CRESTA Consortium Page 9 of 10

3.3.2 Selective	
 Monitoring	
 of	
 Iterations	

Selective monitoring is one approach to decreasing the number of collected events.
There are two main methods to select the recorded events: static and dynamic
selection. For example, in iterative applications it is reasonable to avoid storing every
single iteration, because most of them show more or less the same behavior.
Therefore, the first method is to statically define which iteration is recorded and stored,
e.g., every 10th or 100th iteration. With this it is still possible to analyze the behavior
over time but the amount of recorded data is reduced to ten or one percent,
respectively. However, iterations with either interesting behavior or a performance
problem might be lost. The second method is to record every iteration and dynamically
decide whether it is stored or discarded by evaluating its behavior, e.g. only store an
iteration when its runtime varies from the average runtime by a defined offset. To
realize such a subsequent removal of iterations we developed and applied a rewind
method to rewind the recorded event stream to any pre-defined point (e.g. the
beginning of the current iteration), which eliminates every record after that point [4].

3.4 Scalability	

Event tracing delivers most detailed information allowing a profound post-mortem
analysis of the parallel behavior. However, this comes with the cost of very large data
volumes. Handling such a tremendous amount of data has always been a challenge in
event tracing and is getting even more demanding with the rapid increase of
processing elements. Since the collected data is traditionally stored in one file per
processing element, the rising number of resulting event trace files is, in particular, one
of the most urgent challenges. The limits of current parallel file systems allow handling
of no more than around ten or twenty thousand parallel processes without any special
treatment.

Writing one file per processing elements (e.g. check points or result files) does not
scale to large systems since the sheer number of files overcharges the capabilities of
today’s file system meta-data servers. Score-P uses SIONlib [5], which relies on the file
system’s capability to handle large sparse files to pre-allocate segments for the logical
file handles within a single file.

Since version 1.0, Score-P has supported the usage of SIONlib but has been restricted
to pure MPI applications. With the upcoming release, Score-P 1.4 will support hybrid
programs as well.

© CRESTA Consortium Page 10 of 10

4 References	

[1] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm, D. Eschweiler, M.

Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, P. Philippen,
P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and
F. Wolf: “Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope, Scalasca, TAU, and Vampir”, Tools for High Performance
Computing 2011, Springer, pp. 79–91, 2012.

[2] A. Hart, H. Richardson, J. Doleschal, T. Ilsche, M. Bielert and M. Kappel: “User-
level Power Monitoring and Application Performance on Cray XC30
Supercomputers”, Cray User Group Meeting 2014.

[3] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S.
Müller, and W. E. Nagel: “The Vampir Performance Analysis Tool Set,” Tools
for High Performance Computing, Springer, pp. 139–155, 2007.

[4] M. Wagner, J. Doleschal, A. Knüpfer and W. E. Nagel: “Runtime Message
Uniquification for Accurate Communication Analysis on Incomplete MPI Event
Traces”, Proceedings of the 20th European MPI Users' Group Meeting, Madrid,
Spain, pages 123-128, ACM, 2013.

[5] W. Frings, F. Wolf, and V. Petkov: “Scalable massively parallel i/o to task-local
files”, Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ser. SC ’09, New York, NY, USA ACM,
pages 17:1–17:11, 2009.

