

Copyright © CRESTA Consortium Partners 2014

D4.3.2	
 –	
 Community	
 prototype	
 of	

exascale	
 algorithms	
 and	
 solver	

(software)	

WP4:	
 Algorithms	
 and	
 Libraries	

Due date: M38

Submission date: 30/11/2014

Project start date: 01/10/2011

Project duration: 38 months

Deliverable lead
organization HLRS

Version: 1.0

Status Final

Author(s):
Dmitry Khabi(HLRS),

Frederic Magoules (ECP/CRSA)

Reviewer(s) Jens Doleschal, Michael Wagner (TUD)

Dissemination level

PU PU – Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 20/10/2014 First draft for comments Dmitry Khabi(HLRS)

0.2 25/10/2014 FFT part Dmitry Khabi(HLRS)

0.3 26/10/2014 Linear-Solver Part Dmitry Khabi (HLRS)

0.4 30/10/2014 Domain Decomposition Methods Frederic Magoules
(ECP/CRSA)

0.5 03/11/2014 Performance measurements Dmitry Khabi (HLRS)

0.6 30/10/2014 Domain Decomposition Methods Frederic Magoules
(ECP/CRSA)

0.7 04/11/2014 Outlook Dmitry Khabi (HLRS)

0.9 25/11/2014 Addressing all issues from the
reviews

Dmitry Khabi (HLRS)

1.0 26/11/2014 Final version for submission Lorna Smith (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

3	
 CRESTA-­‐LINEAR-­‐SOLVER	
 LIBRARY	
 ..	
 3	

3.1	
 COMPILER	
 AND	
 MPI	
 REQUIREMENTS	
 ..	
 3	

3.2	
 DATA	
 TYPES	
 AND	
 CONSTANTS	
 ..	
 3	

3.3	
 DISTRIBUTION	
 OF	
 WORK	
 AND	
 BARRIER	
 TYPES	
 ..	
 3	

3.4	
 THREAD	
 AFFINITY	
 ..	
 4	

3.5	
 NUMERICAL	
 ALGORITHMS	
 ...	
 4	

3.6	
 INTERNAL	
 SPARSE	
 MATRIX	
 FORMAT	
 ...	
 5	

3.7	
 HALO	
 DATA	
 EXCHANGE	
 ...	
 5	

3.8	
 NON-­‐BLOCKING	
 AND	
 BLOCKING	
 COLLECTIVE	
 OPERATION	
 ALLREDUCE	
 ...	
 7	

3.9	
 MATRIX-­‐VECTOR	
 MULTIPLICATION	
 ..	
 7	

3.10	
 PERFORMANCE	
 COUNTERS	
 ..	
 8	

3.11	
 API	
 INTERFACE	
 ...	
 8	

3.12	
 COMPILATION	
 OF	
 THE	
 LIBRARY	
 AND	
 EXAMPLES	
 ..	
 9	

3.13	
 PERFORMANCE	
 MEASUREMENTS	
 OF	
 THE	
 LIBRARY	
 ...	
 9	

3.13.1	
 Performance	
 measurements	
 on	
 one	
 node	
 ..	
 9	

3.13.2	
 Weak	
 scaling	
 on	
 the	
 Cray	
 XE6	
 (Hermit)	
 ..	
 10	

4	
 CRESTA-­‐FFT	
 LIBRARY	
 ..	
 11	

5	
 CRESTA	
 DOMAIN	
 DECOMPOSITION	
 METHODS	
 ..	
 12	

6	
 OUTLOOK	
 ..	
 13	

7	
 BIBLIOGRAPHY	
 ..	
 14	

Index	
 of	
 Figures	

Figure 1 - Three different types of the barriers in the cel library: MPI_Barrier, omp
barrier and cel barrier. .. 4	

Figure 2 - Total performance of the matrix-vector multiplication depending on the
number of MPI processes and the type of the halo data exchange. In the first case the
simple method MV_COMM_ISEND was used. In the second case the method
MV_COMM_IBCAST for the communication part of the matrix-vector multiplication
essentially improved the performance. The measurement was done on the Cray XE6
(Hermit). .. 6	

Figure 3 – Left: Distributed sparse matrix in the sub-block format. Right: The
corresponding groups of the halo data exchange with the method MV_COMM_IBCAST
based on the MPI non-blocking broadcast operation. .. 7	

Figure 4– Left: Strong scaling test of the operation matrix-vector multiplication for the
Poisson problem on 3D regular grid of the size 64x64x64 (27 point stencil). The test is
performed on the Cray XE6 (Hermit). Maximum four master threads with seven worker
threads were placed on each allocated node. Right: The normalized execution time of
three main sub-operations for the same strong scaling test. The execution time are
shown for the halo data exchange (blue curve), overlapping computation (red curve)
and computation on the halo data (green). The time was normalized to the total
execution time of the matrix-vector multiplication. .. 8	

Figure 5 – Linking of the CEL library to a pure MPI application. The N MPI processes
on the numa node will be reduced to one master process an N-1 worker. Until the
solver end its work the N-1 MPI processes sleep. .. 8	

Copyright © CRESTA Consortium Partners 2014

Figure 6 – Performance of the CG for the 3D Poisson problems of sizes 16x16x16x16,
32x32x32 and 64x64x64. The tests were performed on one computation node with two
AMD Interlagos processors. Each process has 16 cores. Only one master process was
started. .. 9	

Figure 7 - Performance of the CG for the 3D Poisson problems of sizes 16x16x16x16,
32x32x32 and 64x64x64. The tests were performed on one computational node with
two Ivy Bridge E5-2690 v2 processors. Each process has 10 cores. Only one master
process was started. ... 10	

Figure 8- Weak scaling test of the CG with Jacobi preconditioner for the Poisson
problem on 3D regular grid(27 point stencil). The first run was done with one master
process and seven worker threads. The matrix had 64x64x64 rows. 10	

	

© CRESTA Consortium Partners 2014 Page 1 of 15

1 Executive	
 Summary	

This deliverable describes a software package that is a prototype for linear solvers and
FFTs intended to run on exascale systems. The software is available on a GitHiub
server at:

http://gitlab.excess-project.eu/numlibs/

The CEL library is used within the CRESTA project firstly to support co-design
applications in the field of numerical libraries and secondly as a framework for the
development and evaluation of some of the other new and promising disruptive
technologies, which can be used to improve the efficiency of parallel applications.

© CRESTA Consortium Partners 2014 Page 2 of 15

2 Introduction	

This software deliverable is called the CRESTA Exascale Library (CEL). We developed
a new library (the CEL) to address two important classes of numerical problem: linear
solvers and multi-dimensional Fourier transforms.

In the previous CRESTA deliverables D4.1.1 “Overview of major limiting factors of
existing algorithms and libraries” (1) and D4.2.1 “Prediction Model for identifying
limiting Hardware Factors” (2) different proposals for the solution of these numerical
problems were presented and these have been used as input for the implementation of
the library.

The CRESTA Exascale FFT library is intended to make it easier to implement scalable
and efficient FFT applications for various data distributions on the network topology.

For the developers of parallel applications, the CRESTA Exascale solver library may
help in the efficiency solution of large sparse linear systems.

Section 3 provides describes the solver library while Section 4 describes the various
components of the FFT library.

We have carried out research work in the field of another kind of preconditioner,
namely flexible asynchronous methods. The research results are published in (3) (4)
(5). Although the CEL library does not include those algorithms, the increasing
importance of these asynchronous methods led to a disruptive technology workshop in
the subject (see, for example the Collaboration Workshop - Edinburgh March 2014 (6)).
These methods are discussed in section 5.

© CRESTA Consortium Partners 2014 Page 3 of 15

3 CRESTA-­‐Linear-­‐Solver	
 library	

The CEL-Linear-Solver focuses on iterative algorithms to solve large sparse linear
systems. The library is being developed using a hybrid approach i.e., a combination of
MPI and OpenMP. The source code is written primarily in the programming language
Fortran 90 (7). The first version of the community prototype library contains various
implementations for the sub operations such as halo data exchange and loop kernels.
The distributed matrix-vector multiplication is improved due to the overlapping of
computation with communication.

The description of the first public version of the CEL Linear solver is provided in this
document. The performance measurements are also presented in this document.

	

3.1 Compiler	
 and	
 MPI	
 requirements	

THE CEL code has been tested for compliance with GNU (from version 4.6), Cray
(from version 8.2.5) and Intel (from version. 14.0.2) compilers. The MPI library must
support non-blocking collective operations, which were introduced in the MPI 3.0
standard (8). We have compiled the library with the following MPI implementations:
Cray MPICH 6.2.X, MVAPICH2 2.0 and MPICH 3.1.

3.2 Data	
 types	
 and	
 constants	

The CEL library can be compiled to support any combination of widely used data types.
Floating-point numbers can be represented in either single or double precision. The
indexes can be represented as 32-bit or 64-bit integers.

We recommend the use of double precision floating-point numbers unless the
hardware does not provide support for this. The choice between 32-bt of 64-bit integers
depends on the size of the computational problem. In the case of 32-bit integer format
the value 2’147’483’647 or (231 -1) is the upper limit for the number of diagonal
elements in the corresponding matrix. More details on the influence of data types on
the solution and performance are available in (1).

Data types are defined in the configuration file ./make_env.in. This file provides the
option to set various compile time options. The global cel constants are listed in the
source file src/fbase/cel_types_module.f90.

	

3.3 Distribution	
 of	
 work	
 and	
 barrier	
 types	

As mentioned above the library is being developed using a hybrid approach. The
applied MPI_THREAD_FUNNELED thread support defines the roles of the threads
(see definition in (8)) within MPI runtime environment:

• The master thread is responsible for the communication between processes
and allocation of the shared data structures.

• The worker threads perform the computational work.

To achieve the best balance between computation and communication work we
recommend the use of one master thread per NUMA node. Only when utilization of the
bandwidth is too low is it advisable to use more than one master thread. Additionally,
the quality of the domain decomposition is enhanced due to the reduced number of
MPI processes and therefore reduced number of sub-domains.

© CRESTA Consortium Partners 2014 Page 4 of 15

The distribution of the data between the master threads doesn’t differ from the standard
distribution between the MPI processes in a pure MPI application. The difference
between an MPI application and a CEL application is that the data owned by the
master will be computed by the worker. The distribution of the data between the worker
threads should be done with the subroutine cel_omp_shared_work_distr defined in the
source filesrc/fbase/cel_omp_shared_work_module.f90.

There are three different computation and communication modes:

• Exclusive communication– The master threads exchange the data and the
worker threads have to wait until the master releases the updated data.

• Exclusive computation –The worker threads compute the new results and the
master threads must wait until the workers release the results.

• Overlapping communication with computation - The master threads
exchange the data and the worker threads compute the already released data.

To synchronize these types of operations we use three different types of barriers:
MPI_Barrier, omp barrier and cel barrier. The cel barrier defines the start and end of
the region, which is parallelized for the worker threads. The cel barrier is defined in the
source file src/fbase/cel_omp_shared_work_module.f90 according to (9). Figure 1
demonstrates the work of the barriers.

Figure 1 – The three different types of barriers in the cel library: MPI_Barrier, omp barrier and cel barrier.

	

3.4 Thread	
 affinity	

Process and thread placement can be done within the MPI runtime environment.
Nevertheless, situations can arise when this is not possible. This can be for a variety of
reasons, for example a runtime environment of the system doesn’t provide it. In this
case, the subroutine for the process and threads placement is included in the library.
The subroutine cel_omp_set_thread_policy is defined in the source file
src/fbase/cel_omp_module.f90.

3.5 Numerical	
 algorithms	

The first community version contains a set of iterative solvers with a Jacobi
preconditioner.

The following numerical methods are implemented in the library:

• Conjugate gradient method (CG, according to the mathematical description in (10));
Defined in the source file src/fcgalg/cel_cgalg_module.f90

• Generalized minimal residual method (GMRES, according to the mathematical
description in (10));

© CRESTA Consortium Partners 2014 Page 5 of 15

Defined in the source file src/fcgalg/cel_gmresalg_module.f90
• Matrix diagonal scaling;

Defined in the subroutines cel_sp_mat_distr_scale and
cel_sp_mat_distr_boundary_diag_scale in the source file
/src/fspmtdistr/cel_sp_mat_distr_format_module.f90

• Jacobi preconditioner;
Defined in the subroutine cel_sp_mat_distr_set_jacobi in the source file
/src/fspmtdistr/cel_sp_mat_distr_format_module.f90

Currently, more advanced preconditioner are being developed:

• Block Jacoby preconditioner;
• Algebraic multigrid preconditioner, according to the definition in (11);

We have selected the set of algorithms according to the research done in (1). We have
also carried out work in the field of another kind of preconditioner, namely flexible
asynchronous methods. The research results are published in (3), (4) and (5). The
algorithm is also discussed in Section 5. Currently the prototype of CEL library does not
include those algorithms because of that complexity.

3.6 Internal	
 sparse	
 matrix	
 format	

The overlapping of computation with communication by the matrix-vector multiplication
requires some modifications to the data structures for the matrices and vectors. The
sparse matrix A is divided into the sub matrices, which are divided into the sub-blocks.
The sub matrices are distributed by blocks of contiguous rows. All sub-blocks of the
same sub matrix have equal number of rows, which are equal to the length of the local
part of the vectors owned by the process and number of rows in the sub matrix. The
number of columns is equal to the length of the local part of the vector owned by the
corresponding neighbour process. Each of the sub-block matrices can be held in
various formats. Document (12) contains more details of the sub-block matrix format.
The following formats for the sub-blocks are supported:

• Compressed Row Storage (CRS)
• Modified Jagged Diagonal format (JAD)
• Coordinate format (COO)

The sub-blocks of the matrix are stored in an allocatable array of the derived type
cel_sp_mat_type (defined in the source file src/fspmt/cel_sp_mat_module.f90). The
first element of the array is always the diagonal sub-block. The non-diagonal sub-
blocks are ordered in accordance with the indexes of the columns.

By default the sub-blocks with the diagonal values are stored in the CRS format. All
other sub-blocks are stored in the COO format.

3.7 Halo	
 data	
 exchange	

The halo data exchange is one of the limiting factors for matrix-vector multiplication
performance. Performance can be enhanced by choosing the most efficient algorithm
for the problem and the available hardware. The structure of the matrix, the number of
computational nodes, the network topology and the hardware performance influence
the choice. The following algorithms are available:

MV_COMM_ISEND is a simple implementation of the halo exchange. In this case the
entire part of the local vector is transferred to the neighbours with a set of the
asynchronous operation MPI_Isend. The disadvantage of this method is that a large
part of the transferred data is really not needed for the matrix-vector multiplication.

Defined in the subroutine cel_sp_mat_distr_vec_isend_start_all in the source
file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90

© CRESTA Consortium Partners 2014 Page 6 of 15

MV_COMM_ISEND_IDX is an improved version of the above method. In this case the
reduced part of the local vector values are transferred to the neighbours. Nevertheless
part of the data transferred is also unnecessary.

Defined in the subroutine cel_sp_mat_distr_vec_isend_idx_start_all in the
source file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90

MV_COMM_ISEND_COMM_BUFFER transfers only the values that are really needed.
The disadvantage of this method is the additional overhead due to indirect addressing
and extra data movement between several buffers.

Defined in the subroutine cel_sp_mat_distr_vec_isend_comm_buffer_start_all
in the source file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90

MV_COMM_IBCAST transfers the entire part of the local vector as in the case of the
first method MV_COMM_ISEND. In contrast to other methods, the data will be
transferred using non-blocking, with the non-blocking collective operation MPI_Ibcast
(see more details about that collective operation in (8) and (13)). The halo exchange
within small partially disjoint groups may greatly reduce latency. This is illustrated on
Figure 2.

Defined in the subroutine cel_sp_mat_distr_vec_ibcast_start_all in the source
file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90

Figure 2 - Total performance of the matrix-vector multiplication depending on the number of MPI
processes and the type of the halo data exchange. In the first case the simple method MV_COMM_ISEND
was used. In the second case the method MV_COMM_IBCAST for the communication part of the matrix-
vector multiplication essentially improved the performance. The measurement was done on the Cray XE6
(Hermit).

Note that in order to use the broadcast operation, a set of the MPI groups must be
initialized. The root element of each group is the process that sends the halo data to
the neighbours. The remaining part of the group consists of the processes that receive
the halo data from the root process. The set of halo data exchange groups is not
disjoint since the remainder of the processes obtain the halo data from more than one
process as shown on Figure 3.

© CRESTA Consortium Partners 2014 Page 7 of 15

Figure 3 – Left: Distributed sparse matrix in sub-block format. Right: The corresponding groups of the
halo data exchange with the method MV_COMM_IBCAST based on the MPI non-blocking broadcast

operation.

It is advisable to use only scalable MPI functions to create the corresponding
communicators (for example, function MPI_Comm_split). Another way is to separate
the groups in to several sets with only disjoint groups. The function
MPI_COMM_CREATE can be called in parallel for all groups of the set. This algorithm
is used in the subroutine cel_comm_get_communicators defined in the source file
src/fcomm/cel_comm_module.f90.

In most test cases the method MV_COMM_ISEND_COMM_BUFFER was the best
choice. However, for some special cases the latency reduction may be more efficient
than reducing the amount of data that has to be sent and received. This can be true for
example, if the sparse matrices have high density and the number of neighbours to
communicate is high. Another example is if the bandwidth and the latency of the
network are not well balanced (see (12) section 3.4 Network and performance of
collective operations for the details).

3.8 Non-­‐blocking	
 and	
 blocking	
 collective	
 operation	
 Allreduce	

At compile time the user can also make a choice between blocking and non-blocking
version of the collective operation allreduce, which is used in the calculation for
example to calculate a dot product. The benchmark results on the Cray XE6 and Cray
XC30 with cray-mpich2/6.2.1 did not show any significant difference between these two
operations. This is shown in the white paper (13). The sections below (3.9, 3.13.1 and
3.13.2) also contain performance measurements of these two collectives operations in
the solver.

	

3.9 Matrix-­‐vector	
 multiplication	

The matrix-vector multiplication (A*x=y) is one of the most complex and time-
consuming operations to solve linear systems. Overlapping computation with
communication is one of the simplest techniques to improve its efficiency. Figure 4
shows profile data for the operation. Using 64 cores on 2 computational nodes the halo
data exchange was completely overlapped with the local computation. In the case of
256 cores (4 comp. nodes) the execution time is equal to the computation time.

proc	
 1

proc	
 2

proc	
 3

proc	
 2

proc	
 1

proc	
 3

proc	
 3

proc	
 1

proc	
 2

proc	
 4

proc	
 4 proc	
 3

© CRESTA Consortium Partners 2014 Page 8 of 15

Figure 4– Left: Strong scaling test of the operation matrix-vector multiplication for the Poisson problem on
a 3D regular grid of the size 64x64x64 (27 point stencil). The test is performed on the Cray XE6 (Hermit).
A maximum four master threads with seven worker threads were placed on each allocated node. Right:
The normalized execution time of three main sub-operations for the same strong scaling test. The
execution time is shown for the halo data exchange (blue curve), overlapping computation (red curve) and
computation on the halo data (green). The time was normalized to the total execution time of the matrix-
vector multiplication.

The operation is defined in the subroutine cel_fop_mv_axy_distr in the source file
src/fop/cel_fop_mv_module.f90.

3.10 	
 Performance	
 counters	

The performance and metadata of various sub-operations will be stored in the cel
counters. This allows for performance measurement and for the further integration of
auto-tuning into the solvers (changing frequency, activation and deactivation of cores
over time). The counter is defined in the source file src/fbase/cel_perf_module.f90.

The source file src/fbasedistr/cel_perf_distr_module.f90 provides methods to gather all
counter values from all master processes.

3.11 API	
 interface	

There are two interfaces available to link the library. The first interface is for use with a
pure MPI program. The schema for this usage is shown in Figure 5.

Figure 5 – Linking of the CEL library to a pure MPIMPI application. The N MPI processes on the NUMA
node will be reduced to one master process and N-1 worker. Until the solver ends its work the N-1 MPI
processes sleep.

The source file tests/examples/src/cel_solver.f90 contains an example for the usage of
that interface.

The source file tests/examples/src/cel_benchmark.f90 contains the example for the use
of the cel library if the application is being developed using the parallel hybrid
MPI/OpenMP.

© CRESTA Consortium Partners 2014 Page 9 of 15

3.12 Compilation	
 of	
 the	
 library	
 and	
 examples	

After setting all required fields in the configuration file ./make_env.in, run the make
command with the arguments “make clean all tests”. This creates a set of libraries in
the directory “./lib”. The directory src/include/ contains the Fortran modfiles. Two
additional examples will be compiled in the directory ./tests/examples/:

• cel_solver – An example of how to use the library interface for a pure MPI
application. The matrix for the example must be loaded from the file in the
Matrix Market Exchange Format (14). The library includes an example of the
matrix in the directory ./tests/matrix/. The matrix corresponds to a Gyrokinetic
code for turbulent fusion plasma of ELMFIRE (15).

• cel_benchmark – An example how to use the library interface for a hybrid MPI
and OpenMP application. The matrix for the example can be automatically
generated or loaded from the file in the Matrix Market Exchange Format.

The arguments for both executables are described in the README file.

3.13 Performance	
 measurements	
 of	
 the	
 library	

In this section we show performance measurements carried out on two different
platforms: a Cray XE6 (Hermit) and a small cluster with dual socket Ivy Bridge E5-2690
v2 processors. A description of the Cray XE6 (Hermit) platform can be found in (16). A
description of the Ivy Bridge can be found in (17).

Further performance measurements on Hornet, a new supercomputer Cray XC40
system (18) will be presented after the end of the acceptance phase of the system.

3.13.1 Performance	
 measurements	
 on	
 one	
 node	

Figure 6 shows performance results for one node of the Cray XE6 (Hermit). One
computation node has two AMD Interlagos processors.

Figure 6 – Performance of the CG for the 3D Poisson problems of sizes 16x16x16x16, 32x32x32 and
64x64x64. The tests were performed on one computation node with two AMD Interlagos processors. Each
process has 16 cores. Only one master process was started.

Figure 7 shows the performance of the CG solver on the computation node with two Ivy
Bridge processors.

© CRESTA Consortium Partners 2014 Page 10 of 15

Figure 7 - Performance of the CG for the 3D Poisson problems of sizes 16x16x16x16, 32x32x32 and

64x64x64. The tests were performed on one computational node with two Ivy Bridge E5-2690 v2
processors. Each process has 10 cores. Only one master process was started.

3.13.2 Weak	
 scaling	
 on	
 the	
 Cray	
 XE6	
 (Hermit)	

Weak scaling tests were carried out on the Cray XE6 (Hermit).

Figure 8 Weak scaling test of the CG with Jacobi preconditioner for the Poisson problem on a 3D regular
grid (27 point stencil). The first run was carried out with one master process and seven worker threads.
The matrix had 64x64x64 rows.

© CRESTA Consortium Partners 2014 Page 11 of 15

4 CRESTA-­‐FFT	
 library	

We developed a generic library (reshape) to support changes in the data
decomposition that can be used to quickly optimize the FFT strategy with respect to the
hardware.

Our approach emphasizes the communication component of the FFT problem. This
kind of communication seems to be one of the scaling issues for exascale computing.

In general any data decomposition can be represented at runtime by an object with the
following interface:

• A method that maps global coordinates to a process rank
• A method that maps global coordinates to a local memory offset.

To start with, we are only considering decompositions where each dimension of the
dataset is decomposed independently. We can therefore represent the decomposition
along each dimension as a separate object and combine them using a set of
processor-rank and memory-offset stride values. This is still capable of representing a
far more general set of decompositions than most parallel libraries. The drawback is
that these general decompositions are a bit more expensive to use.

To mitigate this, we use an interface which uses decomposition descriptors to build re-
usable communication plans for switching between data decompositions (essentially
these are lists of MPI data types corresponding to the necessary messages). Any
additional overhead only takes place in the initial planning stage and should have a
small impact on the overall performance of the code. As an added bonus virtually the
same code can be used to build MPI-IO file-view data types to support parallel IO to
the different decompositions.

A detailed overview of CRESTA-FFT library is given in the CRESTA deliverable D4.3.1
“Initial prototype of exascale algorithms and solvers for project internal validation“ (12)
so that will not be fully repeated here. The source code includes examples of how to
use the library.

© CRESTA Consortium Partners 2014 Page 12 of 15

5 CRESTA	
 domain	
 decomposition	
 methods	

The traditional scheme for parallel iterative algorithms like the CRESTA-Linear-Solver
library is synchronous iterations. This describes a method where a new iteration can
only start when all data of the previous iteration has been received. These parallel
synchronous iterations use the same mathematical model and have the same
convergence behaviour as their sequential counterparts. They have been widely
studied and are often simply called parallel iterative algorithms, synchronous being
omitted. They are very efficient when used with well-balanced workloads and short
communication times. However, these conditions are hard and expensive to achieve
especially as the number of cores used increases.

Another kind of iterative algorithm can help to solve these scalability problems. Called
first chaotic relaxations, it is now usually designed by asynchronous iterations. There
are three commonly used schemes for asynchronous iterations. The first one is totally
asynchronous iterations. It sets very few conditions on the iterations and
communications except that they must never stop indefinitely. The second scheme is
partially asynchronous iterations. It is based on the assumption that the communication
time is bounded and that each process does at least one iteration every given period.
The third scheme is flexible asynchronous iterations. Flexible communication means
that the data is sent as soon as possible, but due to the strength of asynchronous
iteration, it is more general.

Since iterative algorithms are often slow to converge, more advanced algorithms like
domain decomposition methods must be considered. The extension of such algorithms
to totally asynchronous iterations leads from a mathematical point of view to several
convergence problems and from a computer science point of view to define new
parallel paradigms. The first results of the extension to totally asynchronous iterations
of the optimized Schwarz algorithm show that this algorithm is extremely robust
compared to classical iterative algorithm, and very promising for Exascale computing.
But the optimized coefficients must be derived upon the mathematical equation of the
physical problem considered.

In order to implement an asynchronous iterative algorithm, an additional layer between
the MPI library and the code must be developed. This layer will in particular allow in the
definition of asynchronous communications between the processors, with a continuous
request, and to define the best way to evaluate the residual to determine the
convergence of the algorithm. Once this layer is defined, the code itself must be slightly
modified as well. This layer-code modification must be performed manually for each
algorithm considered.

© CRESTA Consortium Partners 2014 Page 13 of 15

6 Outlook	

The CEL library is publicly available. The library will be further developed, for example
in the project “EXCESS” (19) in order to improve the efficiency of the library. This will
be achieved by including more a advanced preconditioner for the scalability, matrix
vector blocking techniques for better loop vectorization and dynamic changes to the
number of the threads depending on the load balance and type of computational
kernels. Frequency scaling is also a promising disruptive technology as shown in early
CRESTA work (see (20) for more details). The cel_omp_shared_work_module will be
used to manage the number of computing threads and their frequency depending on
the metadata, which is collected in the cel counters.

© CRESTA Consortium Partners 2014 Page 14 of 15

7 Bibliography	

1. Stephen P Booth, Dmitry Khabi, Gregor Matura, Christoph Niethammer, Harvey
RichardsonOverview of major limiting factors of existing algorithms and
librariesCRESTA Consortium Partners2012

2. Uwe Küster, Stephen P Booth, Stephen Sachs, Dmitry Khabi, Gregor Matura,
Mhd. Amer Wafai. Prediction Model for identifying limiting Hardware Factors. s.l. :
CRESTA Consortium Partners, 2013.

3. Asynchronous Schwarz methods for peta and exascale computing.In B.H.V. Topping
and P. Ivanyi, editors, Developments in Parallel, Distributed, Grid and Cloud
Computing for Engineering, chapter 10, pages 229-248.Stirlingshire, UKSaxe-Coburg
Publications2013

4. Asynchronous optimized Schwarz methods.In B.H.V. Topping, editor, Computational
Methods for Engineering Science, chapter 17, pages 425-444Stirlingshire, UKSaxe-
Coburg Publications2012

5. C. Venet and F. MagoulesAsynchronous substructuring methods.In Substructuring
Techniques and Domain Decomposition Methods, chapter 4, pages 71-
104Stirlingshire, UKSaxe-Coburg Publications2010

6. Collaboration Workshop - Edinburgh March 2014CRESTA Consortium Partners
2011http://www.cresta-project.eu/news-events/collaborative-workshop.html

7. Fortran Standards Documents: Fortran 90. [Online]
https://gcc.gnu.org/wiki/GFortranStandards.

8. MPI: A Message-Passing Interface Standard Version 3.0 Chapter author for
Collective Communication, Process Topologies, and One Sided. s.l. : Message
Passing Interface Forum. , Sep. 2012.

9. Locks and Barriershttp://www.it.uu.se/edu/course/homepage/os2/st09/handout-
04.pdf

10. Numerik linearer GleichungssystemeFriedr. Vieweg & Sohn Verlag2008ISBN 978-
3-8348-0431-0

11. Algebraic Multigrid (AMG): An Introduction with Applications

12. D4.3.1 – Initial prototype of exascale algorithms and solvers for project internal
validationCRESTA Consortium Partners 20112013

13. White Paper Benchmarking MPI Collectives at SC14. Christoph Niethamme,
Pekka Manninen, Rupert Nash, Dmitry Khabi, Jose Gracia. s.l. : CRESTA
Consortium Partners, 2014.

14. Matrix Market Mathematical and Computational Sciences Division of the
Information Technology Laboratory of the National Institute of Standards and
Technology.http://math.nist.gov/MatrixMarket/formats.html

15. Full-f gyrokinetic method for particle simulation of tokamak transport J.A.
Heikkinen, S.J. Janhunen, T.P. Kiviniemi and F. OgandoJournal Comput. Phys.227
(2008) 5582-5609.

16. Cray XE6 (HERMIT)https://wickie.hlrs.de/platforms/index.php/Cray_XE6

17. Intel® Xeon® Processor E5-2690 v2 (25M Cache, 3.00
GHz)http://ark.intel.com/products/75279/Intel-Xeon-Processor-E5-2690-v2-25M-
Cache-3_00-GHz

18. CRAY XC40 (HORNET)HLRShttp://www.hlrs.de/systems/platforms/cray-xc40-
hornet/

19. Execution Models for Energy-Efficient Computing Systems - EXCESSEXCESS
Partnershttp://excess-project.eu/

© CRESTA Consortium Partners 2014 Page 15 of 15

20. Alistair Hart, Michele Wieland, Dmitry Khabi, Jens DoleschalD2.6.3 – Power
measurement across algorithmsCRESTA Consortium Partners 20112014

21. Uwe Küster, Dmitry Khabi. Power consumption of kernel operations. Sustained
Simulation Performance. s.l. : Springer, scheduled at the end of 2013.

22. An overview of the Trilinos project. Michael A. Heroux, Roscoe A. Barlett, Vicki
E. Howle. s.l. : ACM Press, 2005.

23. Portable, Extensible Toolkit for Scientific Computation. [Online] 08 09 2011.
http://www.mcs.anl.gov/petsc/.

24. José Gracia, Christoph Niethammer, Wahaj Sethi. D4.5.2 Microbenchmark
Suite. s.l. : CRESTA Consortium Partners, 2012.

25. J.A. Åström (CSC), Adam Carter (EPCC),Konstantinos Ioakimidis (USTUTT),
Rupert W. Nash (UCL), James Hetherington (UCL), Artur Signell (ABO), Jan
Westerholm (ABO). Needs analysis. s.l. : CRESTA Consortium Partners, 2012.

26. Stephen P Booth, Uwe Küster, Stephen Sachs, José Gracia, Gregor Matura,
Dmitry Khabi, Mhd. Amer Wafai. D4.2.1 – Prediction Model for identifying limiting
Hardware Factors. s.l. : CRESTA Consortium Partners, 2013.

27. EXASOLVERS - Extreme scale solvers for coupled
problemsDFGhttp://www.sppexa.de/general-information/projects.html#EXASOLVERS

28. D4.5.3 – Non-Blocking Collectives Runtime LibraryCRESTA Consortium Partners
20112013

