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1 Executive	
  Summary	
  
This deliverable describes a software package that is a prototype for linear solvers and 
FFTs intended to run on exascale systems. The software is available on a GitHiub 
server at: 

http://gitlab.excess-project.eu/numlibs/ 

The CEL library is used within the CRESTA project firstly to support co-design 
applications in the field of numerical libraries and secondly as a framework for the 
development and evaluation of some of the other new and promising disruptive 
technologies, which can be used to improve the efficiency of parallel applications. 
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2 Introduction	
  
This software deliverable is called the CRESTA Exascale Library (CEL). We developed 
a new library (the CEL) to address two important classes of numerical problem: linear 
solvers and multi-dimensional Fourier transforms. 

In the previous CRESTA deliverables D4.1.1 “Overview of major limiting factors of 
existing algorithms and libraries” (1) and D4.2.1 “Prediction Model for identifying 
limiting Hardware Factors” (2) different proposals for the solution of these numerical 
problems were presented and these have been used as input for the implementation of 
the library. 

The CRESTA Exascale FFT library is intended to make it easier to implement scalable 
and efficient FFT applications for various data distributions on the network topology. 
 
For the developers of parallel applications, the CRESTA Exascale solver library may 
help in the efficiency solution of large sparse linear systems.  

Section 3 provides describes the solver library while Section 4 describes the various 
components of the FFT library. 

We have carried out research work in the field of another kind of preconditioner, 
namely flexible asynchronous methods. The research results are published in (3) (4) 
(5). Although the CEL library does not include those algorithms, the increasing 
importance of these asynchronous methods led to a disruptive technology workshop in 
the subject (see, for example the Collaboration Workshop - Edinburgh March 2014 (6)). 
These methods are discussed in section 5. 
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3 CRESTA-­‐Linear-­‐Solver	
  library	
  
 

The CEL-Linear-Solver focuses on iterative algorithms to solve large sparse linear 
systems. The library is being developed using a hybrid approach i.e., a combination of 
MPI and OpenMP. The source code is written primarily in the programming language 
Fortran 90 (7). The first version of the community prototype library contains various 
implementations for the sub operations such as halo data exchange and loop kernels. 
The distributed matrix-vector multiplication is improved due to the overlapping of 
computation with communication. 

The description of the first public version of the CEL Linear solver is provided in this 
document. The performance measurements are also presented in this document. 

	
  
3.1 Compiler	
  and	
  MPI	
  requirements	
  
THE CEL code has been tested for compliance with GNU (from version 4.6), Cray 
(from version 8.2.5) and Intel (from version. 14.0.2) compilers.  The MPI library must 
support non-blocking collective operations, which were introduced in the MPI 3.0 
standard (8). We have compiled the library with the following MPI implementations: 
Cray MPICH 6.2.X, MVAPICH2 2.0 and MPICH 3.1. 

 

 

3.2 Data	
  types	
  and	
  constants	
  
The CEL library can be compiled to support any combination of widely used data types. 
Floating-point numbers can be represented in either single or double precision. The 
indexes can be represented as 32-bit or 64-bit integers.  

We recommend the use of double precision floating-point numbers unless the 
hardware does not provide support for this. The choice between 32-bt of 64-bit integers 
depends on the size of the computational problem. In the case of 32-bit integer format 
the value 2’147’483’647 or (231 -1) is the upper limit for the number of diagonal 
elements in the corresponding matrix. More details on the influence of data types on 
the solution and performance are available in (1). 

Data types are defined in the configuration file ./make_env.in. This file provides the 
option to set various compile time options. The global cel constants are listed in the 
source file src/fbase/cel_types_module.f90. 

	
  
3.3 Distribution	
  of	
  work	
  and	
  barrier	
  types	
  
As mentioned above the library is being developed using a hybrid approach. The 
applied MPI_THREAD_FUNNELED thread support defines the roles of the threads 
(see definition in (8)) within MPI runtime environment: 

• The master thread is responsible for the communication between processes 
and allocation of the shared data structures. 

• The worker threads perform the computational work. 

To achieve the best balance between computation and communication work we 
recommend the use of one master thread per NUMA node. Only when utilization of the 
bandwidth is too low is it advisable to use more than one master thread.  Additionally, 
the quality of the domain decomposition is enhanced due to the reduced number of 
MPI processes and therefore reduced number of sub-domains. 
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The distribution of the data between the master threads doesn’t differ from the standard 
distribution between the MPI processes in a pure MPI application. The difference 
between an MPI application and a CEL application is that the data owned by the 
master will be computed by the worker. The distribution of the data between the worker 
threads should be done with the subroutine cel_omp_shared_work_distr defined in the 
source filesrc/fbase/cel_omp_shared_work_module.f90. 

There are three different computation and communication modes: 

• Exclusive communication– The master threads exchange the data and the 
worker threads have to wait until the master releases the updated data. 

• Exclusive computation –The worker threads compute the new results and the 
master threads must wait until the workers release the results. 

• Overlapping communication with computation - The master threads 
exchange the data and the worker threads compute the already released data. 

To synchronize these types of operations we use three different types of barriers: 
MPI_Barrier, omp  barrier and  cel barrier. The cel barrier defines the start and end of 
the region, which is parallelized for the worker threads. The cel barrier is defined in the 
source file src/fbase/cel_omp_shared_work_module.f90 according to (9). Figure 1 
demonstrates the work of the barriers. 

 

 
Figure 1 – The three different types of barriers in the cel library: MPI_Barrier, omp barrier and cel barrier. 

	
  
3.4 Thread	
  affinity	
  
Process and thread placement can be done within the MPI runtime environment. 
Nevertheless, situations can arise when this is not possible. This can be for a variety of 
reasons, for example a runtime environment of the system doesn’t provide it. In this 
case, the subroutine for the process and threads placement is included in the library. 
The subroutine cel_omp_set_thread_policy is defined in the source file 
src/fbase/cel_omp_module.f90. 

 

3.5 Numerical	
  algorithms	
  
The first community version contains a set of iterative solvers with a Jacobi 
preconditioner.  

The following numerical methods are implemented in the library:  

• Conjugate gradient method (CG, according to the mathematical description in (10)); 
Defined in the source file src/fcgalg/cel_cgalg_module.f90 

• Generalized minimal residual method (GMRES, according to the mathematical 
description in (10)); 
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Defined in the source file src/fcgalg/cel_gmresalg_module.f90 
• Matrix diagonal scaling; 

Defined in the subroutines cel_sp_mat_distr_scale and 
cel_sp_mat_distr_boundary_diag_scale in the source file 
/src/fspmtdistr/cel_sp_mat_distr_format_module.f90 

• Jacobi preconditioner; 
Defined in the subroutine cel_sp_mat_distr_set_jacobi in the source file 
/src/fspmtdistr/cel_sp_mat_distr_format_module.f90 

Currently, more advanced preconditioner are being developed: 

• Block Jacoby preconditioner; 
• Algebraic multigrid preconditioner, according to the definition in (11); 

We have selected the set of algorithms according to the research done in (1). We have 
also carried out work in the field of another kind of preconditioner, namely flexible 
asynchronous methods. The research results are published in (3), (4) and (5). The 
algorithm is also discussed in Section 5. Currently the prototype of CEL library does not 
include those algorithms because of that complexity. 

 

3.6 Internal	
  sparse	
  matrix	
  format	
  
The overlapping of computation with communication by the matrix-vector multiplication 
requires some modifications to the data structures for the matrices and vectors. The 
sparse matrix A is divided into the sub matrices, which are divided into the sub-blocks. 
The sub matrices are distributed by blocks of contiguous rows. All sub-blocks of the 
same sub matrix have equal number of rows, which are equal to the length of the local 
part of the vectors owned by the process and number of rows in the sub matrix. The 
number of columns is equal to the length of the local part of the vector owned by the 
corresponding neighbour process. Each of the sub-block matrices can be held in 
various formats. Document (12) contains more details of the sub-block matrix format. 
The following formats for the sub-blocks are supported: 

• Compressed Row Storage (CRS) 
• Modified Jagged Diagonal format (JAD) 
• Coordinate format (COO) 

The sub-blocks of the matrix are stored in an allocatable array of the derived type 
cel_sp_mat_type (defined in the source file src/fspmt/cel_sp_mat_module.f90). The 
first element of the array is always the diagonal sub-block. The non-diagonal sub-
blocks are ordered in accordance with the indexes of the columns. 

By default the sub-blocks with the diagonal values are stored in the CRS format. All 
other sub-blocks are stored in the COO format. 

 

3.7 Halo	
  data	
  exchange	
  
The halo data exchange is one of the limiting factors for matrix-vector multiplication 
performance. Performance can be enhanced by choosing the most efficient algorithm 
for the problem and the available hardware. The structure of the matrix, the number of 
computational nodes, the network topology and the hardware performance influence 
the choice. The following algorithms are available: 

MV_COMM_ISEND is a simple implementation of the halo exchange. In this case the 
entire part of the local vector is transferred to the neighbours with a set of the 
asynchronous operation MPI_Isend. The disadvantage of this method is that a large 
part of the transferred data is really not needed for the matrix-vector multiplication. 

Defined in the subroutine cel_sp_mat_distr_vec_isend_start_all in the source 
file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90 
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MV_COMM_ISEND_IDX is an improved version of the above method. In this case the 
reduced part of the local vector values are transferred to the neighbours. Nevertheless 
part of the data transferred is also unnecessary. 

Defined in the subroutine cel_sp_mat_distr_vec_isend_idx_start_all in the 
source file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90 

MV_COMM_ISEND_COMM_BUFFER transfers only the values that are really needed. 
The disadvantage of this method is the additional overhead due to indirect addressing 
and extra data movement between several buffers. 

Defined in the subroutine cel_sp_mat_distr_vec_isend_comm_buffer_start_all 
in the source file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90 

MV_COMM_IBCAST transfers the entire part of the local vector as in the case of the 
first method MV_COMM_ISEND. In contrast to other methods, the data will be 
transferred using non-blocking, with the non-blocking collective operation MPI_Ibcast 
(see more details about that collective operation in (8) and (13)). The halo exchange 
within small partially disjoint groups may greatly reduce latency. This is illustrated on 
Figure 2. 

Defined in the subroutine cel_sp_mat_distr_vec_ibcast_start_all in the source 
file src/fspmtdistr/cel_sp_mat_distr_vec_module.f90 

 

 
Figure 2 - Total performance of the matrix-vector multiplication depending on the number of MPI 
processes and the type of the halo data exchange. In the first case the simple method MV_COMM_ISEND 
was used. In the second case the method MV_COMM_IBCAST for the communication part of the matrix-
vector multiplication essentially improved the performance. The measurement was done on the Cray XE6 
(Hermit). 

 

Note that in order to use the broadcast operation, a set of the MPI groups must be 
initialized. The root element of each group is the process that sends the halo data to 
the neighbours. The remaining part of the group consists of the processes that receive 
the halo data from the root process. The set of halo data exchange groups is not 
disjoint since the remainder of the processes obtain the halo data from more than one 
process as shown on Figure 3. 
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Figure 3 – Left: Distributed sparse matrix in sub-block format. Right: The corresponding groups of the 
halo data exchange with the method MV_COMM_IBCAST based on the MPI non-blocking broadcast 

operation. 

It is advisable to use only scalable MPI functions to create the corresponding 
communicators (for example, function MPI_Comm_split). Another way is to separate 
the groups in to several sets with only disjoint groups. The function 
MPI_COMM_CREATE can be called in parallel for all groups of the set. This algorithm 
is used in the subroutine cel_comm_get_communicators defined in the source file 
src/fcomm/cel_comm_module.f90. 

In most test cases the method MV_COMM_ISEND_COMM_BUFFER was the best 
choice. However, for some special cases the latency reduction may be more efficient 
than reducing the amount of data that has to be sent and received. This can be true for 
example, if the sparse matrices have high density and the number of neighbours to 
communicate is high. Another example is if the bandwidth and the latency of the 
network are not well balanced (see (12) section 3.4 Network and performance of 
collective operations for the details). 

 

3.8 Non-­‐blocking	
  and	
  blocking	
  collective	
  operation	
  Allreduce	
  
At compile time the user can also make a choice between blocking and non-blocking 
version of the collective operation allreduce, which is used in the calculation for 
example to calculate a dot product. The benchmark results on the Cray XE6 and Cray 
XC30 with cray-mpich2/6.2.1 did not show any significant difference between these two 
operations. This is shown in the white paper (13). The sections below (3.9, 3.13.1 and 
3.13.2) also contain performance measurements of these two collectives operations in 
the solver. 

	
  
3.9 Matrix-­‐vector	
  multiplication	
  
The matrix-vector multiplication (A*x=y) is one of the most complex and time-
consuming operations to solve linear systems. Overlapping computation with 
communication is one of the simplest techniques to improve its efficiency. Figure 4 
shows profile data for the operation. Using 64 cores on 2 computational nodes the halo 
data exchange was completely overlapped with the local computation.  In the case of 
256 cores (4 comp. nodes) the execution time is equal to the computation time. 
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Figure 4– Left: Strong scaling test of the operation matrix-vector multiplication for the Poisson problem on 
a  3D regular grid of the size 64x64x64 (27 point stencil). The test is performed on the Cray XE6 (Hermit). 
A maximum four master threads with seven worker threads were placed on each allocated node. Right: 
The normalized execution time of three main sub-operations for the same strong scaling test. The 
execution time is shown for the halo data exchange (blue curve), overlapping computation (red curve) and 
computation on the halo data (green). The time was normalized to the total execution time of the matrix-
vector multiplication. 

The operation is defined in the subroutine cel_fop_mv_axy_distr in the source file 
src/fop/cel_fop_mv_module.f90. 

 

3.10 	
  Performance	
  counters	
  
The performance and metadata of various sub-operations will be stored in the cel 
counters. This allows for performance measurement and for the further integration of 
auto-tuning into the solvers (changing frequency, activation and deactivation of cores 
over time). The counter is defined in the source file src/fbase/cel_perf_module.f90.  

The source file src/fbasedistr/cel_perf_distr_module.f90 provides methods to gather all 
counter values from all master processes. 

 

3.11 API	
  interface	
  
There are two interfaces available to link the library. The first interface is for use with a 
pure MPI program. The schema for this usage is shown in Figure 5.  

 

 
Figure 5 – Linking of the CEL library to a pure MPIMPI application. The N MPI processes on the NUMA 
node will be reduced to one master process and N-1 worker. Until the solver ends its work the N-1 MPI 
processes sleep. 

 
The source file tests/examples/src/cel_solver.f90 contains an example for the usage of 
that interface. 
 
The source file tests/examples/src/cel_benchmark.f90 contains the example for the use 
of the cel library if the application is being developed using the parallel hybrid 
MPI/OpenMP. 
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3.12 Compilation	
  of	
  the	
  library	
  and	
  examples	
  
After setting all required fields in the configuration file ./make_env.in, run the make 
command with the arguments “make clean all tests”. This creates a set of libraries in 
the directory “./lib”. The directory src/include/ contains the Fortran modfiles. Two 
additional examples will be compiled in the directory ./tests/examples/: 

• cel_solver – An example of how to use the library interface for a pure MPI 
application. The matrix for the example must be loaded from the file in the 
Matrix Market Exchange Format (14). The library includes an example of the 
matrix in the directory ./tests/matrix/. The matrix corresponds to a Gyrokinetic 
code for turbulent fusion plasma of ELMFIRE (15). 

• cel_benchmark – An example how to use the library interface for a hybrid MPI 
and OpenMP application. The matrix for the example can be automatically 
generated or loaded from the file in the Matrix Market Exchange Format. 

The arguments for both executables are described in the README file. 

 

3.13 Performance	
  measurements	
  of	
  the	
  library	
  
In this section we show performance measurements carried out on two different 
platforms: a Cray XE6 (Hermit) and a small cluster with dual socket Ivy Bridge E5-2690 
v2 processors. A description of the Cray XE6 (Hermit) platform can be found in (16). A 
description of the Ivy Bridge can be found in (17). 

Further performance measurements on Hornet, a new supercomputer Cray XC40 
system (18) will be presented after the end of the acceptance phase of the system. 

 

3.13.1 Performance	
  measurements	
  on	
  one	
  node	
  
 

Figure 6 shows performance results for one node of the Cray XE6 (Hermit). One 
computation node has two AMD Interlagos processors.  

 

 
Figure 6 – Performance of the CG for the 3D Poisson problems of sizes 16x16x16x16, 32x32x32 and 
64x64x64. The tests were performed on one computation node with two AMD Interlagos processors. Each 
process has 16 cores. Only one master process was started. 

Figure 7 shows the performance of the CG solver on the computation node with two Ivy 
Bridge processors. 
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Figure 7 - Performance of the CG for the 3D Poisson problems of sizes 16x16x16x16, 32x32x32 and 

64x64x64. The tests were performed on one computational node with two Ivy Bridge E5-2690 v2 
processors. Each process has 10 cores. Only one master process was started. 

3.13.2 Weak	
  scaling	
  on	
  the	
  Cray	
  XE6	
  (Hermit)	
  
 

Weak scaling tests were carried out on the Cray XE6 (Hermit).  

 

 
Figure 8 Weak scaling test of the CG with Jacobi preconditioner for the Poisson problem on a 3D regular 
grid (27 point stencil). The first run was carried out with one master process and seven worker threads. 
The matrix had 64x64x64 rows. 
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4 CRESTA-­‐FFT	
  library	
  
 

We developed a generic library (reshape) to support changes in the data 
decomposition that can be used to quickly optimize the FFT strategy with respect to the 
hardware. 

Our approach emphasizes the communication component of the FFT problem. This 
kind of communication seems to be one of the scaling issues for exascale computing. 

In general any data decomposition can be represented at runtime by an object with the 
following interface: 

• A method that maps global coordinates to a process rank 
• A method that maps global coordinates to a local memory offset. 

To start with, we are only considering decompositions where each dimension of the 
dataset is decomposed independently. We can therefore represent the decomposition 
along each dimension as a separate object and combine them using a set of 
processor-rank and memory-offset stride values. This is still capable of representing a 
far more general set of decompositions than most parallel libraries. The drawback is 
that these general decompositions are a bit more expensive to use. 

To mitigate this, we use an interface which uses decomposition descriptors to build re-
usable communication plans for switching between data decompositions (essentially 
these are lists of MPI data types corresponding to the necessary messages). Any 
additional overhead only takes place in the initial planning stage and should have a 
small impact on the overall performance of the code. As an added bonus virtually the 
same code can be used to build MPI-IO file-view data types to support parallel IO to 
the different decompositions. 

A detailed overview of CRESTA-FFT library is given in the CRESTA deliverable D4.3.1 
“Initial prototype of exascale algorithms and solvers for project internal validation“ (12) 
so that will not be fully repeated here. The source code includes examples of how to 
use the library. 
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5 CRESTA	
  domain	
  decomposition	
  methods	
  
 

The traditional scheme for parallel iterative algorithms like the CRESTA-Linear-Solver 
library is synchronous iterations. This describes a method where a new iteration can 
only start when all data of the previous iteration has been received. These parallel 
synchronous iterations use the same mathematical model and have the same 
convergence behaviour as their sequential counterparts. They have been widely 
studied and are often simply called parallel iterative algorithms, synchronous being 
omitted. They are very efficient when used with well-balanced workloads and short 
communication times. However, these conditions are hard and expensive to achieve 
especially as the number of cores used increases. 

Another kind of iterative algorithm can help to solve these scalability problems. Called 
first chaotic relaxations, it is now usually designed by asynchronous iterations. There 
are three commonly used schemes for asynchronous iterations. The first one is totally 
asynchronous iterations. It sets very few conditions on the iterations and 
communications except that they must never stop indefinitely. The second scheme is 
partially asynchronous iterations. It is based on the assumption that the communication 
time is bounded and that each process does at least one iteration every given period. 
The third scheme is flexible asynchronous iterations. Flexible communication means 
that the data is sent as soon as possible, but due to the strength of asynchronous 
iteration, it is more general. 

Since iterative algorithms are often slow to converge, more advanced algorithms like 
domain decomposition methods must be considered. The extension of such algorithms 
to totally asynchronous iterations leads from a mathematical point of view to several 
convergence problems and from a computer science point of view to define new 
parallel paradigms. The first results of the extension to totally asynchronous iterations 
of the optimized Schwarz algorithm show that this algorithm is extremely robust 
compared to classical iterative algorithm, and very promising for Exascale computing. 
But the optimized coefficients must be derived upon the mathematical equation of the 
physical problem considered. 

In order to implement an asynchronous iterative algorithm, an additional layer between 
the MPI library and the code must be developed. This layer will in particular allow in the 
definition of asynchronous communications between the processors, with a continuous 
request, and to define the best way to evaluate the residual to determine the 
convergence of the algorithm. Once this layer is defined, the code itself must be slightly 
modified as well. This layer-code modification must be performed manually for each 
algorithm considered. 
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6 Outlook	
  
 

The CEL library is publicly available. The library will be further developed, for example 
in the project “EXCESS” (19) in order to improve the efficiency of the library. This will 
be achieved by including more a advanced preconditioner for the scalability, matrix 
vector blocking techniques for better loop vectorization and dynamic changes to the 
number of the threads depending on the load balance and type of computational 
kernels. Frequency scaling is also a promising disruptive technology as shown in early 
CRESTA work (see (20) for more details).  The cel_omp_shared_work_module will be 
used to manage the number of computing threads and their frequency depending on 
the metadata, which is collected in the cel counters. 

 

 

 
 



 

© CRESTA Consortium Partners 2014  Page 14 of 15 

 

7 Bibliography	
  
1. Stephen P Booth, Dmitry Khabi, Gregor Matura, Christoph Niethammer, Harvey 
RichardsonOverview of major limiting factors of existing algorithms and 
librariesCRESTA Consortium Partners2012 

2. Uwe Küster, Stephen P Booth, Stephen Sachs, Dmitry Khabi, Gregor Matura, 
Mhd. Amer Wafai. Prediction Model for identifying limiting Hardware Factors. s.l. : 
CRESTA Consortium Partners, 2013. 

3. Asynchronous Schwarz methods for peta and exascale computing.In B.H.V. Topping 
and P. Ivanyi, editors, Developments in Parallel, Distributed, Grid and Cloud 
Computing for Engineering, chapter 10, pages 229-248.Stirlingshire, UKSaxe-Coburg 
Publications2013 

4. Asynchronous optimized Schwarz methods.In B.H.V. Topping, editor, Computational 
Methods for Engineering Science, chapter 17, pages 425-444Stirlingshire, UKSaxe-
Coburg Publications2012 

5. C. Venet and F. MagoulesAsynchronous substructuring methods.In Substructuring 
Techniques and Domain Decomposition Methods, chapter 4, pages 71-
104Stirlingshire, UKSaxe-Coburg Publications2010 

6. Collaboration Workshop - Edinburgh March 2014CRESTA Consortium Partners 
2011http://www.cresta-project.eu/news-events/collaborative-workshop.html 

7. Fortran Standards Documents: Fortran 90. [Online] 
https://gcc.gnu.org/wiki/GFortranStandards. 

8. MPI: A Message-Passing Interface Standard Version 3.0 Chapter author for 
Collective Communication, Process Topologies, and One Sided. s.l. : Message 
Passing Interface Forum. , Sep. 2012. 

9. Locks and Barriershttp://www.it.uu.se/edu/course/homepage/os2/st09/handout-
04.pdf 

10. Numerik linearer GleichungssystemeFriedr. Vieweg & Sohn Verlag2008ISBN 978-
3-8348-0431-0 

11. Algebraic Multigrid (AMG): An Introduction with Applications  

12. D4.3.1 – Initial prototype of exascale algorithms and solvers for project internal 
validationCRESTA Consortium Partners 20112013 

13. White Paper Benchmarking MPI Collectives at SC14. Christoph Niethamme, 
Pekka Manninen, Rupert Nash, Dmitry Khabi, Jose Gracia. s.l. : CRESTA 
Consortium Partners, 2014. 

14. Matrix Market Mathematical and Computational Sciences Division of the 
Information Technology Laboratory of the National Institute of Standards and 
Technology.http://math.nist.gov/MatrixMarket/formats.html 

15. Full-f gyrokinetic method for particle simulation of tokamak transport J.A. 
Heikkinen, S.J. Janhunen, T.P. Kiviniemi and F. OgandoJournal Comput. Phys.227 
(2008) 5582-5609. 

16. Cray XE6 (HERMIT)https://wickie.hlrs.de/platforms/index.php/Cray_XE6 

17. Intel® Xeon® Processor E5-2690 v2 (25M Cache, 3.00 
GHz)http://ark.intel.com/products/75279/Intel-Xeon-Processor-E5-2690-v2-25M-
Cache-3_00-GHz 

18. CRAY XC40 (HORNET)HLRShttp://www.hlrs.de/systems/platforms/cray-xc40-
hornet/ 

19. Execution Models for Energy-Efficient Computing Systems - EXCESSEXCESS 
Partnershttp://excess-project.eu/ 



 

© CRESTA Consortium Partners 2014  Page 15 of 15 

 

20. Alistair Hart, Michele Wieland, Dmitry Khabi, Jens DoleschalD2.6.3 – Power 
measurement across algorithmsCRESTA Consortium Partners 20112014 

21. Uwe Küster, Dmitry Khabi. Power consumption of kernel operations. Sustained 
Simulation Performance. s.l. : Springer, scheduled at the end of 2013. 

22. An overview of the Trilinos project. Michael A. Heroux, Roscoe A. Barlett, Vicki 
E. Howle. s.l. : ACM Press, 2005. 

23. Portable, Extensible Toolkit for Scientific Computation. [Online] 08 09 2011. 
http://www.mcs.anl.gov/petsc/. 

24. José Gracia, Christoph Niethammer, Wahaj Sethi. D4.5.2 Microbenchmark 
Suite. s.l. : CRESTA Consortium Partners, 2012. 

25. J.A. Åström (CSC), Adam Carter (EPCC),Konstantinos Ioakimidis (USTUTT), 
Rupert W. Nash (UCL), James Hetherington (UCL), Artur Signell (ABO), Jan 
Westerholm (ABO). Needs analysis. s.l. : CRESTA Consortium Partners, 2012. 

26. Stephen P Booth, Uwe Küster, Stephen Sachs, José Gracia, Gregor Matura, 
Dmitry Khabi, Mhd. Amer Wafai. D4.2.1 – Prediction Model for identifying limiting 
Hardware Factors. s.l. : CRESTA Consortium Partners, 2013. 

27. EXASOLVERS - Extreme scale solvers for coupled 
problemsDFGhttp://www.sppexa.de/general-information/projects.html#EXASOLVERS 

28. D4.5.3 – Non-Blocking Collectives Runtime LibraryCRESTA Consortium Partners 
20112013 

 


