

Copyright © CRESTA Consortium Partners 2014

D4.4.2	 –	 Community	 prototype	 for	
optimized	 reduction	 approaches	

WP4:	 Algorithms	 and	 Libraries	

Due date: M38

Submission date: 30/11/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization HLRS

Version: 1.0

Status Final

Author(s): José Gracia & Vladimir Marjanovic (HLRS)

Reviewer(s) Luis Cebamanos (UEDIN), Jussi Timonen (JYU)

Dissemination level

PU PU

	

 	

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 01/11/2014 Initial version J. Gracia, V. Marjanovic

0.2 11/11/2014 Draft version, submitted for internal
review

J. Gracia, V. Marjanovic

0.3 21/11/2014 Addressed reviewer comments J. Gracia, V. Marjanovic

1.0 27/11/2014 Final version for submission Catherine Inglis (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 REDUCTIONS	 AND	 NUMERICAL	 ACCURACY	 ...	 2	
2.2	 REDUCTIONS	 IN	 MPI	 APPLICATIONS	 ...	 2	
2.3	 SUMMATION	 ALGORITHMS	 ..	 2	

3	 LIBRARY	 IMPLEMENTATIONS	 ...	 4	
3.1	 HIGH-‐PRECISION	 REDUCTION	 LIBRARY	 (LIBHPR)	 ..	 4	
3.2	 HIGH-‐PRECISION	 COLLECTIVE	 REDUCTION	 LIBRARY	 FOR	 MPI	 (LIBHPRMPI)	 ...	 4	
3.3	 AVAILABILITY	 OF	 THE	 LIBRARY	 ..	 5	
3.4	 USAGE	 OF	 THE	 LIBRARY	 ..	 5	

4	 CONCLUSIONS	 ...	 7	
5	 BIBLIOGRAPHY	 ...	 8	

	

	

© CRESTA Consortium Page 1 of 8

1 Executive	 Summary	
Collective reduction operations such as global summation of a collection of floating
point numbers is an important operation in numerical simulations and used for instance
as a convergence criterion to control iterative numerical solvers.

The summation of floating point numbers in particular suffers from inaccuracy due to
limited numerical precision and round-off errors. Numerical schemes to mitigate the
effects of round-off errors in user code and MPI reduce operations have been
discussed in a previous document, i.e. D4.4.1 [1].

Based on the work presented in D4.4.1, we have developed the High-Precision
Reduction library (libHPR) which offers various algorithms for critical local reductions.
Further, we have developed wrappers for MPI collective reductions (libHPRmpi) that
allow users to replace the MPI collective reduction, specifically for summation, with a
high-precision version.

It is worth noting that the high-precision optimized version of MPI reduce as well as the
routine to do local summations are slower than their standard counterparts. The user
thus needs to trade off performance for accuracy on a case-by-case basis.

This document is organized as follows: section 2 gives a brief introduction to the topic;
section 2.3 lists the various routines provided by the library, and gives details about
how to obtain and use the libraries; finally in section 4 we briefly summarize and draw
conclusions.

© CRESTA Consortium Page 2 of 8

2 Introduction	

In computer science, or more specifically in the area of functional programming,
reduction is defined as a higher-order function which analyses a given data structure,
and combines its data elements through use of a given combining operation in order to
build up a return value (1). The mathematical expression

𝐴 = 𝑎!
! ∈ !

can be interpreted as 𝐴 being the result of the reduction with the operation “+” (sum)
over the sequence of numbers 𝑎! 𝑖 ∈ 𝐶 in a given collection 𝐶.

In computational science, i.e. numerical simulations, etc., typical examples for the
collection are vectors and multidimensional arrays, while sum, product, or minimum
and maximum are typical operations.

2.1 Reductions	 and	 Numerical	 Accuracy	
One particularly important use of reductions in numerical simulations is the calculation
of a single value as a global representative of the individual values in the computation
domain. For instance, the average temperature might be used to represent the value of
temperature in all individual discretization cells. Also, such global values are frequently
used to drive the termination of a recursive algorithm or as convergence criterion in
iterative algorithms.

As discussed in more detail in D4.4.1 [1], any numerical computation is affected by
round-off errors. While single round-off errors are small, they might accumulate and
lead to inaccurate results as the number of individual terms in the sequences grows.
This problem specifically arises if the reduction operation is a sum (i.e. a summation
over all sequence elements). But it is negligible for multiplication across even large
sequences (see [3] for instance).

In principal, there are techniques to mitigate the effects of round-off error accumulation
(and some of them have been presented in D4.4.1), however, in some situations
reduction operations are not under direct control of the user. One such example is
reduction operations in MPI.

2.2 Reductions	 in	 MPI	 applications	
The message-passing interface (MPI) provides reductions as collective operations.
Each MPI process holds a single element of the global collection. The MPI library will
take care of applying the given operation to the global collection while doing
communication in the background. However, the user cannot control the numerical
scheme to perform for instance the summation and thus cannot control the round-off
error (unless the user is prepared to write a custom user-defined reduce function and
register this with MPI). In addition, the round-off error depends also on the order in
which terms are evaluated. The issue of numerical errors is particularly severe, as MPI
reduction collectives are frequently used to calculate global convergence criteria. The
inaccuracy of these convergence criteria might have a critical influence on the
application’s result or its performance.

As we move to exascale computing, with possibly millions of MPI processes, the
number of terms in a summation reduction approaches the limit where numerical errors
will reach a level that can no longer be disregarded a priori.

2.3 Summation	 Algorithms	
In the previous deliverable, D4.4.1, we have discussed three different summation
algorithms:

1. Kahan Summation [4]: keeps a running correction term.

© CRESTA Consortium Page 3 of 8

2. Knuth Summation [5,6]: also keeps a running correction term.
3. High Floating-point Precision Summation: uses higher floating-point precision to

store intermediate results.

Each of these algorithms has its own advantages and shortcomings. Kahan and Knuth
summation are practical only if all summation terms are present locally, which makes
them unsuitable for use in MPI collectives. Using higher-precision floating-point
numbers to store intermediate results increases the accuracy of every single operation
and allows the summation to be distributed over many MPI processes.

© CRESTA Consortium Page 4 of 8

3 Library	 Implementations	
We have developed two user-level libraries:

1. High-Precision Reduction library (libHPR)
2. High-Precision Reduction library for MPI (libHPRmpi)

The former (libHPR) provides a set of functions allowing users to do local summations
with any of the three summation algorithms: Kahan, Knuth, and high-precision
summation. The later (libHPRmpi) substitutes the well-known collective MPI reduction
operations MPI_Reduce() and MPI_Allreduce() with versions that use an extended
precision representation of floating-point numbers to increase the accuracy in a way
that is transparent to the user.

3.1 High-‐Precision	 Reduction	 Library	 (libHPR)	
This library provides routines to sum up a vector of float or double values, using,
respectively, the three algorithms: Knuth summation, Kahan summation, and high-
precision summation. The latter uses extended precision floating point numbers
internally. In addition, we have provided a routine that does multiplication storing
intermediate results in extended precision as well. The names and signatures of the
routines are:

• double HPR_sum_kahan_float(float *vec)
• double HPR_sum_kahan_double(double *vec)
• float HPR_sum_knuth_float(float *vec)
• double HPR_sum_knuth_double(double *vec)
• float HPR_sum_highprecision_float(float *vec)
• double HPR_sum_highprecision_double(double *vec)
• double HPR_prod_highprecision_double(double *vec)

Programmers should use these routines to protect any non-trivial summation in their
codes. The usage of the high-precision multiplication algorithm is only recommended in
cases where issues are known to exist.

3.2 High-‐Precision	 Collective	 Reduction	 Library	 for	 MPI	
(libHPRmpi)	

We have developed a library for implementing MPI reduction collectives, in particular
we wrap the routines MPI_Reduce() and MPI_Allreduce(). The wrappers analyse the
arguments of the function call and will delegate summation operations on floating-point
numbers to a special routine, e.g. delegate_summation(). The structure of these
delegates is roughly:

delegate_summation(sendbuf, recvbuf, count,comm) {
 high_sendbuf = convert2highprecission(sendbuf);

high_recvbuf = allocate_highprecission();

op = high_precission_summation;

 ierr = MPI_Reduce(high_sendbuf, high_recvbuf, op, comm);

recvbuf = convert2lowprecission(high_recvbuf);

return ierr;
}

The send and receive buffers are converted to buffers capable of holding higher
precision floating-point numbers. Then the reduce operation is done using the high-
precision buffers with a custom reduce operation op. For some architectures and
compilers/MPI libraries, the operation op can be the standard sum operator.

© CRESTA Consortium Page 5 of 8

Notably the Cray compiler and Cray MPI do not support extended precision floating-
point numbers, and we had to provide a custom sum_extended_precision operation
compiled with the GNU compiler.

Specifically, we have provided substitutes for the following MPI routines:

• int MPI_Reduce(…, MPI_Datatype datatype, MPI_Op op, …)
• int MPI_Allreduce(…, MPI_Datatype datatype, MPI_Op op, …)

But only for the relevant cases, i.e. datatype is one of

• MPI_FLOAT
• or MPI_DOUBLE,

and op is one of

• MPI_SUM
• or MPI_PROD.

3.3 Availability	 of	 the	 library	
At the time of delivery of this document the source code of the library is available at the
HLRS web page

https://www.hlrs.de/index.php?id=2132

The code is distributed under the BSD open source license.

3.4 Usage	 of	 the	 library	
Building the library is as simple as executing the command make in the distribution
directory:

$> cd HPR-library
$> make

This will result in two library files

• libHPR.so
• libHPRmpi.so

which need to be copied into the library path, i.e. any directory listed in
LD_LIBRARY_PATH.

The target test will build a small test application test_optimized_reduction

$> make test
$> aprun –n 32 ./test_optimized_reduction

3.4.1.1 Using	 MPI	 wrappers	 libHPRmpi	

There are two possibilities to use the optimized reduction in a user-provided
application: 1) linking against libHPR at compile time, and 2) pre-loading libHPR at
runtime.

The library is used at compile/link time and replaces the corresponding MPI routines for
all invocations of the application. To do this, compile with the options:

$> cc –o a.out –lHPRmpi source_code.c
$> aprun –n 32 ./a.out

Note that on non-Cray systems the library HPRlib needs to be invoked after –lmpi as:
$> gcc –o a.out –lmpi –lHPRmpi source_code.c
$> mpirun –n 32 ./a.out

© CRESTA Consortium Page 6 of 8

This is not necessary when using the Cray compiler wrappers (CC, cc, ftn) as they load
the MPI library, etc, before any user provided library is loaded.

The second option is to overload the MPI reduce functions at the time when the
application is executed. This is particularly useful if one wants to test the impact of
summation on one’s application without the need to recompile it. Use the following
commands to accomplish this:

$>LD_PRELOAD=libHPRmpi.so aprun –n 32 ./a.out

3.4.1.2 High-‐Precision	 reductions	 in	 user	 code	 with	 libHPR	

An application developer can also use the High-Precision Reduction library in user
code to perform large summation or multiplication operations at high precision. The
developer needs to copy the header file libHPR.h into a suitable location, e.g.
HPR_HOME/include. The routines can be accessed by including them in the source
code with:

#include “libHPR.h”

At compile time, the path to the header file and the library need to be specified with:
$> cc –o a.out –IHPR_HOME/include –lHPR source_code.c
$> aprun –n 32 ./a.out

© CRESTA Consortium Page 7 of 8

4 Conclusions	
We have briefly introduced the problem of numerical accumulation of round-off errors in
reduction operations, in particular summation over large sequences. Such summation
operations are relevant in many simulation applications and are used for instance to
calculate convergence criteria, etc.

While there are techniques to mitigate some of the effects of round-off error
propagation, there are situations where the application developer cannot easily apply
these. One such example is reductions done by MPI on large distributed sequences.

In this report we present the High-Precision Reduction library (libHPR), which provides
a simple-to-use routine for local reductions, and wrappers for MPI collective reduction
operations (libHPRmpi), which allow users to replace the MPI collective reduction,
specifically for summation, with a high-precision version.

Working on this topic we have learnt that few developers of numerical algorithms
concern themselves with the impact of numerical round-off errors on their numerical
simulations and thus on their scientific conclusions. Today, given the still relatively low
number of MPI ranks in the order of a few tens of thousands, this might be justifiable
for MPI reductions. However, this is not true for local summations, which can easily
impact on sequences with many millions of terms. In the worst case this might bring the
true precision of a double float down to the range of a single precision float.

We hope that application developers will soon realize the importance of numerical
round-off errors and will find use for the tools we have developed during the CRESTA
project.

© CRESTA Consortium Page 8 of 8

5 Bibliography	
1. José Gracia, Wahaj Sethi: D4.4.1 - Initial prototype for optimized reduction
approaches for Project internal validation, CRESTA Consortium Partners 2011, 2013.

2. Fold (higher-order function): http://en.wikipedia.org/wiki/Reduce_(higher-
order_function).

3. David Goldberg: "What every computer scientist should know about floating-point
arithmetic", ACM Comput.Surv. 23(1): 5-48, 1991. doi=10.1145/103162.103163.

4. William Kahan, "Further remarks on reducing truncation errors", Communications of
the ACM 8 (1): 40 : s.n., 1965. doi:10.1145/363707.363723.

5. Nicholas J. Higham: "The accuracy of floating point summation", SIAM Journal on
Scientific Computing 14 (4): 783–799, 1993. doi:10.1137/0914050.

6. D.E. Knuth: "The Art of Computer Programming, vol 2", Addison-Wesley Press.

7. Robert W. Robey, Jonathan M. Robey, Rob Aulwes: "In search of numerical
consistency in parallel programming", http://dx.doi.org/10.1016/j.parco.2011.02.009,
2011.

