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1 Executive	  Summary	  
Collective reduction operations such as global summation of a collection of floating 
point numbers is an important operation in numerical simulations and used for instance 
as a convergence criterion to control iterative numerical solvers.  

The summation of floating point numbers in particular suffers from inaccuracy due to 
limited numerical precision and round-off errors. Numerical schemes to mitigate the 
effects of round-off errors in user code and MPI reduce operations have been 
discussed in a previous document, i.e. D4.4.1 [1].  

Based on the work presented in D4.4.1, we have developed the High-Precision 
Reduction library (libHPR) which offers various algorithms for critical local reductions. 
Further, we have developed wrappers for MPI collective reductions (libHPRmpi) that 
allow users to replace the MPI collective reduction, specifically for summation, with a 
high-precision version. 

It is worth noting that the high-precision optimized version of MPI reduce as well as the 
routine to do local summations are slower than their standard counterparts. The user 
thus needs to trade off performance for accuracy on a case-by-case basis.  

This document is organized as follows: section 2 gives a brief introduction to the topic; 
section 2.3 lists the various routines provided by the library, and gives details about 
how to obtain and use the libraries; finally in section 4 we briefly summarize and draw 
conclusions. 
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2 Introduction	  
 

In computer science, or more specifically in the area of functional programming, 
reduction is defined as a higher-order function which analyses a given data structure, 
and combines its data elements through use of a given combining operation in order to 
build up a return value (1). The mathematical expression  

𝐴 =    𝑎!
!  ∈  !

 

can be interpreted as 𝐴 being the result of the reduction with the operation “+” (sum) 
over the sequence of numbers 𝑎!   𝑖   ∈ 𝐶  in a given collection 𝐶. 

In computational science, i.e. numerical simulations, etc., typical examples for the 
collection are vectors and multidimensional arrays, while sum, product, or minimum 
and maximum are typical operations. 

2.1 Reductions	  and	  Numerical	  Accuracy	  
One particularly important use of reductions in numerical simulations is the calculation 
of a single value as a global representative of the individual values in the computation 
domain. For instance, the average temperature might be used to represent the value of 
temperature in all individual discretization cells. Also, such global values are frequently 
used to drive the termination of a recursive algorithm or as convergence criterion in 
iterative algorithms.  

As discussed in more detail in D4.4.1 [1], any numerical computation is affected by 
round-off errors. While single round-off errors are small, they might accumulate and 
lead to inaccurate results as the number of individual terms in the sequences grows. 
This problem specifically arises if the reduction operation is a sum (i.e. a summation 
over all sequence elements). But it is negligible for multiplication across even large 
sequences (see [3] for instance). 

In principal, there are techniques to mitigate the effects of round-off error accumulation 
(and some of them have been presented in D4.4.1), however, in some situations 
reduction operations are not under direct control of the user. One such example is 
reduction operations in MPI. 

2.2 Reductions	  in	  MPI	  applications	  
The message-passing interface (MPI) provides reductions as collective operations.  
Each MPI process holds a single element of the global collection. The MPI library will 
take care of applying the given operation to the global collection while doing 
communication in the background. However, the user cannot control the numerical 
scheme to perform for instance the summation and thus cannot control the round-off 
error (unless the user is prepared to write a custom user-defined reduce function and 
register this with MPI).  In addition, the round-off error depends also on the order in 
which terms are evaluated. The issue of numerical errors is particularly severe, as MPI 
reduction collectives are frequently used to calculate global convergence criteria. The 
inaccuracy of these convergence criteria might have a critical influence on the 
application’s result or its performance.  

As we move to exascale computing, with possibly millions of MPI processes, the 
number of terms in a summation reduction approaches the limit where numerical errors 
will reach a level that can no longer be disregarded a priori.  

2.3 Summation	  Algorithms	  
In the previous deliverable, D4.4.1, we have discussed three different summation 
algorithms: 

1. Kahan Summation [4]: keeps a running correction term. 



 

© CRESTA Consortium   Page 3 of 8 

 

2. Knuth Summation [5,6]: also keeps a running correction term. 
3. High Floating-point Precision Summation: uses higher floating-point precision to 

store intermediate results. 

Each of these algorithms has its own advantages and shortcomings. Kahan and Knuth 
summation are practical only if all summation terms are present locally, which makes 
them unsuitable for use in MPI collectives.  Using higher-precision floating-point 
numbers to store intermediate results increases the accuracy of every single operation 
and allows the summation to be distributed over many MPI processes.   
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3 Library	  Implementations	  
We have developed two user-level libraries:  

1. High-Precision Reduction library (libHPR) 
2. High-Precision Reduction library for MPI (libHPRmpi) 

The former (libHPR) provides a set of functions allowing users to do local summations 
with any of the three summation algorithms: Kahan, Knuth, and high-precision 
summation. The later (libHPRmpi) substitutes the well-known collective MPI reduction 
operations MPI_Reduce() and MPI_Allreduce() with versions that use an extended 
precision representation of floating-point numbers to increase the accuracy in a way 
that is transparent to the user. 

3.1 High-‐Precision	  Reduction	  Library	  (libHPR)	  
This library provides routines to sum up a vector of float or double values, using, 
respectively, the three algorithms: Knuth summation, Kahan summation, and high-
precision summation. The latter uses extended precision floating point numbers 
internally. In addition, we have provided a routine that does multiplication storing 
intermediate results in extended precision as well. The names and signatures of the 
routines are: 

• double HPR_sum_kahan_float(float *vec) 
• double HPR_sum_kahan_double(double *vec) 
• float HPR_sum_knuth_float(float *vec) 
• double HPR_sum_knuth_double(double *vec) 
• float HPR_sum_highprecision_float(float *vec) 
• double HPR_sum_highprecision_double(double *vec) 
• double HPR_prod_highprecision_double(double *vec) 

Programmers should use these routines to protect any non-trivial summation in their 
codes. The usage of the high-precision multiplication algorithm is only recommended in 
cases where issues are known to exist. 

3.2 High-‐Precision	   Collective	   Reduction	   Library	   for	   MPI	  
(libHPRmpi)	  

We have developed a library for implementing MPI reduction collectives, in particular 
we wrap the routines MPI_Reduce() and MPI_Allreduce(). The wrappers analyse the 
arguments of the function call and will delegate summation operations on floating-point 
numbers to a special routine, e.g. delegate_summation(). The structure of these 
delegates is roughly: 

delegate_summation(sendbuf, recvbuf, count,comm) { 
 high_sendbuf = convert2highprecission(sendbuf); 

high_recvbuf = allocate_highprecission(); 
 
op = high_precission_summation; 

  ierr = MPI_Reduce(high_sendbuf, high_recvbuf, op, comm); 
  

recvbuf = convert2lowprecission(high_recvbuf); 
  

return ierr; 
} 

 

The send and receive buffers are converted to buffers capable of holding higher 
precision floating-point numbers. Then the reduce operation is done using the high-
precision buffers with a custom reduce operation op. For some architectures and 
compilers/MPI libraries, the operation op can be the standard sum operator.  
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Notably the Cray compiler and Cray MPI do not support extended precision floating-
point numbers, and we had to provide a custom sum_extended_precision operation 
compiled with the GNU compiler. 

Specifically, we have provided substitutes for the following MPI routines: 

• int MPI_Reduce( …, MPI_Datatype datatype,  MPI_Op op, …) 
• int MPI_Allreduce(…, MPI_Datatype datatype, MPI_Op op, …) 

But only for the relevant cases, i.e. datatype is one of 

• MPI_FLOAT 
• or MPI_DOUBLE, 

and op is one of 

• MPI_SUM 
• or MPI_PROD. 

3.3 Availability	  of	  the	  library	  
At the time of delivery of this document the source code of the library is available at the 
HLRS web page  

https://www.hlrs.de/index.php?id=2132 

The code is distributed under the BSD open source license. 

3.4 Usage	  of	  the	  library	  
Building the library is as simple as executing the command make in the distribution 
directory: 

$> cd HPR-library 
$> make 

 

This will result in two library files 

• libHPR.so 
• libHPRmpi.so 

which need to be copied into the library path, i.e. any directory listed in 
LD_LIBRARY_PATH.  

The target test will build a small test application test_optimized_reduction 

$> make test 
$> aprun –n 32 ./test_optimized_reduction 

 

3.4.1.1 Using	  MPI	  wrappers	  libHPRmpi	  
 
There are two possibilities to use the optimized reduction in a user-provided 
application: 1) linking against libHPR at compile time, and 2) pre-loading libHPR at 
runtime. 
 
The library is used at compile/link time and replaces the corresponding MPI routines for 
all invocations of the application. To do this, compile with the options: 
  

$> cc –o a.out –lHPRmpi source_code.c 
$> aprun –n 32 ./a.out 

 

Note that on non-Cray systems the library HPRlib needs to be invoked after –lmpi as: 
$> gcc –o a.out –lmpi –lHPRmpi source_code.c 
$> mpirun –n 32 ./a.out 
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This is not necessary when using the Cray compiler wrappers (CC, cc, ftn) as they load 
the MPI library, etc, before any user provided library is loaded. 
 

The second option is to overload the MPI reduce functions at the time when the 
application is executed. This is particularly useful if one wants to test the impact of 
summation on one’s application without the need to recompile it. Use the following 
commands to accomplish this: 
 

$>LD_PRELOAD=libHPRmpi.so aprun –n 32 ./a.out 
 

3.4.1.2 High-‐Precision	  reductions	  in	  user	  code	  with	  libHPR	  
 

An application developer can also use the High-Precision Reduction library in user 
code to perform large summation or multiplication operations at high precision. The 
developer needs to copy the header file libHPR.h into a suitable location, e.g. 
HPR_HOME/include. The routines can be accessed by including them in the source 
code with: 

#include “libHPR.h” 
 

At compile time, the path to the header file and the library need to be specified with: 
$> cc –o a.out –IHPR_HOME/include –lHPR source_code.c 
$> aprun –n 32 ./a.out 
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4 Conclusions	  
We have briefly introduced the problem of numerical accumulation of round-off errors in 
reduction operations, in particular summation over large sequences. Such summation 
operations are relevant in many simulation applications and are used for instance to 
calculate convergence criteria, etc.  

While there are techniques to mitigate some of the effects of round-off error 
propagation, there are situations where the application developer cannot easily apply 
these. One such example is reductions done by MPI on large distributed sequences.   

In this report we present the High-Precision Reduction library (libHPR), which provides 
a simple-to-use routine for local reductions, and wrappers for MPI collective reduction 
operations (libHPRmpi), which allow users to replace the MPI collective reduction, 
specifically for summation, with a high-precision version. 

Working on this topic we have learnt that few developers of numerical algorithms 
concern themselves with the impact of numerical round-off errors on their numerical 
simulations and thus on their scientific conclusions. Today, given the still relatively low 
number of MPI ranks in the order of a few tens of thousands, this might be justifiable 
for MPI reductions. However, this is not true for local summations, which can easily 
impact on sequences with many millions of terms. In the worst case this might bring the 
true precision of a double float down to the range of a single precision float.   

We hope that application developers will soon realize the importance of numerical 
round-off errors and will find use for the tools we have developed during the CRESTA 
project.  
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