

Copyright © CRESTA Consortium Partners 2014

D4.5.4	
 –	
 Non-­‐blocking	
 collectives	
 in	

one	
 or	
 more	
 of	
 the	
 co-­‐design	

applications	

WP4:	
 Algorithms	
 and	
 Libraries	

Due date: M39

Submission date: 31/12/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization HLRS

Version: 1.0

Status Internal Review

Author(s):

Pekka Manninen (Cray),

Rupert W. Nash (UEDIN),

Christoph Niethammer (HLRS),

Dmitry Khabi (HLRS)

Reviewer(s)
Dan Henningson (KTH)

Tobias Hilbrich (TUD)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale, Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 10/11/2014 First draft Dmitry Khabi(HLRS)

0.2 15/11/2014 Section about “Overlap availability
of non-blocking collectives” Pekka Manninen(Cray)

0.3 11/27/2014
Section about “Impact of the
entering time on collective
performance”

Christoph Niethammer
(HLRS)

0.4 11/28/2014 Sections about CG and HemeLB Dmitry Khabi(HLRS)

0.5 05.12.2014 Addressing comments Pekka Manninen(Cray)

0.6 05.12.2014 Addressing comments Dmitry Khabi(HLRS)

0.7 11.12.2014 Addressing comments Christoph Niethammer
(HLRS)

1.0 16.12.2014 Final version for submission Catherine Inglis (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

3	
 IMPACT	
 OF	
 THE	
 ENTERING	
 TIME	
 ON	
 COLLECTIVE	
 PERFORMANCE	
 ..	
 3	

4	
 OVERLAP	
 AVAILABILITY	
 OF	
 NON-­‐BLOCKING	
 COLLECTIVES	
 ..	
 4	

5	
 NON-­‐BLOCKING	
 COLLECTIVES	
 IN	
 THE	
 ITERATIVE	
 LINEAR	
 SOLVERS	
 ..	
 5	

6	
 NON-­‐BLOCKING	
 COLLECTIVES	
 IN	
 THE	
 PRODUCTION	
 APPLICATION	
 HEMELB	
 	
 7	

7	
 OUTLOOK	
 ..	
 8	

8	
 BIBLIOGRAPHY	
 ...	
 9	

Index	
 of	
 Figures	

Figure 1 - Comparison between CG implementations with non-blocking and blocking
collective operation allreduce. .. 5	

Figure 2 - Runtime of 100 iterations of non-blocking and blocking verisons of NekBone
CG on Milner (Cray XC30) (9). This test and integration of non-blocking collectives into
NekBone was done by Dana Akhmetova (KTH). ... 6	

Figure 3 - Left: time spent in MPI_Wait calls. Right: time spent in monitoring
calculations. The line colour indicates the size of problem used (small: magenta;
medium: red; large: blue) and the style of line indicates the type of collectives used
(default: solid; NBC: dashed; NBC with DMAPP: dotted). .. 7	

	

© CRESTA ConsortiumPartners 2014 Page 1 of 9

1 Executive	
 Summary	

Deliverable 4.3.2 contains a description of the work done under CRESTA in the field of
the non-blocking collectives. The experiences and insights in this field have been
incorporated in the two papers “Benchmarking MPI Collectives” (1) and “MPI
collectives at scale” (2), which were presented at Supercomputing Conference 2014.

The objective of this document is to collect key information about non-blocking
collectives and their possible use in High Performance Computing. Detailed information
can be obtained in the above-mentioned papers.

In sections 3 and 4 we study the influence of the entering time on some existing
collective operations and the possibility of hiding the parallel overhead caused by the
operation by overlapping the communication with computation or other work.

The information about the usage of the non-blocking collective operation
MPI_Iallreduce in the iterative solvers of NekBone (3) and CEL library (4) is provided in
section 5.

Section 6 contains information about the integration of non-blocking collectives into a
production application, HemeLB (5).

© CRESTA ConsortiumPartners 2014 Page 2 of 9

2 Introduction	

The MPI 3.0 (6) standard introduced non-blocking collective operations which give new
optimization opportunities for applications, since they allow overlap of communication
with computation, thus reducing synchronisation costs for delayed processes. In our
research we take into account not only the benchmark results for blocking and non-
blocking collective operations, but also their performance impact on real world
applications. To explore the performance consequences of using non-blocking
collectives in a production application, we have implemented an alternative version of
the global monitoring aspects of HemeLB and of the reduction operations in the
iterative solvers of the NekBone and CEL solver library.

© CRESTA ConsortiumPartners 2014 Page 3 of 9

3 Impact	
 of	
 the	
 entering	
 time	
 on	
 collective	
 performance	

There are a lot of different collective algorithms around in the area of HPC: barriers,
reductions, scatter, gather or alltoall to just mention a few of them. Many of them are
extremely important for applications and are the limiting factor when it comes to
scalability. While they are frequently used in HPC applications, and optimized algorithm
implementations exist for different numbers of PEs, hardware architectures and
networks, they are mostly based on the assumption of a synchronized start and a more
or less homogeneous communication system. While the influence of noise on blocking
collective operations has already been studied (7), little is known about the detailed
influence of different entering times of processes e.g. caused by load imbalances,
especially on non-blocking collectives.

Within CRESTA we did a first study on the influence of entry time on a set of existing
collective operations within MPI. For this, a new testing method was developed and
implemented as a benchmarking suite.

The testing approach includes the best effort synchronization at the beginning of each
test. After this, all but one process enter the collective to be studied. The one process
is delayed by a given time before entering the collective (see Fig. 1).

The following collectives were studied in detail: MPI_Barrier, MPI_Allreduce and
MPI_Alltoall, as well as their non-blocking counterparts. Benchmarks were run on the
Hermit system at HLRS, which uses the 3D-torus network Gemini. The results for the
MPI implementation there show a small benefit for delays of 10, 20 and 50 micro
seconds up to 1024 processes – the delay is partially overlapped with the collective
operation here. A negative effect can be detected for larger number of processes. For
more details we refer to the detailed description in (1).

Fig. 1: Processes	
 are	
 synchronized	
 at	
 time	
 ta	
 and	

all	
 but	
 one	
 enter	
 the	
 collective.	
 The	
 delayed	

process	
 enters	
 the	
 collective	
 at	
 time	
 tb=	
 ta+	
 δ.

© CRESTA ConsortiumPartners 2014 Page 4 of 9

4 Overlap	
 availability	
 of	
 non-­‐blocking	
 collectives	

One key argument for introducing non-blocking collectives is the possibility of hiding
the parallel overhead caused by the operation by overlapping the communication with
computation or other work. The usage pattern would then be:

• initialize the collective operation;
• do work not requiring the data involved in the communication; and,
• wait for the collective to finish.

Not all algorithms have this independent work available for the overlap and, even if
they do, it depends on the implementation of the MPI library whether the non-blocking
communication actually happens simultaneously with the overlapped work, or whether
it occurs in the waiting phase only.

We can benchmark how well an MPI library is able to overlap collectives as follows:
1. Measure the average time over all MPI ranks needed to perform the non-blocking
collective operation (Tcoll);
2. Measure the average time over all MPI ranks needed to perform a matrix-vector
multiplication of size equal to the number of MPI ranks (Tcomp)
3. Measure the time needed for the above combined and overlapped operations
(Toverlap).
Then, the execution time saved by performing the overlap is

𝑇! = 𝑇!"## + 𝑇!"#$ − 𝑇!"#$%&'
and the relative benefit

𝛽 = 100% ∙
𝑇!

𝑇!"#$%&'

The value 1 (100%) represents an ideal case, where the communication overhead can
be hidden altogether, and negative values imply that the overlap in fact slows down the
overall execution, and hence it would be better not to overlap at all (compare with
"delay overlap benefit" introduced in Section 3). The benchmark can be found from the
CRESTA Collective Communication Library (8). We measured the relative benefit from
the overlap of the all-to-all data exchange (MPI_Ialltoall) and the global reduction
(MPI_Iallreduce) operations, which are typical bottleneck collectives in many HPC
applications. The measurements were carried out in the Cray XC30 architecture, and
reported in the CRESTA whitepaper “Benchmarking MPI collectives” (1). Our findings
were that the computation-communication overlap is not always available, but
depending on the platform, operation, size of the communicator, and the amount of
data to be communicated, some performance gains may be obtained by performing the
overlap; but the programmer should also verify that performing the overlap is not
causing performance degradation.

© CRESTA ConsortiumPartners 2014 Page 5 of 9

5 Non-­‐blocking	
 collectives	
 in	
 the	
 iterative	
 linear	
 solvers	
 	

One iteration of a typical iterative solver consists of a sparse-matrix vector
multiplication and various vector operations, including the collective operation
allreduce. The MPI_Allreduce operation was replaced with the two operations
MPI_Iallreduce and MPI_Wait. In this section we show the performance of the non-
blocking and blocking versions of the iterative solvers in NekBone and the CEL solver
libraries.

The right part of Figure 1 shows the performance of the CG algorithm on a CrayXE6
with blocking MPI_Allreduce and non-blocking MPI_Iallreduce operations. The two
curves show very similar behavior. There are two cases where the performance shows
slight variation: 256 and 512 cores. The left part of the figure shows the Cray-Pat
profiling for 256 and 512 cores. The diagrams show that the collectives MPI_Iallreduce
and MPI_Allreduce have different implementations. This difference and the slight load
imbalance of the calculation influence the performance. The performance may be
better or worse than anticipated. That has also been shown by the previously-
described collective benchmarks (see (1) and (2) for more details).

Figure 1 - Comparison between CG implementations with non-blocking and blocking collective
operation allreduce.

A standalone benchmark version of the full Nek5000 application, called NekBone, was
also used for the integration of the non-blocking collective operation MPI_Iallreduce.
Figure 2 shows a small difference in the runtime between the blocking and non-
blocking version of the CG in NekBone application.
Unfortunately, there are still no clear parameters on which to base the decision about
which of the two operations is better to use in different situations.

Performance - Strong scaling CrayXE6 CG Jacobi preconditioner
3D Poisson; 27 point stencil; 64x64x64 rows

Blocking	
 512	
 cores Non-­‐blocking	
 512	
 	
 cores

Blocking	
 256	
 cores Non-­‐blocking	
 256	
 cores

© CRESTA ConsortiumPartners 2014 Page 6 of 9

Figure 2 - Runtime of 100 iterations of non-blocking and blocking verisons of NekBone CG on
Milner (Cray XC30) (9). This test and integration of non-blocking collectives into NekBone was
done by Dana Akhmetova (KTH).

0	

3	

6	

9	

12	

15	

18	

21	

24	

1	
 10	
 100	
 1000	

se
co
nd

s	

Number	
 of	
 processes	

Weak	
 scaling	
 test	
 for	
 CG	
 in	
 NekBone	

blocking	
 Solver	
 non-­‐blocking	
 Solver	

© CRESTA ConsortiumPartners 2014 Page 7 of 9

6 Non-­‐blocking	
 collectives	
 in	
 the	
 production	
 application	

HemeLB	

HemeLB (10) is a lattice-Boltzmann based fluids solver, optimised for simulation of
blood flow in domains derived from 3D angiography data. Previous work has shown
that its computational performance scales linearly up to at least 32,768 cores (5) on
HECToR, the UK's previous-generation national supercomputer.
The core lattice-Boltzmann algorithm requires data exchange between neighbouring
points only, giving very high potential scalability. Further, HemeLB updates the sites on
inter-rank boundaries at the start of the timestep and begins communicating the
necessary data, before proceeding to update those sites that do not need data from
another rank. The code then waits for communication to finish and updates the
boundary sites.
The phased-communicator uses non-blocking point-to-point MPI operations, which are
posted and waited on at the same time as the core lattice-Boltzmann communications.
This keeps the performance impact of the global monitoring very low, but comes at the
price of significant software complexity and adds a multiple timestep delay until the
result is known. As a proof of concept, we have replaced this phased communication
with a lightweight wrapper around MPI 3.0 asynchronous collectives.

The implementation significantly reduced the code complexity of the affected
components without significantly changing the performance, despite allowing
significantly more frequent monitoring of global quantities (see Figure 3). This also
holds true for the results obtained with both benchmarks considered above.

Figure 3 - Left: time spent in MPI_Wait calls. Right: time spent in monitoring calculations. The line
colour indicates the size of problem used (small: magenta; medium: red; large: blue) and the style
of line indicates the type of collectives used (default: solid; NBC: dashed; NBC with DMAPP:
dotted).

For more details we refer to the detailed description in (1).

© CRESTA ConsortiumPartners 2014 Page 8 of 9

7 Outlook	

The non-blocking collectives were considered not only using synthetic benchmarks, but
also in an already-optimized production application, HemeLB. Although our
performance measurement has shown that the integration of non-blocking collectives
does not significantly change performance, the usage of the non-blocking collectives
has significantly simplified the monitoring code of HemeLB.

This work shows that the state-of-the-art implementation of the non-blocking collectives
in Cray MPI is as good or better than their blocking counterparts - in benchmarks and
real world applications. As the specification of this MPI 3.0 interface is relatively new,
we expect new algorithms with better overlapping capabilities and hardware with even
better support for offloading communication for the future. The techniques for
overlapping communication may also improve collective operations in the case of late
arrivals. Our preliminary work in this area already shows some potential to hide small
delays of single processes for the barrier, all-reduce and all-to-all operations.

© CRESTA ConsortiumPartners 2014 Page 9 of 9

8 Bibliography	

1. White Paper Benchmarking MPI Collectives at SC14. Christoph Niethammer, Pekka
Manninen, Rupert Nash, Dmitry Khabi, Jose Gracia. s.l. : CRESTA Consortium
Partners, 2014.
2. MPI collectives at scale. Christoph Niethammer, Pekka Manninen, Rupert W. Nash,
Dmitry Khabi, Jose Gracia. Workshop on Exascale MPI at Supercomputing Conference
2014 : s.n., 2014.

3. Nek5000 project web page. [Online] http://nek5000.mcs.anl.gov/.

4. D4.3.2 Community prototype of exascale algorithms and solver (Software). Dmitry
Khabi, Frederic Magoules. s.l. : CRESTA Consortium Partners 2011, 2014.

5. Analysing and modelling the performance of the HemeLB lattice-Boltzmann
simulation environment. Derek Groen, James Hetherington, Hywel B Carver, Nash,
Rupert W Nash, Miguel O Bernabeu, and Peter V. Coveney. J. Comput. Sci. 4, 2012,
Vols. p. 412--422, 5.

6. MPI: A Message-Passing Interface Standard Version 3.0 Chapter author for
Collective Communication, Process Topologies, and One Sided. s.l. : Message
Passing Interface Forum. , Sep. 2012.

7. Characterizing the Influence of System Noise on Large-Scale Applications by
Simulation. T. Hoefler, T. Schneider, and A. Lumsdaine. International Conference for
High Performance Computing, Networking, Storage and Analysis (SC'10). 2010.

8. D4.5.3 Non-Blocking Collectives Runtime Library. Pekka Manninen.. s.l. : CRESTA
Consortium Partners 2011, 2013.

9. The compute rack of PDC's supercomputer Milner. [Online] [Cited:]
https://www.pdc.kth.se/resources/computers/milner.

10. Choice of boundary condition for lattice-Boltzmann simulation of moderate-
Reynolds-number flow in complex domains. R. W. Nash, H. B. Carver, M. O.
Bernabeu, J. Hetherington, D. Groen. Phys. Rev. E, vol. 89, p. 023303. 2014.

11. D4.5.2 Microbenchmark Suite. José Gracia, Christoph Niethammer, Wahaj Sethi.
s.l. : CRESTA Consortium Partners, 2012.

12. Cray XE6 (HERMIT). [Online] 2014. [Cited: 30 10 2014.]
https://wickie.hlrs.de/platforms/index.php/Cray_XE6.

13. CRAY XC40 (HORNET). [Online] HLRS, 2014. [Cited: 30 10 2014.]
http://www.hlrs.de/systems/platforms/cray-xc40-hornet/.

14. Analysing and modelling the performance of the HemeLB lattice-Boltzmann
simulation environment. D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O.
Bernabeu, P. V. Coveney. J. Comput. Sci. sep. 2012, Vol. 4, no. 5, pp. 412–422.

15. Coalesced communication: a design pattern for complex parallel scientific software.
H. B. Carver, D. Groen, J. Hetherington, R. W. Nash, M. O. Bernabeu, and P. V.
Coveney. submitted to Advances in Engineering Software :
http://arxiv.org/abs/1210.4400v1, 2014.

