

Copyright © CRESTA Consortium Partners 2014

D5.1.5	 –	 Pre-‐processing:	 final	 tools	
for	 exascale	 mesh	 partitioning	 and	

mesh	 analysis	

WP5:	 User	 tools	

Due date: M30

Submission date: 31/03/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization DLR

Version: 1.0

Status Final

Author(s): Gregor Matura (DLR), Derek Groen (UCL), Sebastian
Schmieschek (UCL), Adam Peplinski (KTH)

Reviewer(s) Rupert Nash (UEDIN), Jan Astrom (CSC)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 14/02/2014 First version of the deliverable Gregor Matura (DLR)

0.2 20/02/2014 Added section 4.1 Derek Groen (UCL),
Sebastian Schmieschek
(UCL)

0.3 21/02/2014 Completed section 4 Gregor Matura (DLR)

0.4 25/02/2014 Added section 5.1 Adam Peplinski (KTH)

0.5 28/02/2014 Added section 3, 2, 1; completed
section 5, internal review version

Gregor Matura (DLR)

0.6 21/03/2014 Revision based on internal reviews Gregor Matura (DLR)

1.0 25/03/2014 Final version of the deliverable Gregor Matura (DLR),
Derek Groen (UCL),
Sebastian Schmieschek
(UCL), Adam Peplinski
(KTH)

Copyright © CRESTA Consortium Partners 2014

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	

2	 INTRODUCTION	 ...	 2	

3	 PPSTEE	 ...	 3	

3.1	 OVERVIEW	 ..	 3	
3.2	 SOFTWARE	 STATUS	 ...	 3	

3.2.1	 Zoltan	 support	 ..	 3	
3.2.2	 Weight	 management	 ..	 3	
3.2.3	 Test	 suite	 ...	 4	

4	 PPSTEE	 AND	 HEMELB	 ...	 5	

4.1	 HEMELB	 GEOMETRIES	 ..	 5	
4.2	 SIMULATION	 RUNS	 ON	 ARCHER	 ..	 5	

4.2.1	 ARCHER	 ...	 5	
4.2.2	 Measurements	 ..	 5	

4.3	 ANALYSIS	 ...	 11	

5	 PPSTEE	 AND	 NEK5000	 ..	 13	

5.1	 PRE-‐PROCESSING	 IN	 NEK5000	 ..	 13	
5.2	 INTEGRATION	 OF	 PPSTEE	 ..	 13	
5.3	 PROOF	 OF	 CONCEPT	 ..	 13	

6	 REFERENCES	 ..	 16	

Index	 of	 Figures	
Figure 1: Total runtime of HemeLB on ARCHER for geometry bifurcation_50um with
PPStee using one of three partitioning libraries. .. 6	

Figure 2: Total runtime of HemeLB on ARCHER for geometry aneurysm_0.05mm with
PPStee using one of three partitioning libraries. .. 7	

Figure 3: Total runtime of HemeLB on ARCHER for geometry aneurysm_0.025mm with
PPStee using one of three partitioning libraries. .. 7	

Figure 4: Partitioning time of HemeLB on ARCHER for geometry bifurcation_50um with
PPStee using one of three partitioning libraries. .. 8	

Figure 5: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.05mm
with PPStee using one of three partitioning libraries. ... 8	

Figure 6: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.025mm
with PPStee using one of three partitioning libraries. ... 9	

Figure 7: Calculation time of HemeLB on ARCHER for geometry bifurcation_50um with
PPStee using one of three partitioning libraries. .. 9	

Figure 8: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.05mm
with PPStee using one of three partitioning libraries. ... 10	

Figure 9: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.025mm
with PPStee using one of three partitioning libraries. ... 10	

Figure 10: Solver runtime for NEK5000 for a cylindrical geometry on an Intel Xeon
E5520 with PPStee using one of three partitioning libraries. .. 14	

Figure 11: Time spent in partitioning library for a NEK5000 simulation run for a
cylindrical geometry on an Intel Xeon E5520 with PPStee using one of three
partitioning libraries. ... 15	

Copyright © CRESTA Consortium Partners 2014

Index	 of	 Tables	
Table 1: Key characteristics of the four HemeLB geometries. 5	

Table 2: Runtimes [s] of HemeLB on ARCHER for geometry smooth_5 with PPStee
using PTScotch. ... 11	

Table 3: Runtimes [s] of HemeLB on ARCHER for geometry smooth_5 with PPStee
using ParMETIS. .. 11	

Copyright © CRESTA Consortium Partners 2014

 Page 1 of 16

1 Executive	 Summary	
CRESTA deliverable D5.1.3 [3] introduced PPStee in a first prototype version. The pre-
processing interface PPStee is designed to balance the load of the overall simulation. It
specifically includes all simulation parts, thus extends load balance from simulation
core to pre-processing and post-processing tasks, and visualisation. Well-known third-
party partitioning libraries are used to calculate the data distribution that is required for
the load balance. Deliverable 5.1.4 [4] applied a first analysis of PPStee’s features and
performance results and marked points where further investigation would be crucial.
The most important points were test runs on significantly higher core counts and the
integration of PPStee into another CRESTA co-design code. Both are addressed in the
document.

This software deliverable D5.1.5 provides a feature-finalised version of the software
PPStee. PPStee source code and its documentation can be downloaded from the
CRESTA Subversion repository (/wp5/preprocessing). We have eliminated a number of
bugs and included further software tests to expand compliance with CRESTA’s
software standards. Based on our observation of HemeLB using PPStee, we spotted
parts that needed improvement; hence we implemented Zoltan query functions and
fully revised the weights management. However, we focussed on both investigation
hints provided by the analysis in D5.1.4. First, we performed test runs of HemeLB with
PPStee on higher core counts and larger geometries, giving better insight into the
scalability. Second, we integrated PPStee into the development version of CRESTA’s
co-design vehicle NEK5000 that implements p4est [10], i.e. a tool for mesh analysis
and mesh manipulation. We present here the first performance results.

Copyright © CRESTA Consortium Partners 2014

 Page 2 of 16

2 Introduction	
The analysis of exascale systems, data formats and algorithms as well as the pre-
processing mechanisms in CRESTA’s co-design applications (cf. deliverable 5.1.1 [1]
and 5.1.2 [2]) led to the design of the pre-processing interface PPStee. PPStee was
introduced in deliverable 5.1.3 [3], where PPStee’s properties were depicted and basic
usage examples were given. In deliverable 5.1.4 [4], we highlighted PPStee’s features
and its integration into the co-design application HemeLB. This showed the ease with
which PPStee can be integrated into a simulation code. We also demonstrated that
partitioning libraries can be swapped as easily as it was intended. The first HemeLB
test runs, which we reported therein showed no general overhead in runtime or
memory.

This first, prototype version of PPStee showed that the main functionality was present,
but required additional work. Only the use of software brings hidden bugs to the
surface and good software engineering practice demands more elaborate software
tests. A prototype version must be studied in practically relevant test cases to spot
missing features and situations where performance can be improved. Finally, and in
particular regarding PPStee and its application area in exascale simulation codes, the
scalability of the software to very large core counts and large geometry data is an open
question.

The purpose of this document is to introduce a feature-finalised version of the pre-
processing tool PPStee. Section 3 gives a short overview of PPStee and PPStee’s
design concepts. Recent changes as compared to the prototype version in deliverable
5.1.3 are listed. Section 4 describes the progress in the work on HemeLB using
PPStee. Especially, further test runs with higher core counts and larger geometries are
presented. Finally, section 5 focusses on the integration of PPStee into CRESTA’s
development version of the simulation code NEK5000. First runtime results are given.

Copyright © CRESTA Consortium Partners 2014

 Page 3 of 16

3 PPStee	
3.1 Overview	
PPStee was designed with a clear main target in mind: to balance overall simulation
load. This leading aspect of an exascale pre-processing strategy resulted directly from
the analysis in CRESTA Deliverable 5.1.1 [1], which calls for a tighter integration of
pre-processing into the simulation cycle. Communication and computation costs of all
simulation parts such as the scientific kernel or the visualisation methods, should be
provided to and included in the load balance calculation. Naturally, compatibility should
be ensured between the data format of the costs and the data format of the underlying
graph, as well as between both data formats and the partitioning libraries used.
Furthermore, both data formats should be kept as minimal as possible to keep the
memory footprint low (cf. CRESTA deliverable 5.1.2 [2]). Using these costs and the
graph data, partitioning tools that implement a state-of-the-art method for graph
partitioning should perform the load balance calculation so that improved simulation
efficiency may be achieved.

The first prototype version of PPStee, delivered in the context of CRESTA deliverable
5.1.3 [3], already satisfies most of the required properties. PPStee focuses on three
well-established third-party partitioning libraries, namely ParMETIS [5], PTScotch [6]
and Zoltan [7]. The user can easily set or even swap the partitioning library that is to be
used. Accordingly, the data format of the input to PPStee is kept flexible enough to
maintain the compatibility among all partitioning libraries. Nevertheless, the data format
is designed to be minimal to keep memory requirements as low as possible.
Furthermore, PPStee allows submission of costs of several distinct simulation stages.
The costs are treated as weights to the submitted graph and allow for a steerable fine-
grained load balance of the complete simulation cycle. Moreover, PPStee can be
integrated quite easily into an existing simulation, especially, if a partitioner is already
used for at least a part of the simulation. In summary, PPStee is a thin additional
software layer computing a well-balanced data distribution for a multi-part simulation
via various interchangeable partitioning libraries.

3.2 Software	 status	
3.2.1 Zoltan	 support	
The current PPStee version now fully supports Zoltan’s partitioning method as well as
Zoltan’s graph data mechanism, including every possible combination of graph data
type and partitioning library. In contrast to the other two partitioning libraries, Zoltan [7]
has a different concept for graph data retrieval. ParMETIS [5] uses a minimal set of
graph data provided in data arrays. PTScotch’s approach is basically the same, but
also provides some extensions for non-contiguous arrays and ghost vertices (i.e.
vertices not residing on the owning core) [6]. Zoltan, on the other hand, requests
various query functions that must be submitted. Therefore, additional conversion
functions were needed in PPStee. Firstly, query functions that are passed to Zoltan if
normal graph data were passed to PPStee, e.g. if ParMETIS graph data is provided
and Zoltan’s partitioning method should be used. Secondly, if Zoltan-type query
functions were passed to PPStee, functions calling the provided query functions
thereby retrieving the required normal graph data. This happens, for example, if the
simulation implements its graph data with Zoltan-type query functions but requests a
partitioning calculated by PTScotch.

3.2.2 Weight	 management	
Not all stages (i.e. simulation phases registered to PPStee) need both, vertex and edge
weight types. Some stages require only vertex or edge weights, and some stages do
not require any weights at all. In contrast to the former version (cf. D5.1.3 [3]), PPStee
now supports default, i.e. uniformly distributed weights. This way, memory used to save
weights data is not consumed unnecessarily. Still, separate stages can be registered
independently. Also, PPStee supports detached weights, meaning that vertex and edge

Copyright © CRESTA Consortium Partners 2014

 Page 4 of 16

weights can be provided separately. Naturally, default weights and detached weights
can be used concurrently in each stage.

In addition to the type of weights, the actual implementation of PPStee handles the
problem of multiple weights. Currently only ParMETIS supports multiple “phases”
directly by accepting multidimensional vertex and edge weight arrays. Zoltan, on the
other hand, was designed to support multiple phases, however it does not implement
this feature at the moment. Thus, functions for weight coalescence are needed. There
are two approaches to merge all stages into one. The coalesced one-stage weights
can be the sum or the maximum of the appropriate multi-stage weights. Since the
maximum does disregard some of the weights, PPStee implements a summation to
merge multiple stage weights.

3.2.3 Test	 suite	
The prototype version of PPStee provided only a generic system test. Now, full
integration into the CMake build system using CTest is available. A tool for automated
generation of test graph data is provided and used to create distinctive test for
individual usage sequences of PPStee. These tests cover scenarios where a specific
partitioning library is called with the appropriate partitioner-native form of graph data
input, or with a different graph data layout after an intermediate conversion. Tests of
the weight management with various stages are included, some of them dropping
certain weight types or weights completely.

Copyright © CRESTA Consortium Partners 2014

 Page 5 of 16

4 PPStee	 and	 HemeLB	
4.1 HemeLB	 geometries	
In this section we describe the geometries used for our performance tests. The
scalability and decomposition performance of HemeLB is in part geometry-dependent,
and indeed we have observed different trends in load balancing between simplified
geometries (e.g. cylinders), and realistic geometries (e.g. vessel networks). As such,
we have chosen to restrict ourselves to realistic geometries for the purpose of this
performance study.

Within this work we use four data sets, based on three geometries. These are:

• Bifurcation_50um, which is a 3D model of an arterial bifurcation, discretised
with a voxel size of 50 micrometres.

• Aneurysm_0.05mm, which is a highly sparse model of an aneurysm geometry,
also discretised with a voxel size of 50 micrometres.

• Aneurysm_0.025mm, which uses the same geometry as above, but discretised
with a voxel size of 25 micrometres.

• Smooth_5, which is a recently acquired data set of a middle cerebral artery. It
has been discretised at a voxel size of approximately 28 micrometres.

Below we provide a summary of key characteristics for each of the geometries:

Name # of lattice
sites

Voxel size

[10-6 m]

% fluid sites in
bounding box

Sites per core
for 512 cores

Bifurcation_50um 650,492 50 10 1270

Aneurysm_0.05mm 708,472 50 1.5 1383

Aneurysm_0.025mm 5,667,778 25 1.5 11070

Smooth_5 3,907,822 28 11 7632
Table 1: Key characteristics of the four HemeLB geometries.

4.2 Simulation	 runs	 on	 ARCHER	
4.2.1 ARCHER	
ARCHER is a Cray XC30 supercomputer providing 3008 nodes accompanied by a
number of additional components like high-performance parallel filesystem, pre- and
post-processing facilities, external login nodes and a large resilient, long-term data
facility. Each node contains two 2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series
processors connected via two QuickPath Interconnect (QPI) links. Standard ARCHER
compute nodes have 64GB of memory shared between the two processors and
arranged in a non-uniform access (NUMA) form with a region size of 32GB.

4.2.2 Measurements	
All runtime measurements were performed on ARCHER using fully-populated nodes
adding up to the indicated core count. In terms of ARCHER’s 24-core nodes, this
means values of 48, 96, and multiples up to 12,288 cores for our experiments. We
used a modified HemeLB that incorporates PPStee v0.3.0c; a detailed description of
the integration of PPStee into HemeLB can be found in section 4 of CRESTA
Deliverable 5.1.4, [4]. We used a default value of 10,000 simulation steps for all
geometries apart from “bifurcation_50um”, where only 1,000 simulation steps were
used.

Figure 1, Figure 2 andFigure 3 depict total runtimes of the simulation, i.e. these
measurements include all simulation parts starting with initial read-in of the geometry,
followed by partitioning, calculations in the scientific kernel and ending with some
visualisation methods. To achieve a more detailed picture, we provide two additional
figure series: Figure 4, Figure 5 and Figure 6 show time spent for partitioning only, i.e.

Copyright © CRESTA Consortium Partners 2014

 Page 6 of 16

how long the call to the partitioning library lasted. On the other hand, Figure 7, Figure 8
and Figure 9 show the calculation time spent on the scientific kernel which includes
computation and communication that is needed to find the solution by the lattice
Boltzmann solver.

Figure 1: Total runtime of HemeLB on ARCHER for geometry bifurcation_50um with PPStee using
one of three partitioning libraries.

Copyright © CRESTA Consortium Partners 2014

 Page 7 of 16

Figure 2: Total runtime of HemeLB on ARCHER for geometry aneurysm_0.05mm with PPStee using
one of three partitioning libraries.

Figure 3: Total runtime of HemeLB on ARCHER for geometry aneurysm_0.025mm with PPStee
using one of three partitioning libraries.

Copyright © CRESTA Consortium Partners 2014

 Page 8 of 16

Figure 4: Partitioning time of HemeLB on ARCHER for geometry bifurcation_50um with PPStee
using one of three partitioning libraries.

Figure 5: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.05mm with PPStee
using one of three partitioning libraries.

Copyright © CRESTA Consortium Partners 2014

 Page 9 of 16

Figure 6: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.025mm with PPStee
using one of three partitioning libraries.

Figure 7: Calculation time of HemeLB on ARCHER for geometry bifurcation_50um with PPStee
using one of three partitioning libraries.

Copyright © CRESTA Consortium Partners 2014

 Page 10 of 16

Figure 8: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.05mm with PPStee
using one of three partitioning libraries.

Figure 9: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.025mm with PPStee
using one of three partitioning libraries.

HemeLB simulation runs using PTScotch fail for the largest-used core counts: for
geometry “aneurysm 0.025mm”, the simulation runs out of memory and is terminated

Copyright © CRESTA Consortium Partners 2014

 Page 11 of 16

by the system OOM (“Out Of Memory”) killer; for geometries “aneurysm 0.05mm” and
“bifurcation 50um”, PTScotch exits with a floating point exception. The cause has not
yet been established.

Cores Calculation only Partitioning only Total

1536 284 127 460

3072 147 184 367

6144 76.3 241 347
Table 2: Runtimes [s] of HemeLB on ARCHER for geometry smooth_5 with PPStee using PTScotch.

Cores Calculation only Partitioning only Total

3072 150 27.3 217

6144 76.2 23.5 135

12288 38.6 17.6 86.4
Table 3: Runtimes [s] of HemeLB on ARCHER for geometry smooth_5 with PPStee using

ParMETIS.

Table 2 and Table 3 show runtimes for geometry “smooth_5” of HemeLB with PPStee
using PTScotch [6] and ParMETIS, respectively. As with the other three geometries,
we list three different timing, i.e. scientific kernel runtime, time spent for partitioning and
total simulation runtime.

4.3 Analysis	
A first observation concerns the total time measurements in Figure 1, Figure 2 and
Figure 3: obviously, ParMETIS [5] performs significantly faster than PTScotch [6] and
Zoltan [7] for all geometries inspected and especially for higher core counts. However,
this is a very naïve point of view and might lead to misjudgement. The total runtime is
influenced by many parameters and thorough separation is needed. Regarding
partitioning, two times are of particular interest that are part of the total simulation
runtime: the time spent in the partitioning library; and the time spent in calculation in the
scientific kernel.

The former is responsible for the computation of the geometry distribution that is used
throughout the simulation and this is performed only once. The latter is strongly related
to the number of “simulation steps”, i.e. the number of iterations in the main loop of
propagation of HemeLB. Our test runs were performed with 10,000 steps (and with
1,000 steps for geometry “bifurcation_50um”). On the other hand, current productive
simulation runs tend to have 2-3 million time steps. This difference in simulation steps
used manifests, approximately, in a factor between 200 and 3,000 for the core
computations. Compensating for time lost in the partitioning call, which is done only
once, is very possible and should be investigated.

We therefore need to take a closer look at Figure 7, Figure 8 and Figure 9 showing the
calculation times of the lattice Boltzmann solver (this includes communication, too). In
contrast to the unfavourable results for the total simulation time, PTScotch and Zoltan
are on a par with ParMETIS when it comes to calculation time only. Also, small
variations are clearly visible, depending on geometry and core counts used. They
become notably larger beyond a core count of one thousand. Here, PTScotch does a
little better than the other two partitioning libraries. For Zoltan and ParMETIS, it
depends on the geometry and core number which one performs better.

On the other side, Figure 4, Figure 5 and Figure 6 show that PTScotch and,
particularly, Zoltan perform almost an order of magnitude worse in actually computing
the partitioning. Thus it is questionable if PTScotch’s and Zoltan’s slightly better
partition quality can achieve a better performance for the total simulation run. Some
preliminary comparisons of time gain through quality versus partitioning time could be

Copyright © CRESTA Consortium Partners 2014

 Page 12 of 16

obtained using above figures. However, further investigation is needed to illustrate a
detailed picture of these two opposing effects.

Finally, we want to point out that all the figures shown above demonstrate good
scalability of all partitioners when used up to 6,000 cores. A decrease in performance
for 12k cores for “aneurysm_0.025mm” is evident, but this may be correlated with a
geometry that is too small and for which the number of lattice site per core drops below
a significant value. Further test runs with bigger geometries could help validate this
thesis.

Copyright © CRESTA Consortium Partners 2014

 Page 13 of 16

5 PPStee	 and	 NEK5000	
5.1 Pre-‐processing	 in	 NEK5000	
Nek5000 [9] is an open-source code developed at Argonne National Laboratory for the
simulation of incompressible flow in complex geometries. It is written in mixed
Fortran77/C and uses MPI to employ fully large-scale parallelism, scaling up to a
million processes on ALCF BG/Q Mira with parallel efficiency equal to 0.6 (cf. [9],
Features > Scaling). The discretisation is based on the spectral-element method (SEM)
that combines the higher-order accuracy from spectral methods with the geometric
flexibility of finite element methods. In SEM the computational domain is decomposed
into a set of disjoint subdomains (elements), which can be transformed to quadrilaterals
(2D) or hexahedrals (3D) by general coordinate mapping. The simulated variable space
is spanned by Nth-order Lagrange polynomial interpolants, based on tensor-product
arrays of Gauss–Lobatto–Legendre quadrature points in every element. This domain
decomposition is the main source of parallelism, as loosely coupled elements can be
easily distributed among set of processors. It also provides flexibility in grid generation
that is used in adaptive mesh refinement algorithm (AMR) implemented in NEK5000
within the CRESTA project.

The current version of the Nek5000 code uses a conformal grid with uniform order of
the spatial interpolations throughout the domain. The static grid partitioning based on
the dual graph bisection is applied in a pre-processing step to create global element
ordering. It is later used during the initialization of the simulation to redistribute the
elements among processors and limit the communication volume. For given set of
elements the grid resolution can be modified by adjusting the approximation order
globally.

There are two basic methods of introducing adaptive mesh refinement: adaptive h-
refinement, i.e. the splitting of cells into smaller ones; and adaptive p-refinement, i.e.
increasing the polynomial order of a given element. Within the CRESTA project we
work on a framework of h-type AMR, which dynamically changes element numbers and
their connectivity, and requires dynamic mesh partitioning. Proper load-balancing is
crucial for Nek5000 to obtain full scaling for exascale computations. It is especially
important for the communication-dominated coarse grid pressure solver [11], where
every element is, effectively, represented by a single grid point.

In our implementation the grid refinement and de-refinement is managed by the p4est
[10] library, which enables the dynamic management of a collection of adaptive
octrees. This library is designed to work in parallel and scale to hundreds of thousands
of processor cores. It provides element connectivity information for the dual graph,
which is later manipulated by partitioning software, giving a new element-to-processor
mapping. We performed initial tests with the ParMETIS library [5] as the partitioner,
which showed good parallel performance and a partitioning quality similar to the native
NEK5000 static partitioning. However, the element number imbalance was greater in
case of ParMETIS than the native NEK5000 partitioning.

5.2 Integration	 of	 PPStee	
As with HemeLB (cf. section 4.1 in CRESTA deliverable 5.1.4, [4]), the integration of
PPStee into the recent version of NEK5000, which was developed and is being used
within CRESTA, is straightforward. It does not require deep insights into the simulation
code and the necessary code changes are small. In this CRESTA version of NEK5000,
there is a call to the partitioning library ParMETIS which has to be located and replaced
by the necessary calls to the PPStee routines. A basic example can be found in section
3.1 of D5.1.3, [3].

5.3 Proof	 of	 concept	
As proof of concept, we integrated PPStee into NEK5000 (in its current CRESTA
development version), built it and performed a range of tests. Our test system is a

Copyright © CRESTA Consortium Partners 2014

 Page 14 of 16

desktop machine providing an Intel Xeon E5520 with 8 real and 16 virtual cores. We
used different thread counts between 1 and 16; we used the minimum time from ten
runs for each data set. Figure 10 shows runtime spent in the solver in a simulation run
of NEK5000. We used a cylindrical test geometry with 1472 quadrants and PPStee
with each one of three partitioning libraries. Figure 11 shows runtime spent only in the
partitioning library for the same simulation run. Both figures do not explicitly show the
timings of the non-PPStee CRESTA-version code that uses ParMETIS because they
are equal to the timings of NEK5000 with PPStee using ParMETIS.

Figure 10: Solver runtime for NEK5000 for a cylindrical geometry on an Intel Xeon E5520 with
PPStee using one of three partitioning libraries.

Copyright © CRESTA Consortium Partners 2014

 Page 15 of 16

Figure 11: Time spent in partitioning library for a NEK5000 simulation run for a cylindrical
geometry on an Intel Xeon E5520 with PPStee using one of three partitioning libraries.

These results show the general applicability of PPStee to a simulation using NEK5000.
The integration was as easy, as intended, and introduces the possibility of comparing
the partitioning quality of all three libraries with regard to the geometry used. Figure 10
shows that the solver times differ only slightly from each other. Thus, at least for small
thread counts, the quality of the calculated data distributions is almost equal. However,
Figure 11 points out a possible drawback. Already at these small thread counts, the
times measured for the call to the partitioner differ significantly. Thus it may depend
strongly on the size of the geometry and the number of executing cores which
partitioning library leads to the minimal overall simulation time that includes both, the
simulation time and the time spent on calculating the partitioning.

In conclusion, the general behaviour corresponds to the one observed for HemeLB (cf.
section 4), i.e. solving times are almost equal yet the time to compute the partitioning
vary considerably. Further investigation will show which effect will dominate the
NEK5000 simulation for bigger geometries with substantially higher core counts, e.g.
acquired on ARCHER.

Copyright © CRESTA Consortium Partners 2014

 Page 16 of 16

6 References	
[1] CRESTA Deliverable 5.1.1, Pre-processing: analysis and system definition for

exascale systems

[2] CRESTA Deliverable 5.1.2, Pre-processing: data format and algorithms

[3] CRESTA Deliverable 5.1.3, Pre-processing: first prototype tools for exascale
mesh partitioning and mesh analysis

[4] CRESTA Deliverable 5.1.4, Pre-processing: revision of system, data format and
algorithms definition for exascale systems

[5] ParMETIS, Parallel graph partitioning and fill-reducing matrix ordering,
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[6] PTScotch, Software package and libraries for sequential and parallel graph
partitioning, static mapping, and sparse matrix block ordering, and sequential
mesh and hypergraph partitioning, http://www.labri.fr/perso/pelegrin/scotch/

[7] Zoltan, Data-Management Services for Parallel Applications,
http://www.cs.sandia.gov/Zoltan/Zoltan_phil.html

[8] ARCHER UK National Supercomputing Service, http://www.archer.ac.uk
[9] Fischer, P., Lottes, J., Kerkemeier, S.: nek5000 Web page (2008).

http://nek5000.mcs.anl.gov
[10] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas, p4est:

Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of
Octrees. Published in SIAM Journal on Scientific Computing 33 no. 3 (2011),
pages 1103-1133.

[11] Tufo, H., Fischer, P., "Fast Parallel Direct Solvers For Coarse Grid
Problems", J. Par. & Dist. Comput., 61 p. 151-177 (2001).

