

Copyright © CRESTA Consortium Partners 2014

D5.1.6	
 –	
 Pre-­‐processing:	
 tool	

evaluation	
 and	
 investigation	
 with	

application	
 data	

WP5:	
 User	
 tools	

Due date: M39

Submission date: 31/12/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization German Aerospace Center (DLR)

Version: 1.0

Status Final

Author(s): Gregor Matura (DLR), Derek Groen (UCL), Adam Peplinski
(KTH)

Reviewer(s) Jan Åström (CSC), Jing Gong (KTH)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 22/10/2014 First version of the deliverable Gregor Matura (DLR)

0.2 23/10/2014 Added Sections 4 and 5. Gregor Matura (DLR)

0.3 24/10/2014 Added Section 3. Gregor Matura (DLR)

0.4 24/11/2014 Nek5000 input Adam Peplinski (KTH)

0.5 24/11/2014 HemeLB input Derek Groen (UCL)

0.6 26/11/2014 Added Sections 1 and 2; version for
internal review completed.

Gregor Matura (DLR)

0.7 27/11/2014 Some minor corrections. Added short
conclusion section.

Gregor Matura (DLR)

0.8 08/12/2014 Final changes according to the
reviewers´ comments.

Achim Basermann (DLR)

0.9 10/12/2014 A few, minor additional changes
suggested by Adam Peplinski

Achim Basermann (DLR)

1.0 11/12/2014 Final version for submission Catherine Inglis (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

3	
 PPSTEE	
 ...	
 3	

3.1	
 FEATURES	
 ...	
 3	

4	
 PPSTEE	
 AND	
 HEMELB	
 ...	
 5	

4.1	
 INTEGRATION	
 AND	
 FIRST	
 SIMULATION	
 RUNS	
 ...	
 5	

4.2	
 WEIGHTED	
 DECOMPOSITION	
 ...	
 6	

4.2.1	
 Description	
 ...	
 6	

4.2.2	
 Measurements	
 on	
 ARCHER	
 ..	
 8	

4.2.3	
 Analysis	
 ..	
 13	

4.3	
 ENSEMBLE	
 PARTITIONING	
 ...	
 13	

4.3.1	
 Motivation	
 ..	
 13	

4.3.2	
 Approach	
 ..	
 13	

4.3.3	
 Analysis	
 and	
 visualisation	
 of	
 the	
 partitioning	
 results	
 ...	
 13	

5	
 PPSTEE	
 AND	
 NEK5000	
 ..	
 16	

5.1	
 INTEGRATION	
 AND	
 FIRST	
 SIMULATION	
 RUNS	
 ...	
 16	

5.2	
 STRONG	
 SCALING	
 WITH	
 THREE	
 PARTITIONING	
 LIBRARIES	
 ...	
 16	

5.2.1	
 Setting	
 and	
 geometry	
 ...	
 16	

5.2.2	
 Measurements	
 ...	
 17	

5.2.3	
 Analysis	
 ..	
 20	

6	
 CONCLUSIONS	
 ...	
 21	

7	
 REFERENCES	
 ...	
 22	

Index	
 of	
 Figures	

Figure 1: PPStee flow chart .. 3	

Figure 2: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.025mm
with PPStee using one of three partitioning libraries. [5] .. 5	

Figure 3: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.025mm
with PPStee using one of three partitioning libraries. [5] .. 6	

Figure 4: 2D example of a sparse domain with the different types of lattice sites.
In/outlets are given by the blue bars and vessel walls by the red curves. Bulk sites are
shown by yellow dots, wall sites by green dots, wall in/outlet sites by red dots, and
in/outlet sites by blue dots. ... 7	

Figure 5: Aneurysm geometry. ... 8	

Figure 6: Bifurcation geometry. .. 9	

Figure 7: Total runtime of HemeLB on ARCHER for geometry bifurcation_50um (v3)
with PPStee using one of three partitioning libraries comparing uniform versus
weighted decomposition. .. 10	

Figure 8: Total runtime of HemeLB on ARCHER for geometry an_mov with PPStee
using one of three partitioning libraries comparing uniform versus weighted
decomposition. ... 10	

Figure 9: Partitioning time of HemeLB on ARCHER for geometry bifurcation_50um (v3)
with PPStee using one of three partitioning libraries comparing uniform versus
weighted decomposition. .. 11	

Copyright © CRESTA Consortium Partners 2014

Figure 10: Partitioning time of HemeLB on ARCHER for geometry an_mov with PPStee
using one of three partitioning libraries comparing uniform versus weighted
decomposition. ... 11	

Figure 11: Calculation time of HemeLB on ARCHER for geometry bifurcation_50um
(v3) with PPStee using one of three partitioning libraries comparing uniform versus
weighted decomposition. .. 12	

Figure 12: Calculation time of HemeLB on ARCHER for geometry an_mov with PPStee
using one of three partitioning libraries comparing uniform versus weighted
decomposition. ... 12	

Figure 13: Visualisation of the HemeLB geometry dataset “bifurcation_50um” based on
the partitioning result of PPStee using ParMETIS and a target number of 32 partitions.
 .. 14	

Figure 14: Visualisation of the HemeLB geometry dataset “aneurysm_movie” with 4.6
million lattice sites based on the partitioning result of PPStee using ParMETIS and a
target number of 128 partitions. .. 15	

Figure 15: Two–dimensional cut through the domain of the convected-cone problem
showing the grid structure (black squares) and the passive scalar profile (colour scale).
Each element (3D cube depicted by a square) corresponds to the mesh of 12x12x12
grid points ... 17	

Figure 16: Total runtime of Nek5000 on ARCHER for geometry “h2_3D” on level 5
(single IO) PPStee using one of three partitioning. .. 18	

Figure 17: Partitioning time of Nek5000 on ARCHER for geometry “h2_3D” on level 5
(single IO) PPStee using one of three partitioning. .. 19	

Figure 18: Calculation time of Nek5000 on ARCHER for geometry “h2_3D” on level 5
(single IO) PPStee using one of three partitioning. .. 19	

Index	
 of	
 Tables	

Table 1: Weight values as obtained from fitting against the runtimes of six test
simulations on two compute architectures (Intel SandyBridge and AMD Interlagos). 7	

© CRESTA Consortium Page 1 of 22

1 Executive	
 Summary	

Following the analysis and system definition of pre-processing for exascale systems in
[1] and a study of data formats and algorithms especially tackling CRESTA’s co-design
applications in [2], the pre-processing interface PPStee was developed and introduced
in [3]. It is designed to balance the load of the overall simulation specifically including
communication and computation costs of all simulation parts. [4] and [5] provided first
implementations into HemeLB [9] and Nek5000 [14] accompanied by simulation runs
on up to 12k cores with HemeLB on HECToR [10] and ARCHER [11].

We continued our effort with HemeLB and investigated the results of weighted
decomposition. These results of simulation runs on up to 24k cores of ARCHER with
geometries containing up to 5.6 million lattice sites are presented and analysed.
Additionally, we provide a new example for PPStee application. Together with two
small scripts and the HemeLB pre-processing tool protopart, this example forms a tool
chain that enables a thorough a priori analysis of the partitioning and, ultimately,
ensemble simulation runs of HemeLB.

Furthermore, we performed simulation runs of the CRESTA-modified version of
Nek5000 that includes adaptive mesh refinement and PPStee partitioning. The results
of runs on up to 48k cores on ARCHER confirm the simple integration and general
applicability of PPStee and its usefulness regarding a comparison of the partitioning
quality of the supported partitioning libraries.

© CRESTA Consortium Page 2 of 22

2 Introduction	

When working with today’s simulations, the focus is mostly on the numerical
computation of the simulation. This simulation part is, of course, only the main part and
a significant amount of work is needed to prepare and process necessary simulation
data. The pre-processing phase often contains a domain decomposition. Various mesh
manipulation tasks such as creation, generation or refinement can be performed.
Following the numerical computation, the post-processing part is constituted of result
analysis, visualisation methods together with an appropriate remote rendering
technique.

These individual steps that ultimately produce the desired simulation result are usually
treated separately and partially even off the high performance system. Thus several
bottlenecks are present, e.g. the transmission of possibly huge initial data to the
cluster, or the visualisation of the computed results, which may require an additional
visualisation cluster.

In the exascale regime, this strategy of separately-handled simulation parts becomes
unfeasible. There are simply too many data to transfer or to process. Here, new
concepts must be implemented so that bottlenecks are eliminated. In-situ visualisation
of the computed simulation results is a well-suited example. Executed right after the
computation, the in-situ visualisation exploits full cluster performance on the entire
simulation data. Preliminary compression or tedious transmission is not necessary
anymore and only a reduced visual output is transferred that still satisfies the desired
resolution. Another example for a bottleneck-reducing concept is automated mesh
refinement. It is responsible for an automated generation of a fine-grained mesh based
on an initial coarse mesh. Only the small coarse mesh is transmitted while the
simulation still uses the fine representation of the mesh. Both examples show that, for
exascale simulations, all parts of the simulation must merge into one contiguous
simulation cycle.

As far as pre-processing is concerned, this merged simulation approach does not
change the main task of load-balancing. Now, the load-balancing is expanded to the
entire simulation cycle. It must include all parts of the cycle, i.e. a posteriori data
analysis, in-situ visualisation and other potential simulation phases like mesh
generation or mesh refinement. Obviously, two things are required. First, pre-
processing must provide an interface to which all simulation parts can pass their
individual load information. Second, pre-processing must combine these load data and
compute a load balance that is optimal for the simulation cycle.

In the long run, this extended load-balancing together with its necessary inter-phase
messaging mechanism enables further techniques on which future exascale
simulations will heavily rely. For instance, the use of scalable immersive Virtual Reality
technology to interactively improve mesh structures and mesh quality will require
communication between visualisation and pre-processing and inherently imply a
recalculation of the data distribution and load balance.

In this deliverable we present our approach to an exascale pre-processing. The pre-
processing interface PPStee was developed to calculate an optimal load balance for
the complete simulation cycle including all parts like computation and visualisation.
Section 3 summarises the intention of the development of PPStee and its features.
More detailed information on PPStee was already described in [3], [4] and [5].

Sections 4 and 5 tackle the integration of PPStee into the CRESTA co-design codes
HemeLB and Nek5000, respectively. There, we continue our efforts for an improved
load balance of the applications and present new simulation runs that are larger with
respect to both geometry size and number of cores of the simulation. Specifically
regarding HemeLB, we show in Section 4.3 an alternative usage of PPStee that helps
to establish ensemble simulation runs of HemeLB.

© CRESTA Consortium Page 3 of 22

3 PPStee	

The main design goal of PPStee was to develop a software package that balances the
load for the full simulation run. Specifically, PPStee supports multiple stages that can
reflect different stages of each simulation cycle. Concerning the calculation of the load
balance, PPStee is based on well-established partitioning libraries, i.e. ParMETIS [6],
PTScotch [7] and Zoltan [8].

This section summarises design objectives and features of PPStee. For detailed
information see [3], [4] and [5]. PPStee can be downloaded from the CRESTA
Subversion repository at wp5/preprocessing. The repository includes the sources of
PPStee, build and installation instructions, software tests, usage examples and related
tools and scripts.

3.1 Features	

PPStee is a thin intermediate software layer providing access to partitioning libraries
that compute a distribution of the simulation data and thus ensure a balance of the
simulation load. Currently, the partitioning libraries ParMETIS, PTScotch and Zoltan
are supported. PPStee uses a flexible and minimal data format that is compatible with
the partitioning libraries (cf. Section 3 in [4]). Using this format, the simulation submits
its computation and communication costs to PPStee. Additionally, PPStee is designed
to support multiple stages of a simulation with each stage or phase containing its own
costs. Hence, the load balance that is computed covers the full simulation cycle and
ensures good overall performance.

Figure 1: PPStee flow chart

© CRESTA Consortium Page 4 of 22

The integration of PPStee into an existing code is simple. It does not interfere with the
data flow of the simulation (compare Figure 1) but basically replaces a call to a
partitioning library (see Sections 4.1 and 5.1 for a description of the integration of
PPStee into HemeLB and Nek5000, respectively). Of course, PPStee imposes only a
minimal overhead on the simulation in terms of runtime and memory as runtime
measurements show (cf. Section 4 in [4]).

Additional features can be integrated easily into PPStee. For example, any form of
additional information on the system might lead to better simulation performance
(although not implemented yet). A fault tolerance framework might supply data on
failed nodes or cores that must be avoided.

© CRESTA Consortium Page 5 of 22

4 PPStee	
 and	
 HemeLB	

4.1 Integration	
 and	
 first	
 simulation	
 runs	

In CRESTA Deliverable D5.1.4 [4], we described the integration of PPStee into the
hemodynamic lattice-Boltzmann simulation HemeLB [9]. We provided a proof of
concept showing that the usage of PPStee did not introduce any penalty in runtime
over the partitioning that was used before. Additionally, we made runtime
measurements with two cylindrical test geometries and a bifurcation dataset on
HECToR [10] using up to 2,048 cores. Thus, we proved the applicability of PPStee for
HemeLB in general and collected hints for further investigation of the results.

Based on this first analysis, we performed more simulation runs on ARCHER [11]. This
time, we scaled up to 12,288 cores (cf. [5]). We used the bifurcation dataset known
from before to facilitate a comparison to the former results. Additionally, we used two
other datasets that model an aneurysm at two resolutions. To gain more insight into the
composition of the total runtime, we split up the timings into time for calculation and
partitioning. The former represents the time spent on the scientific kernel that includes
computation and all kinds of communication operations that are needed to find the
solution by the lattice Boltzmann solver. The latter describes how long the call to the
partitioning library lasted.

Figure 2: Calculation time of HemeLB on ARCHER for geometry aneurysm_0.025mm with PPStee
using one of three partitioning libraries. [5]

Figure 2 and Figure 3 are picked from [5] to recapitulate our main findings. In general,
we see a calculation time that is almost equal for all three partitioning libraries on all
core numbers. This fact points out that all three produce a similarly good quality of
partitioning. Yet, there are some small differences that might get bigger for other
geometries or on higher core numbers.

© CRESTA Consortium Page 6 of 22

Figure 3: Partitioning time of HemeLB on ARCHER for geometry aneurysm_0.025mm with PPStee
using one of three partitioning libraries. [5]

On the other hand, the partitioning time depicted in Figure 3 shows significant
differences between the three partitioning libraries. ParMETIS is one order of
magnitude faster than Zoltan while PTScotch loses ground for higher core counts. As
for the calculation time and the correlated quality of the partitioning, this picture might
change substantially for other geometries. Nevertheless, the absolute values of the
partitioning time give rise to the following conclusion. Especially when dealing with
simulation setups that calculate a partitioning after each couple of time steps, i.e. for
frequent repartitioning, the partitioning time has to be kept in mind.

4.2 Weighted	
 decomposition	

Obtaining a good load balance is a significant challenge in scaling up lattice-Boltzmann
simulations of realistic sparse problems to the exascale. Here we analyse the effect of
weighted decomposition on the performance of the HemeLB lattice-Boltzmann
simulation environment, when applied to sparse domains. Prior to domain
decomposition, we assign wall and in/outlet sites with increased weights which reflect
their increased computational cost. We have tested our weighted decomposition
approach, in conjunction with the different partitioners provided by PPStee, on a sparse
bifurcation and very sparse aneurysm geometry. Some of the results presented here
are part of an EASC 2014 conference contribution [18].

4.2.1 Description	

Within sparse geometries, lattice-Boltzmann codes generally adopt a range of lattice
site types to encapsulate all the functionalities required to treat flow in bulk, near walls
and near in- and outlets. We provide a simple example of a geometry containing these
lattice site types in Figure 4. By default, all types of lattice sites were weighted equally
in HemeLB, which means that graph partitioners such as ParMETIS treat all site types
with equal importance when creating a domain decomposition. However, we find that
both sites adjacent to walls and sites adjacent to in- and outlets require more
computational time to be updated. To optimize the load balance of the code, we

© CRESTA Consortium Page 7 of 22

therefore assign heavier weights to sites which reside adjacent to wall or in/outlet
boundaries.

We are currently developing an automated tuning implementation to obtain these
computational costs at run-time. However, as a first proof of concept, we have deduced
approximate weighting values by running six simulations of cylinders with different
aspect ratios. The shorter and wider cylinders have a relatively high ratio of in- and
outlet sites, while the longer and more narrow cylinders have a relatively high ratio of
wall sites. In addition, the cylinders with an aspect ratio near 1:1 have a relatively high
ratio of bulk flow sites.

Based on these runs we have obtained estimated values for the computational cost for
each type of lattice site, by using a least-square fitting function. We present the values
of these fits, as well as rounded values we use in the respective partitioners, in Table 1.
ParMETIS supports the use of weights in graphs, provided that these weights are given
as integers. As we found that using large numbers for these weights has a negative
effect on the stability of ParMETIS, we chose to normalize and round the weightings
such that bulk sites are given a weight of 4, and the other site types are given by
values relative to that base value. Because the test runs contained only a very small
number of wall + in/outlet sites, we choose to adopt the weighting for in/outlet sites also
for the in/outlet sites which are adjacent to a wall boundary.
Table 1: Weight values as obtained from fitting against the runtimes of six test simulations on two
compute architectures (Intel SandyBridge and AMD Interlagos). The site type is given, followed by
the weight obtained from fitting the performance data of the six runs, followed by the simplified
integer value we adopted in ParMETIS. In this work we use Bouzidi-Firdaouss-Lallemand (BFL) wall
conditions and in- and customized outlet conditions described in Nash et al, 2014 ([19]). We
observed rather erratic fits for the weightings of in/outlet sites that are adjacent to walls, as these
made up only a very marginal fraction of the overall site counts in our benchmark runs (less than
1% in most cases).

Site type Obtained weight Rounded weight

Intel AMD

Bulk 10 10 4

Wall 18.708 20.226 8

In/outlet 40.037 37.398 16

Wall and In/outlet 22.700 34.577 16

Figure 4: 2D example of a sparse domain with the different types of lattice sites. In/outlets are
given by the blue bars and vessel walls by the red curves. Bulk sites are shown by yellow dots,
wall sites by green dots, wall in/outlet sites by red dots, and in/outlet sites by blue dots.

© CRESTA Consortium Page 8 of 22

4.2.2 Measurements	
 on	
 ARCHER	

All runtime measurements were performed on ARCHER using fully-populated nodes
adding up to the indicated core count. In terms of ARCHER’s 24-core nodes, this
means values of 96, 192 and multiples up to 24,576 cores for our experiments. We
used a modified HemeLB that incorporates PPStee v0.3.0d; a detailed description of
the integration of PPStee into HemeLB can be found in Section 4 of CRESTA
Deliverable 5.1.4, [4]. We used a default value of 50,000 simulation steps for all
geometries.

For our runtime measurements, we used two geometries. These include a smaller
bifurcation geometry and a larger aneurysm geometry (see Figure 5 and Figure 6 for
both). The bifurcation simulation domain consists of 650,492 lattice sites, which
occupy about 10% of the bounding box of the geometry. The aneurysm simulation
domain consists of 5,667,778 lattice sites, which occupy about 1.5% of the bounding
box of the geometry. We run our simulations using pressure in- and outlets as
described in [19], the LBGK collision operator, the D3Q19 advection model and
Bouzidi-Firdaouss-Lallemand wall conditions.

Figure 5: Aneurysm geometry.

© CRESTA Consortium Page 9 of 22

Figure 6: Bifurcation geometry.

Figure 7 and Figure 8 depict total runtimes of the simulation, i.e. these measurements
include all simulation parts starting with initial read-in of the geometry, followed by
partitioning, calculations in the scientific kernel and ending with some visualisation
methods. To achieve a more detailed picture, we provide two additional figure series:
Figure 9 and Figure 10 show time spent for partitioning only, i.e. how long the call to
the partitioning library lasted. On the other hand, Figure 11 and Figure 12 show the
calculation time spent on the scientific kernel which includes computation and
communication that is needed to find the solution by the lattice Boltzmann solver.

© CRESTA Consortium Page 10 of 22

Figure 7: Total runtime of HemeLB on ARCHER for geometry bifurcation_50um (v3) with PPStee
using one of three partitioning libraries comparing uniform versus weighted decomposition.

Figure 8: Total runtime of HemeLB on ARCHER for geometry an_mov with PPStee using one of
three partitioning libraries comparing uniform versus weighted decomposition.

© CRESTA Consortium Page 11 of 22

Figure 9: Partitioning time of HemeLB on ARCHER for geometry bifurcation_50um (v3) with PPStee
using one of three partitioning libraries comparing uniform versus weighted decomposition.

Figure 10: Partitioning time of HemeLB on ARCHER for geometry an_mov with PPStee using one of
three partitioning libraries comparing uniform versus weighted decomposition.

© CRESTA Consortium Page 12 of 22

Figure 11: Calculation time of HemeLB on ARCHER for geometry bifurcation_50um (v3) with
PPStee using one of three partitioning libraries comparing uniform versus weighted
decomposition.

Figure 12: Calculation time of HemeLB on ARCHER for geometry an_mov with PPStee using one of
three partitioning libraries comparing uniform versus weighted decomposition.

© CRESTA Consortium Page 13 of 22

4.2.3 Analysis	

First, we point out general observations that validate our former findings (cf. Section
4.1). The plots of the partitioning time clearly show that not one of the partitioning
libraries scales at all. The time spent for the calculation of the partitioning rises for a
higher number of cores. On the other hand, the quality of the partitioning is encoded in
the calculation time depicted in Figure 11 and Figure 12 and is almost equal for all
three libraries. Additionally, we mention the absolute values of the partitioning time as
they might amount to a considerable part of the runtime if frequent repartitioning is
applied.

Comparing the simulation series with respect to weighted decomposition and normal
decomposition, we observe almost no differences between the decomposition types.
Only for Zoltan and on the highest number of cores, i.e. 24k cores for geometry
“aneurysm_movie”, we notice a clear gap.

In summary, we conclude that we need a systematic approach to assess, compare and
investigate domain decomposition techniques, as none of the ones we have used so
far appears to produce results that ensure smooth scaling to Exascale resources.
Based on this outcome, we have proceeded to develop a separate domain
decomposition tool, which allows us to investigate this problem in isolation, without
requiring the organizational and computational overhead of running HemeLB
simulations for each decomposition.

4.3 Ensemble	
 partitioning	

4.3.1 Motivation	

As shown in Section 4.2, partitioning simulation domains within HemeLB can be a time-
consuming task. When we run ensemble simulations, we reuse the same geometry,
subjecting it to a different type of flow regime in each instantiation. Using our existing
approach where the domain decomposition is integrated in the HemeLB compute
environment, we need to perform the domain decomposition repeatedly for each
instance of the ensemble.

Here we report on preliminary developments to make a stand-alone partitioning tool,
which will eventually allow us to do domain decomposition outside of the main
simulation, and to reuse previously decomposed domains for multiple HemeLB
simulations.

4.3.2 Approach	

We have proceeded to develop an independent partitioning tool by combining PPStee
with a newly-written Python environment (Protopart) for analysing and converting graph
partitioning data. Protopart allows us to assess the quality of a decomposition without
launching HemeLB, and is able to export partitioning information both in plain text and
HemeLB .gmy format. The plain text format is particularly useful because it allows us to
trivially read it in with a visualization tool, allowing us to visually inspect the quality of
partitioned simulation domains.

Our current workflow for partitioning is as follows:

Protopart -> binary graph data of HemeLB geometry including coordinates -> PPStee
(wrapper) -> partitioned HemeLB geometry data

As we started this new effort very late in the CRESTA project, we will not have the
opportunity to adapt HemeLB to read in pre-partitioned simulation domain data before
CRESTA has completed. Instead, we plan to perform this activity after the end of the
CRESTA project, as part of a separately funded ARCHER eCSE project. The proposal
for this, written by Rupert Nash and Derek Groen, is currently under review by the UK
Engineering and Physics Research Council.

4.3.3 Analysis	
 and	
 visualisation	
 of	
 the	
 partitioning	
 results	

The extraction of the partitioning from the simulation cycle into a separate simulation-
preceding pre-processing step leads to a beneficial side effect. Even before the

© CRESTA Consortium Page 14 of 22

simulation is run, we have access to a data set that describes the HemeLB geometry in
detail. The data contain not only the graph connections but coordinates and partitioning
information too. Now, we can use these data either to apply some sort of partitioning
analysis, or to visualise the geometry and its distribution according to the partitioning.

Figure 13: Visualisation of the HemeLB geometry dataset “bifurcation_50um” based on the
partitioning result of PPStee using ParMETIS and a target number of 32 partitions.

To facilitate this opportunity, we added two scripts to the tools section of the PPStee
repository. The first script converts the output of the PPStee wrapper described in
Section 4.3.2, i.e. the partitioned HemeLB graph data, into a VTK file format [12]. Then
the second script reads the VTK file and renders the geometry using Mayavi [13].
Figure 13 shows the rendered HemeLB geometry dataset “bifurcation_50um”
partitioned by PPStee using ParMETIS with a target number of 32 partitions. Figure 14
shows the dataset “aneurysm_movie” with 4.6 million lattice sites and 128 partitions,
again partitioned by PPStee using ParMETIS.

© CRESTA Consortium Page 15 of 22

Figure 14: Visualisation of the HemeLB geometry dataset “aneurysm_movie” with 4.6 million lattice
sites based on the partitioning result of PPStee using ParMETIS and a target number of 128
partitions.

© CRESTA Consortium Page 16 of 22

5 PPStee	
 and	
 Nek5000	

5.1 Integration	
 and	
 first	
 simulation	
 runs	

In CRESTA Deliverable D5.1.5 [5], we described the integration of PPStee into the
computational fluid dynamics simulation Nek5000 that is based on the spectral element
method [14]. We provided a short description of the modifications of Nek5000 that were
developed within CRESTA. On top of these modifications that implement only
ParMETIS for the partitioning, PPStee is a natural extension as PPStee enables the
additional use of PTScotch and Zoltan. We presented a proof of concept and showed
runtime results of Nek5000 with PPStee for a simple cylindrical geometry measured on
a small desktop machine. Thus, we proved the applicability of PPStee for Nek5000 in
general.

5.2 Strong	
 scaling	
 with	
 three	
 partitioning	
 libraries	

5.2.1 Setting	
 and	
 geometry	

Nek5000 is an open-source code for the simulation of incompressible flow in complex
geometries. It adopts the spectral-element discretisation that combines the higher-
order accuracy from spectral methods with the geometric flexibility of finite element
methods. Original version of Nek5000 uses conformal grid with uniform order of the
spatial interpolations throughout the domain. The static grid partitioning based on the
dual graph bisection is applied in a pre-processing step to create global element
ordering, which is later used to create element-processor mapping.

Within the CRESTA project, we implemented an adaptive mesh refinement algorithm
(AMR) in Nek5000, which gives the possibility of increasing the accuracy of numerical
simulations with minimal computational cost. We focused on the h-refinement
framework, i.e. the splitting of elements into smaller ones, due to its flexibility and
possible improvements in the solver performance. This refinement scheme dynamically
changes grid structure modifying element number and connectivity and requires
dynamical grid partitioning.

In our implementation the grid modification is managed by p4est [15] library, which
provides correct grid structure and element connectivity information. For load balancing
we adopted ParMETIS library, which in the initial tests gave the partitioning quality
similar to the native Nek5000 static partitioning. We adopted partitioning from scratch
strategy, which allows for highest possible quality of the mesh distribution, but does not
take into account partitioning and communication costs. We implemented in Nek5000
all the tools necessary for dynamical modification of the mesh structure during the
simulation including element creation, destruction and redistribution, and the main
solver restart on the new mesh. Another crucial tool required by AMR is an error
estimator, which allows for evaluation of the computational error and identification of
the regions in the flow requiring refinement or coarsening. Such error estimators based
on the expansion of the solution in the basis of Legendre functions was implemented in
Nek5000 [20].

This implementation was tested with a model problem based on the convected-cone
example introduced by Gottlieb and Orszag [16]. It is the passive scalar transport
problem, in which a unit-height cone with a base-radius of 0.1 centred at (x,y)=(0, 0.25)
in a square mesh is subjected to plane rotation according to time independent velocity
field v=(y-0.5,0.5-x). We adopted this example to 3-dimensional simulations evolving a
sphere-shape cone according to energy equation in Nek5000. In this case spectral
error estimator identifies discontinuities in the initial condition increasing grid resolution
at the edge and the centre of the cone (see Error! Reference source not found.).
We have to mention here, that the global number of elements in some of the strong
scaling tests is not constant for different processor numbers due to the fact that p4est
performs de-refinement of the 8 children elements into the single parent element only if
all the children elements reside on a single process. That is why the global number of

© CRESTA Consortium Page 17 of 22

elements slowly grows with the number of processors (see [17] for more detailed
discussion).

Figure 15: Two–dimensional cut through the domain of the convected-cone problem showing the
grid structure (black squares) and the passive scalar profile (colour scale). Each element (3D cube
depicted by a square) corresponds to the mesh of 12x12x12 grid points

In all performed tests we follow advected features in the flow (the cone), which requires
continuous adjustment of the mesh and does not converge to any time-independent
grid structure. Although this strategy is not applicable to stability calculations, where
instead of individual flow structures the sensitive regions in the flow have to be
identified and resolved, it allows the frequency of grid modification to be increased, and
possible limitations of the method to be studied.

Our tests performed with ParMETIS show non-conformal version of Nek5000 to be the
best parallelized component of our code. The biggest constraint in the parallel scaling
comes from the performance of the grid partitioner, showing partitioning from scratch
strategy to be inefficient. The partitioning time grows quickly with the number of
processors and becomes dominant in the runs with fewer than 10 elements per core
(see [17] for more detailed discussion). That is why in cooperation with WP5 we have
been investigating other available partitioning tools implemented in PPStee.

5.2.2 Measurements	

All runtime measurements were performed on ARCHER [11] using fully-populated
nodes adding up to the indicated core count. In terms of ARCHER’s 24-core nodes,
this means values of 768, 1,536 and multiples up to 49,152 cores for our experiments.
We used the CRESTA version of Nek5000 and modified it to incorporate PPStee
v0.3.0d; a detailed description of the integration of PPStee into an existing code can be
found in Section 2 of CRESTA Deliverable 5.1.3, [3].

We used a default value of 100 simulation steps for all geometries. Nek5000 solver
uses variable time step with the fixed Courant number equal to 0.3, and the mesh was
regenerated every 50 Nek5000 steps. The maximum refinement level was set to 5,
which for fully-refined initial conditions corresponds to 86,288 3-dimensional elements
with polynomial order 11.

© CRESTA Consortium Page 18 of 22

Figure 16 depicts total runtimes of the simulation, i.e. these measurements include all
simulation parts starting with initial read-in of the geometry, followed by partitioning,
and calculations in the scientific kernel. To achieve a more detailed picture, we provide
two additional figures. Figure 17 shows time spent for partitioning only, i.e. how long
the call to the partitioning library lasted. On the other hand, Figure 18 shows the
calculation time spent on the scientific kernel, which includes computation and the
communication that is needed for the spectral element solver to find the solution.

Figure 16: Total runtime of Nek5000 on ARCHER for geometry “h2_3D” on level 5 (single IO)
PPStee using one of three partitioning.

© CRESTA Consortium Page 19 of 22

Figure 17: Partitioning time of Nek5000 on ARCHER for geometry “h2_3D” on level 5 (single IO)
PPStee using one of three partitioning.

Figure 18: Calculation time of Nek5000 on ARCHER for geometry “h2_3D” on level 5 (single IO)
PPStee using one of three partitioning.

© CRESTA Consortium Page 20 of 22

5.2.3 Analysis	

Plots of the calculation time (see Figure 18) show an almost equal value for all libraries
for all core counts. Only ParMETIS is slightly better up to 3,072 cores but gets slightly
worse for higher core counts. We deduce that the quality of the calculated partitioning
is almost equal for all three partitioning libraries.

The partitioning time depicted in Figure 17 led to a first and disappointing observation.
None of the three partitioning libraries scales at all and, even worse, they get slower for
higher core counts. We stress that the situation might, of course, change for other
geometries. Moreover, there is a possibility to work around this restriction. PTScotch
and Zoltan perform almost equally for almost the full range of core counts. ParMETIS,
however, is faster on lower numbers of cores and slower on higher numbers of cores.
Hence, we can optimally exploit one of PPStee’s main features and swap the
partitioner depending on the number of cores the simulation is running on. This method
gives us, at least, the fastest partitioning library for the full range of core counts.

© CRESTA Consortium Page 21 of 22

6 Conclusions	

The pre-processing interface PPStee works as intended. It is lightweight and easy to
integrate into an existing code as the examples HemeLB and Nek5000 show. PPStee
introduces the opportunity to easily test the cooperative quality of simulation data
layout and one of three different partitioning libraries. At the same time, PPStee
supports load-balancing of multiple stages of a simulation. Thus, it encourages the
inclusion of costly simulation phases into the simulation cycle on the high performance
system. A simulation with in-situ visualisation and mesh refinement, for instance, will
benefit greatly from the renewed load-balancing.

© CRESTA Consortium Page 22 of 22

7 References	

[1] CRESTA Deliverable 5.1.1, Pre-processing: analysis and system definition for

exascale systems

[2] CRESTA Deliverable 5.1.2, Pre-processing: data format and algorithms

[3] CRESTA Deliverable 5.1.3, Pre-processing: first prototype tools for exascale
mesh partitioning and mesh analysis

[4] CRESTA Deliverable 5.1.4, Pre-processing: revision of system, data format
and algorithms definition for exascale systems

[5] CRESTA Deliverable 5.1.5, Pre-processing: final tools for exascale mesh
partitioning and mesh analysis available

[6] ParMETIS, Parallel graph partitioning and fill-reducing matrix ordering,
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[7] PTScotch, Software package and libraries for sequential and parallel graph
partitioning, static mapping, and sparse matrix block ordering, and sequential
mesh and hypergraph partitioning, http://www.labri.fr/perso/pelegrin/scotch/

[8] Zoltan, Data-Management Services for Parallel Applications,
http://www.cs.sandia.gov/Zoltan/Zoltan_phil.html

[9] D. Groen, J. Hetherington, H.B. Carver, R.W. Nash, M.O. Bernabeu,
P.V. Coveney, Analysing and modelling the performance of the HemeLB
lattice-Boltzmann simulation environment, Journal of Computational
Science 4 (5), 412-422, 2013, http://ccs.chem.ucl.ac.uk/hemelb

[10] HECToR UK National Supercomputing Service,
http://www.hector.ac.uk

[11] ARCHER UK National Supercomputing Service,
http://www.archer.ac.uk

[12] Will Schroeder, Ken Martin, and Bill Lorensen, An Object-Oriented
Approach To 3D Graphics, Kitware, Inc. 4th edition (December 2006).

[13] P. Ramachandran and G. Varoquaux, Mayavi: 3D Visualization of
Scientific Data, IEEE Computing in Science & Engineering, 13 (2), pp.
40-51 (2011)

[14] P. Fischer, J. Lottes, S. Kerkemeier, nek5000 Web page (2008),
http://nek5000.mcs.anl.gov

[15] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas, p4est:
Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests
of Octrees, SIAM Journal on Scientific Computing 33 no. 3 (2011),
pages 1103-1133.

[16] D.I. Gottlieb, and S.A. Orszag, Numerical Analysis of Spectral
Methods: Theory and Applications, SIAM-CBMS, Philadelphia, 1977

[17] CRESTA Deliverable 6.1.3, Roadmap to exascale
[18] http://arxiv.org/abs/1410.4713
[19] R.W. Nash, H.B. Carver, M.O. Bernabeu, J. Hetherington, D.

Groen, T. Krüger, P.V. Coveney, Choice of boundary condition for
lattice-Boltzmann simulation of moderate Reynolds number flow in
complex domains, Physics Review E 89, 023033, 2014.

[20] C. Mavriplis, Adaptive Mesh Strategies for the Spectral Element Method,
Computer Methods in Applied Mechanics and Engineering, 116 (1994), pp. 77-
86.

