

Copyright © CRESTA Consortium Partners 2011

D5.2.5:	 Post	 processing	 tools	 for	

interactive	 data	 visualization	 and	

exploration	

WP5:	 User	 tools	

Due date: M30

Submission date: 31/03/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead

organisation
DLR

Version: 1.0

Status Final

Author(s):
Fang Chen (DLR), Markus Flatken (DLR), Timo Kiviniemi (Aalto

University, Finnland)

Reviewer(s) Luis Cebamanos (UEDIN) Mats Hamrud, ECMWF

Project Acronym CRESTA

Project Title
Collaborative Research Into Exascale Systemware, Tools and

Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2011

Dissemination level

PU PU - Public

Version	 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 20.03.2014
First version of the deliverable

Fang Chen (DLR),

Markus Flatken (DLR),

Timo Kiviniemi (Aalto

University, Finnland)

1.0 25.03.2014 Final version of the deliverable

Fang Chen (DLR),

Markus Flatken (DLR),

Timo Kiviniemi (Aalto

University, Finnland)

Copyright © CRESTA Consortium Partners 2011

Table	 of	 Contents	

1	 EXECUTIVE	 SUMMARY	 ...	 4	

2	 INTRODUCTION	 ...	 5	

3	 SYSTEM	 ARCHITECTURE	 ...	 6	

4	 CO-‐DESIGN	 WITH	 HEMELB	 ...	 8	

	 ONLINE-‐MONITORING	 FOR	 A	 REMOTELY	 LOCATED	 RUNNING	 SIMULATION	 ..	 8	 4.1
	 DYNAMIC	 ALLOCATION	 OF	 JOB	 MASTER	 NODE	 AND	 SSH	 TUNNELS	 ...	 8	 4.2
	 POST	 PROCESSING	 OF	 THE	 HEMELB	 SIMULATION	 ..	 9	 4.3

5	 CO-‐DESIGN	 WITH	 ELMFIRE	 ...	 13	

	 SCIENTIFIC	 USE	 CASE:	 	 GYRO-‐KINETIC	 FIRST	 PRINCIPLES	 SIMULATIONS	 OF	 PLASMA	 TURBULENCE	 FOR	 TOKOMAKS	 13	 5.1
	 POST	 PROCESSING	 FOR	 MAGNETIC	 FIELD	 SIMULATIONS	 ..	 13	 5.2
5.2.1	 Three	 dimensional	 visualization	 and	 feature	 analysis	 ..	 14	
5.2.2	 Parallelization	 of	 the	 visualization	 algorithms	 ...	 15	

6	 CONCLUSION	 AND	 FUTURE	 WORK	 ...	 16	

7	 REFERENCES	 ..	 17	

Index	 of	 Figures	

Figure 1 Interactive post processing system architecture for exa-scale systems 6	

Figure 2 An In-situ monitoring with only a screen showing the network image streamed
to the front-end application ... 7	

Figure 3 An Interactive post processing architecture with a user interacting on the front
end .. 7	

Figure 4 When no directly access to compute node is allowed, data will be first stored
on the user’s home directly, and then copied to local machine for out-of core access. . 9	

Figure 5 When direct access to compute node is allowed, we dynamically allocated the
compute node id, and then set up a tunnel to allow communication between the node
which is actually executing the job and our local machine. .. 9	

Figure 6 Time measurement for generating image with resolution 128x128 10	

Figure 7 Time measurement for generating image with resolution 256x256 10	

Figure 8 Time measurement for generating image with resolution 512x512 11	

Figure 9 Time measurement for generating image with resolution 1024x1024 11	

Figure 10 Latency (Front-end framerates) for image display at front-end 11	

Figure 11 User interacting with an Aneurysm data in front of a power-wall. More details
in video <Cresta.mpeg>. Video can be found at CRESTA’s svn server
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp5/postprocessing 12	

Figure 12 Cross section of the simulation output. From video provide d by Timo
Kiviniei, University of Aalto ... 14	

Figure 13 3D visualization of the simulation and geometry ... 15	

	 Index	 of	 TablesNo	 table	 of	 figures	 entries	 found.

Copyright © CRESTA Consortium Partners 2011

 Page 4 of 17

1 Executive	 Summary	

In this deliverable, we present the post processing tools and systems designed for

enabling data exploration and post processing towards exa-scale. Providing run-time

inspection to the ongoing simulation and enabling interactive exploration of the

simulation are two major challenges for post processing for large simulations.

While pre-processing of the simulation focuses on mesh creation and partitioning, post-

processing of the simulation is targeted at providing visualisations of the simulation

outputs, which serves as a tool to explore and analyse the simulation results.

A key concept in data post processing for exa-scale simulation is to provide In-situ data

inspection and to minimize moving data around. Inspecting simulation results at run

time and providing a first visualization allows the simulation experts to monitor the

process of the running simulation and to prevent early failure.

In this work package, we present the in-situ monitoring tool and the underlying system

designed and for HemeLB which is further applicable for large simulations in general.

Such on-line monitoring client/system provides the user with an in-situ inspection of the

on-going simulation. It does not require outputting data to local storage. Instead,

rendered image cache is streamed to the monitoring client, thus minimizes the data

transfer and keeps maximum data locality for large parallel systems.

In comparison to Deliverable 5.2.4, which presents a system algorithm review, this

deliverable continues with the software development of the online-monitoring parts and

the front-end interactive applications. Aside from implemented the in-situ monitoring

tool, we further integrate the scientific visualization algorithm, which allows further

investigation of the HemeLB simulation output. While the in-situ monitoring provides a

first step in inspecting run-time simulation results, an integrated visualization system in

virtual environments will enable the user with intuitive and explorative perception of

each simulation time-step. Moreover, we also present the recently initiated co-design

work with an ELMFIRE simulation.

Copyright © CRESTA Consortium Partners 2011

 Page 5 of 17

2 Introduction	

With the ever increasing computational power of the hardware systems, fluid simulation

is heading towards exa-scale computing. The size and complexity of the simulation

data present new challenges to data post-processing frameworks and visualization

algorithms. Major challenges in post-processing will be that no data is stored on disk

and moving data around will be very costly. How to make the best use of existing

hardware systems and what exa-scale post-processing algorithms are the questions

we try to answer.

The post-processing of simulation data is a process which transforms simulation output

into suitable visual representations. The so called post-processing pipeline typically

consists of data extraction, filtering, mapping and visualization stages. Visualization—

the creation of vivid pictures from simulation outputs in the form of arrays of numbers—

has become an indispensable tool for scientists (Ma, et al., 2009). At exascale, it

becomes a time-consuming process where efficient and interactive visualization can be

a challenging task for post-processing.

The aim of work package 5.2.5 is to present the system, algorithm and tools that we

designed and developed for exa-scale post processing applications. In section 2 and 3,

we first present the post-processing system architecture and requirements for

applications towards exa-scale problem. In section 4, we present the co-designed post

processing tools for HemeLB application. Section 5 brief the on-going co-designed for

ElMFIRE application.

Copyright © CRESTA Consortium Partners 2011

 Page 6 of 17

3 System	 Architecture	

In this section, we briefly describe the system architecture of our post-processing tools.

We will elaborate on the system layout in a detailed manner with respect to the

HemeLB application in the later sections.

Error! Reference source not found. demonstrates a general post-processing system

for an exa-scale system. To avoid moving data around, the visualisation shares the

same process as the simulation. At the same location, simulation output will be cached

and visualised. A master node will control and collect not only simulation results, but

also visualization output, and send these back to the user front end.

For the purpose of in-situ monitoring, the user front end can be just a single display

(see Figure 2) which demonstrates the run-time results of the current simulation step.

In this type of system, only an image with given resolution is transmitted to the front

screen and thus provide a first insight into the running simulation. The advantage of

such a set-up is the minimal amount of data moved over the network, and results in a

low latency between the remote systems and the front monitor.

To inspect the data in a more detailed way, a front end can also be a more complex

system which utilizes virtual reality techniques that allows interactive user interaction

with the data (see Figure 3 . Within this approach, a set of data or image is required to

be collected and stored somewhere by the scheduler, which allows for interactive

exploration request sent by the VR front end.

Figure 1 Interactive post processing system architecture for exa-scale
systems

Copyright © CRESTA Consortium Partners 2011

 Page 7 of 17

Figure 2 An In-situ monitoring with only a screen showing the network image streamed to the front-

end application

 Figure 3 An Interactive post processing architecture with a user interacting on the front end

The different between the two systems is that the former only sends rendered images

over networks from remote system to frontend, thus minimize data movements. The

latter system requires more communication between the frontend and remote systems,

but allows in-depth and intuitive exploration of the current simulation time step. For

monitoring a rapid running simulation process the former one is recommended, while

for in-depth analysis of the simulation output the second architecture is more suitable.

Copyright © CRESTA Consortium Partners 2011

 Page 8 of 17

4 Co-‐design	 with	 HemeLB	

 Online-‐monitoring	 for	 a	 remotely	 located	 running	 simulation	 4.1

An online-monitoring tool is implemented in python which is able to monitor a large

running simulation that is running remotely on a cluster systems without pausing or

writing out data to disk. A demonstration of this tool is showing in the video above. A

HemeLB simulation is running on a cluster system in real time, and based on the

already implemented volume mapping from HemeLB, the online-monitoring client

access the network image produced rendered with a resolution of 1024x1024, transfer

it over to the frontend and display it as a glTexture on the monitoring window.

Due to the different configurations of the remote cluster systems, communication and

connection between front-end application and remote clusters are restricted and also

affects the in-situ processing system layout. We specify the two cases in the following

section.

 Dynamic	 allocation	 of	 job	 master	 node	 and	 ssh	 tunnels	 4.2

The remote simulation that we want to monitor could be running on another machine,

or another cluster, or a cluster within the same perimeter network, or a cluster in a

different perimeter networks (also known as Demilitarized Zones (DMZ)). Different

firewall settings on different perimeter networks could prohibit direct access and

communication between master nodes on a cluster and your local machine. For

instance, direct access to working desktops at DLR is not allowed due to security and

firewall settings.

Copyright © CRESTA Consortium Partners 2011

 Page 9 of 17

Depending on the network characteristic of the remote and the front-end (local

machine) system, we consider the following two cases. First, if direct connection

between the compute node and the local machine is not allowed (e.g. A cluster in the

UK and a local machine at DLR), the results will be first stored at the user’s working

directory and then copied to la ocal machine for further processing and analysis.

...

Node1 Node2 Node3

Node4

... NodeN

Job	 Compute	
node

Working	
directory	
on	 cluster

Local	
Machine

Submit	 a	
job

Write	 data	 to	
disk

Copy	 data	
to	 local

Figure 4 When no directly access to compute node is allowed, data will be first stored on the user’s
home directly, and then copied to local machine for out-of core access.

In the second case, when direct connection is permitted between a remote computing

master node and a local machine, (for example a cluster system and local machine

which both reside in the same perimeter network), then we set up an ssh tunnel

between the computing master node and the local machine. In this way, the local

machine is able to access data on the fly without writing them out. Note that only after

submitting the job to the remote system, will the master commutating node be

assigned. Therefore, the ssh tunnel can only be set-up after the dynamic allocation of

the master node id, see Figure 5.

...

Node1 Node2 Node3

Node4

... NodeN

Job	 Compute	
node

Local	
Machine

Set	 up	 SSH-‐tunnel	 between	
Compute	 node	 and	 Local	 machine

Avoiding	 writing	 data	 out	 and	
moving	 them	 around

Figure 5 When direct access to compute node is allowed, we dynamically allocated the compute
node id, and then set up a tunnel to allow communication between the node which is actually

executing the job and our local machine.

 Post	 processing	 of	 the	 HemeLB	 simulation	 	 4.3
We benchmark the online monitoring tool with the HemeLB simulation in two aspects.

First, we benchmark the performance and time needed to perform one step simulation

Copyright © CRESTA Consortium Partners 2011

 Page 10 of 17

and generate one network image. Then we measure how the image resolution affects

the frame-rates on the front-end.

Figure 6 Time measurement for generating image with resolution 128x128

Figure 7 Time measurement for generating image with resolution 256x256

0	

0.1	

0.2	

0.3	

0.4	

4	 16	 32	 64	 128	 256	

Ti
m
e	
	

Benchmarking	 	 with	 image	
resoluRon	 128x128	 on	 T-‐Systems's	
cluster	 at	 Munich	 EIP	 DataCenter	

per	 SimulaNon	 step	

Image	 	 generaNon	

0	

0.2	

0.4	

0.6	

0.8	

8	 16	 32	 64	 128	 256	

Ti
m
e	
	

Benchmarking	 	 with	 image	
resoluRon	 256x256	 on	 T-‐Systems's	
cluster	 at	 Munich	 EIP	 DataCenter	

Per	 simulaNon	 step	

Image	 	 generaNon	

Copyright © CRESTA Consortium Partners 2011

 Page 11 of 17

Figure 8 Time measurement for generating image with resolution 512x512

Figure 9 Time measurement for generating image with resolution 1024x1024

Figure 10 Latency (Front-end framerates) for image display at front-end

0	

10	

20	

30	

4	 16	 32	 64	 128	 256	

Ti
m
e	
	

Benchmarking	 	 with	 image	
resoluRon	 512x512	 on	 T-‐Systems's	
cluster	 at	 Munich	 EIP	 DataCenter	

Per	 simulaNon	 step	

Image	 	 generaNon	

0	

10	

20	

30	

40	

4	 16	 32	 64	 128	 256	

Ti
m
e	
	

Benchmarking	 	 with	 image	
resoluRon	 1024x1024on	 T-‐

Systems's	 cluster	 at	 Munich	 EIP	
DataCenter	

Per	 simulaNon	 Nme	
step	

Image	 	 generaNon	

0	
10	
20	
30	
40	
50	
60	

Ti
m
e	
	

Frame-‐rates	 on	 the	 front-‐end,	
depending	 on	 resquied	 image	

resoluRon	

Latency	 to	 Frontend	

Copyright © CRESTA Consortium Partners 2011

 Page 12 of 17

We measured the time that is needed to composite an image for the front-end with

image resolution 128x128, 256x256, 512x512 and 1024x1024 pixels (respectively see

Figure 6, Figure 7Figure 8Figure 9). For each given image resolution, we also

measure the latency from the remote to front-end in terms of frame rates, see Figure

10.

Comparing Figure 8,Figure 9Figure 10 to Figure 7, the time needed for generating an

image increased as the required image resolution increases. At resolution 128x128

and 256x256, the scaling curve for image generation does not decrease dramatically.

This is due to the fact that at smaller resolutions, the image generation is quickly

finished and the time needed to collect the data as well as communication among

cores remains more or less the same. While going to a higher image resolution (Figure

10), we can observe that there is an obvious decreasing trend in the time needed for

image generation with more computational cores.

We observe that with more cores, the computation time for simulation and image

generation decreases. However, the non-linear decrease is expected due to the fact

that, with increasing number of cores, more time is needed to collect the image from

each single core and compose them together. Moreover, with the increased image

resolution that is required by the front-end (online monitoring client), the frame rates on

the front-end decreases.

In the following figure and video (Figure 11), we demonstrate the interactive exploration

tool developed at DLR for analysing an aneurysm data that is based on the described

system configuration (Figure 4). In front of a power-wall, the user is able to interact

with the Aneurysm dataset, seed particles in the blood flow and trace the dynamics of

the blood within the aneurysm. The stereo view in front of the power-wall together with

an interacting fly-stick enables the user to naturally navigate through the dataset，

allowing intuitive and in-depth exploration of the blood simulation output.

Figure 11 User interacting with an Aneurysm data in front of a power-wall. More details
in video <Cresta.mpeg>. Video can be found at CRESTA’s svn server
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp5/postprocessing

Copyright © CRESTA Consortium Partners 2011

 Page 13 of 17

5 Co-‐design	 with	 ELMFIRE	

During the past six months, we have also established collaborative research with the

ELMFIRE simulation group at the Aalto University, Finland. This collaborative work

involves developing ideas in data analysis and post processing for ElMFIRE

simulations.

 Scientific	 use	 case:	 	 Gyro-‐kinetic	 first	 principles	 simulations	 5.1

of	 plasma	 turbulence	 for	 tokomaks	

Understanding turbulent transport is needed for further optimization of fusion reactors

but realistic transport time scale simulations of plasma turbulence are computationally

very demanding. The aim of the recent ELMFIRE simulations is to increase the

understanding of the mechanisms behind the sudden improvement in confinement

observed in experiments by investigating the possible role of the radial derivative of a

time-varying electric field in triggering transition. The ELMFIRE turbulence simulation

code investigates these phenomena with a so-called first principal computer model.

This model tracks individual particles providing information on the complex interplay

between the magnetic field, the electric field and the particle trajectories. Using the 30

million CPUh granted from 4th PRACE call, a scan over local parameters such as

temperature and density starting from experimental Textor parameters was carried out

starting from a Textor low confinement mode case for which strong oscillation was

observed in the simulations (Kiviniemi, et al., 2012)

 Post	 processing	 for	 Magnetic	 field	 simulations	 5.2

Our collaborative research with the ELMFIRE application aims to develop post

processing tools to visualize and analyses the simulation outputs. With increasing

computational power, ELMFIRE simulation experts are carrying out simulations of a full

distribution of electrons and ions with large numbers of particles. Current simulations

are able to produce plausible results for a small FT-2 tokamak (R=0.55 m) and further

simulation activities are towards the simulation of one third of a middle-sized Textor

tokamak (R=1.75 m).

With the increasing number of particles and geometry complexity, ELMFIRE simulation

results in a huge data output that requires new post processing algorithms that can not

Copyright © CRESTA Consortium Partners 2011

 Page 14 of 17

only handle the large amount of data, but also provide further in-depth analysis of the

simulation output. To visualize large simulation data, we need to explore parallel

computation of visualization techniques which optimizes the performance of the post

processing computations. Scientific visualization, in particular feature extraction of the

data provides further analysis of the simulation output.

To bring post processing for ELMFIRE to the next level, the following two key aspects

should be considered:

5.2.1 Three	 dimensional	 visualization	 and	 feature	 analysis	

 Figure 12 Cross section of the simulation output. From video provide d by Timo Kiviniei,

University of Aalto

While simulation experts are still relying on two dimensional color coded results to

analyzing their results (Figure 12), scientific visualization, in particular three

dimensional feature visualization, can provide engineers with a better understanding of

the magnetic field and energy refinement within the Tokomak reactor.

 Three dimensional visualization (Figure 13) techniques transfers raw data into intuitive

graphical representations which enables the human brain to detect and identify

features. Recently research in vector field visualization has pointed out that applying

streamlines to reveal magnetic lines within such a Tokomak reactor helps the scientist

to understand and combat magnetic islands, which is crucial in understanding the

energy particle orbit (Schussmann, et al., 2000). Feature analysis can be brought into

the post processing of such simulation data by analyzing the magnetic lines and their

behaviour.

Copyright © CRESTA Consortium Partners 2011

 Page 15 of 17

5.2.2 Parallelization	 of	 the	 visualization	 algorithms	

A challenge task to visualizing large amount of tokamak magnetic field is the

parallelization of the line computations. When computing a large number of streamlines

at the same time in parallel, efficient seeding techniques and scheduling becomes

challenging. To apply streamline based visualization methods to a very large vector

field, it requires careful balancing of computational demand placed on I/O, memory,

communication and processors (Pugmire, et al., 2009).

Going forward, with the co-design activities with ELMFIRE application, we plan to

explore and improve parallelization schemes of the magnetic field lines’ computation.

Our goal is to optimize and leverage parallel resources to achieve scalable and load

balanced computations of streamlines of the given simulation output.

Figure 13 3D visualization of the simulation
and geometry

Copyright © CRESTA Consortium Partners 2011

 Page 16 of 17

6 Conclusion	 and	 future	 work	

In this deliverable, we have presented CRESTA’s post processing systems, tools

developed for exa-scale applications. We have utilized available cluster systems to

carry out testing and benchmarking of the proposed system.

Further progress in the co-designed work with the HemeLB application demonstrates

system tools that can monitor remote large simulations at run time (the on-online

monitoring part) and further allow interactive exploration of the data (front end

application). We also presented our recently initiated co-design work with the ELMFIRE

application focusing on the optimizing visualization algorithm in order to achieve

maximum load balance.

Source code, system requirements as well as demonstration videos can be found at:

https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp5/postprocessing/trunk.

While tacking the current real world problem, especially with the available data sizes

and hardware contains, it would be too bold to conclude any scalability guarantee for

exascale problem. However, together with the visualization community for large data,

we believe that the proposed system architecture and approaches will be a plausible

solution and prototype which enables in-situ post processing and minimizes data

movements. Online-monitoring, in-situ process and distributed rendering will be key

aspects that lead post processing at exa-scale.

Future work within this work package includes developing suitable post processing

solutions for large ELMFIRE simulation data in order to achieve scalable and load

balanced computations of magnetic field line computation.

Copyright © CRESTA Consortium Partners 2011

 Page 17 of 17

7 References	

Borkar, S., 2010. “The exascale challenge. Taiwan, s.n.

Chen, F. et al., 2012. Enabling In-situ Pre- and Post-Processing for Exascale
Hemodynamic Simulations − A Co-Design Study with the Sparse Geometry Lattice
Boltzmann Code HemeLB,. Salt Lake City, s.n.

Kiviniemi, T., T., S. L., Heikkinen, J. & Janhunen, S., 2012. Gyrokinetic Simulations of
the Edge Pedestal in the TEXTOR Tokamak, Contributions to Plasma Physics, 52, 406
(2012).. Contributions to Plasma Physics, 52(406).

Ma, K. K., Wang, C., Yu, H. & Tikhonova, A., 2007. In-situ processing and visualization
for ultrascale simulations. Journal of Physics: conference series, 78(1), pp. 12-43.

Ma, K. L. et al., 2007. Utra-scale visualization: Research and education. s.l.:s.n.

Ma, K.-L.et al., 2009. Next-Generation Visualization Technologies: Enabling
Discoveries at Extreme Scale, Davis, CA: SciDAC Review.

Pugmire, D. et al., 2009. Scalable Computation of Streamlines on Very Large Datasets.
SC, ACM.

Schussmann, G., Ma, K.-L., Schissel, D. & Evans, T., 2000. Visualizing DIII-D
Tokamak Magnetic Field Lines. IEEE Visualization, pp. 501-504.

Tu, T. et al., 2006. From mesh generation to scientific visualization and end-to-end
approach to parrallel supercomputing. s.l., s.n.

	

