

© CRESTA Consortium Page 1 of 26

D5.2.6:	
 Post-­‐processing:	
 tool	

evaluation	
 and	
 investigation	
 with	

application	
 data	

WP5:	
 User	
 tools	

Due date: M39

Submission date: 31/12/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organisation DLR

Version: 1.0

Status Final for submission

Author(s): Markus Flatken (DLR), Fang Chen (DLR)

Reviewer(s) Xavi Aguilar (KTH), George Mozdzynski (ECMWF)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title
Collaborative Research Into Exascale Systemware, Tools and

Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

© CRESTA Consortium Page 2 of 26

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 27/11/14 Initial draft Markus Flatken (DLR),
Fang Chen (DLR)

0.2 10/12/14 Revised draft taking into account
reviewers’ comments and suggestions

Xavi Aguilar (KTH),
George Mozdzynski
(ECMWF)

1.0 15/12/14 Final draft for submission Catherine Inglis (UEDIN)

© CRESTA Consortium Page 3 of 26

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 4	

2	
 INTRODUCTION	
 ...	
 5	

3	
 SYSTEM	
 AND	
 SOFTWARE	
 ARCHITECTURE	
 ...	
 8	

	
 PARALLEL	
 POST-­‐PROCESSING	
 ..	
 9	
 3.1
	
 COUPLING	
 VIRACOCHA	
 WITH	
 HEMELB	
 FOR	
 IN-­‐SITU	
 PROCESSING	
 ...	
 12	
 3.2
	
 PARALLEL	
 RENDERING	
 SYSTEM	
 AND	
 FRONT-­‐END	
 APPLICATION	
 ..	
 14	
 3.3

4	
 EVALUATION	
 ..	
 17	

	
 HARDWARE	
 SYSTEM	
 ..	
 17	
 4.1
4.1.1	
 Archer	
 Hardware	
 system	
 ..	
 17	

4.1.2	
 DLR	
 GPU-­‐Cluster	
 ...	
 17	

	
 DATASETS	
 ...	
 17	
 4.2
	
 EVALUATION	
 OF	
 THE	
 IN-­‐SITU	
 PROCESSING	
 PERFORMANCE	
 ..	
 18	
 4.3
	
 EVALUATION	
 OF	
 THE	
 MULTI-­‐THREADING	
 &	
 RENDERING	
 PERFORMANCE	
 ..	
 21	
 4.4

5	
 CONCLUSION	
 AND	
 FUTURE	
 WORK	
 ...	
 24	

6	
 REFERENCES	
 ...	
 25	

	
 	

© CRESTA Consortium Page 4 of 26

1 Executive	
 Summary	

In this deliverable, we present the evaluation of our developed in-situ post-processing

software infrastructure designed for enabling data exploration and post-processing

towards exascale.

As the last deliverable for work package 5.2, we give a detailed review of the software

architecture, and evaluate our in-situ post-processing algorithms during an on-going

simulation. We focus on evaluating the time needed to prepare the in-situ operations,

for extracting features, and for rendering. We investigate the scalability and

interactivity of the proposed in-situ processing tools. All proposed methods have been

evaluated using HemeLB as the core application for the in-situ analysis.

© CRESTA Consortium Page 5 of 26

2 Introduction	

The ever-increasing compute

capacity of HPC hardware

systems enables scientists to

simulate and explore physical

phenomena with an incredible

spatial and temporal accuracy.

This high accuracy also leads to

dataset sizes of many terabytes,

petabytes and even exabytes if

we think about the upcoming

exascale area expected in

2018[1]. To obtain knowledge from these advanced simulation datasets an efficient

analysis and visualization process becomes increasingly important but also difficult. In

particular, explorative scenarios where the users continuously change input parameters

to the analysis process pose tremendous challenges to the underlying compute and

software system. These parameter changes demand a re-execution of all compute and

data-fetching operations. Thus, the challenges are related to all steps of a classical

visualization pipeline (as shown in Figure 2 on page 8):

1. Filtering: An operation which extracts meaningful features out of the huge

quantity of raw data.

2. Mapping: An operation which maps the extracted features to visualization

primitives such as points, lines or polygons.

3. Rendering: Generates a 2D image from the extracted primitives based on user

defined camera parameters.

4. Display: A final stage which simply displays the generated 2D image on the

screen.

A common way to speed up the filtering and mapping stages of this visualization

pipeline is data parallelism. This technique is used massively by the two widely-utilised

open-source visualization tools ParaView [2] and VisIt [3]. Thereby, each process

executes at least the filtering operation only on a fraction of the complete dataset.

Partial results are collected later on in a subsequent pipeline stage.

Due to the enormous spatial accuracy, high resolution displays are required to

recognize tiny but significant details. While classical display systems often do not

Figure 1: A scientist is interactively exploring the blood
flow of an aneurysm during an on-going HemeLB lattice
Boltzmann simulation

© CRESTA Consortium Page 6 of 26

provide a sufficient resolution in all application cases, tiled-display systems have

proven to support the visualization of small details with ultra-high resolutions up to tens

or hundreds of mega pixels [4]. However, the local resources are often insufficient to

process and render the still large amount of features extracted during the filtering and

mapping operations. One solution is to use parallel rendering techniques. These

parallel rendering techniques also use the data parallelism approach. Therefore, each

processor or graphics processing unit (GPU) only renders a part of the total geometry.

An early classification of these parallel rendering techniques is given in [5]. Today two

major frameworks are common to develop parallel rendering engines, namely the IceT

[6] and Equalizer framework [7]. IceT is a sort-last rendering solution for tiled-display

systems. The main advantage of the sort-last rendering is that this approach is scalable

with respect to the size of data, but the major bottleneck is the required network

bandwidth to combine all partial images to a final result. Due to this limitation this

technique often prohibits interactive frame rates necessary when using e.g. virtual

environments and tiled-display systems.

Therefore, hybrid rendering methods which render with varying frame rates on local

and remote resources have been developed. Moreland et al. presented an image-

based rendering approach which generates local images with the help of a remotely

generated unstructured lumigraph [14]. Wagner et al. presented an image-based

rendering approach optimized for hybrid rendering using tiled-displays [11]. Noguera et

al. applied this technique to navigate through large terrains on commodity mobile

devices [15]. The terrain closely located to the user is rendered on the mobile device

while the terrain far away is rendered remotely into a sky box which is then sent to the

mobile client. Thus, hybrid rendering is an important key feature to guarantee

interactivity on the user's front-end which would seem to be unfeasible just using sort-

last rendering at high image resolutions.

Another critical fact which often prohibits interactive exploration in a conventional post-

processing setup is the limited data I/O bandwidth. The simulation data has to be

initially loaded from disc which requires a significant amount of time. Furthermore,

when running an exascale simulation it is also questionable whether storing the

complete dataset is possible or even necessary. In-situ processing, compared to

conventional post-processing, allows scientists an early inspection and analysis of an

on-going simulation and enables domain experts to obtain first insight into their running

simulation process and intermediate results. Such in-situ processing has the advantage

of keeping data in memory, avoiding the storage of large raw data to disk, providing on-

the-fly analysis, and eventually preventing early failures in the simulation process.

© CRESTA Consortium Page 7 of 26

In this deliverable we present our distributed and scalable software infrastructure,

which provides distributed in-situ data processing, feature extraction and interactive

exploration at the user’s front-end. Therefore, we couple a large-scale cluster system

executing the filtering and mapping operations concurrently within each simulation

process, a remote GPU cluster for parallel rendering and a high resolution tiled display

system for presentation (depicted in Figure 1). In contrast to common scientific

visualization frameworks we use the hybrid rendering approach to guarantee

interactive frame rates. We integrated and extended an existing post-processing

application to allow direct visualization of an on-going HemeLB simulation. Finally, an

interactive user front-end has been developed which enables scientists to directly

interact with the visualization of a running simulation, gain insight, and make decisions.

The aim of this deliverable is to present an evaluation of the software-system and its

algorithms and tools which we designed and developed for exascale in-situ processing

applications. In section 2, we explain the overall system and software architecture. In

Section 3 we evaluate the performance of our approach based on real world scenarios

and in Section 4 a conclusion and outlook is given.

© CRESTA Consortium Page 8 of 26

3 System	
 and	
 Software	
 Architecture	

Figure 2 proposes our chosen software architecture which can either consist of a two-

or three-tier architecture depending on the available hardware resources and the

overall size of the simulation data.

Figure 2: Distributed post-/in-situ processing infrastructure. The visualization pipeline is either
distributed in a two- or three-tier fashion. The parallel post-processing running on an HPC
hardware system extracts important features, mapped to geometric primitives. These primitives are
transferred to a GPU cluster for parallel rendering. A front-end application only receives an image
stream from the parallel rendering application. When using a two-tier architecture, the rendering
and display stage is executed locally.

The system contains of three major parts. First, in-situ data processing and parallel

feature extraction takes place on a large-scale cluster system executed concurrently

with the ongoing simulation. Next, depending on the size of the extracted features as

well as the complexity of rendering algorithms, rendering is performed either on a

smaller-scale GPU-cluster or directly on the local front-end machines. Thirdly, the

resulting images are displayed either on a single desktop or in a virtual environment

accompanied by different types of user interaction techniques.

© CRESTA Consortium Page 9 of 26

In such a distributed software infrastructure, communication and data transfer

bandwidths are essential factors to enable interactivity and scalability. The data must

be exchanged with minimal latency between different software layers, applications, and

resources. To increase the bandwidth between the first and the second tier of our

proposed software infrastructure, the data transfer is parallelized with a m to n

connection between the involved resources. m denotes the number of processes doing

the filtering and mapping operations on the simulation data and n is the number of

processes performing the rendering step. The transfer between the second and third

tier uses a 1 to 1 connection. Therefore, the master process of the parallel rendering

application sends the images to the front-end application. The overall size of data is

reduced during each of the pipeline stages, so that each subsequent stage is able to

handle and process the incoming data.

The user, interacting at the front-end application, is able to adjust the parameters for

the feature extraction process which demands a data exchange with the simulation

solver and a re-execution of the specified filtering and mapping algorithms. Each

process sends the extracted feature results (geometry data in our case) directly to the

rendering stage. This data streaming approach enables a quick user response time;

the time expired until first results are visible to the user. This is an advantage to

common scientific visualizations tools which typically wait until all processes finished

processing. Each rendering resource receives some extracted features and prepares

them for rendering. When the rendering process is finished, the image including its

colour and depth buffer is transmitted to the front-end application where it is finally

drawn to screen. Both buffers are required due to our image-based hybrid rendering

approach. To enable a consistent local and remote view position and direction, camera

updates are continuously sent to the rendering stage of the visualization pipeline.

 Parallel	
 Post-­‐Processing	
 3.1

Our integrated post-processing application is a parallel program based on the

Viracocha [8] middleware layer, which itself is based on the message passing interface

(MPI). We extended this framework to be more flexible for new algorithms and

optimized scheduling development. Furthermore, we enhanced the software with

interfaces allowing for data exchange between the simulation and the post-processing

application and thus enabling in-situ processing. As depicted in Figure 3, this

application consists of a single scheduler receiving messages via a TCP/IP socket

© CRESTA Consortium Page 10 of 26

from a front-end application and n worker instances doing the processing. On top of

each worker, an algorithm layer allows developers to integrate their own algorithms

for specific problems such as stream-surfaces, topological methods or data

compression algorithms. Furthermore, each worker has their own data manager and

streaming interface.

The Viracocha framework itself consists of three libraries:

• ViracochaBackend: A library which provides the development of parallel post-

processing or in-situ processing applications.

• ViracochaFrontend: A library for building a front-end application. It includes

the TCP/IP sockets for communication with the parallel post-processing back-

end and techniques to handle received data.

• ViracochaBase: A library which includes basic data items and message types.

This library is also used by the other two libraries.

Figure 3: The interactive front-end application can send algorithm requests to the scheduler of the
parallel post-processing application. The scheduler decomposes and distributes the work to the
given number of workers via the message passing interface. These workers execute the requested
algorithm. The algorithm can use the data manager functionalities to handle data I/O and resulting
data can be transferred to the parallel rendering application via the streaming interface. Interaction
commands and images between the lightweight front-end application and the parallel rendering
application are transferred via TCP/IP.

The Viracocha framework requires all algorithms, strategies, and message types used

later on in the distributed post-processing application to be implemented and registered

to Viracocha. This ensures that the application is able to understand incoming

messages from the interactive front-end. The post-processing application is then

capable of creating and starting an algorithm with a given parameter set, or of

terminating a running job and releasing resources.

© CRESTA Consortium Page 11 of 26

When a compute message is received, the scheduler decomposes the job into small

independent work items and pushes them into a so-called work table. A single work

item contains the algorithm id, data parameters, and algorithm parameters for

execution. For each registered algorithm specific strategies are required to handle

incoming compute requests. For this, Viracocha distinguishes between three different

processing aspects the user can assign strategies to:

• Decomposition Strategy: This aspect specifies how the job is decomposed

into smaller work items. They are all stored separately into the work table.

• Assignment Strategy: This specifies the strategy to assign work items of the

work table to idle workers for processing.

• Reduction Strategy: This aspect is optional and specifies how to collect data

after the processing is finished.

The streaming interface of Viracocha is used by algorithm developers to transfer the

extracted features directly to the parallel rendering application. This decreases latency

by avoiding the reduction operation and improves response times due to the immediate

transfer of partial results. Furthermore, this streaming is performed in a concurrent

thread via TCP/IP sockets which leads to an additionally increased performance due to

task parallelism of computation and network transfer. A problem that can occur when

transferring this data to the rendering nodes is that the workload and size of data can

be unevenly distributed over the rendering nodes. This imbalanced data distribution

can lead to varying processing times on the rendering nodes. As a consequence, the

rendering performance will decrease. Therefore, Viracocha allows the integration of

user-defined distribution strategies, which define how data is transferred to the parallel

rendering processes. We have implemented and used a static distribution over the

given number of rendering nodes to have data roughly balanced over the rendering

instances.

As I/O performance is often a bottleneck when processing large-scale datasets, it is

important to provide a data management mechanism to the developers. Therefore, we

have implemented and integrated a data manager interface that can be used by

algorithm developers to load, cache, or prefetch specific chunks of data. As the file-

system’s bandwidth in comparison to the aggregated network bandwidth of n compute

nodes can be poor, we have integrated not only a local but also a global caching

system into the data manager. This functionality allows workers to access data also

cached on other workers. To dispatch the needed information, all workers share their

© CRESTA Consortium Page 12 of 26

cache information with the other workers as soon as the work table is completely

processed. To make this approach more adjustable, the data manager component of

Viracocha is configurable. It allows the cache size on the workers to be specified, as

well as whether local or global cache access is enabled.

 Coupling	
 Viracocha	
 with	
 HemeLB	
 for	
 In-­‐Situ	
 Processing	
 3.2

Since the Viracocha framework was originally designed for classical post-processing

purposes we first extended this framework and in a second step we integrated it into

the HemeLB source code to allow for in-situ processing. The major obstacle was the

possibility to exchange data between both applications. To allow this data exchange

we had to extend the Viracocha data manager with a HemeLB specific data loader.

Since HemeLB does not use a grid-based solver, and available algorithms within

Viracocha are based on VTK [12] requiring a grid as input data, we had to do a

conversion step. Therefore, we chose to create an initial unstructured grid where every

quadric cell within the grid represents exactly one lattice within the HemeLB geometry.

Depending on the lattice type this could be easily adapted to multiple cells per lattice.

This initial grid creation is only executed once during the HemeLB initialization phase.

This also means that an extra amount of memory per MPI process is allocated for the

in-situ processing. The next task was to update the field values on the vertex points of

each cell. Since cells are usually connected and share vertices on the corners, we

calculate an average value on these vertices based on all input values. The field

update is only performed when a user requests a feature extraction. This is done to

avoid disturbing or impacting on the simulation behaviour unnecessarily. The next task

was to synchronize both applications. The field data cannot be updated while HemeLB

is actually changing values on the lattices. Therefore, a mutex exploited by HemeLB

and the Viracocha data manager thread is used. The mutex is locked in the HemeLB

main simulation loop before every iteration step and unlocked afterwards. This means

data is only exchanged when a HemeLB iteration is finished.

With the previous enhancements Viracocha is able to access the HemeLB simulation

data safely and use it for successive analysis algorithms. As mentioned in section 3.1

Viracocha further needs strategies defining how to deal with incoming feature requests.

Therefore, we implemented a specific decomposition strategy which exactly creates

one work item for each worker. The assignment is done via an already existing first in

first out assignment strategy.

© CRESTA Consortium Page 13 of 26

The last functionality to add was that both applications had to run concurrently within

the same process space. Therefore, either the Viracocha scheduler or one of the

workers are executed as a separate thread within each HemeLB process. Since both

applications use MPI communication mechanisms we had to create a communicator

specifically for Viracocha. This ensures safe communication but also requires an MPI

implementation that allows fully multi-threaded MPI communication.

Figure 4 depicts the HemeLB integration, communication and data flow. The Viracocha

master is executed as a thread inside the HemeLB master process. Each Viracocha

worker is executed within a HemeLB slave. The data is exchanged via the Viracocha

data manager. This uses the HemeLB data reader to read the lattice information and to

update the field values.

Figure 4: Communication and data flow: Every Viracocha master and worker instance is embedded
into HemeLB as a concurrent thread. The Viracocha scheduler is responsible for receiving user
requests from the front-end and initiating the algorithm execution on the Viracocha worker
instances. The data manager within the workers has direct access to the simulation data in main-
memory and is able to communicate over the cluster interconnect with similar worker threads to
exchange data when required.

A user can send feature extraction requests to the Viracocha master. The scheduler

executes our developed decomposition strategy and assigns the created work items to

the idle workers. The workers use the data manager interface to access the HemeLB

data. As soon as the features are extracted, results are streamed to the rendering

application for immediate presentation on the user’s front-end.

© CRESTA Consortium Page 14 of 26

 Parallel	
 Rendering	
 System	
 and	
 Front-­‐end	
 Application	
 3.3

Features extracted from a large-scale simulation in fact are much smaller than the raw

simulation data itself but they can still be large. The second-tier parallel rendering

system has to be efficient enough to take the data from the network stream, to

deserialize the raw packages to VTK data objects, and use them to update the

rendering data. The challenges, however, are high compute demands for the real-time

processing of the incoming geometry data and huge memory requirements for the

rendering. This was the main motivation for the design of a three-tier architecture with a

high-performance rendering stage as the second tier. The rendering application is

based on ViSTA [9], ViSTA FlowLib [10] and the IceT image compositing library. ViSTA

is used because of its flexible interaction and display opportunities. ViSTA FlowLib is

an add-on to enable time management of unsteady simulation data and provides

rendering methods specially designed for flow visualization. However, the core purpose

is parallel rendering managed by the IceT framework. It is capable of dividing the

compute and memory requirements to a scalable number of rendering nodes, reducing

the load of each single node.

To facilitate efficient data throughput, all core tasks of the parallel rendering application

are performed concurrently. Besides the main rendering thread, a network thread and a

pool of processing threads are executed (cf. Figure 5).

Figure 5: When the network thread has received enough raw data packets, it adds a new task to the
task list of the thread pool for execution. An internal execution pool consisting of a defined number
of threads executes these tasks in a first in first out order. Each thread in the execution pool
deserializes the raw data to a VTK data object and appends its data to the data buffer. The render
thread verifies for updates within the data buffer and possibly updates the render buffer.

The network thread listens to incoming data packages. If a defined count of packages

is received by this thread, it adds a new task to the task list of the thread pool. A user-

defined number of threads are responsible for processing these tasks. Every task has

to deserialize the raw buffers to a VTK data object, append these data objects

internally and finally append this data with the already present data in the data buffer.

© CRESTA Consortium Page 15 of 26

The last step needs to be locked because multiple threads may want to add data to the

buffer. Before the main rendering thread generates the next image, it verifies whether

an update is already available in the data buffer. If so, it tries to lock the render buffer,

copies data from the data buffer to the render buffer, and finally marks it to be ready for

GPU upload and rendering. If the data is already locked by another thread of the pool,

updating is postponed until a lock is possible. Due to this double buffering technique,

processing and rendering is only locked for a minimal amount of time. The thread pool

approach also has the advantage that the post-/in-situ processing application on the

first tier can concentrate just on the extraction process while usually idle processors of

the parallel rendering application are used for subsequent data preparation. Thus, the

presented software architecture is able to exploit today's multi-core processors on

rendering systems much more efficiently.

If the parallel rendering application has to create images for a tiled display, it has to

handle not only one but multiple rendered images. The number of images is specified

by the number of so-called viewports. The main thread within an IceT process now

generates one 2D image per defined viewport. Therefore, it determines whether the

data is visible on the viewport and calculates the colour and depth values for each

pixel. If the rendering operation is finished on every node, IceT performs a conclusive

composition task. During this composition task all images are collected by IceT to

generate one final image per viewport. To combine a set of images per viewport to one

final result, the depth values per pixel are compared. The colour of the pixel with the

foremost depth value is used. When the images are generated they are sent to the

front-end applications for presentation.

Since the pixel transfer for compositing the final image is costly and often prohibits

interactive frame rates, a hybrid rendering approach [11] is integrated into our setup.

This approach enables rendering with different frame rates on the local front-end and

the remote parallel rendering application. The local front-end application guarantees

interactive rendering of a context geometry, e.g. the wall boundary of an artery or

menus for interaction, while the extracted features are rendered with a lower frame rate

on the parallel rendering application.

Since the remote image is always delayed the camera position of the remote and local

image may differ slightly. For this reason we implemented a hybrid rendering solution

which combines local and remote images by an image-based rendering (IBR)

approach. The IBR technique allows the re-use of obsolete remote images in order to

© CRESTA Consortium Page 16 of 26

generate images for the current view and therefore hides the latency of the requested

remote image. To compose the re-adjusted remote image buffers with the locally

rendered image of the context geometry, depth buffer comparison is used. The result of

the composed remote and local image is depicted in Figure 6. This compose operation

is directly executed on the GPU using the OpenGL Shading Language (GLSL).

Figure 6: Our hybrid rendering approach. Remotely-rendered images are composed on a GPU
cluster and transferred to the front-end. Here, they are combined with the local context geometry
according to the pixels’ depth values.

© CRESTA Consortium Page 17 of 26

4 Evaluation	

In this section we present the results of our performance evaluation. We first describe

the used hardware infrastructure including their resources, followed by an evaluation of

the in-situ feature extraction. Finally we benchmark the performance of the data

preparation and rendering, the second tier of the software infrastructure.

 Hardware	
 system	
 4.1

This subsection describes the hardware systems on which the performance evaluation

was performed.

4.1.1 Archer	
 Hardware	
 system	

The ARCHER cluster system is based on a Cray XC30 supercomputer. This 5920

node supercomputer has 118,080 cores and is supported by a number of additional

components including e.g. a high-performance parallel file-system. The compute nodes

are connected together by the Aries interconnect. Every compute node contains two

2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors. Each of the cores in these

processors can support 2 hardware threads (Hyper threads). The used compute nodes

on ARCHER have 64 GB of memory shared between the two processors.

4.1.2 DLR	
 GPU-­‐Cluster	

The used GPU cluster consists of four high-end visualization workstations. Each of

these workstations has two Intel(R) Xeon(R) X5670 hexa-core processors with hyper-

threading support, 48 GB main memory, and three NVIDIA Quadro 6000 graphics

cards with 6 GB DDR5 graphics memory. The interconnect is a 40 Gbit QDR-Infiniband

network.

 Datasets	
 4.2

We used two different bifurcation (bifurcation of vessels) datasets for our evaluation

setup. The bifurcation geometry is a section of an intracranial vasculature model that

has been constructed from multiple rotational angiography scans of a patient with an

intracranial aneurysm treated at the U.K. National Hospital for Neurology and

Neurosurgery. Starting from this geometry we created the two bifurcation datasets for

the HemeLB simulation. The small dataset consists of 3.5 million lattice sites while the

large bifurcation dataset includes 24 million lattice sites.

© CRESTA Consortium Page 18 of 26

 Evaluation	
 of	
 the	
 In-­‐Situ	
 Processing	
 Performance	
 4.3

In this Section we present the results of the performance evaluation with regard to the

in-situ processing layer. As presented in Section 3.2, to perform the in-situ feature

extraction we initially create an unstructured grid during the HemeLB initialization

phase. This step adds an additional overhead to the regular simulation runtime.

Therefore, we measured the costs and speedup of this initial grid creation process with

increasing number of CPU cores. For the two bifurcation datasets (depicted in Figure

7) we can see that this approach scales with a super linear speedup.

Every time a point is inserted into the grid we have to check whether a point is already

present at this spatial location in order to avoid duplicated points. As this operation is

memory-constrained, we believe that this is the reason for the super linear speedup.

Nevertheless, a more detailed study on this effect has to be made.

Figure 7: Achieved speedup for the initial generation of an unstructured grid from the HemeLB
lattices. The speedup is super linear until some point of saturation.

For the small bifurcation dataset the scaling stops at a speedup of 75,360 using 4096

cores. This is the maximum achieved speedup for the initial geometry generation

operation. Using larger core counts does not further decrease this time. Using the large

bifurcation dataset the maximum achieved speedup is 421,800 using 16,384 cores, but

the scaling already stops at 8192 cores.

Figure 8 depicts the results of a surface extraction algorithm. This algorithm represents

an example of the feature extraction operation and can be exchanged easily. The

algorithm has been executed every 100th HemeLB time step. Based on 50 extractions

© CRESTA Consortium Page 19 of 26

during 5000 time steps we calculated the speedup of this algorithm to show the scaling

limits of the feature extraction.

One should keep in mind that the extraction process is executed concurrently with the

running simulation and therefore the runtime is heavily dependent on the simulation’s

CPU usage. The maximum achieved speedup for the small dataset was 1160 using

8192 cores which is poor, but looking at the overall simulation speedup (depicted in

Figure 9) including the extraction operations it shows that the overhead for the feature

extraction only harms the simulation slightly. The speedup on the large bifurcation

dataset was 6650 using 16,384 cores. For the small dataset, the decomposition to

16,384 cores was not possible.

Figure 9 illustrates the speedup based on the total runtime of the simulation with and

without the in-situ extraction of the surface features. The HemeLB partitioning and

initial geometry generation operations are neglected. The results show that the

additional extraction process does not influence the behavior of the simulation

performance significantly. The total overhead for extracting features on the small

dataset is on average 2% and for the large dataset 4.2%.

Figure 8: Measured speedup of the in-situ surface extraction with increasing number of CPU cores.
The extraction operation was executed concurrently with the simulation and therefore stole CPU
time from the simulation.

© CRESTA Consortium Page 20 of 26

Figure 9: Speedup of the total simulation. The benchmarks show that the concurrent feature
extraction only slightly influences the simulation.

Figure 10 depicts the efficiency of HemeLB with and without additional extraction of

features. It shows that the efficiency with the extraction operation is nearly the same as

without extraction of features. This indicates that the concurrent execution of post-

processing only influences the simulation to a minimal extent. Furthermore, the figure

depicts that HemeLB scales in a super-linear fashion at lower core counts and loses

efficiency when the lattice count per core drops below 5000. The same behavior has

been described in [13].

Figure 10: Efficiency plot of the two test cases with and without the extraction of features. The
results show that HemeLB in conjunction with our post-processing approach suffers only a
tolerable loss of efficiency.

© CRESTA Consortium Page 21 of 26

 Evaluation	
 of	
 the	
 Multi-­‐Threading	
 &	
 Rendering	
 Performance	
 4.4
As mentioned in Section 3.3 real-time processing of incoming features is essential to

enable interactivity during the exploration process. Figure 11 depicts the achieved

geometry append bandwidth for input data with 1300 vertices per fraction. Figure 12

shows the bandwidth for input geometry with 11,000 vertices per fraction. Each fraction

is appended to the output geometry. The benchmark has been performed on a single

workstation of the GPU cluster with different numbers of threads.

With increasing vertices in the output data the bandwidth drops due to location of

duplicated points. For the small bifurcation dataset the extracted surface consists of 1.5

million vertices with a serialized buffer size of 120MB.

Figure 11: Append bandwidth using a single node of the GPU cluster with different numbers of
processing threads.

Using 2048 cores on the small dataset a maximum output bandwidth of 1.2GB/s could

be achieved. To prepare this data amount in real-time on the GPU cluster we would

need around 5 nodes each using 16 threads. The maximum vertex count per output

data using 5 nodes is 300,000 and the bandwidth per node is at around 250MB/s and

therefore 1250MB/s in total.

© CRESTA Consortium Page 22 of 26

For the large bifurcation dataset the extracted surface consists of 22 million vertices

and a total buffer size of 1.4 GB. Using 4096 cores, features are extracted with a

bandwidth of 6.4 GB/s. Since each fraction of the large dataset has roughly 11,000

vertices we would need at least 6 nodes with 16 threads. Using this approach the

number of nodes can easily be adapted to the required bandwidth for real-time

processing.

Figure 12: Append bandwidth using a single node of the GPU cluster with different number of
processing threads.

One major limitation when performing parallel rendering is the huge compositing

overhead due to the massive pixel transfer. This often prevents true interactive frame

rates when using high image resolutions or multi-tiled display systems. A state of the

art approach is to decrease the resolution while interacting. While this approach is very

promising for desktop systems it is sub-optimal for immersive environments where the

user position is changed frequently. In this way, the technique will always render with a

lower resolution as the displays can provide and block artifacts visible to the user.

Figure 13 shows the achieved remote frame rates on our rendering system when using

different display configurations. E.g. full HD resolution using one tile produces a

maximum frame rate of about 17 frames per second which is much too slow for

interactive environments. This frame rate will further drop by half when rendering

stereoscopic image pairs. We could just achieve this 17 frames/s because of pipelining,

where the rendering and image transfer are performed as parallel tasks. Due to our

hybrid rendering approach, the local frame rate is always above 60 frames per second

while the extracted geometry data is rendered remotely with the frame rates shown in

© CRESTA Consortium Page 23 of 26

Figure 13. Therefore, the hybrid rendering technique enables us to be interactive on

the front-end. It allows for smooth camera movements. Due to the image warping

approach, extracted features are always rendered at full resolution with a minimal error.

Figure 13: Frame rates using different number of tiles and resolutions.

© CRESTA Consortium Page 24 of 26

5 Conclusion	
 and	
 future	
 work	

In this deliverable, we have evaluated our in-situ processing system using the HemeLB

simulation code as the driving application. We demonstrated the usability and

interactivity of the developed software infrastructure by benchmarking the speedup of

the first tier in-situ processing layer followed by time and bandwidth measurements of

the rendering application. The measurements demonstrate that the in-situ processing

application integrated into HemeLB scales up to many thousands of cores depending

on the size of the simulation. We could also show that the extraction process itself does

not influence the HemeLB simulation scaling. The initial grid generation will scale up to

421,800 cores using the large dataset. Above this core count a further speedup will not

be achieved and the data converting step has to be revisited. Features could be

extracted within 60ms on a simulation dataset with 22 million lattice sites. This means

features could be extracted nearly interactively.

The hybrid parallelized rendering application is capable of performing real-time

processing of incoming features. It allows the rendering of massive quantities of

extracted features. To avoid slow frame rates using the sort-last rendering approach

we integrated a hybrid rendering approach into the software architecture. With this

hybrid rendering approach interactivity could be guaranteed during user exploration.

In order to further improve the scaling behaviour of the in-situ processing application,

the in-situ algorithms have to use the HemeLB data structures directly instead of

transferring data from lattices to grid cells. Furthermore, the integrated Viracocha post-

processing framework with a single scheduler has to be enhanced by optimized

scheduling approaches allowing for higher parallel efficiency in case of extremely large

numbers of processes.

© CRESTA Consortium Page 25 of 26

6 References	

[1] Ashby, S.: The opportunities and challenges of exascale computing (2012)

[2] Moreland, K., Thompson, D.: From cluster to wall with VTK. In: Proceedings of the

2003 IEEE Symposium on Parallel and Large-Data Visualization and Graphics, PVG

'03, p. 5. IEEE Computer Society, Washington, DC, USA (2003)

[3] Laboratory, L.L.N.: Visit user's manual (October 2005)

[4] Moreland, K.: Redirecting research in large-format displays for visualization. In:

Large Data Analysis and Visualization (LDAV), 2012 IEEE Symposium on, pp. 91-95

(2012).

[5] Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel

rendering. In: ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH Asia '08, pp. 35:1-

35:11. ACM, New York, NY, USA (2008)

[6] Moreland, K., Wylie, B., Pavlakos, C.: Sort-last parallel rendering for viewing

extremely large data sets on tile displays. In: Proceedings of the IEEE 2001

symposium on parallel and large-data visualization and graphics, PVG '01, pp. 85-92.

IEEE Press, Piscataway, NJ, USA (2001)

[7] Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: A scalable parallel rendering

framework. Visualization and Computer Graphics, IEEE Transactions on 15(3), 436

-452 (2009)

[8] Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T.,Bischof, C.: Viracocha: An efficient

parallelization framework for large-scale cfd post-processing in virtual environments.

In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, SC '04, p. 50.

IEEE Computer Society, Washington, DC, USA (2004)

[9] Assenmacher, I., Kuhlen, T.: The ViSTA virtual reality toolkit. In: Proceedings of the

SEARIS Workshop, IEEE VR 2008. Shaker Verlag (2008)

[10] Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T., Bischof, C.: Viracocha: An

efficient parallelization framework for large-scale CFD post-processing in virtual

environments. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,

SC '04, p. 50. IEEE Computer Society, Washington, DC, USA (2004)

[11] Wagner, C., Flatken, M., Chen, F., Gerndt, A., Hansen, C.D., Hagen, H.:

Interactive hybrid remote rendering for multi-pipe powerwall systems. In: C. Geiger, J.

Herder, T. Vierjahn (eds.) Virtuelle und Erweiterte Reality at, 9. GI-Workshop Virtuelle

und Erweiterte Realität at, pp. 155-166. GI-Fachgruppe VR/AR, Shaker Verlag (2012)

[12] Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization Toolkit (2nd Ed.):

An Object-Oriented Approach to 3D Graphics, Kitware Inc.,1998.

© CRESTA Consortium Page 26 of 26

[13] Groen, D., Hetherington, J., Carver, H.B., Nash, R.W., Bernabeu, M.O., Coveney,

P.V.: Analysing and modelling the performance of the HemeLB lattice-Boltzmann

simulation environment, Journal of Computational Science, Volume 4, Issue 5, pp. 412-

422, September 2013.

[14] Moreland, K., Lepage, D., Koller, D., Humphreys, G.: Remote rendering for

ultrascale data. Journal of Physics, Volume 125, Number 012096, 2008.

[15] Noguera, J.M., Segura, R.J., Ogyar, C.J., Joan-Arinyo, R.: Navigating large

terrains using commodity mobile devices. Computers and Geosciences, Volume 37(9),

pp. 1218 – 1233, 2011.

