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1 Executive	
  Summary	
  
In this deliverable, we present the evaluation of our developed in-situ post-processing 

software infrastructure designed for enabling data exploration and post-processing 

towards exascale.  

As the last deliverable for work package 5.2, we give a detailed review of the software 

architecture, and evaluate our in-situ post-processing algorithms during an on-going 

simulation. We focus on evaluating the time needed to prepare the in-situ operations, 

for extracting features, and for rendering.  We investigate the scalability and 

interactivity of the proposed in-situ processing tools. All proposed methods have been 

evaluated using HemeLB as the core application for the in-situ analysis.  
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2 Introduction	
  

 

The ever-increasing compute 

capacity of HPC hardware 

systems enables scientists to 

simulate and explore physical 

phenomena with an incredible 

spatial and temporal accuracy. 

This high accuracy also leads to 

dataset sizes of many terabytes, 

petabytes and even exabytes if 

we think about the upcoming 

exascale area expected in 

2018[1]. To obtain knowledge from these advanced simulation datasets an efficient 

analysis and visualization process becomes increasingly important but also difficult. In 

particular, explorative scenarios where the users continuously change input parameters 

to the analysis process pose tremendous challenges to the underlying compute and 

software system. These parameter changes demand a re-execution of all compute and 

data-fetching operations. Thus, the challenges are related to all steps of a classical 

visualization pipeline (as shown in Figure 2 on page 8): 

1. Filtering: An operation which extracts meaningful features out of the huge 

quantity of raw data. 

2. Mapping: An operation which maps the extracted features to visualization 

primitives such as points, lines or polygons. 

3. Rendering: Generates a 2D image from the extracted primitives based on user 

defined camera parameters. 

4. Display: A final stage which simply displays the generated 2D image on the 

screen. 

 

A common way to speed up the filtering and mapping stages of this visualization 

pipeline is data parallelism. This technique is used massively by the two widely-utilised 

open-source visualization tools ParaView [2] and VisIt [3]. Thereby, each process 

executes at least the filtering operation only on a fraction of the complete dataset. 

Partial results are collected later on in a subsequent pipeline stage.  

 

Due to the enormous spatial accuracy, high resolution displays are required to 

recognize tiny but significant details. While classical display systems often do not 

Figure 1: A scientist is interactively exploring the blood 
flow of an aneurysm during an on-going HemeLB lattice 
Boltzmann simulation 
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provide a sufficient resolution in all application cases, tiled-display systems have 

proven to support the visualization of small details with ultra-high resolutions up to tens 

or hundreds of mega pixels [4]. However, the local resources are often insufficient to 

process and render the still large amount of features extracted during the filtering and 

mapping operations. One solution is to use parallel rendering techniques. These 

parallel rendering techniques also use the data parallelism approach. Therefore, each 

processor or graphics processing unit (GPU) only renders a part of the total geometry. 

An early classification of these parallel rendering techniques is given in [5]. Today two 

major frameworks are common to develop parallel rendering engines, namely the IceT 

[6] and Equalizer framework [7]. IceT is a sort-last rendering solution for tiled-display 

systems. The main advantage of the sort-last rendering is that this approach is scalable 

with respect to the size of data, but the major bottleneck is the required network 

bandwidth to combine all partial images to a final result. Due to this limitation this 

technique often prohibits interactive frame rates necessary when using e.g. virtual 

environments and tiled-display systems. 

 

Therefore, hybrid rendering methods which render with varying frame rates on local 

and remote resources have been developed. Moreland et al. presented an image-

based rendering approach which generates local images with the help of a remotely 

generated unstructured lumigraph [14]. Wagner et al. presented an image-based 

rendering approach optimized for hybrid rendering using tiled-displays [11]. Noguera et 

al. applied this technique to navigate through large terrains on commodity mobile 

devices [15]. The terrain closely located to the user is rendered on the mobile device 

while the terrain far away is rendered remotely into a sky box which is then sent to the 

mobile client. Thus, hybrid rendering is an important key feature to guarantee 

interactivity on the user's front-end which would seem to be unfeasible just using sort-

last rendering at high image resolutions. 

 

Another critical fact which often prohibits interactive exploration in a conventional post-

processing setup is the limited data I/O bandwidth. The simulation data has to be 

initially loaded from disc which requires a significant amount of time. Furthermore, 

when running an exascale simulation it is also questionable whether storing the 

complete dataset is possible or even necessary. In-situ processing, compared to 

conventional post-processing, allows scientists an early inspection and analysis of an 

on-going simulation and enables domain experts to obtain first insight into their running 

simulation process and intermediate results. Such in-situ processing has the advantage 

of keeping data in memory, avoiding the storage of large raw data to disk, providing on-

the-fly analysis, and eventually preventing early failures in the simulation process.  
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In this deliverable we present our distributed and scalable software infrastructure, 

which provides distributed in-situ data processing, feature extraction and interactive 

exploration at the user’s front-end. Therefore, we couple a large-scale cluster system 

executing the filtering and mapping operations concurrently within each simulation 

process, a remote GPU cluster for parallel rendering and a high resolution tiled display 

system for presentation (depicted in Figure 1). In contrast to common scientific 

visualization frameworks we use the hybrid rendering approach to guarantee 

interactive frame rates. We integrated and extended an existing post-processing 

application to allow direct visualization of an on-going HemeLB simulation. Finally, an 

interactive user front-end has been developed which enables scientists to directly 

interact with the visualization of a running simulation, gain insight, and make decisions. 

 

The aim of this deliverable is to present an evaluation of the software-system and its 

algorithms and tools which we designed and developed for exascale in-situ processing 

applications. In section 2, we explain the overall system and software architecture. In 

Section 3 we evaluate the performance of our approach based on real world scenarios 

and in Section 4 a conclusion and outlook is given. 
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3 System	
  and	
  Software	
  Architecture	
  

Figure 2 proposes our chosen software architecture which can either consist of a two- 

or three-tier architecture depending on the available hardware resources and the 

overall size of the simulation data.  

 

 

Figure 2: Distributed post-/in-situ processing infrastructure. The visualization pipeline is either 
distributed in a two- or three-tier fashion. The parallel post-processing running on an HPC 
hardware system extracts important features, mapped to geometric primitives. These primitives are 
transferred to a GPU cluster for parallel rendering. A front-end application only receives an image 
stream from the parallel rendering application. When using a two-tier architecture, the rendering 
and display stage is executed locally. 

 

The system contains of three major parts. First, in-situ data processing and parallel 

feature extraction takes place on a large-scale cluster system executed concurrently 

with the ongoing simulation. Next, depending on the size of the extracted features as 

well as the complexity of rendering algorithms, rendering is performed either on a 

smaller-scale GPU-cluster or directly on the local front-end machines. Thirdly, the 

resulting images are displayed either on a single desktop or in a virtual environment 

accompanied by different types of user interaction techniques.  
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In such a distributed software infrastructure, communication and data transfer 

bandwidths are essential factors to enable interactivity and scalability. The data must 

be exchanged with minimal latency between different software layers, applications, and 

resources. To increase the bandwidth between the first and the second tier of our 

proposed software infrastructure, the data transfer is parallelized with a m to n 

connection between the involved resources. m denotes the number of processes doing 

the filtering and mapping operations on the simulation data and n is the number of 

processes performing the rendering step. The transfer between the second and third 

tier uses a 1 to 1 connection. Therefore, the master process of the parallel rendering 

application sends the images to the front-end application. The overall size of data is 

reduced during each of the pipeline stages, so that each subsequent stage is able to 

handle and process the incoming data.  

 

The user, interacting at the front-end application, is able to adjust the parameters for 

the feature extraction process which demands a data exchange with the simulation 

solver and a re-execution of the specified filtering and mapping algorithms. Each 

process sends the extracted feature results (geometry data in our case) directly to the 

rendering stage. This data streaming approach enables a quick user response time; 

the time expired until first results are visible to the user. This is an advantage to 

common scientific visualizations tools which typically wait until all processes finished 

processing. Each rendering resource receives some extracted features and prepares 

them for rendering. When the rendering process is finished, the image including its 

colour and depth buffer is transmitted to the front-end application where it is finally 

drawn to screen. Both buffers are required due to our image-based hybrid rendering 

approach. To enable a consistent local and remote view position and direction, camera 

updates are continuously sent to the rendering stage of the visualization pipeline. 

 

 Parallel	
  Post-­‐Processing	
  3.1
 

Our integrated post-processing application is a parallel program based on the 

Viracocha [8] middleware layer, which itself is based on the message passing interface 

(MPI). We extended this framework to be more flexible for new algorithms and 

optimized scheduling development. Furthermore, we enhanced the software with 

interfaces allowing for data exchange between the simulation and the post-processing 

application and thus enabling in-situ processing. As depicted in Figure 3, this 

application consists of a single scheduler receiving messages via a TCP/IP socket 
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from a front-end application and n worker instances doing the processing. On top of 

each worker, an algorithm layer allows developers to integrate their own algorithms 

for specific problems such as stream-surfaces, topological methods or data 

compression algorithms. Furthermore, each worker has their own data manager and 

streaming interface. 

 

The Viracocha framework itself consists of three libraries: 

• ViracochaBackend: A library which provides the development of parallel post-

processing or in-situ processing applications. 

• ViracochaFrontend: A library for building a front-end application. It includes 

the TCP/IP sockets for communication with the parallel post-processing back-

end and techniques to handle received data. 

• ViracochaBase: A library which includes basic data items and message types. 

This library is also used by the other two libraries. 

 

 

Figure 3: The interactive front-end application can send algorithm requests to the scheduler of the 
parallel post-processing application. The scheduler decomposes and distributes the work to the 
given number of workers via the message passing interface. These workers execute the requested 
algorithm. The algorithm can use the data manager functionalities to handle data I/O and resulting 
data can be transferred to the parallel rendering application via the streaming interface. Interaction 
commands and images between the lightweight front-end application and the parallel rendering 
application are transferred via TCP/IP. 

 

The Viracocha framework requires all algorithms, strategies, and message types used 

later on in the distributed post-processing application to be implemented and registered 

to Viracocha. This ensures that the application is able to understand incoming 

messages from the interactive front-end. The post-processing application is then 

capable of creating and starting an algorithm with a given parameter set, or of 

terminating a running job and releasing resources. 
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When a compute message is received, the scheduler decomposes the job into small 

independent work items and pushes them into a so-called work table. A single work 

item contains the algorithm id, data parameters, and algorithm parameters for 

execution. For each registered algorithm specific strategies are required to handle 

incoming compute requests. For this, Viracocha distinguishes between three different 

processing aspects the user can assign strategies to: 

 

• Decomposition Strategy: This aspect specifies how the job is decomposed 

into smaller work items. They are all stored separately into the work table. 

• Assignment Strategy: This specifies the strategy to assign work items of the 

work table to idle workers for processing. 

• Reduction Strategy: This aspect is optional and specifies how to collect data 

after the processing is finished. 

 

The streaming interface of Viracocha is used by algorithm developers to transfer the 

extracted features directly to the parallel rendering application. This decreases latency 

by avoiding the reduction operation and improves response times due to the immediate 

transfer of partial results. Furthermore, this streaming is performed in a concurrent 

thread via TCP/IP sockets which leads to an additionally increased performance due to 

task parallelism of computation and network transfer. A problem that can occur when 

transferring this data to the rendering nodes is that the workload and size of data can 

be unevenly distributed over the rendering nodes. This imbalanced data distribution 

can lead to varying processing times on the rendering nodes. As a consequence, the 

rendering performance will decrease. Therefore, Viracocha allows the integration of 

user-defined distribution strategies, which define how data is transferred to the parallel 

rendering processes. We have implemented and used a static distribution over the 

given number of rendering nodes to have data roughly balanced over the rendering 

instances. 

 

As I/O performance is often a bottleneck when processing large-scale datasets, it is 

important to provide a data management mechanism to the developers. Therefore, we 

have implemented and integrated a data manager interface that can be used by 

algorithm developers to load, cache, or prefetch specific chunks of data. As the file-

system’s bandwidth in comparison to the aggregated network bandwidth of n compute 

nodes can be poor, we have integrated not only a local but also a global caching 

system into the data manager. This functionality allows workers to access data also 

cached on other workers. To dispatch the needed information, all workers share their 
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cache information with the other workers as soon as the work table is completely 

processed. To make this approach more adjustable, the data manager component of 

Viracocha is configurable. It allows the cache size on the workers to be specified, as 

well as whether local or global cache access is enabled. 

 

 Coupling	
  Viracocha	
  with	
  HemeLB	
  for	
  In-­‐Situ	
  Processing	
  3.2
 

Since the Viracocha framework was originally designed for classical post-processing 

purposes we first extended this framework and in a second step we integrated it into 

the HemeLB source code to allow for in-situ processing. The major obstacle was the 

possibility to exchange data between both applications.  To allow this data exchange 

we had to extend the Viracocha data manager with a HemeLB specific data loader. 

Since HemeLB does not use a grid-based solver, and available algorithms within 

Viracocha are based on VTK [12] requiring a grid as input data, we had to do a 

conversion step. Therefore, we chose to create an initial unstructured grid where every 

quadric cell within the grid represents exactly one lattice within the HemeLB geometry. 

Depending on the lattice type this could be easily adapted to multiple cells per lattice.  

This initial grid creation is only executed once during the HemeLB initialization phase. 

This also means that an extra amount of memory per MPI process is allocated for the 

in-situ processing. The next task was to update the field values on the vertex points of 

each cell. Since cells are usually connected and share vertices on the corners, we 

calculate an average value on these vertices based on all input values. The field 

update is only performed when a user requests a feature extraction. This is done to 

avoid disturbing or impacting on the simulation behaviour unnecessarily. The next task 

was to synchronize both applications. The field data cannot be updated while HemeLB 

is actually changing values on the lattices. Therefore, a mutex exploited by HemeLB 

and the Viracocha data manager thread is used. The mutex is locked in the HemeLB 

main simulation loop before every iteration step and unlocked afterwards. This means 

data is only exchanged when a HemeLB iteration is finished.  

 

With the previous enhancements Viracocha is able to access the HemeLB simulation 

data safely and use it for successive analysis algorithms. As mentioned in section 3.1 

Viracocha further needs strategies defining how to deal with incoming feature requests. 

Therefore, we implemented a specific decomposition strategy which exactly creates 

one work item for each worker. The assignment is done via an already existing first in 

first out assignment strategy. 
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The last functionality to add was that both applications had to run concurrently within 

the same process space. Therefore, either the Viracocha scheduler or one of the 

workers are executed as a separate thread within each HemeLB process. Since both 

applications use MPI communication mechanisms we had to create a communicator 

specifically for Viracocha. This ensures safe communication but also requires an MPI 

implementation that allows fully multi-threaded MPI communication.  

 

Figure 4 depicts the HemeLB integration, communication and data flow. The Viracocha 

master is executed as a thread inside the HemeLB master process. Each Viracocha 

worker is executed within a HemeLB slave. The data is exchanged via the Viracocha 

data manager. This uses the HemeLB data reader to read the lattice information and to 

update the field values. 

 

 

Figure 4: Communication and data flow: Every Viracocha master and worker instance is embedded 
into HemeLB as a concurrent thread. The Viracocha scheduler is responsible for receiving user 
requests from the front-end and initiating the algorithm execution on the Viracocha worker 
instances. The data manager within the workers has direct access to the simulation data in main-
memory and is able to communicate over the cluster interconnect with similar worker threads to 
exchange data when required. 

 

A user can send feature extraction requests to the Viracocha master. The scheduler 

executes our developed decomposition strategy and assigns the created work items to 

the idle workers. The workers use the data manager interface to access the HemeLB 

data. As soon as the features are extracted, results are streamed to the rendering 

application for immediate presentation on the user’s front-end. 
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 Parallel	
  Rendering	
  System	
  and	
  Front-­‐end	
  Application	
  3.3

Features extracted from a large-scale simulation in fact are much smaller than the raw 

simulation data itself but they can still be large. The second-tier parallel rendering 

system has to be efficient enough to take the data from the network stream, to 

deserialize the raw packages to VTK data objects, and use them to update the 

rendering data. The challenges, however, are high compute demands for the real-time 

processing of the incoming geometry data and huge memory requirements for the 

rendering. This was the main motivation for the design of a three-tier architecture with a 

high-performance rendering stage as the second tier. The rendering application is 

based on ViSTA [9], ViSTA FlowLib [10] and the IceT image compositing library. ViSTA 

is used because of its flexible interaction and display opportunities. ViSTA FlowLib is 

an add-on to enable time management of unsteady simulation data and provides 

rendering methods specially designed for flow visualization. However, the core purpose 

is parallel rendering managed by the IceT framework. It is capable of dividing the 

compute and memory requirements to a scalable number of rendering nodes, reducing 

the load of each single node. 

 

To facilitate efficient data throughput, all core tasks of the parallel rendering application 

are performed concurrently. Besides the main rendering thread, a network thread and a 

pool of processing threads are executed (cf. Figure 5).  

 

Figure 5: When the network thread has received enough raw data packets, it adds a new task to the 
task list of the thread pool for execution. An internal execution pool consisting of a defined number 
of threads executes these tasks in a first in first out order. Each thread in the execution pool 
deserializes the raw data to a VTK data object and appends its data to the data buffer. The render 
thread verifies for updates within the data buffer and possibly updates the render buffer. 

 

The network thread listens to incoming data packages. If a defined count of packages 

is received by this thread, it adds a new task to the task list of the thread pool. A user-

defined number of threads are responsible for processing these tasks. Every task has 

to deserialize the raw buffers to a VTK data object, append these data objects 

internally and finally append this data with the already present data in the data buffer. 
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The last step needs to be locked because multiple threads may want to add data to the 

buffer. Before the main rendering thread generates the next image, it verifies whether 

an update is already available in the data buffer. If so, it tries to lock the render buffer, 

copies data from the data buffer to the render buffer, and finally marks it to be ready for 

GPU upload and rendering. If the data is already locked by another thread of the pool, 

updating is postponed until a lock is possible. Due to this double buffering technique, 

processing and rendering is only locked for a minimal amount of time. The thread pool 

approach also has the advantage that the post-/in-situ processing application on the 

first tier can concentrate just on the extraction process while usually idle processors of 

the parallel rendering application are used for subsequent data preparation. Thus, the 

presented software architecture is able to exploit today's multi-core processors on 

rendering systems much more efficiently.  

 

If the parallel rendering application has to create images for a tiled display, it has to 

handle not only one but multiple rendered images. The number of images is specified 

by the number of so-called viewports. The main thread within an IceT process now 

generates one 2D image per defined viewport. Therefore, it determines whether the 

data is visible on the viewport and calculates the colour and depth values for each 

pixel. If the rendering operation is finished on every node, IceT performs a conclusive 

composition task. During this composition task all images are collected by IceT to 

generate one final image per viewport. To combine a set of images per viewport to one 

final result, the depth values per pixel are compared. The colour of the pixel with the 

foremost depth value is used. When the images are generated they are sent to the 

front-end applications for presentation. 

 

Since the pixel transfer for compositing the final image is costly and often prohibits 

interactive frame rates, a hybrid rendering approach [11] is integrated into our setup. 

This approach enables rendering with different frame rates on the local front-end and 

the remote parallel rendering application. The local front-end application guarantees 

interactive rendering of a context geometry, e.g. the wall boundary of an artery or 

menus for interaction, while the extracted features are rendered with a lower frame rate 

on the parallel rendering application. 

 

Since the remote image is always delayed the camera position of the remote and local 

image may differ slightly. For this reason we implemented a hybrid rendering solution 

which combines local and remote images by an image-based rendering (IBR) 

approach. The IBR technique allows the re-use of obsolete remote images in order to 
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generate images for the current view and therefore hides the latency of the requested 

remote image. To compose the re-adjusted remote image buffers with the locally 

rendered image of the context geometry, depth buffer comparison is used. The result of 

the composed remote and local image is depicted in Figure 6. This compose operation 

is directly executed on the GPU using the OpenGL Shading Language (GLSL).  

 

Figure 6: Our hybrid rendering approach. Remotely-rendered images are composed on a GPU 
cluster and transferred to the front-end. Here, they are combined with the local context geometry 
according to the pixels’ depth values. 
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4 Evaluation	
  
In this section we present the results of our performance evaluation. We first describe 

the used hardware infrastructure including their resources, followed by an evaluation of 

the in-situ feature extraction. Finally we benchmark the performance of the data 

preparation and rendering, the second tier of the software infrastructure.  

 Hardware	
  system	
  4.1

This subsection describes the hardware systems on which the performance evaluation 

was performed. 

4.1.1 Archer	
  Hardware	
  system	
  

The ARCHER cluster system is based on a Cray XC30 supercomputer. This 5920 

node supercomputer has 118,080 cores and is supported by a number of additional 

components including e.g. a high-performance parallel file-system. The compute nodes 

are connected together by the Aries interconnect. Every compute node contains two 

2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors. Each of the cores in these 

processors can support 2 hardware threads (Hyper threads). The used compute nodes 

on ARCHER have 64 GB of memory shared between the two processors. 

4.1.2 DLR	
  GPU-­‐Cluster	
  

The used GPU cluster consists of four high-end visualization workstations. Each of 

these workstations has two Intel(R) Xeon(R) X5670 hexa-core processors with hyper-

threading support, 48 GB main memory, and three NVIDIA Quadro 6000 graphics 

cards with 6 GB DDR5 graphics memory. The interconnect is a 40 Gbit QDR-Infiniband 

network. 

 

 Datasets	
  4.2
 

We used two different bifurcation (bifurcation of vessels) datasets for our evaluation 

setup. The bifurcation geometry is a section of an intracranial vasculature model that 

has been constructed from multiple rotational angiography scans of a patient with an 

intracranial aneurysm treated at the U.K. National Hospital for Neurology and 

Neurosurgery. Starting from this geometry we created the two bifurcation datasets for 

the HemeLB simulation. The small dataset consists of 3.5 million lattice sites while the 

large bifurcation dataset includes 24 million lattice sites. 
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 Evaluation	
  of	
  the	
  In-­‐Situ	
  Processing	
  Performance	
  4.3
 

In this Section we present the results of the performance evaluation with regard to the 

in-situ processing layer. As presented in Section 3.2, to perform the in-situ feature 

extraction we initially create an unstructured grid during the HemeLB initialization 

phase. This step adds an additional overhead to the regular simulation runtime. 

Therefore, we measured the costs and speedup of this initial grid creation process with 

increasing number of CPU cores. For the two bifurcation datasets (depicted in Figure 

7) we can see that this approach scales with a super linear speedup.  

Every time a point is inserted into the grid we have to check whether a point is already 

present at this spatial location in order to avoid duplicated points. As this operation is 

memory-constrained, we believe that this is the reason for the super linear speedup.  

Nevertheless, a more detailed study on this effect has to be made. 

 

Figure 7: Achieved speedup for the initial generation of an unstructured grid from the HemeLB 
lattices. The speedup is super linear until some point of saturation. 

 

For the small bifurcation dataset the scaling stops at a speedup of 75,360 using 4096 

cores. This is the maximum achieved speedup for the initial geometry generation 

operation. Using larger core counts does not further decrease this time. Using the large 

bifurcation dataset the maximum achieved speedup is 421,800 using 16,384 cores, but 

the scaling already stops at 8192 cores.  

Figure 8 depicts the results of a surface extraction algorithm. This algorithm represents 

an example of the feature extraction operation and can be exchanged easily. The 

algorithm has been executed every 100th HemeLB time step. Based on 50 extractions 
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during 5000 time steps we calculated the speedup of this algorithm to show the scaling 

limits of the feature extraction.  

 

 

One should keep in mind that the extraction process is executed concurrently with the 

running simulation and therefore the runtime is heavily dependent on the simulation’s 

CPU usage. The maximum achieved speedup for the small dataset was 1160 using 

8192 cores which is poor, but looking at the overall simulation speedup (depicted in 

Figure 9) including the extraction operations it shows that the overhead for the feature 

extraction only harms the simulation slightly. The speedup on the large bifurcation 

dataset was 6650 using 16,384 cores. For the small dataset, the decomposition to 

16,384 cores was not possible. 

Figure 9 illustrates the speedup based on the total runtime of the simulation with and 

without the in-situ extraction of the surface features. The HemeLB partitioning and 

initial geometry generation operations are neglected. The results show that the 

additional extraction process does not influence the behavior of the simulation 

performance significantly. The total overhead for extracting features on the small 

dataset is on average 2% and for the large dataset 4.2%.  

 

 

 

 

 

 

Figure 8: Measured speedup of the in-situ surface extraction with increasing number of CPU cores. 
The extraction operation was executed concurrently with the simulation and therefore stole CPU 
time from the simulation. 
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Figure 9: Speedup of the total simulation. The benchmarks show that the concurrent feature 
extraction only slightly influences the simulation. 

 

Figure 10 depicts the efficiency of HemeLB with and without additional extraction of 

features. It shows that the efficiency with the extraction operation is nearly the same as 

without extraction of features. This indicates that the concurrent execution of post-

processing only influences the simulation to a minimal extent. Furthermore, the figure 

depicts that HemeLB scales in a super-linear fashion at lower core counts and loses 

efficiency when the lattice count per core drops below 5000. The same behavior has 

been described in [13].  

Figure 10: Efficiency plot of the two test cases with and without the extraction of features. The 
results show that HemeLB in conjunction with our post-processing approach suffers only a 
tolerable loss of efficiency. 
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 Evaluation	
  of	
  the	
  Multi-­‐Threading	
  &	
  Rendering	
  Performance	
  4.4
As mentioned in Section 3.3 real-time processing of incoming features is essential to 

enable interactivity during the exploration process. Figure 11 depicts the achieved 

geometry append bandwidth for input data with 1300 vertices per fraction. Figure 12 

shows the bandwidth for input geometry with 11,000 vertices per fraction. Each fraction 

is appended to the output geometry. The benchmark has been performed on a single 

workstation of the GPU cluster with different numbers of threads.  

With increasing vertices in the output data the bandwidth drops due to location of 

duplicated points. For the small bifurcation dataset the extracted surface consists of 1.5 

million vertices with a serialized buffer size of 120MB.  

 

Figure 11: Append bandwidth using a single node of the GPU cluster with different numbers of 
processing threads. 

 

Using 2048 cores on the small dataset a maximum output bandwidth of 1.2GB/s could 

be achieved. To prepare this data amount in real-time on the GPU cluster we would 

need around 5 nodes each using 16 threads. The maximum vertex count per output 

data using 5 nodes is 300,000 and the bandwidth per node is at around 250MB/s and 

therefore 1250MB/s in total. 
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For the large bifurcation dataset the extracted surface consists of 22 million vertices 

and a total buffer size of 1.4 GB. Using 4096 cores, features are extracted with a 

bandwidth of 6.4 GB/s. Since each fraction of the large dataset has roughly 11,000 

vertices we would need at least 6 nodes with 16 threads. Using this approach the 

number of nodes can easily be adapted to the required bandwidth for real-time 

processing.  

  

Figure 12: Append bandwidth using a single node of the GPU cluster with different number of 
processing threads. 

 

One major limitation when performing parallel rendering is the huge compositing 

overhead due to the massive pixel transfer. This often prevents true interactive frame 

rates when using high image resolutions or multi-tiled display systems. A state of the 

art approach is to decrease the resolution while interacting. While this approach is very 

promising for desktop systems it is sub-optimal for immersive environments where the 

user position is changed frequently. In this way, the technique will always render with a 

lower resolution as the displays can provide and block artifacts visible to the user.  

Figure 13 shows the achieved remote frame rates on our rendering system when using 

different display configurations. E.g. full HD resolution using one tile produces a 

maximum frame rate of about 17 frames per second which is much too slow for 

interactive environments. This frame rate will further drop by half when rendering 

stereoscopic image pairs. We could just achieve this 17 frames/s because of pipelining, 

where the rendering and image transfer are performed as parallel tasks. Due to our 

hybrid rendering approach, the local frame rate is always above 60 frames per second 

while the extracted geometry data is rendered remotely with the frame rates shown in 
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Figure 13. Therefore, the hybrid rendering technique enables us to be interactive on 

the front-end. It allows for smooth camera movements. Due to the image warping 

approach, extracted features are always rendered at full resolution with a minimal error. 

 

 

Figure 13: Frame rates using different number of tiles and resolutions. 
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5 Conclusion	
  and	
  future	
  work	
  

In this deliverable, we have evaluated our in-situ processing system using the HemeLB 

simulation code as the driving application. We demonstrated the usability and 

interactivity of the developed software infrastructure by benchmarking the speedup of 

the first tier in-situ processing layer followed by time and bandwidth measurements of 

the rendering application. The measurements demonstrate that the in-situ processing 

application integrated into HemeLB scales up to many thousands of cores depending 

on the size of the simulation. We could also show that the extraction process itself does 

not influence the HemeLB simulation scaling. The initial grid generation will scale up to 

421,800 cores using the large dataset. Above this core count a further speedup will not 

be achieved and the data converting step has to be revisited. Features could be 

extracted within 60ms on a simulation dataset with 22 million lattice sites. This means 

features could be extracted nearly interactively.  

The hybrid parallelized rendering application is capable of performing real-time 

processing of incoming features. It allows the rendering of massive quantities of 

extracted features. To avoid slow frame rates using the sort-last rendering approach 

we integrated a hybrid rendering approach into the software architecture. With this 

hybrid rendering approach interactivity could be guaranteed during user exploration.  

In order to further improve the scaling behaviour of the in-situ processing application, 

the in-situ algorithms have to use the HemeLB data structures directly instead of 

transferring data from lattices to grid cells. Furthermore, the integrated Viracocha post-

processing framework with a single scheduler has to be enhanced by optimized 

scheduling approaches allowing for higher parallel efficiency in case of extremely large 

numbers of processes. 
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